
A Neural-Symbolic Approach to Design of CAPTCHA

Qiuyuan Huang, Paul Smolensky, Xiaodong He, Li Deng, Dapeng Wu
{qihua,psmo,xiaohe}@microsoft.com, l.deng@ieee.org, dpwu@ufl.edu

Microsoft Research AI, Redmond, WA ∗

Abstract

CAPTCHAs based on reading text are susceptible to machine-learning-based
attacks [1] due to recent significant advances in deep learning (DL). To address
this, this paper promote image/visual captioning based CAPTCHAs, which is
robust against machine-learning-based attacks. To develop image/visual captioning
based CAPTCHAs, this paper proposes a new image captioning architecture by
exploiting tensor product representations (TPR), a structured neural-symbolic
framework developed in cognitive science over the past 20 years, with the aim of
integrating DL with explicit language structures and rules. We call it the Tensor
Product Generation Network (TPGN). The key ideas of TPGN are: 1) unsupervised
learning of role-unbinding vectors of words via a TPR-based deep neural network,
and 2) integration of TPR with typical DL architectures including Long Short-Term
Memory (LSTM) models. The novelty of our approach lies in its ability to generate
a sentence and extract partial grammatical structure of the sentence by using role-
unbinding vectors, which are obtained in an unsupervised manner. Experimental
results demonstrate the effectiveness of the proposed approach.

1 Introduction

CAPTCHA, which stands for “Completely Automated Public Turing test to tell Computers and
Humans Apart", is a type of challenge-response test used in computers to determine whether or not
the user is a human [1]. Most CAPTCHA systems are based on reading text contained in an image.
However, such systems can be easily cracked by deep learning since deep learning can achieve almost
100% accuracy in recognizing text. To address this, this paper proposes a new CAPTCHA, which
distinguishes a human from a computer by testing the capability of image captioning (which generates
a caption for a given image) or video storytelling (which generates a story consisting of multiple
sentences for a give video sequence). It is known that the performance of computerized image
captioning or video storytelling is far away from the human performance [2]. Hence, image/visual
captioning based CAPTCHAs can reliably distinguish computers from humans.

Deep learning is an important tool in many current natural language processing (NLP) applications.
However, language rules or structures cannot be explicitly represented in deep learning architectures.
The tensor product representation developed in [3, 4] has the potential of integrating deep learning with
explicit rules (such as logical rules, grammar rules, or rules that summarize real-world knowledge).
This paper develops a TPR approach for image/visual captioning based CAPTCHAs, introducing the
Tensor Product Generation Network (TPGN) architecture.

A TPGN model generates natural language descriptions via learned representations. The representa-
tions learned in a crucial layer of the TPGN can be interpreted as encoding grammatical roles for
the words being generated. This layer corresponds to the role-encoding component of a general,
independently-developed architecture for neural computation of symbolic functions, including the

∗This work was carried out while PS was on leave from Johns Hopkins University. LD is currently at Citadel.
DW is with University of Florida, Gainesville, FL 32611.

31st Conference on Neural Information Processing Systems (NIPS 2017), Long Beach, CA, USA.



generation of linguistic structures. The key to this architecture is the notion of Tensor Product Rep-
resentation (TPR), in which vectors embedding symbols (e.g., lives, frodo) are bound to vectors
embedding structural roles (e.g., verb, subject) and combined to generate vectors embedding
symbol structures ([frodo lives]). TPRs provide the representational foundations for a general
computational architecture called Gradient Symbolic Computation (GSC), and applying GSC to the
task of natural language generation yields the specialized architecture defining the model presented
here. The generality of GSC means that the results reported here have implications well beyond the
particular tasks we address here.

In our proposed image/visual captioning based CAPTCHA, a TPGN takes an image I as input
and generates a caption. Then, an evaluator will evaluate the TPGN’s captioning performance by
calculating the metric of METEOR [5]. If the METEOR value is less than a threshold, this input
image I can be used as a challenge in our CAPTCHA. In this way, we can obtain a set B of images
to used as challenges in CAPTCHA.

In our CAPTCHA, an image is randomly selected from the set B and rendered as a challenge; a tester
is asked to give a description of the image as an answer. An evaluator calculates a METEOR value for
the answer. If the METEOR value is greater than a threshold, the answer is considered to be correct
and the tester is deemed to be a human; otherwise, the tester is deemed to be a computer.

The paper is organized as follows. Section 2 presents the rationale for our proposed architecture. In
Section 3, we present our experimental results. Finally, Section 4 concludes the paper.

Figure 1: Architecture of TPGN, a TPR-capable generation network. “�×” denotes the matrix-vector
product.

2 Design of image captioning based CAPTCHA

2.1 A TPR-capable generation architecture

In this work we propose an approach to network architecture design we call the TPR-capable method.
The architecture we use (see Fig. 1) is designed so that TPRs could, in theory, be used within the
architecture to perform the target task — here, generating a caption one word at a time. Unlike
previous work where TPRs are hand-crafted, in our work, end-to-end deep learning will induce
representations which the architecture can use to generate captions effectively.

In this section, we consider the problem of image captioning. As shown in Fig. 1, our proposed
system is denoted byN . The input ofN is an image feature vector v and the output ofN is a caption.
The image feature vector v is extracted from a given image by a pre-trained CNN. The first part
of our system N is a sentence-encoding subnetwork S which maps v to a representation S which
will drive the entire caption-generation process; S contains all the image-specific information for

2



producing the caption. (We will call a caption a “sentence” even though it may in fact be just a noun
phrase.)

If S were a TPR of the caption itself, it would be a matrix (or 2-index tensor) S which is a sum of
matrices, each of which encodes the binding of one word to its role in the sentence constituting the
caption. To serially read out the words encoded in S, in iteration 1 we would unbind the first word
from S, then in iteration 2 the second, and so on. As each word is generated, S could update itself,
for example, by subtracting out the contribution made to it by the word just generated; St denotes
the value of S when word wt is generated. At time step t we would unbind the role rt occupied
by word wt of the caption. So the second part of our system N — the unbinding subnetwork U
— would generate, at iteration t, the unbinding vector ut. Once U produces the unbinding vector
ut, this vector would then be applied to S to extract the symbol ft that occupies word t’s role; the
symbol represented by ft would then be decoded into word wt by the third part of N , i.e., the lexical
decoding subnetwork L, which outputs xt, the 1-hot-vector encoding of wt.

Recalling that unbinding in TPR is achieved by the matrix-vector product, the key operation in
generating wt is thus the unbinding of rt within S, which amounts to simply:

Stut = ft. (1)

This matrix-vector product is denoted “�×” in Fig. 1.

Thus the systemN of Fig. 1is TPR-capable. This is what we propose as the Tensor-Product Generation
Network (TPGN) architecture. The learned representation S will not be proven to literally be a TPR,
but by analyzing the unbinding vectors ut the network learns, we will gain insight into the process by
which the learned matrix S gives rise to the generated caption.

What type of roles might the unbinding vectors be unbinding? A TPR for a caption could in principle
be built upon positional roles, syntactic/semantic roles, or some combination of the two. In the
caption a man standing in a room with a suitcase, the initial a and man might respectively occupy
the positional roles of POS(ITION)1 and POS2; standing might occupy the syntactic role of VERB;
in the role of SPATIAL-P(REPOSITION); while a room with a suitcase might fill a 5-role schema
DET(ERMINER)1 N(OUN)1 P DET2 N2. In fact we will see evidence below that our network learns
just this kind of hybrid role decomposition.

What form of information does the sentence-encoding subnetwork S need to encode in S? Continuing
with the example of the previous paragraph, S needs to be some approximation to the TPR summing
several filler/role binding matrices. In one of these bindings, a filler vector fa — which the lexical
subnetwork L will map to the article a — is bound (via the outer product) to a role vector rPOS1 which
is the dual of the first unbinding vector produced by the unbinding subnetwork U : uPOS1 . In the first
iteration of generation the model computes S1uPOS1 = fa, which L then maps to a. Analogously,
another binding approximately contained in S2 is fmanr

>
POS2

. There are corresponding bindings for the
remaining words of the caption; these employ syntactic/semantic roles. One example is fstandingr

>
V .

At iteration 3, U decides the next word should be a verb, so it generates the unbinding vector uV

which when multiplied by the current output of S , the matrix S3, yields a filler vector fstanding which
L maps to the output standing. S decided the caption should deploy standing as a verb and included
in S the binding fstandingr

>
V . It similarly decided the caption should deploy in as a spatial preposition,

including in S the binding finr
>
SPATIAL-P; and so on for the other words in their respective roles in the

caption.

2.2 CAPTCHA generation method

We first describe how to obtain a set of images as challenges in our CAPTCHA system. In our
proposed image/visual captioning based CAPTCHA, a TPGN takes an image I as input and generates
a caption. Then, an evaluator will evaluate the TPGN’s captioning performance by calculating the
metric of METEOR [5]. If the METEOR value is less than a threshold γ1, this input image I can
be used as a challenge in our CAPTCHA; otherwise, this input image I will not be selected as a
challenge and a new image will be examined. In this way, we can obtain a set B of images used as
challenges in CAPTCHA. All images in B are difficult to be captioned by a computerized image
captioning system due to their low METEOR values.

Now, we describe our CAPTCHA generation method. In our CAPTCHA, an image is randomly
selected from the set B and rendered as a challenge; a tester is asked to give a description of the

3



image as an answer. An evaluator calculates a METEOR value for the answer. If the METEOR value
is greater than a threshold γ2, the answer is considered to be correct and the tester is deemed to be a
human; otherwise, the answer is considered to be wrong and the tester is deemed to be a computer.

Due to space limitations, the detailed design of our system is described in Appendix B; and TPR is
reviewed in Appendix A.

3 Experimental results

To evaluate the performance of our proposed architecture, we use the COCO dataset [2]. The COCO
dataset contains 123,287 images, each of which is annotated with at least 5 captions. We use the
same pre-defined splits as [6, 7]: 113,287 images for training, 5,000 images for validation, and 5,000
images for testing. We use the same vocabulary as that employed in [7], which consists of 8,791
words.

For the CNN of Fig. 1, we used ResNet-152 [8], pretrained on the ImageNet dataset. The feature
vector v has 2048 dimensions. Word embedding vectors in We are downloaded from the web [9].
The model is implemented in TensorFlow [10] with the default settings for random initialization and
optimization by backpropagation.

In our experiments, we choose d = 25 (where d is the dimension of vector pt). The dimension of St

is 625× 625 (while Ŝt is 25× 25); the vocabulary size V = 8, 791; the dimension of ut and ft is
d2 = 625.

Table 1: Performance of the proposed TPGN model on the COCO dataset.
Methods METEOR BLEU-1 BLEU-2 BLEU-3 BLEU-4 CIDEr
NIC [11] – 0.666 0.451 0.304 0.203 –
CNN-LSTM 0.238 0.698 0.525 0.390 0.292 0.889
TPGN 0.243 0.709 0.539 0.406 0.305 0.909

The main evaluation results on the MS COCO dataset are reported in Table 1. The widely-used
BLEU [12], METEOR [5], and CIDEr [13] metrics are reported in our quantitative evaluation of the
performance of the proposed schemes. In evaluation, our baseline is the widely used CNN-LSTM
captioning method originally proposed in [11]. For comparison, we include results in that paper in the
first line of Table 1. We also re-implemented the model using the latest ResNet feature and report the
results in the second line of Table 1. Our re-implementation of the CNN-LSTM method matches the
performance reported in [7], showing that the baseline is a state-of-the-art implementation. As shown
in Table 1, compared to the CNN-LSTM baseline, the proposed TPGN significantly outperforms
the benchmark schemes in all metrics across the board. The improvement in BLEU-n is greater for
greater n; TPGN particularly improves generation of longer subsequences. The results clearly attest
to the effectiveness of the TPGN architecture.

Now, we address the issue of how to determine the two thresholds γ1 and γ2 in our CAPTCHA
system. We set γ1 = 0.2, which is about 20% less than the METEOR metric obtained by TPGN. In
this way, the image set B only contains images that are most difficult to be captioned by a computer.
Since the METEOR metric obtained by a human is larger than 0.6, we set γ2 = 0.5, which is much
larger than the METEOR metric achievable by any computerized image captioning system [2].

4 Conclusion

In this paper, we proposed a new Tensor Product Generation Network (TPGN) for image/visual
captioning based CAPTCHAs. The model has a novel architecture based on a rationale derived from
the use of Tensor Product Representations for encoding and processing symbolic structure through
neural network computation. In evaluation, we tested the proposed model on captioning with the MS
COCO dataset, a large-scale image captioning benchmark. Compared to widely adopted LSTM-based
models, the proposed TPGN gives significant improvements on all major metrics including METEOR,
BLEU, and CIDEr. Our findings in this paper show great promise of TPRs. In the future, we will
explore extending TPR to a variety of other NLP tasks and spam email detection.

4



Appendix

A Review of tensor product representation

Tensor product representation (TPR) is a general framework for embedding a space of symbol
structures S into a vector space. This embedding enables neural network operations to perform
symbolic computation, including computations that provide considerable power to symbolic NLP
systems [4, 14]. Motivated by these successful examples, we are inspired to extend the TPR to the
challenging task of learning image captioning. And as a by-product, the symbolic character of TPRs
makes them amenable to conceptual interpretation in a way that standard learned neural network
representations are not.

A particular TPR embedding is based in a filler/role decomposition of S . A relevant example is
when S is the set of strings over an alphabet {a, b, . . .}. One filler/role decomposition deploys the
positional roles {rk}, k ∈ N, where the filler/role binding a/rk assigns the ‘filler’ (symbol) a to the
kth position in the string. A string such as abc is uniquely determined by its filler/role bindings,
which comprise the (unordered) set B(abc) = {b/r2, a/r1, c/r3}. Reifying the notion role in this
way is key to TPR’s ability to encode complex symbol structures.

Given a selected filler/role decomposition of the symbol space, a particular TPR is determined by an
embedding that assigns to each filler a vector in a vector space VF ∼= RdF , and a second embedding
that assigns to each role a vector in a space VR ∼= RdR . The vector embedding a symbol a is denoted
by fa and is called a filler vector; the vector embedding a role rk is rk and called a role vector. The
TPR for abc is then the following 2-index tensor in VF ⊗ VR ∼= RdF×dR :

Sabc = fb ⊗ r2 + fa ⊗ r1 + fc ⊗ r3, (2)

where ⊗ denotes the tensor product. The tensor product is a generalization of the vector outer product
that is recursive; recursion is exploited in TPRs for, e.g., the distributed representation of trees, the
neural encoding of formal grammars in connection weights, and the theory of neural computation
of recursive symbolic functions. Here, however, it suffices to use the outer product; using matrix
notation we can write (2) as:

Sabc = fbr2
> + far1

> + fcr3
>. (3)

Generally, the embedding of any symbol structure S ∈ S is
∑
{fi ⊗ ri | fi/ri ∈ B(S)}; here:∑

{fir>i | fi/ri ∈ B(S)} [3, 4].

A key operation on TPRs, central to the work presented here, is unbinding, which undoes binding.
Given the TPR in (3), for example, we can unbind r2 to get fb; this is achieved simply by fb = Sabcu2.
Here u2 is the unbinding vector dual to the binding vector r2. To make such exact unbinding possible,
the role vectors should be chosen to be linearly independent. (In that case the unbinding vectors are
the rows of the inverse of the matrix containing the binding vectors as columns, so that r2 · u2 = 1
while rk · u2 = 0 for all other role vectors rk 6= r2; this entails that Sabcu2 = b, the filler vector
bound to r2. Replacing the matrix inverse with the pseudo-inverse allows approximate unbinding
when the role vectors are not linearly independent).

B System Description

The unbinding subnetwork U and the sentence-encoding network S of Fig. 1 are each implemented
as (1-layer, 1-directional) LSTMs (see Fig. 2); the lexical subnetwork L is implemented as a linear
transformation followed by a softmax operation. In the equations below, the LSTM variables internal
to the S subnet are indexed by 1 (e.g., the forget-, input-, and output-gates are respectively f̂1, î1, ô1)
while those of the unbinding subnet U are indexed by 2.

5



Figure 2: The sentence-encoding subnet S and the unbinding subnet U are inter-connected LSTMs; v
encodes the visual input while the xt encode the words of the output caption.

Thus the state updating equations for S are, for t = 1, · · · , T = caption length:

f̂1,t = σg(W1,fpt−1 −D1,fWext−1 +U1,f Ŝt−1) (4)

î1,t = σg(W1,ipt−1 −D1,iWext−1 +U1,iŜt−1) (5)

ô1,t = σg(W1,opt−1 −D1,oWext−1 +U1,oŜt−1) (6)

g1,t = σh(W1,cpt−1 −D1,cWext−1 +U1,cŜt−1) (7)

c1,t = f̂1,t � c1,t−1 + î1,t � g1,t (8)

Ŝt = ô1,t � σh(c1,t) (9)

where f̂1,t, î1,t, ô1,t, g1,t, c1,t, Ŝt ∈ Rd×d, pt ∈ Rd, σg(·) is the (element-wise) logistic sigmoid
function; σh(·) is the hyperbolic tangent function; the operator � denotes the Hadamard (element-
wise) product; W1,f ,W1,i,W1,o,W1,c ∈ Rd×d×d, D1,f , D1,i, D1,o, D1,c ∈ Rd×d×d, U1,f , U1,i,
U1,o, U1,c ∈ Rd×d×d×d. For clarity, biases — included throughout the model — are omitted from
all equations in this paper. The initial state Ŝ0 is initialized by:

Ŝ0 = Cs(v − v̄) (10)
where v ∈ R2048 is the vector of visual features extracted from the current image by ResNet [7] and
v̄ is the mean of all such vectors; Cs ∈ Rd×d×2048. On the output side, xt ∈ RV is a 1-hot vector
with dimension equal to the size of the caption vocabulary, V , and We ∈ Rd×V is a word embedding
matrix, the i-th column of which is the embedding vector of the i-th word in the vocabulary; it is
obtained by the Stanford GLoVe algorithm with zero mean [9]. x0 is initialized as the one-hot vector
corresponding to a “start-of-sentence” symbol.

For U in Fig. 1, the state updating equations are:

f̂2,t = σg(Ŝt−1w2,f −D2,fWext−1 +U2,fpt−1) (11)

î2,t = σg(Ŝt−1w2,i −D2,iWext−1 +U2,ipt−1) (12)

ô2,t = σg(Ŝt−1w2,o −D2,oWext−1 +U2,opt−1) (13)

g2,t = σh(Ŝt−1w2,c −D2,cWext−1 +U2,cpt−1) (14)

c2,t = f̂2,t � c2,t−1 + î2,t � g2,t (15)
pt = ô2,t � σh(c2,t) (16)

where w2,f ,w2,i,w2,o,w2,c ∈ Rd, D2,f ,D2,i,D2,o,D2,c ∈ Rd×d, and U2,f ,U2,i,U2,o,U2,c ∈
Rd×d. The initial state p0 is the zero vector.

6



The dimensionality of the crucial vectors shown in Fig. 1, ut and ft, is increased from d× 1 to d2× 1

as follows. A block-diagonal d2 × d2 matrix St is created by placing d copies of the d× d matrix Ŝt

as blocks along the principal diagonal. This matrix is the output of the sentence-encoding subnetwork
S . Now, following Eq. (1), the ‘filler vector’ ft ∈ Rd2

— ‘unbound’ from the sentence representation
St with the ‘unbinding vector’ ut — is obtained by Eq. (17).

ft = Stut (17)

Here ut ∈ Rd2

, the output of the unbinding subnetwork U , is computed as in Eq. (18), where
Wu ∈ Rd2×d is U’s output weight matrix.

ut = σh(Wupt) (18)

Finally, the lexical subnetwork L produces a decoded word xt ∈ RV by

xt = σs(Wxft) (19)

where σs(·) is the softmax function and Wx ∈ RV×d2

is the overall output weight matrix. Since
Wx plays the role of a word de-embedding matrix, we can set

Wx = (We)
> (20)

where We is the word-embedding matrix. Since We is pre-defined, we directly set Wx by Eq. (20)
without training L through Eq. (19). Note that S and U are learned jointly through the end-to-end
training.

Figure 3: Pre-training of TPGN.

Fig. 3 shows a pre-training method for initializing TPGN. During the pre-training phase, there is no
image input, i.e., image feature vector v = 0. In Fig. 3, at time t = −T + 1, the LSTM module takes
a sentence of length T as input and outputs a vector z (z ∈ Rd2

) at time t = 0. That is, the LSTM
converts a sentence into z, which is the input of TPGN. We use end-to-end training to train the whole
system shown in Fig. 3. After finishing pre-training, we let z = 0 and use images as input to train the
TPGN in Fig. 1, initialized by the pretrained parameter values.

C Related work

Most existing DL-based image captioning methods [15, 11, 16, 17, 18, 6, 19, 20] involve two
phases/modules: 1) image analysis, typically by a Convolutional Neural Network (CNN), and 2) a
language model for caption generation ([21]). The CNN module takes an image as input and outputs
an image feature vector or a list of detected words with their probabilities. The language model is
used to create a sentence (caption) out of the detected words or the image feature vector produced by
the CNN.

There are mainly two approaches to natural language generation in image captioning. The first
approach takes the words detected by a CNN as input, and uses a probabilistic model, such as a

7



maximum entropy (ME) language model, to arrange the detected words into a sentence. The second
approach takes the penultimate activation layer of the CNN as input to a Recurrent Neural Network
(RNN), which generates a sequence of words (the caption) [11].

The work reported here follows the latter approach, adopting a CNN + RNN-generator architecture.
Specifically, instead of using a conventional RNN, we propose a recurrent network that has sub-
structure derived from the general GSC architecture: one recurrent subnetwork holds an encoding
S — which is treated as an approximation of a TPR — of the words yet to be produced, while
another recurrent subnetwork generates a sequence of vectors that is treated as a sequence of roles
to be unbound from S, in effect, reading out a word at a time from S. Examining how the model
deploys these roles allows us to interpret them in terms of grammatical categories; roughly speaking,
a sequence of categories is generated and the words stored in S are retrieved and spelled out via their
categories.

References
[1] “Wikipedia link for captcha,” https://en.wikipedia.org/wiki/CAPTCHA, 2017.

[2] “Coco dataset for image captioning,” http://mscoco.org/dataset/#download, 2017.

[3] P. Smolensky, “Tensor product variable binding and the representation of symbolic structures in connec-
tionist systems,” Artificial intelligence, vol. 46, no. 1-2, pp. 159–216, 1990.

[4] P. Smolensky and G. Legendre, The harmonic mind: From neural computation to optimality-theoretic
grammar. Volume 1: Cognitive architecture. MIT Press, 2006.

[5] S. Banerjee and A. Lavie, “Meteor: An automatic metric for mt evaluation with improved correlation with
human judgments,” in Proceedings of the ACL workshop on intrinsic and extrinsic evaluation measures for
machine translation and/or summarization. Association for Computational Linguistics, 2005, pp. 65–72.

[6] A. Karpathy and L. Fei-Fei, “Deep visual-semantic alignments for generating image descriptions,” in
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2015, pp. 3128–3137.

[7] Z. Gan, C. Gan, X. He, Y. Pu, K. Tran, J. Gao, L. Carin, and L. Deng, “Semantic compositional networks
for visual captioning,” in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,
2017.

[8] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recognition,” in Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition, 2016, pp. 770–778.

[9] J. Pennington, R. Socher, and C. Manning, “Stanford glove: Global vectors for word representation,”
https://nlp.stanford.edu/projects/glove/, 2017.

[10] M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S. Corrado, A. Davis, J. Dean,
M. Devin, S. Ghemawat, I. Goodfellow, A. Harp, G. Irving, M. Isard, Y. Jia, R. Jozefowicz, L. Kaiser,
M. Kudlur, J. Levenberg, D. Mané, R. Monga, S. Moore, D. Murray, C. Olah, M. Schuster, J. Shlens,
B. Steiner, I. Sutskever, K. Talwar, P. Tucker, V. Vanhoucke, V. Vasudevan, F. Viégas, O. Vinyals,
P. Warden, M. Wattenberg, M. Wicke, Y. Yu, and X. Zheng, “TensorFlow: Large-scale machine
learning on heterogeneous systems,” 2015, software available from tensorflow.org. [Online]. Available:
https://www.tensorflow.org/

[11] O. Vinyals, A. Toshev, S. Bengio, and D. Erhan, “Show and tell: A neural image caption generator,” in
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2015, pp. 3156–3164.

[12] K. Papineni, S. Roukos, T. Ward, and W.-J. Zhu, “Bleu: a method for automatic evaluation of machine
translation,” in Proceedings of the 40th annual meeting on association for computational linguistics.
Association for Computational Linguistics, 2002, pp. 311–318.

[13] R. Vedantam, C. Lawrence Zitnick, and D. Parikh, “Cider: Consensus-based image description evaluation,”
in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2015, pp. 4566–4575.

[14] P. Smolensky, “Symbolic functions from neural computation,” Philosophical Transactions of the Royal
Society — A: Mathematical, Physical and Engineering Sciences, vol. 370, pp. 3543 – 3569, 2012.

[15] J. Mao, W. Xu, Y. Yang, J. Wang, Z. Huang, and A. Yuille, “Deep captioning with multimodal recurrent
neural networks (m-rnn),” in Proceedings of International Conference on Learning Representations, 2015.

[16] J. Devlin, H. Cheng, H. Fang, S. Gupta, L. Deng, X. He, G. Zweig, and M. Mitchell, “Language models
for image captioning: The quirks and what works,” arXiv preprint arXiv:1505.01809, 2015.

[17] X. Chen and C. Lawrence Zitnick, “Mind’s eye: A recurrent visual representation for image caption
generation,” in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2015,
pp. 2422–2431.

8

https://en.wikipedia.org/wiki/CAPTCHA
http://mscoco.org/dataset/#download
https://nlp.stanford.edu/projects/glove/
https://www.tensorflow.org/


[18] J. Donahue, L. Anne Hendricks, S. Guadarrama, M. Rohrbach, S. Venugopalan, K. Saenko, and T. Darrell,
“Long-term recurrent convolutional networks for visual recognition and description,” in Proceedings of the
IEEE conference on computer vision and pattern recognition, 2015, pp. 2625–2634.

[19] R. Kiros, R. Salakhutdinov, and R. Zemel, “Multimodal neural language models,” in Proceedings of the
31st International Conference on Machine Learning (ICML-14), 2014, pp. 595–603.

[20] R. Kiros, R. Salakhutdinov, and R. S. Zemel, “Unifying visual-semantic embeddings with multimodal
neural language models,” arXiv preprint arXiv:1411.2539, 2014.

[21] H. Fang, S. Gupta, F. Iandola, R. K. Srivastava, L. Deng, P. Dollár, J. Gao, X. He, M. Mitchell, J. C. Platt
et al., “From captions to visual concepts and back,” in Proceedings of the IEEE conference on Computer
Vision and Pattern Recognition, 2015, pp. 1473–1482.

9


	Introduction
	Design of image captioning based CAPTCHA
	A TPR-capable generation architecture
	CAPTCHA generation method

	Experimental results
	Conclusion
	Review of tensor product representation
	System Description
	Related work

