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Abstract-An efficient and flexible tool that optimizes inverse 

problems like image reconstruction and image restoration is 

alternating direction method of multipliers (ADMM)with the 

knowledge of blur,later ADMM is modified to perform blind 

image deblurring (BID)of unknown blur on original image by 

some function of regularization. But in real world deblurring 

problems the prior knowledge of blurring filter has significant 

importance. In this paper estimates of image and blurring 

operator are obtained by considering significant image edges. 

An ADMM iteration criterion is based on whiteness 

measurement which includes auto variance, auto correlation 

and auto covariance estimation. In the proposed approach RGB 

medical image of heart under different degradation conditions 

are considered to estimate the performance and to bring a 

conclusions on the degradation process and restoration on 

composite and component processing of the input image. 

 

Keywords: Blind imagedeblurring,alternatingdirection method of 

multipliers (ADMM), non-cyclic deconvolution, Whiteness 

measurement, Frames-based analysis, synthesis. 

 

I. INTRODUCTION 

 

In general, extract approximated original image at receiver is 

image restoration. In restoration main concept is 

deconvolving. Deconvolution is usedwhen we know an 

observed image blurred by a known blur kernel and degraded 

by an additive Gaussian noise. We use a matrix notation so 

that the convolution of image x with kernel R is written as 

Rx, where R is a block Toeplitz(diagonal-constant)matrix 

with Toeplitz blocksand x is taken as a column vector got by 

stacking all columns of the image to one long vector. In this 

notation, our observation model can be written as y=Rx+n, 

where n is a Gaussian noise of having variance 𝜎2 andmatrix 

R has more columns than rows because observation y 

includes only pixels not influenced by the unknown area 

outside of image x.  

Deconvolutionis usually viewed from the probabilistic 

viewpoint as a maximum a posterioriprobability problem, 

i.e., we look for image x (Original image) with the highest 

posterior probability, given an estimate of image prior 

probability distribution p(x).The main problem of the 

implementation in the Fourier domain isthe introduction of 

boundary artifacts caused by the fact that R isnot circulate 

(periodic). 

 

To solve linear inverse problem in images, we use Image 

restoration/reconstruction, datingback to the 1960s [3]. In this 

class of problems, a noisy indirectobservation, of an original 

image, is modeled as 

𝒚 = 𝑩𝒙 + 𝒏                             (1) 

 

Where B is the matrix representation of the direct operator 

and noise (n).In the particular case of image deconvolutionB 

is the matrixrepresentation of a convolution operator. This 

type of model describes well several physical mechanisms, 

such as relative motion between the camera and the subject 

(motion blur), bad focusing(defocusing blur), or a number of 

other mechanisms. 

In more general image reconstruction problems, B 

represents some linear direct operator, such as tomographic 

projections(Radon transform), a partially observed (e.g., 

Fourier) transform, or the loss of part of the image pixels. 

  Next alternative method to solve several imaging problems 

is  Alternating direction method of multipliers (ADMM), 

originally proposed in the 1970’s [24], Emerged recently as a 

flexible and efficient tool compare todenoising [23], 

Deblurring [2], inpainting [2], reconstruction [5], motion 

Segmentation [4], to mention only a few classical problems 

(for a comprehensive review, see 

[6],[7],[9],[10],[13],[17],[19],[21]). It uses of variable 

splitting, which allows straightforward treatment of various 

priors/regularizes [1], such as those based on frames or on 

total-variation (TV) [3], [6], as well as the seamless inclusion 

of several types of constraints (e.g., positivity) [23], [8]. 

ADMM is closely related to other techniques, namely the so-

called Bregmfan and split Bregmanmethods [10], [12], [16], 

[18],[20] [22], [23] and Douglas–Rachford splitting [9],[14], 

[19], [21].Several ADMM-based algorithms for imaging 

inverse problems require, at each iteration, solving a linear 

system [2], [10],[23]. This fact is simultaneously a blessing 

and accurse. The system applicability image deconvolution 

algorithms can also be solved by using ADMM algorithms, 

fast Fourier transform (FFT)is used due to simplicity, for 

performing the inversion of system matrix , as long as the 

convolution is cyclic/periodic(or assumed to be so), thus 

diagonal in the discrete Fourier domain. 

Generally image blurring can be obtained by convolving 

original with impulse response,ADMM can be used to reduce 

blurring effect. Practically we discussed ADMM based 

conjugateGradient (CG) andMask Decoupling (MD) 

International Journal of Engineering Research & Technology (IJERT)

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV3IS120139

(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Vol. 3 Issue 12, December-2014

51



algorithms in Total-Variation (TV) and Frame Based analysis 

and synthesis (FC) by knowing the kernels. Here finally 

observing ISNR values for four algorithms [TV-CG, TV-

MD, FC-CG, FC-MD]in this FC-CG will provides better 

results than reaming three algorithms. 

Up to now ADMM works by knowing the kernel 

parameters. In proposed ADMM based method will works 

for without knowing kernel parameters, this process is known 

as blind image deconvolution (BID).In proposed approach by 

using whiteness measurement the ADMM iteration will 

automatically stops if ISNR value reaches to highest 

compared to previous values. Here in proposed method one 

additional parameter (random) was   introduced. 

The proposed approach method is also applicable for color 

images by splitting composite image into component image 

and applied proposed approach method individual component 

images after getting results again converting component 

image into composite image. 

 

II. ALTERNATING DIRECTION METHOD OF 

MULTIPLIERS (ADMM) 

 

Consider an unconstrained optimization problem 

min
zϵRn  f 𝐳 + g 𝐆𝐳                                         (2) 

 

wheref : Rn→ .R and g : Rp→ .R are convex functions, 

and𝐆 ϵ ℝp×n is a matrix. The ADMM algorithm for this 

problem(which can be derived from different perspectives, 

namely, augmentedLagrangian and Douglas–Rachford 

splitting) ispresented in Algorithm 1 and this can be applied 

for 

Conjugate Gradient (CG). 

 

Algorithm 1 

 

1. Initialization: set k=0, chooseμ>0, U0 and d0 

2. Repeat 

3.  zk+1 ← arg minz f 𝐳 +
μ

2
 𝐆𝐳 − μ

k
− 𝐝k 2

2
 

4.  μ
k+1

← arg minμ f μ +
μ

2
 𝐆𝐳k+1 − μ − 𝐝k 2

2
 

5.  𝐝k+1 ← 𝐝k − (𝐆zk+1 − μ
k+1

) 

6.  k ← k + 1 

 

ADMM can gives exact results in linear convergence which 

holds μ>0 however the choice of μ strongly effects the 

convergence speed and replace scalar μ by diagonal-matrix  
𝚼 = 𝑑𝑖𝑎𝑔(μ1 , μ2 ……………μp ) 

 

Consider two or more (J≥ 2) functions. Eq (2) is replaced 

by 

min
zϵRn  gj

j

j=1

 𝐇 j z                         (3) 

Wheregj: 𝑅
𝑝𝑗 → are proper, closed, convex functions, 

and𝐻(𝐽) ∈  𝑅𝑝𝑗 ×𝑛are arbitrary matrices.We map this problem 

intoform (1) as follows: let 𝑓 (𝒛)  =  0 define matrix G as 

 

𝑮 =

 
 
 
 
𝐻(1)

𝐻(2)

..
𝐻(𝐽) 

 
 
 

                                             (4) 

Where p=𝑝1 + 𝑝2 + ⋯ + 𝑝𝑗 , and let g:ℝ𝑝 → ℝ    be defined 

as  

g U =  gj

j

j=1

 u j                     (5) 

Where each   u j ∈𝑅𝑝𝑗 is a 𝑝𝑗 -dimensional sub-vector of u, 

that is,u = [(u 1 )∗, …… . . , (u j )∗ ]∗ 

The definitions in the previous paragraph lead to an 

ADMMfor problem (3) with the following two key features. 

1) The fact that f (z) = 0 turns line three of Algorithm1 

into an unconstrained quadratic problem. Lettingϒ be a p-

dimensional positive block diagonal matrix 

 

ϒ = 𝒅𝒊𝒂𝒈  μi , … , μi     , … . μj , … , μj     , … . , μJ , … , μ𝐽             (6) 

 

The solution of this quadratic problem is given by 

arg
min

z
(𝐆𝐳 − ζ)∗𝛄 𝐆𝐳 − ζ = (𝐆∗𝛄𝐆)−1𝐆∗𝛄ζ 

( μj

J

j=1

( 𝐇 j  
∗
𝐇 j )−1  μj

J

j=1

( 𝐇 j  
∗
ζ j         (7) 

 

with ζ(j) = 𝐮k
(j) + 𝐝k

(j)
,where 𝜁(𝑗 )

,𝒖𝑘
(𝑗 )𝑎𝑛𝑑 𝒅𝑘

(𝑗 )
forj = 1, . . . 

, J , are the sub-vectors of ζ , uk, and dk,respectively, 

corresponding to the partition in (4), andthe second equality 

results from the block structure ofmatrices G (in (4)) and ϒ 

(in (6)). 

 

2) The separable structure of g (as defined in (4)) allows 

decoupling the minimization in line four of Algorithm 1 into 

J independent minimizations, each of the form 

𝑢𝑘+1
(𝑗 )

←  arg     gj 𝑣 +
μj

2
 𝐯 − 𝒔(𝒋) 

2

2

zϵℝd
min          (8) 

 

For j=1, 2… J, Where𝑆(𝑗 ) =  𝐻(𝑗 )𝑍𝑘+1 − 𝑑𝑘
(𝑗 )

. This 

minimization defines to the so-called Moreau Proximity 

Operator of 𝑔𝑗 μ  (see [15],[16] and reference there in) 

applied to 𝑺(𝑗 ), thus 

𝑢𝑘+1
 𝑗  

← 𝑝𝑟𝑜𝑥𝑔𝑗 μ j  𝑆 𝑗    

≡  arg 
1

2
 𝐱 − 𝒔 𝒋  

2

2

x

min

+
𝑔𝑗

 𝒙 

μj

              (9) 

From some functions, the Moreau proximity Operators are 

known in closed form [15]; a well-known case is the 𝑙1 norm 

for which the proximity operator is the soft-threshold 

function. 

Soft (𝜐, 𝛾) =sign (v)⊙max ⃓𝑣⃓ − τ, 0 ,        (10) 

 

Algorithm 2 

1. Initialization: set k=0, chooseμ1 , …… . . , μj > 0,u0, d0 

2. Repeat 

3.  ζ ← 𝐮k + 𝐝k  
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4.  𝐳k+1  ← ( μj

J

j=1

( 𝐇 j  
∗
𝐇(j))−1  μj

J

j=1

( 𝐇 j  
∗
ζ(j)

 

5.  for     j=1 to J   do 

6.      μk+1
(j) ⟵ proxgj uj (𝐇(j)𝐳k+1 − 𝐝𝐤

(j))  

7.   𝐝k+1
(j) ←  𝐝k

(j) − (𝐇(j)𝐳k+1 − 𝛍k+1
(j)) 

8. end 

9.  k ← k + 1 

10. until stopping criterion is satisfied 

 

Where the sign, max, and absolute value functions are 

applied in component-wise fashion. The convergence of the 

resulting instance of ADMM (shown in Algorithm 2) 

 

III. DECONVOLUTION WITH UNKNOWN 

BOUNDARIES 

 

A. The Observation Model 

To separate observed pixels from unobserved pixels (i.e. 

for bounder’s pixels) here we are applying one spatial mask.  

 

𝐲 = 𝐌𝐀𝐱 + 𝐧                                 (11 ) 

 

Where M ∈  {0, 1}m×n(with m < n) is a masking matrix, 

i.e., a matrix whose rows are a subset of the rows of an 

identitymatrix. Consider that A models the convolution with 

a blurring filter with a limited support of size (1 +  2 𝑙)  ×
 (1 +  2 𝑙), and thatx and Ax represent square images of 

dimensions 𝑛  ×   𝑛then matrix 𝑴ϵ ℝn×n ,
 with 𝑚 =

 (   𝑛 − 2 𝑙)2, represents theremoval of a band of width l of 

the outermost pixels of thefull convolved image Ax. 

 

Problem (11) can be seen as hybrid of 

deconvolutionandinpainting [14], where the missing pixels 

constitute theunknown boundary. IfM = I, model (11) 

reduces to a standardperiodic deconvolution problem. 

Conversely, if A = I, (11)becomes a pure inpaintingproblem. 

Moreover, the formulation(11) can be used to model 

problems where not only the boundary, but also other pixels, 

is missing, as in standard imagein painting. 

The following subsections describe how to handle 

observation model (11), in the context of the ADMM-based 

deconvolutionalgorithms reviewed in the previous section. 

The following sub-section describes how to apply 

observation model (11) in the contents of the ADMM based 

deconvolution algorithm which describes frame based 

analysis and synthesis formulation. 

 

B. Frame-Based Synthesis Formulation 

 It can be describes based on two different models that are 

Mask Decoupling and Conjugate Gradient. 

 

1) Mask Decoupling (MD): Under observation model 

(11),the general frame-based synthesis formulation 

 

𝐳 = arg 1/2
zϵℝd

min ∗  𝐲 − 𝐌𝐀𝐖𝐱 2
2  + λ z 1 12  

 

 

At this point, one could be tempted to map (12) into (2)using 

the same generalized concepts. 

 

𝐇(1)ϵ ℝm×d ,         𝐇(1) = 𝐌𝐀𝐖                     (13) 

 

The problem with this choice is that the matrix to be inverted 

in line four of Algorithm 2 would become 

 

 𝐖∗𝐀∗𝐌∗𝐌𝐀𝐖 +  μ2 μ1  𝐈  14  

 

The “trick” used in Periodic Boundary Condition is  to 

express this inversion in the DFT domain can nolonger be 

used due to presence of M, invalidating the 

correspondingFFT-based implementation of line four of 

Algorithm2. It is clear that the source of the difficulty is the 

productMA, which is the composition of a mask (a spatial 

pointwiseoperation) with a circulate matrix (a point-wise 

operationin the DFT domain); to sidestep this difficulty, we 

need todecouple these two operations, which is achieved by 

defining 

g1: ℝn  ⟶ ℝ,       g1 𝐯 =
1

2
 𝐲 − 𝐌𝐯 2

2                (15) 

g2: ℝd  ⟶ ℝ,       g2 𝐳 = λ 𝐳 1                              (16) 

𝐇(1)ϵ ℝn×d ,         𝐇(1) = 𝐀𝐖                                   (17) 

𝐇(2)ϵ ℝd×d ,         𝐇(2) = 𝐈                                         (18) 

 

The only change is the proximity operator of the newg1, 

proxg1 μ1  𝐯  

 

=  arg  𝐌𝐮 − 𝐲 2
2

u
min + μ1 𝐮 − 𝐯 2

2                      (19) 

 

               =  𝐌∗𝐌 + μ1𝐈 
−𝟏 𝐌∗𝐲 + μ1𝐯  20  

 

Notice that, due to the special structure of M, matrix 𝐌∗𝐌is 

diagonal, thus the inversion in (20) has O(n) cost, the same 

being true about the product 𝐌∗𝐲, which corresponds 

toextending the observed image y to the size of x, by creating 

a boundary of zeros around it. Of course, both 𝐌∗𝐌 +

μ1𝐈 
−𝟏and 𝐌∗𝐲can be pre-computed and then used 

throughout thealgorithm, as long as μ1 is kept constant. We 

refer to this approach as mask decoupling (MD). 

In conclusion, the proposed MD-based ADMM algorithm for 

image deconvolution with unknown boundaries, under frame-

based synthesis regularization, is Algorithm 2 with line four 

implemented as Periodic Boundary Condition[1] and the 

proximity operators inline six given by (20) . We refer to this 

algorithm FS-MD (frame synthesis mask decoupling). As 

with the periodic BC [1], the leading cost is O(n log n) per 

iteration. Finally, convergence of the FS-MD algorithm is 

guaranteed by the following proposition (the proof of which 

is similar to that of Proposition 2). 

 

2) Using the Reeves–Šorel Technique: An alternative to the 

approach just presented of decoupling the convolution 

fromthe masking operator is to use the method of [12], [20] 

totackle the inversion (14). Following [12], notice that 

 

𝑨𝑾 = 𝑺  
𝑴𝑨𝑾

𝑩
                         (21) 
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Where B contains the rows of AW that are missing from 

MAW(recall that the rows of M are a subset of those of an 

identity matrix) and S is a permutation matrix that puts these 

missing rows in their original positions in AW. Noticing that 

 

𝐖∗𝐀∗𝐀𝐖 =  𝐖∗𝐀∗𝐌∗ 𝐁∗ 𝐒∗𝐒  
𝑴𝑨𝑾

𝑩
  

= 𝐖∗𝐀∗𝐌∗𝐌𝐀𝐖 + 𝐁∗𝐁          (22) 

 

(S is a permutation matrixthus𝐒∗𝐒 = 𝐈), the inverse of 

(14)can be written (with𝛾 = μ2 μ1 ) as 

 

 𝐖∗𝐀∗𝐌∗𝐌𝐀𝐖 + μ1𝐈 
−𝟏 =  𝐖∗𝐀∗𝐀𝐖 − 𝐁∗𝐁 + 𝛾𝐈 −𝟏

 

= 𝐂 − 𝐂𝐁∗  𝐁𝐂𝐁∗ − 𝟏 −𝟏𝐁𝐂                                     (23) 

 

Where the second equality results from using the Sherman-

Morrison–Woodbury matrix inversion identity, after 

defining𝐂 =  𝐖∗𝐀∗𝐀𝐖 + 𝛾𝐈 −𝟏.Since A is circulate, C can 

be efficiently computed via FFT, as 

explained[1].Theinversion 𝐁𝐂𝐁∗ − 𝐈 −𝟏Periodic Bounder 

Condition cannot be computed via FFT however, its 

dimension corresponds to the number of unknownboundary 

pixels (number of rows in B), usually much smallerthan 

image itself. As in [12], [20], we use the CG algorithm 

tosolve the corresponding system; we confirmed 

experimentally that (as in [20]) taking only one CG iteration 

(initialized with the estimate of the previous outer iteration) 

yields the fastest convergence, without degrading the final 

result. Thus, in our experiments, we use a single CG iteration 

per outer iteration. Approximately solving line four of 

Algorithm 2 via one(or even more) iterations of the CG 

algorithm, rather than anFFT-based exact solution, makes 

convergence more difficult to analyze, so we will not present 

a formal proof. In a related problem [23], it was shown 

experimentally that if the iterative solvers used to implement 

the minimizations defining theADMM steps are warm-started 

(i.e., initialized with the values from the previous outer 

iteration), then the error sequencesηkand ρk, for k = 0, 1, 2,are 

absolutely hummableas required by Theorem 1. Finally, we 

refer to this algorithm asFS-CG (frame synthesis conjugate 

gradient). 

 

C. Frame-Based Analysis Formulation 

1) Mask Decoupling (MD): The frame-based analysis 

formulation corresponding to observation model Periodic 

Boundary Condition [1] is 

 

𝐱 = arg 1/2zϵℝn
min ∗  𝐲 − 𝐌𝐀𝐱 2

2  + λ 𝐏𝐱 1          (24) 

 

Following the MD approach introduced for the synthesis 

formulation, we map Problem (24) into the form (2), by 

usingg1 as defined in (15), and keeping H(1), H(2), and g2 as 

in the periodic BC case (16), (17), and (18), respectively. The 

only difference in the resulting instance of Algorithm 2is the 

use of the proximity operator of the new g1, as given in(20). 

In conclusion, the proposed ADMM-based algorithm for 

imagedeconvolution with unknown boundaries, under 

framebasedanalysis regularization, is simply Algorithm 2, 

and the proximity operators in line six given by (20). We 

refer to this algorithm asFA-MD (frame analysis mask 

decoupling). The computational 

cost of the algorithm is 𝑂(𝑛 𝑙𝑜𝑔 𝑛)per iteration, as in 

theperiodic BC [1] case. Convergence of FA-MD is 

addressed by the following proposition  

 The algorithm FA-MD (i.e., Algorithm 2 with the 

definition in (15), and some equations same as in Periodic 

Boundary Condition with line four computed and proximity 

operators in line six as given in (20) converges to solution of 

(24)  

  

2) Using the Reeves–Šorel Technique: Consider Problem(24) 

and map into Periodic BC [1] case 

 

𝐇(1)ϵ ℝn×n ,         𝐇(1) = 𝐌𝐀                                    (25) 

 

The matrix inverse computed in line four of Algorithm 2 

isnow (with𝛾 = μ2 μ1 ) 

 

 𝐀∗𝐌∗𝐌𝐀 + 𝛾𝐏∗𝐏 −𝟏 =  𝐀∗𝐌∗𝐌𝐀 + 𝛾𝐈 −𝟏   (26) 

 

Which can no longer be computed as in Periodic 

Boundary Condition [1], since matrix MAis not circulating? 

Using the same steps as in (21)–(23), with Areplacing AW 

and≡  𝐀∗𝐀 + 𝛾𝐈 −𝟏, leads to 

 

 𝐀∗𝐌∗𝐌𝐀 + 𝛾𝐈 −𝟏 = 𝐂 − 𝐂𝐁∗ 𝐁𝐂𝐁∗ − 𝐈 −𝟏𝐁𝐂 (27) 

 

Since A is circulating, 𝐂 ≡  𝐀∗𝐀 + 𝛾𝐈 −𝟏 can be 

efficientlycomputed via FFT, as Periodic BC [1]. As in the 

synthesis case, the inverse 𝐁𝐂𝐁∗ − 𝐈 −𝟏in (27) is computed 

approximately by taking one (warm-started) CG iterationwe 

refer to the resultingAlgorithm as FA-CG (frame analysis 

conjugate gradient). 

 FA-CG will gives best ISNR [1] values compared to other 

methods i.e., TV-CG, TV-MD, FA-MD, next we are 

discussing FA-CG with BID and unknown boundaries.   

 

IV BID using ADMM 

 

BIDmethod is also applicable for real images. In 

proposed method five different blurs (out-of-focus, linear 

motion, uniform, Gaussian and random) effect are explained 

atBSNR (90dB). The reason why we concentrate on large 

blur is that effect of the boundary is very evident in this case. 

 By minimizing the cost (Mean Square Error) unctionthe 

image x and the blurring operator H (equivalently, the filter 

h) are estimated. 

 

A.  Image estimating by using ADMM 

  

 The unconstrained formulation of image estimate update 

problem of Algorithm 1 (line 3) is defend as 

𝑓 𝑧 =  
1

2
 𝒚 − 𝑴𝑨𝒙 2

2 + 𝜆  𝑭𝒊𝑿 2
2

𝑚

𝑖=1

        (28) 

And in constrained formulation (3) by letting J= m+1, and 

𝐺(𝑗 ) =  𝐹𝑗 , 𝑓𝑜𝑟 𝑗 = 1, … . . , 𝑚                                    (29) 

𝐺(𝑚+1) =  𝐻                                                                 (30) 
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𝑔 𝑗   𝑢 𝑗   = 𝜆 𝑢 𝑗   
2

2
 , 𝑓𝑜𝑟 𝑗 = 1, … . , 𝑚             (31) 

𝑔 𝑚+1  𝑢 𝑚+1  =
1

2
 𝒚 − 𝑴𝑢 𝑚+1  

2

2
                  (32) 

 

The main steps of the Algorithm 2 are those in line 4 and 

6. 

Line 4 can be written as  

 

𝐳k+1  ← 

𝐊(ρ𝐇 T  𝑢𝑘
 𝐽 + 𝑑𝑘

 𝐽  +  μ 𝐹𝑗
𝑇

m

j=1

 𝑢𝑘
 𝐽 + 𝑑𝑘

 𝐽     (33) 

To implement line 6 of algorithm we need to solve two 

Proximity Operators (PO) 

proxg1 μ1  v =  arg𝑥
𝑚𝑖𝑛

𝜆

μ
 𝑥 2

q
+

1

2
 v − x 2

2
 

    = v-shrink (v,𝜆 μ ,q)   (34) 

proxg1 μ1  v =  arg𝑥
𝑚𝑖𝑛

1

ρ
 𝒚 − 𝑴𝒙 2

2 +
1

2
 v − x 2

2
 

  

   =  𝐌∗𝐌 + ρ𝐈 −𝟏 𝐌∗𝐲 + ρ𝐯        (35) 

 The proximity operator in (35) can be easily 

computed:𝐌∗𝐲  is the extension of y:ℝn  ⟶ ℝ by zero-

padding, 𝐌∗𝐌is a binary diagonal matrix, with zeros 

corresponding to the unobserved boundary pixels. 

 

B. Blur Estimating by using ADMM 

  

 The estimate of blur problem in line 4 of algorithm 1 can 

be written in unconstrained formula as 

1/2h
min ∗  𝐲 − 𝐌𝐀𝐱 2

2  + 𝑙𝑠 + (𝒉) 

 

and in constrained form (3), with J=2, 𝐺(1) = 𝑋, 𝐺(2) = 𝐼 and 

𝑔 1  𝒖 1  =
1

2
 𝐲 − 𝐌𝒖 1  

2

2
,

𝑔 2  𝒖 2  =  𝑙𝑠 +  𝒖 2          (36) 

The resulting instance of Algorithm 2 involves (in line 4) the 

inversion of the matrixμ(1)𝑿𝑇𝑿 + μ(2)𝑰 which can be 

efficiently computed in the DFT domain, using the FFT. 

Concerning the two (J=2) Proximity Operator (PO) in line 6, 

the PO has exactly the same form as (35). 

Orthogonal projection on that v-shrink is 

  

prox
𝑔(2) 𝜇 (2) 

(𝐯)
=  prox𝑙𝑠+

(v)
=  𝔭𝑠+

(v)
                        (37) 

 

C. WHITENESS MEASURES 

  

 Whiteness measures of the residual have been previously 

used to assess model accuracy however; those works are on 

very different areas. The best new stopping criterion based on 

whiteness measures was successfully tested on a large 

resolution images, leading to an average decrease of 3% of 

the ISNR compared to what is obtained by stopping the 

algorithm at the maximum ISNR (something that, of course, 

cannot be done in practice, as it requires the original image).  

 

 

 

D. BID method on color images 

 The  proposed method also applicable for color imageand 

obtained ISNR values by applying different types of impulse 

responses, and again same color image can be split in to 

individual RGB component images, finding ISNR values by 

applying same impulse responses, which were applied on the 

RGB image and averaging all individual component vales. 

Finally comparing ISNR values of actual image with average 

ISNR value of individual component images. 

 

V METHODOLOGY 

 

1. In the proposed method RGB CT heart image is taken as 

input. 

2. The image is blurred with five different blurring which is 

obtained by convolving the blurring function and the 

input image. 

3. A spatial mask is applied to prevent the unobserved 

pixels which may be missed during the transmission 

process in real time application. 

4. Tight frame approach is applied to analyze the image and 

perform the synthesis. 

5. By using Conjugate Gradient (CG) minimizing the cost 

function (Mean Square Error) to get best ISNR and best 

restored  image. 

6. The iteration process is new approach in the method, 

which is based on the whiteness measurement. The 

process of restoration will stop when the image gets best 

ISNR value. 

7. In addition to this iteration process the filter that 

responsible for the degradation of the input image is also 

found by Curvlets and CG methods, which is the BID. 

8. The ISNR values and the number of iterations are 

tabulated. 

9. The entire approach mentioned in above steps is applied 

to the same image by decomposing the image in to 

component R, G, and B images.  

10. The individual values are tabulated and the average of 

the component values is obtained along with the 

composite image from individual processed output 

images.  

11. The validation of the approach is done by comparing the 

ISNR values of approach on original RGB and 

individual component images. 

 

VIEXPERMENTAL RESULTS 

 

 The performance analysis and validation of the 

proposed method is performed by considering CT image of 

heart. Fig1 shows original RGB image of heart CT and the 

resultant image obtained by applying the procedure 

mentioned in methodology, the obtained ISNR values are 

tabulated in Table1 for different distortions. The original CT 

RGB image is suppurated into component images as shown 

in Fig 2, the corresponding resultant images obtained by 

applying proposed method on individual component images 

are also shown in Fig 2 and their corresponding ISNR values 

are tabulated in Table 2, Table 3, and Table 4. The resultant 

images of individual R, G and B components are combined 

into composite image shown in Fig 3. The individual ISNR 
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values obtained are averaged for different distortions as 

shown in Table 5. Table 6 shows a comparison of ISNR 

values obtained by applying the proposed approach on 

original RGB CT heart image and average ofindividually 

processed images of components original RGB CT heart 

image. 

 
RGB Image Result for 

RGB image 

  
 

Fig 1: original (RGB) image and result image 

 

Table 1:ISNR values for RGB image 

 
 Heart ISNR(res1) ISNR(res3) 

BSNR= 90 Uniform 18.92551 11.21871 

BSNR= 90 out-of-
focus 

2.79456 3.63668 

BSNR= 90 Linear 
motion 

7.18974 6.47413 

BSNR= 90 Gaussian 0.86046 1.09519 

BSNR= 90 Random 6.85637 6.84374 

 

 

 
Fig 2: component images and there resultant images 

 

 
Fig 3: combined image of individual component images 

 

 

Table 2: ISNR values for red component image 

 

 Heart ISNR(res1) ISNR(res3) 

BSNR=90 Uniform 34.34847 13.31931 

BSNR=90 out-of-

focus 

3.13851 3.05118 

BSNR=90 linear 
motion 

7.83694 8.09435 

BSNR=90 Gaussian 2.29807 2.33675 

BSNR=90 Random 24.50911 13.56497 

 
Table 3: ISNR values for Green component image 

 

 Heart ISNR(res1) ISNR(res3) 

BSNR=90 Uniform 28.39843 15.20843 

BSNR=90 out-of-focus 14.78030 12.67098 

BSNR=90 linear 
motion 

19.81770 16.46264 

BSNR=90 Gaussian 6.66671 6.45874 

BSNR=90 Random 17.84026 13.31623 

 

 
Table 4: ISNR values for Blue component image 

 Heart ISNR(res1) ISNR(res3) 

BSNR=90 Uniform 23.60707 12.30681 

BSNR=90 out-of-
focus 

1.96045 2.00831 

BSNR=90 linear 

motion 

4.53470 5.20898 

BSNR=90 Gaussian 0.95380 1.09464 

BSNR=90 Random 6.32789 6.09960 

 
Table 5: average ISNR values for above individual component image 

 

 Heart ISNR(res1) ISNR(res3) 

BSNR=90 Uniform 28.7846 13.61151 

BSNR=90 out-of-focus 6.62642 5.910156 

BSNR=90 linear 

motion 

10.72978 9.92199 

BSNR=90 Gaussian 3.30619 3.29671 

BSNR=90 Random 16.2257 10.9936 

 

Table 6: comparison between original image ISNR values with 

average of the individual color component ISNR values. 

 

  

 

Heart 

ISNR values 

original(

RGB) 

Average 

values for 

individual 

component 

BSNR=90 Uniform 18.9255 28.7846 

BSNR=90 out-of-

focus 

2.79456 6.62642 

BSNR=90 linear 

motion 

7.18974 10.72978 

BSNR=90 Gaussian 0.86046 3.30619 

BSNR=90 Random 6.85637 16.2257 

 

 

 

 

 

 

 

 

 

 

 

Compone

nt type 

Component image 

 

Result image for 

component 

 

 

Red 

  

 

 

Green 

  
 

 

Blue 
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VII CONCLUSION AND FUTURE WORK: 

 

In general deconvolution of degraded image need to have 

prior knowledge about degradation function, but by using 

BID deconvolution of degraded image can be performed 

without having prior knowledge about the causes for 

degradation. By using BID estimating the both image and 

degradation function can be done. In BID ADMM iteration 

criteria is based on whiteness measurement. Here BID 

method is applied on original image and individual color 

components of the color image and finally compared ISNR 

values between original image and average ISNR values of 

the individual color components.Hence stating that 

transmitting a color image by split into individual component 

images will give better ISNR values than transmitting a color 

image directly 
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