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Abstract 
 

The operation of a Bus Rapid Transit System (BRTS) requires solving complex design problems, including the selection of routes 
and the corresponding frequency of service, among others. One challenge is the large number of potential solutions, with multiple 
routes having many frequency options. At least, the design should seek to minimize the total time spend by users in the system as 
well as the operational cost to pursue sustainability and profitability. The literature includes a wide variety of approaches to solve 
this Transit Network Design and Frequency Setting Problem (TNDFSP) for a BRTS. This study proposes a single framework that 
simultaneously considers restrictions and objectives of the users and the operator of the system. A Multi-objective Global-Best 
Harmony Search (MOGBHS) heuristic algorithm was implemented and tested successfully. The algorithm is based on three main 
components: 1) a Global-Best Harmony Search as the heuristic optimization strategy, 2) ordering of non-dominated solutions as a 
multi-objective optimization strategy, and 3) simulation of discrete events to evaluate solutions. A bi-level implementation of 
MOGBHS was adopted. At the external level, the algorithm searched the best configuration of routes, while at the internal level, 
the algorithm searched the best frequency for a solution for a specific route. Experiments were performed using a simulation 
model of an actual BRTS located in Pereira, Colombia, known as Megabus. Routes and frequencies were searched for this BRTS 
by minimizing waste bus capacities (operation costs) and minimizing users’ travel time (maximizing satisfaction). Results using 
the proposed algorithm where superior to those obtained using comparable alternatives, including NSGA-II and MOEA/D. 
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1 Introduction 

Bus Rapid Transit Systems (BRTS) have been shown to be a viable solution to address growing transportation needs 
of populations in large urban centers and to reduce negative externalities created by conventional automobiles, such as 
emissions and noise. BRTS provide similar cost and efficiency as do urban railway systems [1, 2]. However, the 
operation of a BRTS requires addressing various challenges including: 1) design of the network, 2) design of the 
routes, 3) definition of service frequency by route, 4) assignment of buses, 5) assignment of personnel, 6) 
consideration of induced demand, 7) design of traffic controls, and 8) generation and deployment of travel information 
strategies. The growing use of BRTS as well as diverse and changing conditions in which passengers travel make the 
process of determining service routes and frequencies essential to provide effective service. It also is critical to 
consider the needs of the service providers, who seek the greatest profitability and sustainability of the system over the 
short, medium, and long term [3-5].  

Ideally, the design of a BRTS needs to reach desired levels of user satisfaction, sustainability, and profitability. This 
is evident in the literature regarding problems involving "design of transit networks and routes", "programming of 
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frequency", and "programming of schedules" for the design of BRTS. These problems have been studied in detail 
within a global framework, the Transit Network Design and Scheduling Problem (TNDSP) [4]. 

Given the importance of transit systems, the above problems have been addressed using a variety of approaches, 
including analytical and heuristic frameworks [4-6]. Within the set of heuristics, Multi-objective Optimization (MO) 
[7] has provided significantly good results when solving one or more sub-problems of the TNDSP. MO enables the 
explicit consideration of multiple objectives at once in order to find an array of best feasible solutions. It is the 
designer or decision-maker who selects a solution from the list of alternatives provided by the MO algorithm [7-9]. 
The optimization process depends on feedback obtained from evaluating feasible solutions found by the algorithm. In 
the case of TNDSP, the cost involved in searching for solutions increases by the amount of restrictions that must be 
considered. To address this challenge, this current study proposes to use simulation tools for discrete events to 
facilitate the generation of necessary data to calculate an aptitude or quality of the solutions based on the objectives to 
be optimized. The existing literature reports substantial results when using this proposed approach to address other 
similar type of problems [10]. 

Considering the quantity of the objectives to optimize as well as their conflicts, this paper proposes a new multi-
objective bi-level algorithm to solve the Transit Network Design and Frequency Setting Problem (TNDFSP), in which 
the configuration of routes and frequencies are searched at the external (leader) and internal (follower) levels, 
respectively. The algorithm is based on: 

(1) A global-best harmony search [11], which is a metaheuristic that is widely known and used to solve diverse 
complex problems for continuous and discrete optimization; and 

(2) The concept of ordering of non-dominates [12] to compare and evaluate the best solutions found in a problem 
that has multiple objectives. 

The implementation includes the use of covering arrays [13] as a tool to reduce the search space of the routes to be 
defined at the external level of the algorithm. 

Diverse solutions to problems related to TNDSP have been proposed. However, most studies have focused on 
optimizing only one objective to satisfy the needs of one group, the users, or the operators, without considering other 
objectives. Hence, solutions obtained using the existing literature are sub-optimal or unsustainable for real operations. 
To the best knowledge of the authors, an approach such as the one proposed in this study is not available in the 
literature. 

The remaining of this paper is organized as follows. Section 2 summarizes a set of studies related to TNDSP, multi-
objective bi-level optimization, and the Global-best Harmony Search (GBHS) metaheuristic. Section 3 provides details 
about the proposed algorithm, Multi-objective Global Best Harmony Search (MOGBHS), including its evaluation 
using instances of the multi-objective optimization test [14] from the Congress on Evolutionary Competition (CEC) of 
the Institute of Electrical and Electronics Engineers (IEEE). This section also explains how the MOGBHS was 
adapted, using two search levels for the solution of TNDFSP. Section 4 describes the BRTS model used in the 
experiments, the process of refining the parameters of the proposed algorithm, the results of experiments, and a 
comparison with the algorithms, Non-dominated Sorting Genetic Algorithm (NSGA-II) and Multi-objective 
Evolutionary Algorithm Based on Decomposition (MOEA/D). Finally, Section 5 presents conclusions and 
recommends future directions for research. 

2 Related Studies 

2.1 Transit Network Design and Scheduling Problem 

In 2007, Mauttone and Urquhart [3] proposed an approach to solve the Transit Network Design Problem (TNDP) by 
using an adaptation of the Greedy Randomized Adaptive Search Procedure (GRASP), a metaheuristic approach 
designed to solve combinatorial optimization problems. In contrast to GRASP, the GRASP-TNDP algorithm tries to 
obtain an approximate Pareto front with multiple solutions. In that study, the evaluation was performed successfully 
using information from the transit system of the City of Rivera in Uruguay. However, implementation and testing of 
the algorithm included simplifications of the problem that might make the solutions unusable for real applications. For 
example, the capacity of automobiles in the system was not considered. To address this limitation, the algorithm 
proposed is this study used discrete simulation models, which made it possible to include more dimensions in the 
experiments and enable future improvements. 



Beltran et al. [15] used a genetic algorithm to determine the frequency of service for a public transit system having 
Zero Emission Vehicles. Their study sought to minimize operation costs, the cost to users, and external costs by 
considering the elasticity of the demand and the number of vehicles. However, solutions for routes were generated 
independently of the genetic algorithm that sought the frequencies. Hence, this approach did not make use of 
information about the quality (fitness) of the solutions. 

Mauttone and Urquhart [16] proposed a multi-objective metaheuristic based on GRASP to validate TNDSP results 
by using graphs with models on the scale of cities. This study demonstrated that by using the same computational 
effort as a weighting method, the proposed algorithm produced more non-dominated solutions. In addition, the study 
demonstrated that the optimization of routes and frequencies was a solvable multi-objective problem. In contrast to the 
algorithm used by Mauttone and Urquhart, the algorithm proposed in this current study uses simulation models based 
on existing transit systems to obtain the necessary information to calculate the quality of the solutions. This approach 
makes it possible to consider more dimensions and, therefore, facilitate its implementation for real-world systems. 

Using Swarm Intelligence, Cipriani et al. [17] formulated a design of transit networks for urban buses as a problem 
of optimization of resources and costs. The final objective was the design of routes, including some restrictions on bus 
capacity and feasibility. This approach could be categorized as multi-objective optimization. However, it does not 
address the problem of finding optimal bus frequencies. 

Calculating the fitness of each solution generated with respect to N objectives has led to using simulation to enable 
an efficient evaluation of the system under consideration. The strategy consists of feedback loops that use solutions 
generated by search algorithms on microscopic, macroscopic, mesoscopic models of the system. An example of this 
was illustrated by Wang et al. [18], where a fee structure and service frequency was found by using a genetic 
algorithm and a Simulated Annealing algorithm to obtain a supply-and-demand equilibrium for a transit system. To 
test the model and the suggested algorithms, the best solutions were applied to a real system in Guangzhou, China. 

Using an ∈-constraint method, Ibarra-Rojas et al. [19] developed a bi-level objective formulation to program 
schedules and vehicles in order to analyze the relationship between the level of service and operation costs of transit 
networks. Zhao and Jiang [20] proposed a memetic algorithm to configure routes and frequencies in order to minimize 
the cost to passengers and reduce the unmet demand. However, this approach sought only the satisfaction of the users 
without considering the operation costs. In contrast, this current study used an approach in which both users and 
operators were explicitly considered, making the proposed approach applicable for real bus rapid transit systems. 

Giesen et al. [21] applied multi-objective optimization for scheduling the frequency in a BRTS. They proposed an 
adjustment to the Tabu Search algorithm [22, 23] in order to consider two objectives simultaneously, minimize the 
total travel time for the passengers, and minimize the size of the fleet. 

The existing literature provides examples of multi-objective optimization used to solve one or more sub-problems 
of TNDSP. However, there is no single framework that can search simultaneously for routes and frequencies while 
also considering the objectives of the operators and users. For example, some implementations focused on the 
frequency of service and/or considered only the objectives of the users. Furthermore, the models used to evaluate the 
quality of the solutions were complex to build, adapt, or expand.  

This research addressed these limitations to search simultaneously for routes and frequencies while minimizing 
travel time and operational costs for BRTS. A multi-objective bi-level algorithm based on GBHS was implemented 
and tested to determine the solution to the proposed problem. The implementation used simulation models of discrete 
events to evaluate the quality of the solutions and facilitate their use for real bus rapid transit systems. 

2.2 Multi-objective Bi-level Optimization 

Multi-objective bi-level optimization problems are complex, and require solutions for the lower level (follower) 
considered during the search of solutions for the upper level (leader) [24]. Various techniques have been proposed to 
solve this type of problems, including:  

1) Classical bi-level approaches that use, for example, numerical optimization at the lower level and 
adaptations of an exhaustive search at the upper level [25]; 

2) Approximated set-valued mapping procedures for evolutionary approaches [24]; 
3) Transformation of the original multi-objective bi-level problem into a multi-objective single-level 

optimization task with complementarity constraints [26]; 
4) Multi-objective mixed-integer programming [27]; 



5) Evolutionary algorithms [28]; 
6) An approach based on adaptive scalarization and evolutionary algorithms with minimum modifications 

[29]; 
7) Multi-objective particle swarm optimization [30]; and  
8) Hybrid particle swarm optimization with crossover operators [31]. 

 
Important applications of multi-objective bi-level optimization include, among others, transportation planning and 
management [32], assignment of resources, supply-chain planning, environmental economics, structural optimization 
and engineering design [33], game theory, and decision making that involves qualitative variables [26] [29]. 

2.3 Global-Best Harmony Search 

The Harmony Search (HS) optimization algorithm, originally proposed by Lee and Geem [34], is based on the 
improvisation process used by jazz musicians in search of the perfect harmony. HS randomly generates a set of 
solutions, evaluates them, and then organizes a population of solutions in a Harmony Memory (HM). For a certain 
number of improvisations (or iterations), the algorithm generates a new harmony. Each variable of the new harmony 
can be completely random or taken from the HM based on a parameter known as the Harmony Memory Consideration 
Rate (HMCR). If taken from harmony memory, depending on a parameter known as the Pitch Adjustment Rate 
(PAR), the variable may or may not be altered by adding or subtracting a value defined by the Bandwidth (BW) 
parameter. 

Variations or improvements of the HS algorithm have been proposed. Some of the most relevant include the 
Improved Harmony Search [35], GBHS [11], the Self-adaptive Harmony Search [36], Self-adaptive Global Best 
Harmony Search [37], Global-best Harmony Search + Learnable Evolution Models (GHS+LEM) [38], Global 
Dynamic Harmony Search [39], and Improved Global Best Harmony Search [40]. There are many applications of HS, 
including traffic signal optimization [41], economic load dispatching [42], routing in wireless sensor networks [43], 
and artificial neural network optimization [44]. However, some factors that need to be considered are: 

(1) GBHS uses five parameters to fine-tune performance; 
(2) GBHS provides rapid convergence, requires few calculation resources, and has a low probability of being 

trapped in suboptimal solutions [34, 37]; 
(3) GBHS improves the results of an improved harmony search (IHS), which in turn improves the precision and 

convergence of HS; and 
(4) GBHS works efficiently both with discrete and continuous problems. 

 
This research used GBHS as the base for the proposed multi-objective algorithm. In contrast to HS, GBHS makes 

the value of PAR depend on the number of improvisations (or iterations). This guarantees a greater exploration and 
exploitation at the beginning and end of the search, respectively. The original paper on GBHS by Omran and Mahdavi 
[11] explains the behavior (exploration/exploitation) of the algorithm by means of the search process (i.e., 
improvisations). The number of improvisations (or iterations) is an algorithmic parameter that is defined by the user. , 
Among other factors, this number depends on the maximum execution time and the minimum quality of the expected 
results. This approach replaces adjusting for the addition or subtraction of the BW parameter with the extraction of a 
value from the best harmony stored in HM. With this replacement, the algorithm incorporates swarm characteristics, 
as in Particle Swarm Optimization (PSO). 

HS and its improvements, including GBHS, originally were designed to work with only one objective. 
Subsequently, Sivasubramani and Swarup [45] adapted HS to allow for the simultaneous optimization of various 
objectives, making use of the ordering of nondominated solutions and Crowding Distance. This current study presents 
a multi-objective version of GBHS, using a similar approach. 

Most MO optimization algorithms use one of the following methods to improve a population of solutions: 1) Pareto 
domination, 2) decomposition, 3) preference, 4) indicator-based selection, 5) hybrid, 6) memetic, and 7) coevolution. 
Adequate results usually are obtained by using methods based on Pareto domination by means of ordering 
nondominated solutions [12, 15-18, 46]; this method was the one selected for this study. Furthermore, Crowding 
Distance was included as a mechanism to guarantee greater diversity and to explore solutions during the evolution of 
the algorithm. 



 
3  Proposed Algorithm 
 
In order to solve the TNDFSP, a multi-objective bi-level algorithm based on GBHS was developed and coupled with a 
simulation model for discrete events. This section first describes the multi-objective adaptation of GBHS (MOGBHS), 
and then describes its evaluation, using instances of the multi-objective optimization test from the Congress on 
Evolutionary Competition of the IEEE (IEEE-CEC) [14]. Finally, the fitness function for TNDFSP and the bi-level 
adaptation of MOGBHS for the solution of TNDFSP in two levels is presented. 
 
3.1  Multi-objective Global Best Harmony Search 
The proposed algorithm, MOGBHS, randomly generates a set of harmonies and stores them in the HM, evaluates all 
the objectives for each element in the HM, and then sorts them by Pareto front and Crowding Distance. Subsequently, 
the algorithm performs several evolutionary iterations. In each iteration, the following steps are executed: 

1) A new harmony is generated applying the logic of the GBHS algorithm. If the new harmony is a valid solution 
and it does not exist in HM, the algorithm moves to Step 2; otherwise, the solution is discarded and MOGBHS 
continues with the next improvisation (or iteration). 

2) The new harmony is evaluated, using all the objectives to be optimized. 
3) The new harmony is added to the existing HM. 
4) The HM is organized by Pareto fronts and Crowding Distance. 
5) The worst element contained in the HM that makes the HM exceed its maximum size, defined by the 

Harmony Memory Size (HMS) parameter, is eliminated. 
 
The variables used during the implementation of the MOGBHS algorithm are: 

HM:  An arrangement that stores all the solutions proposed by the algorithm. The HMS parameter determines its 
maximum size. 

I:  A counter of improvisations performed by the algorithm. 
J:  A counter of the variables of one harmony in each improvisation. 
PAR: The Pitch Adjustment Rate determines the probability that a value previously taken from the harmony 

memory is replaced by a value from the best existing harmony in HM. PAR for each improvisation is 
determined by: 

PAR = PARmin + (PARmax – PARmin) * (I / NIter) (1) 

where PARmin, PARmax, and NIter are parameters of the algorithm. 
 
The parameters necessary for the implementation of MOGBHS are: 

HMS: Harmony Memory Size, maximum size that the harmony memory can reach. 
HMCR: Harmony Memory Consideration Rate, determines the probability of selecting values for the new 

harmonies from the HM. 
NVariables:  Number of variables that involve each harmony; it depends on the configuration used to represent the 

solutions to the problem. 
NIter:  Maximum number of iterations/improvisations to be performed for the algorithm. 
NObjectives:  Number of objectives that will be optimized. 

 
Figure 1 shows the MOGBHS pseudocode, whose functions will be described in this section. Function 

PopulationRandomInitialize is responsible for the random generation of an initial population of harmonies of size 
HMS. In the generation of each harmony, its viability was evaluated by considering the restrictions of the model and 
the problem to optimize. If viable, the fitness values were calculated for each one of the objectives; otherwise, the 
harmony was discarded. Figure 2 presents the pseudocode for this function. 

 
01 PopulationRandomInitialize(HM) 
02 NonDominatedOrderCalculate(HM) 
03 CrowdingDistanceCalculate(HM) 



04 Sort(HM) 
05 for I = 1 to NIter do 
06  NewHarmony = null 
07  PAR = PARMin + (((PARMax - PARMin) / NIter) * I) 
08  for J = 0 to NVariables - 1 do 
09   if Random(0,1) < HMCR then 
10    NewHarmony.Variable[J] = HM.Harmonies[Random(0,HMS)].Variable[J] 
11    if Random(0,1) < PAR then 
12     NewHarmony.Variable[J] = HM.FromBestHarmony(Random(0, NVariables)) 
13     end if 
14   else 
15    NewHarmony.Variable[J] = Random(MinDomainValue, MaxDomainValue) 
16   end if 
17  end for 
18   if InPopulation(HM, NewHarmony) = false AND IsViable(NewHarmony) then 
19   Evaluate(NewHarmony) 
20   Add(HM, NewHarmony) 
21   NonDominatedOrderCalculate(HM) 
22   CrowdingDistanceCalculate(HM) 
23   Sort(HM) 
24   RemoveTheWorst(HM) 
25  end if 
26 end for 
27 return the Pareto front in HM 

 
Figure 1 Pseudo-code of the MOGBHS 

 
 

01 count = 1 
02 while count < HMS 
03  for k = 0 to NVariables - 1 do 
04   NewHarmony.Variable[k] = Random(MinDomainValue, MaxDomainValue) 
05  end for 
06  if IsViable(NewHarmony) then 
07   Evaluate(NewHarmony) 
08   Add(HM, NewHarmony) 
09   count = count + 1 
10  end if 
11 end while 

 
Figure 2 Pseudo-code of the function PopulationRandomInitialize 

 
The function Evaluate establishes the fitness values that the harmony obtains when it is evaluated against all the 

objectives. These values are stored in the vector Evaluations of size NObjectives that each harmony should have. The 
behavior of this function depends on the domain on which the algorithm is being applied and the objectives that are 
being optimized. In this study, the domain corresponds to TNDSP. 

The function NonDominatedOrderCalculate [12] establishes, for each element of the HM, its number of Pareto 
front (rank). Each harmony has the following attributes: 

Front:  Determines its number of Pareto front or rank. 
BossCount: Stores the number of solutions of the population that dominate the actual harmony. 
Dominated: A list that makes it possible to store the elements dominated by the actual harmony. 

 
The function Dominates is used to calculate the ordering of nondominated solutions. It returns true or false to 

indicate when a harmony dominates another, considering all objectives. 



The function CrowdingDistanceCalculate [12] takes the existing population of solutions and establishes their 
Crowding Distance to the harmonies located in the same Pareto front. 
 
3.1.1  Evaluation and Comparison using IEEE-CEC Problems for Multi-objective Optimization Competition 
Before comparing the proposed algorithm against other MOEAs in a specific TNDFSP, an evaluation and comparison 
was performed using 9 and 12 multi-objective continuous problems with and without constraints, respectively. These 
problems (i.e., test instances) were taken from the multi-objective optimization competition of the IEEE-CEC [14]. 
MOGBHS was implemented within the MOEA framework, which facilitated performing a comparative analysis with 
other widely used algorithms, including NSGA-II, MOEA/D, Multiple Single Objective Pareto Sampling (MSOPS), 
and Strength Pareto Evolutionary Algorithm 2 (SPEA2) [47]. The study sought to determine the effects of the number 
of evaluations (2,000, 5,000, 10,000 and 20,000) of the objective function (EOFs) for different types of problems with 
and without constraints. The comparative analysis was performed using the Inverted Generational Distance metric 
commonly accepted by the scientific community [48] and the nonparametric statistical tests of Friedman and 
Wilcoxon. 

General results of this comparison are provided in Table 1. MOGBHS and NSGA-II obtained the best average 
results followed in order by MOEA/D, MSOPS and SPEA2. At 2,000 EOFs best results are found by MSOPS (first 
place) with a ranking of 2.1 using the Friedman test. The Wilcoxon test shows, with a level of significance of 0.95, 
that MSOPS outperform all other algorithms with this amount of EOFs. NSGA-II and MOEA/D outperforms the 
results obtained with SPEA2 while NSGA-II outperforms the results obtained with MOGBHS. Rankings obtained at 
5,000 EOFs are not accepted by the Friedman test because the p-value is not less than 0.05 but the Wilcoxon test 
shows, with a level of confidence of 0.95, that NSGA-II obtained better results than SPEA2. At 10,000 and 20,000 
EFOs, the results are similar, and the Wilcoxon test shows the same results. That is, MOGBHS and NSGA-II 
outperforms the results obtained by MSOPS and SPEA2 with a level of significance of 0.95. 

 
Table 1 Inverted Generational Distance Rankings for MOGBHS, NSGA-II, MOEA/D, MSOPS, and SPEA2 with Various 

Numbers of Evaluations of the Objective Function 
 

EOFs MOGBHS NSGA-II MOEA/D MSOPS SPEA2 Chi2 p-value Wilcoxon Conclusions 
with 95% of Significance 

2,000 3.60 (4) 2.45 (2) 2.65 (3) 2.10 (1) 4.20 (5) 24.28 7.01 E-5 

MSOPS > MOGBHS, NSGA-II, 
MOEA/D, MSOPS 

NSGA-II, MOEA/D > SPEA2 
NSGA-II > MOGBHS 

5,000 2.80 (2) 2.65 (1) 2.90 (3) 2.90 (3) 3.75 (4) 5.96 0.2022 NSGA-II > SPEA2 

10,000 2.00 (1) 2.50 (2) 2.90 (3) 3.80 (4) 3.80 (4) 20.32 4.31 E-4 MOGBHS, NSGA-II > MOPS, SPEA2 

20,000 2.00 (1) 2.80 (2) 2.80 (2) 3.95 (5) 3.45 (4) 17.48 0.0016 MOGBHS, NSGA-II > MOPS, SPEA2 

Avg. 2.6 (1) 2.6 (1) 2.8 (3) 3.2 (4) 3.8 (5)    
 
3.2  Objectives for TNDFSP 
Considering various limitations of the existing TNDFSP literature [4, 49-56], a desirable objective is the simultaneous 
consideration of users and operator costs. Hence, the following were the optimization objectives during this study: 

• Minimize the time spent in the system by the users, and 
• Minimize the operation costs. It was assumed that the system-wasted transit capacity negatively influences its 

operation costs. Therefore, the operation costs are minimized by minimizing the wasted capacity of the buses 
in transit. 

These two objectives are in conflict. Based on a constant fleet size value and the same conditions for passengers, 
several scenarios could arise. On one hand, a high frequency of service reduces user travel time but the wasted 
capacity of the buses increases. On the other hand, the low frequency of service increases user time, but there is a 
direct decrease in wasted capacity. If a very high frequency of service is used, congestion and extra waiting may 
result, and user time in the system might not necessarily be reduced as much as expected. If the operator could 
increase the fleet size and use new vehicles in a reasonably intelligent way, less user travel time in the system might be 
achieved. In contrast, if the fleet size is reduced, it is expected that the users would spend more time in the system. 



Considering that the proposed multi-objective algorithm uses the ordering of nondominated solutions and Crowding 
Distance to classify and select the best feasible points, the objectives to be minimized were evaluated independently. 
In the experiments to evaluate the solutions generated by the algorithm, a discrete-events simulation model was 
created for a specific BRTS. This type of simulation model is relatively simple to implement, expand, and adapt. 
Hence, the proposed methodology could be used to determine optimal routes and frequencies for other BRTS. 

Given the optimization objectives, the corresponding measures to obtain from the simulation model were: 
F1:  The time users spent in the system, which corresponds to the average time measured between entering and 

exiting stations at the origin and destination. 
F2:  The wasted capacity of the buses, which corresponds to the average percentage of unused space in the buses 

during the entire operation. The percentage of wasted capacity is defined as the available capacity divided by 
the total capacity of the bus. 

To perform the simulation and capture the required measures, ARENA® (Rockwell Software) was used [57-59]. 
ARENA is based on SIMAN [60], a general-purpose simulation language.  
 

The variables referring to the BRTS infrastructure were defined as follows for stops, stations (single or double), 
and routes between stations (represented by average transit time between them): 

PNo:  The total number of stops (points of entry/exit to/from buses) of a BRTS. 
E:  The set of size PNo of stops, where E[i] represents a stop to get on or off the bus, such that 𝑖𝑖 ∈ [1, … ,𝑃𝑃𝑃𝑃𝑃𝑃]. 
T:  A two-dimensional matrix of size PNo x PNo with real values, in which the average trip times between the 

BRTS stations are defined. A matrix representing the graph of possible trips on the BRTS is expressed as: 

𝑇𝑇 (𝑖𝑖, 𝑗𝑗) =  �
0, 𝑖𝑖𝑖𝑖 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑖𝑖 𝑎𝑎𝑎𝑎𝑎𝑎 𝑗𝑗 𝑎𝑎𝑎𝑎𝑎𝑎 𝑖𝑖𝑖𝑖 𝑡𝑡ℎ𝑒𝑒 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 

𝑁𝑁𝑁𝑁𝑁𝑁, 𝑖𝑖𝑖𝑖 𝑡𝑡ℎ𝑒𝑒𝑒𝑒𝑒𝑒 𝑖𝑖𝑖𝑖 𝑛𝑛𝑛𝑛 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠
ℝ+, 𝑖𝑖𝑖𝑖 𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐, 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 𝑡𝑡ℎ𝑒𝑒 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑜𝑜𝑜𝑜 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑖𝑖 𝑡𝑡𝑡𝑡 𝑗𝑗

 (2) 

 
The variables related to routes and frequencies that buses travel using the infrastructure previously defined for the 
BRTS include: 

RNo:  The total number of routes defined for the BRTS. 
R:  The set of routes defined in the system, where each R[i] contains the information necessary to determine the 

order of trips between stops and the action to be performed in each stop, such that 𝑖𝑖 ∈ [1, … ,𝑅𝑅𝑅𝑅𝑅𝑅]. 
R[i]:  Vector of elements composed of <E[i], action>, which represents the order of the stops visited by each bus 

that follows route R[i]. Each element indicates the station included in the trip and the action to be 
performed (stop or continue). 

F:  A set of size RNo, where each F[i] defines the frequency in minutes of departure of buses corresponding to 
route R[i], where 1 ≤  𝐹𝐹[𝑖𝑖] ≤ 30 for each 𝑖𝑖 ∈ [1, … ,𝑅𝑅𝑅𝑅𝑅𝑅]. 

 
The variables related to the quantity of buses, their carrying capacity, and the routes they follow are: 

TF:  Size of flee, total number of available buses. 
C:  Carrying capacity of each bus. Maximum number of users that can be transported along a route from station i 

to j at a given moment. 
B:  Indicator matrix of size TF x 3. B[i][1] indicates whether the i-th bus is available or not. A value 1 indicates 

that the bus is available; O otherwise. B[i][2] indicates the current station, or that bus i has departed from that 
station. B[i][3] indicates the target station, i.e. that the bus has departed from station B[i][2] and is on its way 
to station B[i][3]. If B[i][2] = B[i][3], the bus is not moving, i.e. it is at station B[i][2]. The stations involved 
in a specific bus status must belong to one of the routes specified in vector R and their status must be “stop 
station” as defined in vector E. 

 
The variable related to the users of the BRTS and their time in the system is: 

P: Set of users who enter through a station in set E and have as destination a different station in E. 
 
The variables related to the implementation of the simulation are: 



TR:  Number of trips completed during simulation time (ST). A trip takes place when a Bus B[k] leaves station 
E[i] to another station E[j], where i <> j, following a specific route. 

CO:  The set of all the TR trips completed between stations by the entire fleet in circulationm fulfilling the 
configuration of routes and frequencies defined in R and F during the ST and on the topography defined by 
E and T. Each CO[i] represents the vehicle carrying capacity, that is, the number of passengers that the bus 
carries while it moves from one station to another. 

CD:  The set of size TR, which represents the capacity wasted by the bus during the trip, where each CD[i] is 
equivalent to C – CO[i]. 

TP:  Number of users who used the BRTS during ST. 
TSP:  The set of size TP, which registers the time of service (time of egress - time of entry) of each BRTS user, 

using the topography defined by E and T, with the configuration of routes and frequencies defined in R and 
F, and during the ST. Each TP[i] >= 0. 

 
The objective functions to be minimized are 

 

𝐹𝐹1 =  
1
𝑇𝑇𝑇𝑇
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𝐹𝐹2 =
1
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The algorithm proposed in this paper generates the values for R and F in order to minimize F1 and F2 simultaneously. 
 
3.3  MOGBHS-TNDFSP 
The algorithm described in this section has the goal of finding the best sets of bus routes and frequencies for each 
route selected as part of each solution condition to a predefined structure of stations and road corridors. To solve this 
TNDFSP using the MOGBHS, in addition to the variables and parameters described in the previous section, it is 
necessary to incorporate the following elements: 
• Files of SIMAN source code generated from the simulation model created in ARENA to represent the BRTS to 

be optimized. 
• A database with a set of feasible routes for the BRTS. Each record in the database included, at minimum, the 

following information: 
o Stations that are part of the route, 
o Stations where buses stop along each route, and 
o A unique identifier. 

 
The database of feasible routes could be built using multiple approaches. In this study, Covering Arrays (CAs) were 

used [13, 61]. The process of creating the database of routes using CAs is described in Section 3.3.1. Once all possible 
routes for the BRTS are defined, it is necessary to assign an entire unique and consecutive identifier to all of them. A 
pair of parameters were included within MOGBHS to determine the minimum and maximum identifiers of the routes 
in the database. This facilitates the selection of routes when generating harmonies. Minimum and maximum 
parameters were included to define the quantity of routes that a harmony generated by MOGBHS could provide. The 
implementation takes into consideration that: 

1) The quantity of feasible routes, the quantity of possible combinations for the configuration of routes, and the 
quantity of frequencies for each route creates a very large search space; and 

2) State-of-the-art practices includes successful cases that used multi-level algorithms, in which each level solves 
a particular problem from the set of TNDSP. 

As described in Section 3.3.3 of this paper, MOGBHS-TNDFSP corresponds to an algorithm that searches for the best 
sets of routes. It relied on MOGBHS-TNFSP to find the best frequencies of bus departures along the selected routes 



and to perform the evaluation of the quality (fitness) of the harmony (solution) with respect to the optimization 
objectives.  

A harmony generated by MOGBHS-TNDFSP contains the number of routes selected, the list of identifiers of the 
selected routes, and the frequencies of bus departures for each route. The structure of one harmony is presented in 
Figure 3, where N corresponds to the number of routes that formed the harmony, R1 to RN correspond to the identifiers 
of the selected routes, and F1 to FN are the frequencies of bus departures for the corresponding routes. The length of 
each harmony is variable depending on the number of included routes, and corresponds to 2N + 1, with N being the 
number of routes. 

 
0 1 2 … N – 1 N N+1 N+2 … 2N-1 2N 
N R1 R2 … RN-1 RN F1 F2 … FN-1 FN 

 
Figure 3 Representation of a MOGBHS-TNDFSP solution. 

 
The process of building each harmony involves two phases, both using the improvisation logic of GBHS, as 

follows: 
1) The selection of the number of routes that would form the harmony, and 
2) The selection of routes from the database, taking into consideration the number of routes previously selected. 

 
The generation of frequencies for the selected routes and the evaluation of quality of the harmony with respect to 

the objectives to be optimized were performed by implementing the internal algorithm, MOGBHS-TNFSP. 
MOGBHS-TNDFSP generates an initial harmony memory that is organized by a Pareto front and Crowding Distance. 
Then, it runs a predetermined number of iterations to generate new harmonies, which were added to the existing HM if 
they are considered viable based on such design restrictions as the available fleet. At the end of each iteration, if a 
feasible solution was found and added to the HM, the existing harmony memory is reorganized based on Pareto front 
and Crowding Distance in order to remove the worst harmony, which is the one that had the greatest number in the 
Pareto front and the least Crowding Distance. Figure 4 shows the pseudocode of MOGBHS for TNDFSP. 
  



 
01 PopulationRandomInitialize(HM) 
02 NonDominatedOrderCalculate(HM) 
03 CrowdingDistanceCalculate(HM) 
04 Sort(HM) 
05 for I = 1 to NIter do 
06  NewHarmony = null 
07  PAR = PARMin + (((PARMax - PARMin) / NIter) * I) 
  //selection of the number of routes 
08  if Random(0,1) < HMCR then 
09   NewHarmony.Variable[0] = HM.Harmonies[Random(0,HMS)].Variable[0] 
10   if Random(0,1) < PAR then 
11    NewHarmony.Variable[0] = FromBestHarmony(HM, 0) 
12   end if 
13  else 
14   NewHarmony.Variable[0] = Random(MinRoutesNumber,MaxRoutesNumber) 
15  end if 
  //selection of the routes 
16  for J = 1 to NewHarmony.Variable[0] do 
17   if Random(0,1) < HMCR then 
18    NewHarmony.Variable[J] = HM.Harmonies[Random(0,HMS)].Variable[J] 
19    if Random(0,1) < PAR then 
20     NewHarmony.Variable[J] = FromBestHarmony(HM, Random(0, NVariables)) 
21    end if 
22   else 
23    NewHarmony.Variables[J] = Random(MinRouteId, MaxRouteId) 
24   end if 
25  end for 
26  SolutionComplete(NewHarmony) 
27  if InPopulation(HM, NewHarmony) = false AND IsViable(NewHarmony) = true then 
28   Evaluate(NewHarmony) 
29   Add(HM, NewHarmony) 
30   NonDominatedOrderCalculate(HM) 
31   CrowdingDistanceCalculate(HM) 
32   Sort(HM) 
33   RemoveTheWorst(HM) 
34  end if 
35 end for 
36 return the Pareto front in HM 

 
Figure 4 MOGBHS adapted to solve TNDFSP. 

 
Once a new harmony is generated, whether during the initialization of the harmony memory or during the 

improvisations of the algorithm, it is necessary to validate its feasibility. A harmony is considered feasible when the 
configuration of the selected routes applied to the BRTS allows a user to go from any station to any other, even when 
making one or more transfers. If a harmony is not viable, then the process SolutionComplete is used, which consists 
of: 

1) Identifying isolated stations or those that have the greatest connection problems with the configuration of the 
routes defined in the harmony. 

2) Identifying an ‘easy’ route, i.e., the route that stops at all the stations for a trip; this covers the greatest 
quantity of stations identified above in Step 1. 

3) Including an identified ‘easy’ route in the current harmony and evaluating if it meets the feasibility condition, 
such that it is possible to reach any station from any other, even when making one or more transfers. In the 
case that the route is not feasible, the process is repeated from Steps 1 to 3; otherwise, the process is 
completed. 



Figure 5 presents the pseudocode of function SolutionComplete, which is used to apply the process described 
previously. 

 
01 lstEasyRoutes = LoadEasyRoutes(DBManager) 
02 lstTroubleStations = IsViable(Harmony) 
03 While lstTroubleStations.Count > 0 Then 
04  lstCountStations = null // create a new dictionary 
05  for I = 0 to lstEasyRoutes.Count – 1 do 
06   Add(lstCountStations, lstEasyRoutes[I].ID, 0) 
07   for J = 0 to lstTroubleStations.Count – 1 do 
08    if Contains(lstEasyRoutes[I].Stations, lstTroubleStations[J]) then 
09     lstCountStations[lstEasyRoutes[I].ID]++ 
10    end if 
11   end for 
12  end for 
13  SortByValue(lstCountStations) 
14  Add(Harmony.Routes, lstCountStations.first().ID) 
15  lstTroubleStations = IsViable(Harmony) 
16 end while 

 
Figure 5 Function SolutionComplete. 

 
Figure 6 shows the pseudocode of function IsViable, which is an aid to SolutionComplete. This function is 

responsible for returning a list with identifiers for problematic stations. 
 

01 lstTroubleStations = null / create a new dictionary 
02 for I = 0 to NStations -1 do 
03  lstDestines = FindDestinesFrom(I) 
04  for J = 0 to NStations – 1 do 
05   if I <> J and Not Contains(lstDestines, J) then 
06    if ContainsKey(lstTroubleStations, J) then 
07     Add(lstTroubleStations, J, 1) 
08    else 
09     lstTroubleStations[J] ++ 
10    end if 
11   end if 
12  end for 
13 end for 
14 SortByValueDesc(lstTroubleStations) 
15 return getFirstKeys(lstTroubleStations) 

 
Figure 6 Function IsViable 

 
In the simulation model, as in a real BRTS, the behavior of the passengers depends on the available routes. Users 

usually tend to use the shortest routes, in terms of time, to reach a destination. Taking into account that each harmony 
defines a different set of available routes, it becomes necessary to update the ‘matrix of short routes’ in the simulation 
model so that the behavior of the passengers is consistent with the available routes. In order to calculate the short 
routes for each harmony generated in the course of the implementation of MOGBHS-TNDFSP, a variation of the 
Dijkstra algorithm [62] is proposed (see details in Section 3.3.2). Once the matrix of short routes is generated, the 
source files of the simulation model are updated. Function Evaluate of MOGBHS-TNDFSP is responsible for: 

• Invoking the calculation of short routes among all the stations in the system, considering the set of routes 
selected to form the harmony that is being evaluated. 

• Inserting the configuration of routes and corresponding short routes to the solution that is being evaluated into 
the SIMAN source code files. 



• Invoking MOGBHS for TNFSP (follower level) to find the best combinations of bus departure intervals for 
the simulation model, using the routes and corresponding short routes to the harmony that is being evaluated. 

This adaptation of MOGBHS for TNFSP is described in Section 3.3.3. 
Figure 7 shows function Evaluate of MOGBHS for TNDFSP. In this figure, function ReplaceInFile receives three 

parameters: 
• The name of the file in which the search should be performed, 
• The searched text to be replaced, and 
• The new value to be established in the SIMAN code files. 

At the end of the implementation of MOGBHS-TNDFSP, there is a set of harmonies that represent the best 
configurations of routes and intervals for the BRTS. Hence, the analyst or decision maker could select, at his or her 
discretion, the solution to be implemented in the real world. 

 
01 RoutesDescription = Array[Harmony.Variable[0]][ConstTotalStations] 
02 for k = 1 to Harmony.Variable[0] do 
03  RoutesDescription[k-1] = ExtractRouteString(DBManager, Harmony.Variable[k]) 
04 end for 
05 ReplaceInFile(“Transport.exp”, “$CantidadRutas”, Harmony.Variable[0]) 
06 ReplaceInFile(“Transport.exp”, “$DetalleRutas”, RoutesDescription.ToString()) 
07 ShortRoutes = DijkstraShortRoutes() 
08 ReplaceInFile(“Transport.exp”, “$RutasCortas”, ShortRoutes) 
09 BestHarmony = Execute(MOGBHSforTNFSP) 
10 Harmony.Intervals = BestHarmony.Intervals 
11 Harmony.Evaluations = BestHarmony.Evaluations 

 
Figure 7 Function Evaluate of MOGBHS for TNDFSP 

 
3.3.1  Covering Arrays to Create the Database for Routes 
In this study, a set with all possible feasible routes for the BRTS under consideration needed to be generated. This is a 
highly time-consuming problem. Covering Arrays [13] were used successfully to generate a representative set of 
feasible routes. It should be noted that this database of routes could be generated with many other mechanisms. 

First, possible trips in the system were identified, considering topography. For each trip, a CA with Strength 3 and 
Alphabet 2 was generated. For example, 0 if a trip does not stop at a station, and 1 otherwise. There was the same 
number of columns as the quantity of stations, and the least possible quantity of lines. Given that there has been 
research to determine the optimal CAs with the characteristics mentioned, existing CAs were used [13, 61]. 

When analyzing BRTS passenger trips, it was found that a large majority of users of a specific route reaches three 
feasible stations (i.e. 'stop stations' on a route). This supports the decision to use a CA of Strength 3, given that it is 
guaranteed that by using all the rows of the CA, each row corresponding to a route, then all different combinations of 
three stations are covered. Each row of the CA represents one of the routes applicable to a specific trip. A feasibility 
validation needed to be performed for those routes that included fewer than two physical stations, whose bus stops 
were discarded. At the end of the generation and refinement process, a database was created with routes for the BRTS, 
formed by compilation of all lines in the CAs. Finally, to facilitate the previously described process of 
SolutionComplete, an ‘easy’ route was included in the routes database for each possible trip. On an ‘easy’ route, buses 
stop at all stations along the route. 
 
3.3.2  Dijsktra for Short Routes 
Each harmony generated by MOGBHS-TNDFSP represents a new configuration of routes. Hence, it is necessary to 
recalculate the map of shortest routes and movements in the system that users consider for their trip each time that a 
harmony is generated or modified. Due to the simplicity of implementation, the Dijkstra algorithm was selected as the 
base algorithm to implement the search process for the shortest routes. 

Source files in SIMAN provide the simulation model created in ARENA with the configuration of routes given by a 
harmony. Information was taken regarding trip times and the availability of routes and trips from each station. For 
each station in the system, a search for shortest paths towards all other stations in the system was implemented using 



Dijkstra. This consists of exploring all the paths from an origin – in this case, the station selected – and associating 
other stations in the system with the shortest routes found to reach them. In addition to the costs of trips between 
stations, the additional cost involved with making the transfer between routes was considered. After the search for the 
shortest routes from an origin, the matrix of temporary routes was updated. 

Finally, when the matrix of shortest routes is completed, SIMAN is updated by changing the appropriate code in the 
simulation files. Thus, it was possible during the implementation of the simulation that the passenger-type entities 
could consider the map of shortest routes corresponding to the configuration of actual routes. 
 
3.3.3  MOGBHS-TNFSP 
Once the algorithm, MOGBHS-TNDFSP, generated a harmony with a configuration of routes, the SIMAN code files 
with the description of selected routes were updated, and the matrix of shortest routes was calculated. The modified 
MOGBHS responsible for finding the best configuration of frequencies of bus departures for the routes selected in the 
harmony being evaluated was implemented, and denoted as a MOGBHS-TNFSP adaptation. 

For the MOGBHS-TNFSP internal algorithm, a harmony was defined as a set of N departure intervals, where N 
corresponds to the number of routes selected in the current harmony of the MOGBHS-TNFSP external algorithm.  
Figure 8 illustrates a harmony of the MOGBHS-TNFSP algorithm. 

 
0 1 2 … N – 2 N-1 
I0 I1 I2 … IN-2 IN-1 
      

Figure 8 A solution for TNFSP generated by MOGBHS. 
 
In contrast to MOGBHS, in this proposed version, the random generation of values for the variables that form the 

harmonies was done – both for the generation of new harmonies in the main cycle of the algorithm and in the 
generation of the initial population – between two limits given by the domain of the problem. These limits were the 
minimum interval between buses on the same route and the maximum interval between buses that made the same trip. 

Making a connection with the MOGBHS algorithm (defined in Section 4.1), the value for parameter NVariables of 
MOGBHS corresponded to the number of routes defined in the harmony. Similarly, a harmony of MOGBHS was 
equivalent to a configuration of bus departure frequencies; that is, an arrangement of size NVariables. Figure 9 shows 
the pseudo-code of MOGBHS-TNFSP. The function Evaluate of MOGBHS-TNFSP is illustrated in Figure 10. In this 
figure, the function ExecuteSimulation was responsible for implementing the simulation by making use of the SIMAN 
engine. Finally, the function ReadFromOut reads the file that contained the results of the simulation to extract the 
values that correspond to the evaluation of the objectives selected. This was the average wasted capacity and the 
average total time that the passengers used the system. 

The MOGBHS-TNFSP needs to provide only one best solution, which is the best configuration of frequencies. 
However, given the multi-objective optimization problem, the result is a set of best harmonies selected based on the 
performance with respect to two optimization objectives. Hence, it is necessary to include one automatic function (i.e., 
without human intervention) to select the best solution based on the Euclidean distance. This involves three steps: 

1) Having a set of harmonies generated by MOGBHS-TNFSP that is evaluated before the objectives are 
minimized. The solutions that correspond to the first Pareto front are identified. 

2) The Euclidean distance of each solution that form the first Pareto front up to the origin are calculated. 
3) The solution with the least Euclidean distance to the axis is selected, that is, the solution that has the best 

performance in all the objectives to be minimized. 
With the addition of this function for selecting the best solution (line 27 of Figure 10), the pseudo-code of MOGBHS-
TNFSP needed the inclusion of the lines from Figure 11. 
  



01 PopulationRandomInitialize(HM) 
02 NonDominatedOrderCalculate(HM) 
03 CrowdingDistanceCalculate(HM) 
04 Sort(HM) 
05 for I = 1 to NIter do 
06  NewHarmony = null // create a new Harmony 
07  PAR = PARMin + (((PARMax - PARMin) / NIter) * I) 
08  for J = 1 to NVariables do 
09   if Random(0,1) < HMCR then 
10    NewHarmony.Variable[J] = HM.Harmonies[Random(0,HMS)].Variable[J] 
11    if Random(0,1) < PAR then 
12     NewHarmony.Variable[J] = FromBestHarmony(HM, Random(0, NVariables)) 
13    end if 
14   else 
15    NewHarmony.Variable[J] = Random(MinIntervalTime, MaxIntervalTime) 
16   end if 
17  end for 
18  if InPopulation(HM, NewHarmony) = false AND IsViable(NewHarmony) then 
19   Evaluate(NewHarmony) 
20   Add(HM, NewHarmony) 
21   NonDominatedOrderCalculate(HM) 
22   CrowdingDistanceCalculate(HM) 
23   Sort(HM) 
24   RemoveTheWorst(HM) 
25  end if 
26 end for 
27 return the best solution of the Pareto front in HM // best solution for MOGBHS-

TNFSP 
Figure 9 MOGBHS for TNFSP. 

 
01 IntervalString = “” 
02 for k = 0 to NVariables do 
03  IntervalString = IntervalString + “,” + Harmony.Variable[k] 
04 end for 
05 ReplaceInFile(“Transport.mod”, “$intervalos”, IntervalString) 
06 ExecuteSimulation() 
07 ReadFromOut(Harmony.Evaluations) 

Figure 10 Function Evaluate for MOGBHS-TNFSP. 
 

01 PopulationRandomInitialize(HM) 
 … 
26 end for 
27 for J = 1 to HMS do 
28  if HM[J].Front == 0 then 
29   HM[J].euclidianDistance = CalculateEuclideanDistance(HM[J].Evaluations) 
30  else 
31   HM[J].euclidianDistance = Float.maxNumber() 
32  end if 
33 end for 
34 SortByEuclideanDistance(HM) 
35 Return HM[1] 

Figure 11 Selection of the best solution for MOGBHS-TNFSP. 
 
  



4  Experiments 
 

4.1  Comparisons for an Actual TNDFSP Problem 
A simulation model was created for discrete events of the bus rapid transity system of the City of Pereira, Colombia, 
known as Megabus. A prototype software was implemented that included the proposed algorithm and the process of 
refining the algorithm’s parameters. A set of evaluations with the best parameters found was implemented. Finally, the 
results of MOGBHS were compared with the results of two of the best algorithms found in the literature for multi-
objective optimization, NSGA-II and MOEA/D. 

For this study, Megabus had 37 stations. Of these, 16 enabled transfers between buses that were going in opposite 
directions, known as double stations; 18 stations did not have transfers; and three were exchangers, or stations at 
which users could make transfers to other types of transportation systems. The system of trunk lines was 
approximately 27 km long. There were three routes whose frequency of bus departures varied between 4 and 17 min, 
depending on the time of day and the day of the week. The service is provided every day from 5:30 a.m. until 8:30 
p.m., and carries close to 200,000 users daily. Figure 12 shows a map of the current Megabus routes and stations. 

 

 
 

Figure 12 Map of the routes and stations of the simulation model for Megabus, a bus rapid transit system in Pereira, 
Colombia (taken from [64]). 

 
To find the strengths and weaknesses of the proposed algorithm, the average results of 30 executions of MOGBHS, 

NSGA-II, and MOEA/D were performed on identical simulation models. These involved parameters resulting from 
refining each algorithm, and with the same criteria to evaluate their performances before the objectives were selected. 
To attain reproducibility of the experiments and independence of the implementations for all algorithms, various seeds 
(initial numbers) were used for the function to generate random numbers in each execution. To achieve the 
normalization of the values of ‘usage time of the system’ for the tests, the maximum and minimum values of 90 and 1 
minutes, respectively, were established for usage time in the system. This was enough time to make two complete trips 
(one round trip) for the longest trip in the system in an easy route. The maximum capacity of users per bus was 140. 
This value corresponded to the maximum wasted capacity, while the minimum was set at zero. 
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4.2  BRTS Simulation Model and Database of Routes 
As indicated earlier, the BRTS simulation model for discrete events was implemented using ARENA [57, 63]. For 
modelling and calibration of the simulation model, the configuration of the off-peak hours in the morning during 
midweek (i.e., workdays) was set as 8:30 a.m. to 11:30 a.m. For this period, the configuration of the real system 
currently operating is presented in Table 2. 

 
Table 2 Configuration of Off-peak Hours in the Morning during Workdays for Megabus Routes [64] 

 

Route Longitude  
(km) 

Cycle Time  
(min) Fleet Frequency  

(min) 
R1 22.72 68 8 8.5 
R2 22.32 75 10 7.5 
R3 14.74 51 6 8.5 

 
Once the configuration of the routes was obtained, the value of variable Routes was determined, and the shortest 

routes were calculated among all the stations in the system, using the Dijkstra algorithm adapted to facilitate the 
decision-making of user-type entities during the trip (variable ShortRoutes into the SIMAN code). To account for the 
lack of information about the travel patterns of users between the different stations, a uniform probability for selecting 
of destination stations was defined. It was established that all the buses were determined to have the same capacity. In 
addition, a waiting time of 30 sec in the stations was set for users to get on and off buses. These assumptions limited 
the validity of the solutions for real applications. Hence, future research should pursue the use of real data and the 
development of a formal process to calibrate the model. 

The simulation model in this study made it possible to measure the average usage time of users in the system and 
the percentage of wasted capacity in light on the configuration of routes and departure frequencies. Based on the 
simulation model, which was configured with the operation plan used in the real BRTS for the off-peak hours in the 
morning and workdays, the following results were obtained: 

• Average usage time in the system: 26.26 min 
• Average wasted capacity: 91.7 seats 

After finalizing the modelling process, SIMAN code files were generated, and some modifications to these files 
were performed so that they could serve as input for MOGBHS. In addition to the SIMAN files, the algorithm 
MOGBHS-TNDFSP requires a database of possible routes for the BRTS. Hence, the CAs were used in the following 
way: 

(1) Five possible trips were identified based on the topography of the BRTS. 
(2) Considering the number of stations in each trip, a list of CAs was selected to generate possible routes for these 

trips. These were: 
- CA (24; 30, 2, 3) 
- CA (26; 41, 2, 3) 
- CA (26; 42, 2, 3) 
- CA (26; 43, 2, 3) 

(3) A CA with 42 columns was used in two trips, which were similar with regard to the number of stations 
involved. 

(4) Routes that were not logical or infeasible were cleaned out, among others; this included those with less than 
two real stations, i.e., having a different start and finish station during the trip. 

(5) Routes found for each trip were grouped together and inserted in the database. A total of 119 routes were 
obtained. 

(6) In the case of invalid solutions, five easy routes (one per trip) were added to facilitate the process of 
completing the solution (SolutionComplete) for a total of 124 possible routes. 

(7) Unique identifiers for all the routes in the database – as well as a marker for the easy routes – were established 
to facilitate their search in the process of completing the solution. 



 
4.3  MOGBHS Prototype 
To test the proposed algorithm, a software prototype was created that uses as input the SIMAN files resulting from the 
BRTS model and the database of feasible routes generated by CAs. This enables parameterization and implementation 
of MOGBHS-TNDFSP to determine the best configurations of bus frequencies. The prototype was developed in C#, 
using Visual Studio .NET 2012 as a development environment, and supported by Microsoft SQLServer 2008 for the 
database of routes as well as by SIMAN included in ARENA version 14. 
 
4.4 NSGA-II and MOEA/D 
Considering that state-of-the-art technology involves NSGA-II and MOEA/D as among the best algorithms for multi-
objective optimization [12, 65, 66], these were implemented to solve the TNDFSP in a similar way as MOGBHS. That 
is, the problem of the configuration of routes and frequencies was addressed at two different levels. In addition, the 
simulation model of discrete events for a BRTS was used to evaluate the fitness of the solutions generated. This 
enabled comparing the performance of the algorithms. 
 
4.5  Parameters Tuning 
A tuning process was performed for some of the algorithmic parameters. Considering recommendations from previous 
studies regarding configurations for HS and GBHS, fixed values were defined for PAR Minimum (0.01) and the 
number of improvisations (100). To refine these parameters, 27 combinations were defined, with recommended values 
for HMS, HMCR, and PAR Maximum. After implementation of 27 tests and the analysis of the results, the 
configuration used for experimentation was HMS = 10, HMCR = 0.7, PAR Minimum = 0.01, PAR Maximum = 0.35, 
and Number of improvisations = 100. 

In a parameter tuning process such as the one performed for MOGBHS, the parameters for NSGA-II and MOEA/D 
were determined. The configuration selected for the implementation of NSGA-II included: Population size = 10, 
Probability of crossing = 0.7, Probability of mutation = 0.333, and Number of generations = 11. The configuration 
selected for the implementation of MOEA/D included: Population size = 10, Neighbor size = 7, CR = 0.5, F = 0.5, and 
Iterations = 11. 
 
4.6  Analysis of the Results 
After implementing MOGBHS, NSGA-II, and MOEA/D with the parameters resulting from the tuning process, their 
performances were analyzed based on results for the optimization objectives. Further, an analysis was conducted to 
determine the best solutions found by MOGBHS before the actual configuration of the BRTS was selected for the 
study. Finally, the best solutions found by the algorithms were compared, and their execution times were analyzed. 
 
4.6.1  Comparison of Performance Prior to the Optimization Objectives 
The 30 harmony memories resulting from the executions of MOGBHS were joined, each one with 10 harmonies. 
Their performances were evaluated based on the selected objectives, which were transit capacity wasted and usage 
time of the system. The same process was performed for NSGA-II and MOEA/D. Figure 13 illustrates that the 
configurations provided by the MOGBHS-TNDFSP algorithm proposed in this paper obtained the best results 
(minimum values) during performance evaluation of the selected objectives. 

 



 
 

Figure 13 Dispersion of solutions provided by 30 implementations of MOGBHS, NSGA-II, and MOEA/D algorithms. 
 
Table 3 compares the average and the standard deviation for evaluations of harmonies/solutions given by the 

algorithms, based on the selected objectives. An advantage can be seen in the minimization of both objectives for 
MOGBHS in comparison to NSGA-II. Compared to MOEA/D, it can be observed that MOGBHS won in 
minimization of average usage time and lost in minimize average wasted capacity. Table 4 presents the standard 
deviation of the evaluations of harmonies given by MOGBHS and the solutions generated by NSGA-II and MOEA/D. 
It shows that the executions of MOGBHS were more compact or less dispersed than those by NSGA-II. Harmonies in 
MOGBHS were more compact in the wasted capacity than MOEA/D but less compact in usage time than MOEA/D. 

 
Table 3 Averages of Evaluations by the Objective of the Solutions for MOGBHS, NSGA-II, and MOEA/D 

Algorithm/Objective Average usage time 
(hours) 

Average usage time 
(minutes) 

Average wasted capacity 
(percentage) 

Average wasted capacity 
(bus seats) 

MOGBHS 0.165404028 15.89 0.0915333 12.81 
MOEA/D 0.123442783 11.10 0.1490842 20.87 
NSGA-II 0.190890808 18.18 0.159106 22.27 

 
 

Table 4 Standard Deviation of Evaluations by the Objective of the Harmonies/Solutions Given by MOGBHS, NSGA-II, 
and MOEA/D 

Algorithm/Objective Average usage time 
(hour) 

Average usage time 
(minutes) 

Average wasted capacity 
(percentage) 

Average wasted capacity 
(bus seats) 

MOGBHS 0.047403769 2.84 0.027997591 3.92 

MOEA/D 0.036081823 2.17 0.046257313 6.48 

NSGA-II 0.050960594 3.06 0.047636891 6.67 
 
Figures 14 and 15 present the convergence of the solutions generated by the algorithms based on the optimization 

objectives. It is clear that MOGBHS generates harmonies with better values for both objectives than NSGA-II. 
Moreover, a greater advantage can be seen in the minimization of wasted capacity. In comparison, MOEA/D and 
MOGBHS generate harmonies with better wasted capacity values over all the generations. Howver, MOEA/D 



generates solutions with better usage time values. In the last generations, the values of this objective converged to 
similar values. 

 

 
 

Figure 14 Convergence of MOGBHS, NSGA-II, and MOEA/D algorithms for the minimization of usage time. 
 

 

 
 

Figure 15 Convergence of MOGBHS, NSGA-II, and MOEA/D algorithms for the minimization of wasted capacity. 
The average usage time and the average wasted capacity were compared to the harmonies generated by MOGBHS 

for the 30 executions (tests). The same measures were taken during the execution of the simulation model configured 
with the operational plan for the real BRTS during the off-peak hours of workday mornings, as described in Section 
4.2. A considerable improvement was observed both in the minimization of the average usage time and the average 
wasted capacity. Table 5 presents the comparison of these measures. 



 
Table 5 Evaluation of Objectives with Solutions Given by MOGBHS vs. Evaluation of the Simulation Model 

Source/Objective Average usage time 
(min) 

Average wasted capacity 
(bus seats) 

MOGBHS 15.89 12.81 
Simulation model (base line) 26.26 91.27 

 
4.6.2  Determination of the Best Solutions 
Afterwards Pareto fronts were organized both for the complete group of harmonies generated by MOBGHS and the 
group of solutions generated by NSGA-II and MOEA/D. The best solutions of the 30 executions of the three 
algorithms were obtained. and are presented in Tables 6, 7, and 8. In these tables, the lDs of the routes correspond to 
their unique identifiers in the route database. Easy routes are marked with an f, and the frequencies correspond to 
values (in minutes) for each of the routes. 

 
Table 6 Best Harmonies Generated in 30 Executions of MOGBHS 

Quantity  
of Routes IDs of Routes Frequencies  

(min) 
5 64, 60, 95, 110, 23(f) 25, 16, 10, 28, 2 
4 123(f), 11, 20, 23(f) 27, 18, 3, 2 
4 100, 2, 103, 23(f) 25, 2, 29, 3 
4 21, 38, 103, 23(f) 20, 11, 9, 2 
4 92, 64, 108, 23(f) 14, 25, 14, 2 
4 7, 103, 23(f), 106 26, 23, 3, 3 
3 23(f), 123(f), 19 14, 4, 2 
4 123(f), 7, 95, 23(f) 24, 16, 4, 3 

Average: 4.0  Average: 12.78 
 

Table 7 Best Solutions Generated in 30 Executions of NSGA-II 
Quantity  
of Routes IDs of Routes Frequencies 

(min) 
5 47, 8, 103, 52, 26 25, 14, 23, 19, 5 
5 50, 0, 111, 113, 23(f) 25, 19, 16, 16, 6 
6 114, 9, 80, 64, 81, 7 21, 18, 24, 16, 10, 8 
6 101, 9, 80, 64, 81, 7 25, 15, 24, 27, 12, 5 
4 53, 96, 109, 23 (f) 13, 27, 25, 4 

Average: 5.2  Average: 17.0 
 

Table 8 Best Solutions Generated in 30 Executions of MOEA/D 
Quantity  
of Routes IDs of Routes Frequencies 

(min) 
4 118, 109, 11, 23(f) 24, 23, 2, 29 
5 118, 23(f), 11, 123(f), 0 9, 12, 20, 25, 5 
4 62, 7, 103, 23(f) 23, 9, 15, 4 
5 11, 16, 123, 11, 23(f) 26, 11, 8, 4, 28 
4 53, 12, 53, 98(f) 24, 19, 18, 5 

Average: 4.4  Average: 15.0 
 



Regarding the best routes generated by the algorithms, the average in the quantity of routes selected by MOGBHS 
was 4.0, the MOEA/D algorithm selected an average of 4.4 routes, and NSGA-II selected an average of 5.2 routes. 
The average frequency by MOGBHS was 12.78 min, by MOEA/D was 15 min, and by NSGA-II was 17.0 min. This 
justifies the improvement in usage time by MOGBHS. 
 
4.6.3  Comparison of Execution Times 
Given that each simulation model can spend between 1 and 5 sec, to a large extent, the execution times of MOGBHS, 
NSGA-II, and MOEA/D depended on the quantity of executions of each simulation in order to evaluate solutions. The 
algorithms were implemented with the same size of population/memory, and performed the same quantity of 
generations both in the first level for routes and in the second level for frequencies. However, the implementation 
times varied because only configurations with frequencies that could be covered by the available fleet had been 
evaluated. Otherwise, very high evaluation values were established; these were unwanted solutions because they did 
not comply with the restriction of the fleet size. Hence, the logic of the algorithms discarded them. 

As shown in both Table 9 and Figure 16, the MOGBHS algorithm took much more time in executing itself than 
did NSGA-II. However, if before evaluating each solution, the algorithms check for feasibility – taking into 
consideration the available fleet, the total trip times of the selected routes and their frequencies – and that more than 
90% of the algorithm execution time was used in the simulations, it can be concluded that MOGBHS evaluated more 
solutions than NSGA-II. Therefore, MOGBHS generated and evaluated more configurations that were feasible. 
Finally, MOEA/D spent more execution time (approximately 30% more) than MOGBHS, but obtained better results 
for just one objective. 

 
Table 9 Consolidated Execution Times (in Minutes) of MOGBHS, NSGA-II, and MOEA/D 

Execution MOGBHS NSGA-II MOEA/D  Execution MOGBHS NSGA-II MOEA/D 
1 1381 799 2185  16 1545 762 2143 
2 1405 797 2040  17 1366 763 2061 
3 1464 718 2240  18 1310 757 2149 
4 1235 761 1974  19 1283 711 2106 
5 1492 707 2144  20 1499 743 2028 
6 1366 988 1956  21 1226 947 2333 
7 1727 959 1890  22 1763 987 2739 
8 1689 966 2631  23 1669 966 2234 
9 1612 973 2303  24 1774 970 2166 
10 1504 923 1990  25 1382 983 2135 
11 1482 773 2103  26 1281 780 2191 
12 1446 801 2416  27 1574 783 2092 
13 1330 687 2063  28 1371 788 2153 
14 1382 843 1979  29 1576 778 2164 
15 1439 812 2002  30 1081 810 2076 

     Average 1455±168 835±101 2156±185 
 



 
 

Figure 16 Execution times for MOGBHS, NSGA-II, and MOEA/D algorithms. 
 
5  Conclusions and Future Work 
The objective of this paper was to provide a mechanism that facilitates the configuration of routes and frequencies for 
BRTS in the context of TNDFSP. An adaptation of the global-best harmony search was proposed as part of a multi-
objective optimization algorithm, using ordering by Pareto fronts and Crowding Distance. The proposed algorithm, 
Multi-objective Global Best Harmony Search, performed the following functions: 

• It generated a random initial harmony memory, 
• It evaluated the performance of each of the harmonies generated with respect to the objectives to be optimized, 

and 
• It organized the harmony memory by Pareto fronts and Crowding Distance during a determined number of 

search iterations. 
In each iteration, a new harmony was generated and evaluated, and was included in the actual harmony memory. The 
resulting harmony memory was organized by Pareto fronts and Crowding Distance, and the worst solution was 
eliminated based on that ordering. At the end of the iterative process, a set of harmonies with the best performances 
was obtained with respect to the optimization objectives. 

With the intention of managing a large search space and the complexity of representing solutions for TNDFSP, a 
bilevel proposal of MOGBHS was performed. This involved an external level that handled the problem of selecting 
the best configurations of routes for the Transport Network Design Settings Problem and an internal level that selected 
the best frequencies for the set of routes generated by the first level (Transport Network Frequency Settings Problem). 

To avoid the costs involved in evaluating the performance of the configurations of routes and frequencies generated 
by MOGBHS for an actual bus rapid transit system, this study used simulations of discrete events. SIMAN was 
selected as the simulation language, and ARENA was the tool used to create the BRTS simulation model. At the 
moment of evaluating a specific harmony, the SIMAN source code was modified to insert the configurations of routes 
and frequencies defined in the harmony and also the matrix of the shortest routes. The simulation model was executed 
using the SIMAN engine. Finally, information was extracted from the results of the execution to evaluate the 
performance of the harmony. In the prototype presented in this research project, an adaptation of the Dijsktra 
algorithm was used to generate the matrix of shortest routes, which are routes that each passenger would select to go 



from one station to another destination. However, given the independence of this component from the rest of the 
elements of MOGBHS, it could be replaced by any other algorithm that could fulfill the same objective. 

To evaluate MOGBHS for finding optimal routes and frequencies, a simulation model based on discrete events was 
implemented for Megabus, the bus rapid transit system of the City of Pereira, Colombia. The result was a simulation 
model with 37 stations, including doubles, without transfers, and exchangers. This enabled measuring the average time 
that users spent on the system and the percentage of wasted capacity of the buses, depending on the configuration of 
routes and bus frequencies. After this process, given that MOGBHS-TNDFSP needs to have a set of valid routes 
applicable to the BRTS, and taking advantage of covering arrays for combinatorial problems, a set of these valid 
routes were used to define feasible solutions. This process considered all the possible trips on the BRTS, which in turn 
depended on the physical distribution of the stations and roads. In summary, the proposed approach provides a single 
comprehensive framework to solve the problem of defining routes and frequencies in an integrated transit system 
while considering multiple objectives by different key decision makers. The use of two levels allowed managing the 
complexity of the problem efficiently. The implementation of Covering Arrays enabled reducing the complexity in the 
route design by using an appropriate sampling of the needs of an actual BRT. 

A set of tests of MOGBHS against NSGA-II and MOEA/D was completed to solve the problem of finding routes 
and frequencies for the actual configuration of stations and trips for Megabus. The objectives were to minimize both 
the total time of users in the system and the wasted capacity of the fleet. These tests were supported by the simulation 
model for discrete events implemented for the evaluation of the fitness of the solutions, and demonstrated that the 
solutions generated by MOGBHS were better for the two selected objectives compared to NSGA-II and MOEA/D. 
While the solutions generated by NSGA-II had an average total usage time of 18.18 minutes and an average wasted 
capacity per bus of 22.27 users, the harmonies generated by MOGBHS had an average usage time of 15.89 minutes 
and an average wasted capacity per bus of 12.81 users. The results for MOGBHS are promising, and very superior 
when compared to those for NSGA-II. In addition, the solutions generated by MOGBHS were competitive against 
MOEA/D, which had an average usage time of 11.1 minutes and an average wasted capacity of 20.87 bus seats. 

The execution time of MOGBHS was superior to that of NSGA-II. However, given that the component that takes 
the most time during the implementation of these algorithms is the execution of the discrete event simulator – and 
considering that before the evaluation of each solution their feasibility was evaluated – the higher execution time 
means that MOGBHS executed a larger quantity of evaluations. Therefore, it generated a greater quantity of feasible 
solutions than NSGA-II. 

Regarding future research, a version of MOGBHS will be developed to solve the Transport Network Design and 
Frequencies Settings Problem as well as other objectives, such as balancing the load of vehicles and minimizing the 
number of routes. In addition, a more exhaustive tuning parameter process is desirable that uses higher values of 
population size to search more diverse solutions in the Pareto front. Another important goal is to compare the proposed 
approach with other multi-objective algorithms, such as indicator-based MOEAs. MOGBHS can be used in other 
application domains, evaluated in multi-objective bi-level generic problems, and compared to other algorithms. 
Finally, experiments can be conducted regarding various configurations of covering arrays as well as several values of 
the strength parameter in order to define the best set of possible routes in a BRTS. 
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