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Preface

Probability and statistics are fascinating subjects on the interface between
mathematics and applied sciences that help us understand and solve practical
problems. We believe that you, by learning how stochastic methods come
about and why they work, will be able to understand the meaning of statistical
statements as well as judge the quality of their content, when facing such
problems on your own. Our philosophy is one of how and why: instead of just
presenting stochastic methods as cookbook recipes, we prefer to explain the
principles behind them.
In this book you will find the basics of probability theory and statistics. In
addition, there are several topics that go somewhat beyond the basics but
that ought to be present in an introductory course: simulation, the Poisson
process, the law of large numbers, and the central limit theorem. Computers
have brought many changes in statistics. In particular, the bootstrap has
earned its place. It provides the possibility to derive confidence intervals and
perform tests of hypotheses where traditional (normal approximation or large
sample) methods are inappropriate. It is a modern useful tool one should learn
about, we believe.
Examples and datasets in this book are mostly from real-life situations, at
least that is what we looked for in illustrations of the material. Anybody who
has inspected datasets with the purpose of using them as elementary examples
knows that this is hard: on the one hand, you do not want to boldly state
assumptions that are clearly not satisfied; on the other hand, long explanations
concerning side issues distract from the main points. We hope that we found
a good middle way.

A first course in calculus is needed as a prerequisite for this book. In addition
to high-school algebra, some infinite series are used (exponential, geometric).
Integration and differentiation are the most important skills, mainly concern-
ing one variable (the exceptions, two dimensional integrals, are encountered in
Chapters 9–11). Although the mathematics is kept to a minimum, we strived
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to be mathematically correct throughout the book. With respect to probabil-
ity and statistics the book is self-contained.
The book is aimed at undergraduate engineering students, and students from
more business-oriented studies (who may gloss over some of the more mathe-
matically oriented parts). At our own university we also use it for students in
applied mathematics (where we put a little more emphasis on the math and
add topics like combinatorics, conditional expectations, and generating func-
tions). It is designed for a one-semester course: on average two hours in class
per chapter, the first for a lecture, the second doing exercises. The material
is also well-suited for self-study, as we know from experience.

We have divided attention about evenly between probability and statistics.
The very first chapter is a sampler with differently flavored introductory ex-
amples, ranging from scientific success stories to a controversial puzzle. Topics
that follow are elementary probability theory, simulation, joint distributions,
the law of large numbers, the central limit theorem, statistical modeling (in-
formal: why and how we can draw inference from data), data analysis, the
bootstrap, estimation, simple linear regression, confidence intervals, and hy-
pothesis testing. Instead of a few chapters with a long list of discrete and
continuous distributions, with an enumeration of the important attributes of
each, we introduce a few distributions when presenting the concepts and the
others where they arise (more) naturally. A list of distributions and their
characteristics is found in Appendix A.

With the exception of the first one, chapters in this book consist of three main
parts. First, about four sections discussing new material, interspersed with a
handful of so-called Quick exercises. Working these—two-or-three-minute—
exercises should help to master the material and provide a break from reading
to do something more active. On about two dozen occasions you will find
indented paragraphs labeled Remark, where we felt the need to discuss more
mathematical details or background material. These remarks can be skipped
without loss of continuity; in most cases they require a bit more mathematical
maturity. Whenever persons are introduced in examples we have determined
their sex by looking at the chapter number and applying the rule “He is odd,
she is even.” Solutions to the quick exercises are found in the second to last
section of each chapter.
The last section of each chapter is devoted to exercises, on average thirteen
per chapter. For about half of the exercises, answers are given in Appendix C,
and for half of these, full solutions in Appendix D. Exercises with both a
short answer and a full solution are marked with � and those with only a
short answer are marked with � (when more appropriate, for example, in
“Show that . . . ” exercises, the short answer provides a hint to the key step).
Typically, the section starts with some easy exercises and the order of the
material in the chapter is more or less respected. More challenging exercises
are found at the end.

latecki
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Preface VII

Much of the material in this book would benefit from illustration with a
computer using statistical software. A complete course should also involve
computer exercises. Topics like simulation, the law of large numbers, the
central limit theorem, and the bootstrap loudly call for this kind of experi-
ence. For this purpose, all the datasets discussed in the book are available at
http://www.springeronline.com/1-85233-896-2. The same Web site also pro-
vides access, for instructors, to a complete set of solutions to the exercises;
go to the Springer online catalog or contact textbooks@springer-sbm.com to
apply for your password.

Delft, The Netherlands F. M. Dekking
January 2005 C. Kraaikamp

H. P. Lopuhaä
L. E. Meester
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1

Why probability and statistics?

Is everything on this planet determined by randomness? This question is open
to philosophical debate. What is certain is that every day thousands and
thousands of engineers, scientists, business persons, manufacturers, and others
are using tools from probability and statistics.
The theory and practice of probability and statistics were developed during
the last century and are still actively being refined and extended. In this book
we will introduce the basic notions and ideas, and in this first chapter we
present a diverse collection of examples where randomness plays a role.

1.1 Biometry: iris recognition

Biometry is the art of identifying a person on the basis of his or her personal
biological characteristics, such as fingerprints or voice. From recent research
it appears that with the human iris one can beat all existing automatic hu-
man identification systems. Iris recognition technology is based on the visible
qualities of the iris. It converts these—via a video camera—into an “iris code”
consisting of just 2048 bits. This is done in such a way that the code is hardly
sensitive to the size of the iris or the size of the pupil. However, at different
times and different places the iris code of the same person will not be exactly
the same. Thus one has to allow for a certain percentage of mismatching bits
when identifying a person. In fact, the system allows about 34% mismatches!
How can this lead to a reliable identification system? The miracle is that dif-
ferent persons have very different irides. In particular, over a large collection
of different irides the code bits take the values 0 and 1 about half of the time.
But that is certainly not sufficient: if one bit would determine the other 2047,
then we could only distinguish two persons. In other words, single bits may
be random, but the correlation between bits is also crucial (we will discuss
correlation at length in Chapter 10). John Daugman who has developed the
iris recognition technology made comparisons between 222743 pairs of iris
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codes and concluded that of the 2048 bits 266 may be considered as uncor-
related ([6]). He then argues that we may consider an iris code as the result
of 266 coin tosses with a fair coin. This implies that if we compare two such
codes from different persons, then there is an astronomically small probability
that these two differ in less than 34% of the bits—almost all pairs will differ
in about 50% of the bits. This is illustrated in Figure 1.1, which originates
from [6], and was kindly provided by John Daugman. The iris code data con-
sist of numbers between 0 and 1, each a Hamming distance (the fraction of
mismatches) between two iris codes. The data have been summarized in two
histograms, that is, two graphs that show the number of counts of Hamming
distances falling in a certain interval. We will encounter histograms and other
summaries of data in Chapter 15. One sees from the figure that for codes from
the same iris (left side) the mismatch fraction is only about 0.09, while for
different irides (right side) it is about 0.46.
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Fig. 1.1. Comparison of same and different iris pairs.

Source: J.Daugman. Second IMA Conference on Image Processing: Mathe-
matical Methods, Algorithms and Applications, 2000.� Ellis Horwood Pub-
lishing Limited.

You may still wonder how it is possible that irides distinguish people so well.
What about twins, for instance? The surprising thing is that although the
color of eyes is hereditary, many features of iris patterns seem to be pro-
duced by so-called epigenetic events. This means that during embryo develop-
ment the iris structure develops randomly. In particular, the iris patterns of
(monozygotic) twins are as discrepant as those of two arbitrary individuals.
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For this reason, as early as in the 1930s, eye specialists proposed that iris
patterns might be used for identification purposes.

1.2 Killer football

A couple of years ago the prestigious British Medical Journal published a
paper with the title “Cardiovascular mortality in Dutch men during 1996
European football championship: longitudinal population study” ([41]). The
authors claim to have shown that the effect of a single football match is
detectable in national mortality data. They consider the mortality from in-
farctions (heart attacks) and strokes, and the “explanation” of the increase is
a combination of heavy alcohol consumption and stress caused by watching
the football match on June 22 between the Netherlands and France (lost by
the Dutch team!). The authors mainly support their claim with a figure like
Figure 1.2, which shows the number of deaths from the causes mentioned (for
men over 45), during the period June 17 to June 27, 1996. The middle horizon-
tal line marks the average number of deaths on these days, and the upper and
lower horizontal lines mark what the authors call the 95% confidence inter-
val. The construction of such an interval is usually performed with standard
statistical techniques, which you will learn in Chapter 23. The interpretation
of such an interval is rather tricky. That the bar on June 22 sticks out off the
confidence interval should support the “killer claim.”
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Fig. 1.2. Number of deaths from infarction or stroke in (part of) June 1996.

It is rather surprising that such a conclusion is based on a single football
match, and one could wonder why no probability model is proposed in the
paper. In fact, as we shall see in Chapter 12, it would not be a bad idea to
model the time points at which deaths occur as a so-called Poisson process.
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Once we have done this, we can compute how often a pattern like the one in the
figure might occur—without paying attention to football matches and other
high-risk national events. To do this we need the mean number of deaths per
day. This number can be obtained from the data by an estimation procedure
(the subject of Chapters 19 to 23). We use the sample mean, which is equal to
(10 · 27.2 + 41)/11 = 313/11 = 28.45. (Here we have to make a computation
like this because we only use the data in the paper: 27.2 is the average over
the 5 days preceding and following the match, and 41 is the number of deaths
on the day of the match.) Now let phigh be the probability that there are
41 or more deaths on a day, and let pusual be the probability that there are
between 21 and 34 deaths on a day—here 21 and 34 are the lowest and the
highest number that fall in the interval in Figure 1.2. From the formula of the
Poisson distribution given in Chapter 12 one can compute that phigh = 0.008
and pusual = 0.820. Since events on different days are independent according
to the Poisson process model, the probability p of a pattern as in the figure is

p = p5
usual · phigh · p5

usual = 0.0011.

From this it can be shown by (a generalization of) the law of large numbers
(which we will study in Chapter 13) that such a pattern would appear about
once every 1/0.0011 = 899 days. So it is not overwhelmingly exceptional to
find such a pattern, and the fact that there was an important football match
on the day in the middle of the pattern might just have been a coincidence.

1.3 Cars and goats: the Monty Hall dilemma

On Sunday September 9, 1990, the following question appeared in the “Ask
Marilyn” column in Parade, a Sunday supplement to many newspapers across
the United States:

Suppose you’re on a game show, and you’re given the choice of three
doors; behind one door is a car; behind the others, goats. You pick a
door, say No. 1, and the host, who knows what’s behind the doors,
opens another door, say No. 3, which has a goat. He then says to you,
“Do you want to pick door No. 2?” Is it to your advantage to switch
your choice?—Craig F. Whitaker, Columbia, Md.

Marilyn’s answer—one should switch—caused an avalanche of reactions, in to-
tal an estimated 10 000. Some of these reactions were not so flattering (“You
are the goat”), quite a lot were by professional mathematicians (“You blew
it, and blew it big,” “You are utterly incorrect . . . . How many irate mathe-
maticians are needed to change your mind?”). Perhaps some of the reactions
were so strong, because Marilyn vos Savant, the author of the column, is in
the Guinness Book of Records for having one of the highest IQs in the world.
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The switching question was inspired by Monty Hall’s “Let’s Make a Deal”
game show, which ran with small interruptions for 23 years on various U.S.
television networks.
Although it is not explicitly stated in the question, the game show host will
always open a door with a goat after you make your initial choice. Many
people would argue that in this situation it does not matter whether one
would change or not: one door has a car behind it, the other a goat, so the
odds to get the car are fifty-fifty. To see why they are wrong, consider the
following argument. In the original situation two of the three doors have a
goat behind them, so with probability 2/3 your initial choice was wrong, and
with probability 1/3 it was right. Now the host opens a door with a goat (note
that he can always do this). In case your initial choice was wrong the host has
only one option to show a door with a goat, and switching leads you to the
door with the car. In case your initial choice was right the host has two goats
to choose from, so switching will lead you to a goat. We see that switching
is the best strategy, doubling our chances to win. To stress this argument,
consider the following generalization of the problem: suppose there are 10 000
doors, behind one is a car and behind the rest, goats. After you make your
choice, the host will open 9998 doors with goats, and offers you the option to
switch. To change or not to change, that’s the question! Still not convinced?
Use your Internet browser to find one of the zillion sites where one can run a
simulation of the Monty Hall problem (more about simulation in Chapter 6).
In fact, there are quite a lot of variations on the problem. For example, the
situation that there are four doors: you select a door, the host always opens a
door with a goat, and offers you to select another door. After you have made
up your mind he opens a door with a goat, and again offers you to switch.
After you have decided, he opens the door you selected. What is now the best
strategy? In this situation switching only at the last possible moment yields
a probability of 3/4 to bring the car home. Using the law of total probability
from Section 3.3 you will find that this is indeed the best possible strategy.

1.4 The space shuttle Challenger

On January 28, 1986, the space shuttle Challenger exploded about one minute
after it had taken off from the launch pad at Kennedy Space Center in Florida.
The seven astronauts on board were killed and the spacecraft was destroyed.
The cause of the disaster was explosion of the main fuel tank, caused by flames
of hot gas erupting from one of the so-called solid rocket boosters.
These solid rocket boosters had been cause for concern since the early years
of the shuttle. They are manufactured in segments, which are joined at a later
stage, resulting in a number of joints that are sealed to protect against leakage.
This is done with so-called O-rings, which in turn are protected by a layer
of putty. When the rocket motor ignites, high pressure and high temperature
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build up within. In time these may burn away the putty and subsequently
erode the O-rings, eventually causing hot flames to erupt on the outside. In a
nutshell, this is what actually happened to the Challenger.
After the explosion, an investigative commission determined the causes of the
disaster, and a report was issued with many findings and recommendations
([24]). On the evening of January 27, a decision to launch the next day had
been made, notwithstanding the fact that an extremely low temperature of
31◦F had been predicted, well below the operating limit of 40◦F set by Morton
Thiokol, the manufacturer of the solid rocket boosters. Apparently, a “man-
agement decision” was made to overrule the engineers’ recommendation not
to launch. The inquiry faulted both NASA and Morton Thiokol management
for giving in to the pressure to launch, ignoring warnings about problems with
the seals.
The Challenger launch was the 24th of the space shuttle program, and we
shall look at the data on the number of failed O-rings, available from previous
launches (see [5] for more details). Each rocket has three O-rings, and two
rocket boosters are used per launch, so in total six O-rings are used each
time. Because low temperatures are known to adversely affect the O-rings,
we also look at the corresponding launch temperature. In Figure 1.3 the dots
show the number of failed O-rings per mission (there are 23 dots—one time the
boosters could not be recovered from the ocean; temperatures are rounded to
the nearest degree Fahrenheit; in case of two or more equal data points these
are shifted slightly.). If you ignore the dots representing zero failures, which
all occurred at high temperatures, a temperature effect is not apparent.
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Source: based on data from Volume VI of the Report of the Presidential
Commission on the space shuttle Challenger accident, Washington, DC, 1986.

Fig. 1.3. Space shuttle failure data of pre-Challenger missions and fitted model of
expected number of failures per mission function.
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In a model to describe these data, the probability p(t) that an individual
O-ring fails should depend on the launch temperature t. Per mission, the
number of failed O-rings follows a so-called binomial distribution: six O-rings,
and each may fail with probability p(t); more about this distribution and the
circumstances under which it arises can be found in Chapter 4. A logistic
model was used in [5] to describe the dependence on t:

p(t) =
ea+b·t

1 + ea+b·t .

A high value of a + b · t corresponds to a high value of p(t), a low value to
low p(t). Values of a and b were determined from the data, according to the
following principle: choose a and b so that the probability that we get data as
in Figure 1.3 is as high as possible. This is an example of the use of the method
of maximum likelihood, which we shall discuss in Chapter 21. This results in
a = 5.085 and b = −0.1156, which indeed leads to lower probabilities at higher
temperatures, and to p(31) = 0.8178. We can also compute the (estimated)
expected number of failures, 6 ·p(t), as a function of the launch temperature t;
this is the plotted line in the figure.
Combining the estimates with estimated probabilities of other events that
should happen for a complete failure of the field-joint, the estimated proba-
bility of such a failure is 0.023. With six field-joints, the probability of at least
one complete failure is then 1 − (1 − 0.023)6 = 0.13!

1.5 Statistics versus intelligence agencies

During World War II, information about Germany’s war potential was essen-
tial to the Allied forces in order to schedule the time of invasions and to carry
out the allied strategic bombing program. Methods for estimating German
production used during the early phases of the war proved to be inadequate.
In order to obtain more reliable estimates of German war production, ex-
perts from the Economic Warfare Division of the American Embassy and the
British Ministry of Economic Warfare started to analyze markings and serial
numbers obtained from captured German equipment.
Each piece of enemy equipment was labeled with markings, which included
all or some portion of the following information: (a) the name and location
of the marker; (b) the date of manufacture; (c) a serial number; and (d)
miscellaneous markings such as trademarks, mold numbers, casting numbers,
etc. The purpose of these markings was to maintain an effective check on
production standards and to perform spare parts control. However, these same
markings offered Allied intelligence a wealth of information about German
industry.
The first products to be analyzed were tires taken from German aircraft shot
over Britain and from supply dumps of aircraft and motor vehicle tires cap-
tured in North Africa. The marking on each tire contained the maker’s name,



8 1 Why probability and statistics?

a serial number, and a two-letter code for the date of manufacture. The first
step in analyzing the tire markings involved breaking the two-letter date code.
It was conjectured that one letter represented the month and the other the
year of manufacture, and that there should be 12 letter variations for the
month code and 3 to 6 for the year code. This, indeed, turned out to be true.
The following table presents examples of the 12 letter variations used by four
different manufacturers.

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

Dunlop T I E B R A P O L N U D
Fulda F U L D A M U N S T E R
Phoenix F O N I X H A M B U R G
Sempirit A B C D E F G H I J K L

Reprinted with permission from “An empirical approach to economic intelli-
gence” by R.Ruggles and H.Brodie, pp.72-91, Vol. 42, No. 237. � 1947 by
the American Statistical Association. All rights reserved.

For instance, the Dunlop code was Dunlop Arbeit spelled backwards. Next,
the year code was broken and the numbering system was solved so that for
each manufacturer individually the serial numbers could be dated. Moreover,
for each month, the serial numbers could be recoded to numbers running
from 1 to some unknown largest number N , and the observed (recoded) serial
numbers could be seen as a subset of this. The objective was to estimate N
for each month and each manufacturer separately by means of the observed
(recoded) serial numbers. In Chapter 20 we discuss two different methods
of estimation, and we show that the method based on only the maximum
observed (recoded) serial number is much better than the method based on
the average observed (recoded) serial numbers.
With a sample of about 1400 tires from five producers, individual monthly
output figures were obtained for almost all months over a period from 1939
to mid-1943. The following table compares the accuracy of estimates of the
average monthly production of all manufacturers of the first quarter of 1943
with the statistics of the Speer Ministry that became available after the war.
The accuracy of the estimates can be appreciated even more if we compare
them with the figures obtained by Allied intelligence agencies. They estimated,
using other methods, the production between 900 000 and 1 200 000 per month!

Type of tire Estimated production Actual production

Truck and passenger car 147 000 159 000
Aircraft 28 500 26 400

——— ———
Total 175 500 186100

Reprinted with permission from “An empirical approach to economic intelli-
gence” by R.Ruggles and H.Brodie, pp.72-91, Vol. 42, No. 237. � 1947 by
the American Statistical Association. All rights reserved.
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1.6 The speed of light

In 1983 the definition of the meter (the SI unit of one meter) was changed to:
The meter is the length of the path traveled by light in vacuum during a time
interval of 1/299 792 458 of a second. This implicitly defines the speed of light
as 299 792 458 meters per second. It was done because one thought that the
speed of light was so accurately known that it made more sense to define the
meter in terms of the speed of light rather than vice versa, a remarkable end
to a long story of scientific discovery. For a long time most scientists believed
that the speed of light was infinite. Early experiments devised to demonstrate
the finiteness of the speed of light failed because the speed is so extraordi-
narily high. In the 18th century this debate was settled, and work started on
determination of the speed, using astronomical observations, but a century
later scientists turned to earth-based experiments. Albert Michelson refined
experimental arrangements from two previous experiments and conducted a
series of measurements in June and early July of 1879, at the U.S. Naval
Academy in Annapolis. In this section we give a very short summary of his
work. It is extracted from an article in Statistical Science ([18]).
The principle of speed measurement is easy, of course: measure a distance and
the time it takes to travel that distance, the speed equals distance divided by
time. For an accurate determination, both the distance and the time need
to be measured accurately, and with the speed of light this is a problem:
either we should use a very large distance and the accuracy of the distance
measurement is a problem, or we have a very short time interval, which is also
very difficult to measure accurately.
In Michelson’s time it was known that the speed of light was about 300 000
km/s, and he embarked on his study with the goal of an improved value of the
speed of light. His experimental setup is depicted schematically in Figure 1.4.
Light emitted from a light source is aimed, through a slit in a fixed plate,
at a rotating mirror; we call its distance from the plate the radius. At one
particular angle, this rotating mirror reflects the beam in the direction of a
distant (fixed) flat mirror. On its way the light first passes through a focusing
lens. This second mirror is positioned in such a way that it reflects the beam
back in the direction of the rotating mirror. In the time it takes the light to
travel back and forth between the two mirrors, the rotating mirror has moved
by an angle α, resulting in a reflection on the plate that is displaced with
respect to the source beam that passed through the slit. The radius and the
displacement determine the angle α because

tan 2α =
displacement

radius
and combined with the number of revolutions per seconds (rps) of the mirror,
this determines the elapsed time:

time =
α/2π

rps
.
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Fig. 1.4. Michelson’s experiment.

During this time the light traveled twice the distance between the mirrors, so
the speed of light in air now follows:

cair =
2 · distance

time
.

All in all, it looks simple: just measure the four quantities—distance, radius,
displacement and the revolutions per second—and do the calculations. This
is much harder than it looks, and problems in the form of inaccuracies are
lurking everywhere. An error in any of these quantities translates directly into
some error in the final result.
Michelson did the utmost to reduce errors. For example, the distance between
the mirrors was about 2000 feet, and to measure it he used a steel measuring
tape. Its nominal length was 100 feet, but he carefully checked this using a
copy of the official “standard yard.” He found that the tape was in fact 100.006
feet. This way he eliminated a (small) systematic error.
Now imagine using the tape to measure a distance of 2000 feet: you have to use
the tape 20 times, each time marking the next 100 feet. Do it again, and you
probably find a slightly different answer, no matter how hard you try to be
very precise in every step of the measuring procedure. This kind of variation
is inevitable: sometimes we end up with a value that is a bit too high, other
times it is too low, but on average we’re doing okay—assuming that we have
eliminated sources of systematic error, as in the measuring tape. Michelson
measured the distance five times, which resulted in values between 1984.93
and 1985.17 feet (after correcting for the temperature-dependent stretch), and
he used the average as the “true distance.”
In many phases of the measuring process Michelson attempted to identify
and determine systematic errors and subsequently applied corrections. He
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also systematically repeated measuring steps and averaged the results to re-
duce variability. His final dataset consists of 100 separate measurements (see
Table 17.1), but each is in fact summarized and averaged from repeated mea-
surements on several variables. The final result he reported was that the speed
of light in vacuum (this involved a conversion) was 299 944± 51 km/s, where
the 51 is an indication of the uncertainty in the answer. In retrospect, we must
conclude that, in spite of Michelson’s admirable meticulousness, some source
of error must have slipped his attention, as his result is off by about 150 km/s.
With current methods we would derive from his data a so-called 95% confi-
dence interval: 299 944 ± 15.5 km/s, suggesting that Michelson’s uncertainty
analysis was a little conservative. The methods used to construct confidence
intervals are the topic of Chapters 23 and 24.



2

Outcomes, events, and probability

The world around us is full of phenomena we perceive as random or unpre-
dictable. We aim to model these phenomena as outcomes of some experiment,
where you should think of experiment in a very general sense. The outcomes
are elements of a sample space Ω, and subsets of Ω are called events.The events
will be assigned a probability, a number between 0 and 1 that expresses how
likely the event is to occur.

2.1 Sample spaces

Sample spaces are simply sets whose elements describe the outcomes of the
experiment in which we are interested.
We start with the most basic experiment: the tossing of a coin. Assuming that
we will never see the coin land on its rim, there are two possible outcomes:
heads and tails. We therefore take as the sample space associated with this
experiment the set Ω = {H, T }.
In another experiment we ask the next person we meet on the street in which
month her birthday falls. An obvious choice for the sample space is

Ω = {Jan, Feb, Mar, Apr, May, Jun, Jul, Aug, Sep, Oct, Nov, Dec}.

In a third experiment we load a scale model for a bridge up to the point
where the structure collapses. The outcome is the load at which this occurs.
In reality, one can only measure with finite accuracy, e.g., to five decimals, and
a sample space with just those numbers would strictly be adequate. However,
in principle, the load itself could be any positive number and therefore Ω =
(0,∞) is the right choice. Even though in reality there may also be an upper
limit to what loads are conceivable, it is not necessary or practical to try to
limit the outcomes correspondingly.
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14 2 Outcomes, events, and probability

In a fourth experiment, we find on our doormat three envelopes, sent to us by
three different persons, and we look in which order the envelopes lie on top of
each other. Coding them 1, 2, and 3, the sample space would be

Ω = {123, 132, 213, 231, 312, 321}.

Quick exercise 2.1 If we received mail from four different persons, how
many elements would the corresponding sample space have?

In general one might consider the order in which n different objects can be
placed. This is called a permutation of the n objects. As we have seen, there
are 6 possible permutations of 3 objects, and 4 · 6 = 24 of 4 objects. What
happens is that if we add the nth object, then this can be placed in any of n
positions in any of the permutations of n − 1 objects. Therefore there are

n · (n − 1) · · · · 3 · 2 · 1 = n!

possible permutations of n objects. Here n! is the standard notation for this
product and is pronounced “n factorial.” It is convenient to define 0! = 1.

2.2 Events

Subsets of the sample space are called events . We say that an event A occurs
if the outcome of the experiment is an element of the set A. For example, in
the birthday experiment we can ask for the outcomes that correspond to a
long month, i.e., a month with 31 days. This is the event

L = {Jan, Mar, May, Jul, Aug, Oct, Dec}.

Events may be combined according to the usual set operations.
For example if R is the event that corresponds to the months that have the
letter r in their (full) name (so R = {Jan, Feb, Mar, Apr, Sep, Oct, Nov, Dec}),
then the long months that contain the letter r are

L ∩ R = {Jan, Mar, Oct, Dec}.

The set L∩R is called the intersection of L and R and occurs if both L and R
occur. Similarly, we have the union A∪B of two sets A and B, which occurs if
at least one of the events A and B occurs. Another common operation is taking
complements. The event Ac = {ω ∈ Ω : ω /∈ A} is called the complement of A;
it occurs if and only if A does not occur. The complement of Ω is denoted
∅, the empty set, which represents the impossible event. Figure 2.1 illustrates
these three set operations.
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Fig. 2.1. Diagrams of intersection, union, and complement.

We call events A and B disjoint or mutually exclusive if A and B have no
outcomes in common; in set terminology: A∩B = ∅. For example, the event L
“the birthday falls in a long month” and the event {Feb} are disjoint.
Finally, we say that event A implies event B if the outcomes of A also lie
in B. In set notation: A ⊂ B; see Figure 2.2.
Some people like to use double negations:

“It is certainly not true that neither John nor Mary is to blame.”

This is equivalent to: “John or Mary is to blame, or both.” The following
useful rules formalize this mental operation to a manipulation with events.

DeMorgan’s laws. For any two events A and B we have

(A ∪ B)c = Ac ∩ Bc and (A ∩ B)c = Ac ∪ Bc.

Quick exercise 2.2 Let J be the event “John is to blame” and M the event
“Mary is to blame.” Express the two statements above in terms of the events
J, Jc, M , and M c, and check the equivalence of the statements by means of
DeMorgan’s laws.

Disjoint sets A and B
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2.3 Probability

We want to express how likely it is that an event occurs. To do this we will
assign a probability to each event. The assignment of probabilities to events is
in general not an easy task, and some of the coming chapters will be dedicated
directly or indirectly to this problem. Since each event has to be assigned a
probability, we speak of a probability function. It has to satisfy two basic
properties.

Definition. A probability function P on a finite sample space Ω
assigns to each event A in Ω a number P(A) in [0,1] such that
(i) P(Ω) = 1, and
(ii) P(A ∪ B) = P(A) + P(B) if A and B are disjoint.
The number P(A) is called the probability that A occurs.

Property (i) expresses that the outcome of the experiment is always an element
of the sample space, and property (ii) is the additivity property of a probability
function. It implies additivity of the probability function over more than two
sets; e.g., if A, B, and C are disjoint events, then the two events A ∪ B and
C are also disjoint, so

P(A ∪ B ∪ C) = P(A ∪ B) + P(C) = P(A) + P(B) + P(C) .

We will now look at some examples. When we want to decide whether Peter
or Paul has to wash the dishes, we might toss a coin. The fact that we consider
this a fair way to decide translates into the opinion that heads and tails are
equally likely to occur as the outcome of the coin-tossing experiment. So we
put

P({H}) = P({T }) =
1
2
.

Formally we have to write {H} for the set consisting of the single element H ,
because a probability function is defined on events, not on outcomes. From
now on we shall drop these brackets.
Now it might happen, for example due to an asymmetric distribution of the
mass over the coin, that the coin is not completely fair. For example, it might
be the case that

P(H) = 0.4999 and P(T ) = 0.5001.

More generally we can consider experiments with two possible outcomes, say
“failure” and “success”, which have probabilities 1− p and p to occur, where
p is a number between 0 and 1. For example, when our experiment consists
of buying a ticket in a lottery with 10 000 tickets and only one prize, where
“success” stands for winning the prize, then p = 10−4.
How should we assign probabilities in the second experiment, where we ask
for the month in which the next person we meet has his or her birthday? In
analogy with what we have just done, we put
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P(Jan) = P(Feb) = · · · = P(Dec) =
1
12

.

Some of you might object to this and propose that we put, for example,

P(Jan) =
31
365

and P(Apr) =
30
365

,

because we have long months and short months. But then the very precise
among us might remark that this does not yet take care of leap years.

Quick exercise 2.3 If you would take care of the leap years, assuming that
one in every four years is a leap year (which again is an approximation to
reality!), how would you assign a probability to each month?

In the third experiment (the buckling load of a bridge), where the outcomes are
real numbers, it is impossible to assign a positive probability to each outcome
(there are just too many outcomes!). We shall come back to this problem in
Chapter 5, restricting ourselves in this chapter to finite and countably infinite1

sample spaces.
In the fourth experiment it makes sense to assign equal probabilities to all six
outcomes:

P(123) = P(132) = P(213) = P(231) = P(312) = P(321) =
1
6
.

Until now we have only assigned probabilities to the individual outcomes of the
experiments. To assign probabilities to events we use the additivity property.
For instance, to find the probability P(T ) of the event T that in the three
envelopes experiment envelope 2 is on top we note that

P(T ) = P(213) + P(231) =
1
6

+
1
6

=
1
3
.

In general, additivity of P implies that the probability of an event is obtained
by summing the probabilities of the outcomes belonging to the event.

Quick exercise 2.4 Compute P(L) and P(R) in the birthday experiment.

Finally we mention a rule that permits us to compute probabilities of events
A and B that are not disjoint. Note that we can write A = (A∩B) ∪ (A∩Bc),
which is a disjoint union; hence

P(A) = P(A ∩ B) + P(A ∩ Bc) .

If we split A ∪ B in the same way with B and Bc, we obtain the events
(A∪B)∩B, which is simply B and (A∪B)∩Bc, which is nothing but A∩Bc.
1 This means: although infinite, we can still count them one by one; Ω =
{ω1, ω2, . . . }. The interval [0,1] of real numbers is an example of an uncountable
sample space.
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Thus
P(A ∪ B) = P(B) + P(A ∩ Bc) .

Eliminating P(A ∩ Bc) from these two equations we obtain the following rule.

The probability of a union. For any two events A and B we
have

P(A ∪ B) = P(A) + P(B) − P(A ∩ B) .

From the additivity property we can also find a way to compute probabilities
of complements of events: from A ∪ Ac = Ω, we deduce that

P(Ac) = 1 − P(A) .

2.4 Products of sample spaces

Basic to statistics is that one usually does not consider one experiment, but
that the same experiment is performed several times. For example, suppose
we throw a coin two times. What is the sample space associated with this new
experiment? It is clear that it should be the set

Ω = {H, T } × {H, T } = {(H, H), (H, T ), (T, H), (T, T )}.
If in the original experiment we had a fair coin, i.e., P(H) = P(T ), then in
this new experiment all 4 outcomes again have equal probabilities:

P((H, H)) = P((H, T )) = P((T, H)) = P((T, T )) =
1
4
.

Somewhat more generally, if we consider two experiments with sample spaces
Ω1 and Ω2 then the combined experiment has as its sample space the set

Ω = Ω1 × Ω2 = {(ω1, ω2) : ω1 ∈ Ω1, ω2 ∈ Ω2}.
If Ω1 has r elements and Ω2 has s elements, then Ω1 × Ω2 has rs elements.
Now suppose that in the first, the second, and the combined experiment all
outcomes are equally likely to occur. Then the outcomes in the first experi-
ment have probability 1/r to occur, those of the second experiment 1/s, and
those of the combined experiment probability 1/rs. Motivated by the fact that
1/rs = (1/r) × (1/s), we will assign probability pipj to the outcome (ωi, ωj)
in the combined experiment, in the case that ωi has probability pi and ωj has
probability pj to occur. One should realize that this is by no means the only
way to assign probabilities to the outcomes of a combined experiment. The
preceding choice corresponds to the situation where the two experiments do
not influence each other in any way. What we mean by this influence will be
explained in more detail in the next chapter.
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Quick exercise 2.5 Consider the sample space {a1, a2, a3, a4, a5, a6} of some
experiment, where outcome ai has probability pi for i = 1, . . . , 6. We perform
this experiment twice in such a way that the associated probabilities are

P((ai, ai)) = pi, and P((ai, aj)) = 0 if i �= j, for i, j = 1, . . . , 6.

Check that P is a probability function on the sample space Ω = {a1, . . . , a6}×
{a1, . . . , a6} of the combined experiment. What is the relationship between
the first experiment and the second experiment that is determined by this
probability function?

We started this section with the experiment of throwing a coin twice. If we
want to learn more about the randomness associated with a particular exper-
iment, then we should repeat it more often, say n times. For example, if we
perform an experiment with outcomes 1 (success) and 0 (failure) five times,
and we consider the event A “exactly one experiment was a success,” then
this event is given by the set

A = {(0, 0, 0, 0, 1), (0, 0, 0, 1, 0), (0, 0, 1, 0, 0), (0, 1, 0, 0, 0), (1, 0, 0, 0, 0)}

in Ω = {0, 1} × {0, 1} × {0, 1} × {0, 1} × {0, 1}. Moreover, if success has
probability p and failure probability 1 − p, then

P(A) = 5 · (1 − p)4 · p,

since there are five outcomes in the event A, each having probability (1−p)4 ·p.

Quick exercise 2.6 What is the probability of the event B “exactly two
experiments were successful”?

In general, when we perform an experiment n times, then the corresponding
sample space is

Ω = Ω1 × Ω2 × · · · × Ωn,

where Ωi for i = 1, . . . , n is a copy of the sample space of the original exper-
iment. Moreover, we assign probabilities to the outcomes (ω1, . . . , ωn) in the
standard way described earlier, i.e.,

P((ω1, ω2, . . . , ωn)) = p1 · p2 · · · · pn,

if each ωi has probability pi.

2.5 An infinite sample space

We end this chapter with an example of an experiment with infinitely many
outcomes. We toss a coin repeatedly until the first head turns up. The outcome
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of the experiment is the number of tosses it takes to have this first occurrence
of a head. Our sample space is the space of all positive natural numbers

Ω = {1, 2, 3, . . .}.
What is the probability function P for this experiment?
Suppose the coin has probability p of falling on heads and probability 1−p to
fall on tails, where 0 < p < 1. We determine the probability P(n) for each n.
Clearly P(1) = p, the probability that we have a head right away. The event
{2} corresponds to the outcome (T, H) in {H, T }×{H, T }, so we should have

P(2) = (1 − p)p.

Similarly, the event {n} corresponds to the outcome (T, T, . . . , T, T, H) in the
space {H, T } × · · · × {H, T }. Hence we should have, in general,

P(n) = (1 − p)n−1p, n = 1, 2, 3, . . . .

Does this define a probability function on Ω = {1, 2, 3, . . .}? Then we should
at least have P(Ω) = 1. It is not directly clear how to calculate P(Ω): since
the sample space is no longer finite we have to amend the definition of a
probability function.

Definition. A probability function on an infinite (or finite) sample
space Ω assigns to each event A in Ω a number P(A) in [0, 1] such
that
(i) P(Ω) = 1, and
(ii) P(A1 ∪ A2 ∪ A3 ∪ · · ·) = P(A1) + P(A2) + P(A3) + · · ·

if A1, A2, A3, . . . are disjoint events.

Note that this new additivity property is an extension of the previous one
because if we choose A3 = A4 = · · · = ∅, then

P(A1 ∪ A2) = P(A1 ∪ A2 ∪ ∅ ∪ ∅ ∪ · · ·)
= P(A1) + P(A2) + 0 + 0 + · · · = P(A1) + P(A2) .

Now we can compute the probability of Ω:

P(Ω) = P(1) + P(2) + · · · + P(n) + · · ·
= p + (1 − p)p + · · · (1 − p)n−1p + · · ·
= p[1 + (1 − p) + · · · (1 − p)n−1 + · · · ].

The sum 1 + (1 − p) + · · · + (1 − p)n−1 + · · · is an example of a geometric
series. It is well known that when |1 − p| < 1,

1 + (1 − p) + · · · + (1 − p)n−1 + · · · =
1

1 − (1 − p)
=

1
p
.

Therefore we do indeed have P(Ω) = p · 1
p

= 1.
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Quick exercise 2.7 Suppose an experiment in a laboratory is repeated every
day of the week until it is successful, the probability of success being p. The
first experiment is started on a Monday. What is the probability that the
series ends on the next Sunday?

2.6 Solutions to the quick exercises

2.1 The sample space is Ω = {1234, 1243, 1324, 1342, . . . , 4321}. The best way
to count its elements is by noting that for each of the 6 outcomes of the three-
envelope experiment we can put a fourth envelope in any of 4 positions. Hence
Ω has 4 · 6 = 24 elements.

2.2 The statement “It is certainly not true that neither John nor Mary is to
blame” corresponds to the event (Jc ∩M c)c. The statement “John or Mary is
to blame, or both” corresponds to the event J ∪ M . Equivalence now follows
from DeMorgan’s laws.

2.3 In four years we have 365×3+366 = 1461 days. Hence long months each
have a probability 4 × 31/1461 = 124/1461, and short months a probability
120/1461 to occur. Moreover, {Feb} has probability 113/1461.

2.4 Since there are 7 long months and 8 months with an “r” in their name,
we have P(L) = 7/12 and P(R) = 8/12.

2.5 Checking that P is a probability function Ω amounts to verifying that
0 ≤ P((ai, aj)) ≤ 1 for all i and j and noting that

P(Ω) =
6∑

i,j=1

P((ai, aj)) =
6∑

i=1

P((ai, ai)) =
6∑

i=1

pi = 1.

The two experiments are totally coupled: one has outcome ai if and only if
the other has outcome ai.

2.6 Now there are 10 outcomes in B (for example (0,1,0,1,0)), each having
probability (1 − p)3p2. Hence P(B) = 10(1 − p)3p2.

2.7 This happens if and only if the experiment fails on Monday,. . . , Saturday,
and is a success on Sunday. This has probability p(1 − p)6 to happen.

2.7 Exercises

2.1 � Let A and B be two events in a sample space for which P(A) = 2/3,
P(B) = 1/6, and P(A ∩ B) = 1/9. What is P(A ∪ B)?
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2.2 Let E and F be two events for which one knows that the probability that
at least one of them occurs is 3/4. What is the probability that neither E nor
F occurs? Hint: use one of DeMorgan’s laws: Ec ∩ F c = (E ∪ F )c.

2.3 Let C and D be two events for which one knows that P(C) = 0.3, P(D) =
0.4, and P(C ∩ D) = 0.2. What is P(Cc ∩ D)?

2.4 � We consider events A, B, and C, which can occur in some experiment.
Is it true that the probability that only A occurs (and not B or C) is equal
to P(A ∪ B ∪ C) − P(B) − P(C) + P(B ∩ C)?

2.5 The event A∩Bc that A occurs but not B is sometimes denoted as A\B.
Here \ is the set-theoretic minus sign. Show that P(A \ B) = P(A) − P(B) if
B implies A, i.e., if B ⊂ A.

2.6 When P(A) = 1/3, P(B) = 1/2, and P(A ∪ B) = 3/4, what is

a. P(A ∩ B)?
b. P(Ac ∪ Bc)?

2.7 � Let A and B be two events. Suppose that P(A) = 0.4, P(B) = 0.5, and
P(A ∩ B) = 0.1. Find the probability that A or B occurs, but not both.

2.8 � Suppose the events D1 and D2 represent disasters, which are rare:
P(D1) ≤ 10−6 and P(D2) ≤ 10−6. What can you say about the probability
that at least one of the disasters occurs? What about the probability that
they both occur?

2.9 We toss a coin three times. For this experiment we choose the sample
space

Ω = {HHH, THH, HTH, HHT, TTH, THT, HTT, TTT}
where T stands for tails and H for heads.

a. Write down the set of outcomes corresponding to each of the following
events:

A : “we throw tails exactly two times.”
B : “we throw tails at least two times.”
C : “tails did not appear before a head appeared.”
D : “the first throw results in tails.”

b. Write down the set of outcomes corresponding to each of the following
events: Ac, A ∪ (C ∩ D), and A ∩ Dc.

2.10 In some sample space we consider two events A and B. Let C be the
event that A or B occurs, but not both. Express C in terms of A and B, using
only the basic operations “union,” “intersection,” and “complement.”
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2.11 � An experiment has only two outcomes. The first has probability p to
occur, the second probability p2. What is p?

2.12 � In the UEFA Euro 2004 playoffs draw 10 national football teams
were matched in pairs. A lot of people complained that “the draw was not
fair,” because each strong team had been matched with a weak team (this
is commercially the most interesting). It was claimed that such a matching
is extremely unlikely. We will compute the probability of this “dream draw”
in this exercise. In the spirit of the three-envelope example of Section 2.1
we put the names of the 5 strong teams in envelopes labeled 1, 2, 3, 4, and
5 and of the 5 weak teams in envelopes labeled 6, 7, 8, 9, and 10. We shuffle
the 10 envelopes and then match the envelope on top with the next envelope,
the third envelope with the fourth envelope, and so on. One particular way
a “dream draw” occurs is when the five envelopes labeled 1, 2, 3, 4, 5 are in
the odd numbered positions (in any order!) and the others are in the even
numbered positions. This way corresponds to the situation where the first
match of each strong team is a home match. Since for each pair there are
two possibilities for the home match, the total number of possibilities for the
“dream draw” is 25 = 32 times as large.

a. An outcome of this experiment is a sequence like 4, 9, 3, 7, 5, 10, 1, 8, 2, 6 of
labels of envelopes. What is the probability of an outcome?

b. How many outcomes are there in the event “the five envelopes labeled
1, 2, 3, 4, 5 are in the odd positions—in any order, and the envelopes la-
beled 6, 7, 8, 9, 10 are in the even positions—in any order”?

c. What is the probability of a “dream draw”?

2.13 In some experiment first an arbitrary choice is made out of four pos-
sibilities, and then an arbitrary choice is made out of the remaining three
possibilities. One way to describe this is with a product of two sample spaces
{a, b, c, d}:

Ω = {a, b, c, d} × {a, b, c, d}.
a. Make a 4×4 table in which you write the probabilities of the outcomes.
b. Describe the event “c is one of the chosen possibilities” and determine its

probability.

2.14 � Consider the Monty Hall “experiment” described in Section 1.3. The
door behind which the car is parked we label a, the other two b and c. As the
sample space we choose a product space

Ω = {a, b, c} × {a, b, c}.

Here the first entry gives the choice of the candidate, and the second entry
the choice of the quizmaster.
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a. Make a 3×3 table in which you write the probabilities of the outcomes.
N.B. You should realize that the candidate does not know that the car
is in a, but the quizmaster will never open the door labeled a because he
knows that the car is there. You may assume that the quizmaster makes
an arbitrary choice between the doors labeled b and c, when the candidate
chooses door a.

b. Consider the situation of a “no switching” candidate who will stick to his
or her choice. What is the event “the candidate wins the car,” and what
is its probability?

c. Consider the situation of a “switching” candidate who will not stick to
her choice. What is now the event “the candidate wins the car,” and what
is its probability?

2.15 The rule P(A ∪ B) = P(A) + P(B)−P(A ∩ B) from Section 2.3 is often
useful to compute the probability of the union of two events. What would be
the corresponding rule for three events A, B, and C? It should start with

P(A ∪ B ∪ C) = P(A) + P(B) + P(C) − · · · .

Hint: you could use the sum rule suitably, or you could make a diagram as in
Figure 2.1.

2.16 � Three events E, F , and G cannot occur simultaneously. Further it
is known that P(E ∩ F ) = P(F ∩ G) = P(E ∩ G) = 1/3. Can you deter-
mine P(E)?
Hint: if you try to use the formula of Exercise 2.15 then it seems that you do
not have enough information; make a diagram instead.

2.17 A post office has two counters where customers can buy stamps, etc.
If you are interested in the number of customers in the two queues that will
form for the counters, what would you take as sample space?

2.18 In a laboratory, two experiments are repeated every day of the week in
different rooms until at least one is successful, the probability of success be-
ing p for each experiment. Supposing that the experiments in different rooms
and on different days are performed independently of each other, what is the
probability that the laboratory scores its first successful experiment on day n?

2.19 � We repeatedly toss a coin. A head has probability p, and a tail prob-
ability 1 − p to occur, where 0 < p < 1. The outcome of the experiment we
are interested in is the number of tosses it takes until a head occurs for the
second time.

a. What would you choose as the sample space?
b. What is the probability that it takes 5 tosses?


