
A New Algorithm for Data Compression

Philip Gage

1994

Phil Gage is a software engineer in Colorado Springs and has a BS degree in
computer science from the University of Colorado. He has been a professional
programmer since 1983 and has used C since 1986. Phil can be reached at (719)
593-1801 or via CompuServe as 70541,3645.

Abstract

Data compression is becoming increasingly important as a way to
stretch disk space and speed up data transfers.

This article describes a simple general-purpose data compression algo-
rithm, called Byte Pair Encoding (BPE), which provides almost as much
compression as the popular Lempel, Ziv, and Welch (LZW) method [3, 2].
(I mention the LZW method in particular because it delivers good overall
performance and is widely used.) BPE’s compression speed is somewhat
slower than LZW’s, but BPE’s expansion is faster. The main advantage
of BPE is the small, fast expansion routine, ideal for applications with
limited memory. The accompanying C code provides an efficient imple-
mentation of the algorithm.

1 Theory

Many compression algorithms replace frequently occurring bit patterns with
shorter representations. The simple approach I present is to replace common
pairs of bytes by single bytes.

The algorithm compresses data by finding the most frequently occurring
pairs of adjacent bytes in the data and replacing all instances of the pair with a
byte that was not in the original data. The algorithm repeats this process until
no further compression is possible, either because there are no more frequently
occurring pairs or there are no more unused bytes to represent pairs. The
algorithm writes out the table of pair substitutions before the packed data.

This algorithm is fundamentally multi-pass and requires that all the data
be stored in memory. This requirement causes two potential problems: the

Originally appeared in The C User Journal under DOI 10.5555/177910.177914. Recon-
structed from http://www.pennelynn.com/Documents/CUJ/HTML/94HTML/19940045.HTM
to PDF in 2020 by Leon Derczynski.

1

algorithm cannot handle streams, and some files may be too large to fit in
memory. Also, large binary files might contain no unused characters to represent
pair substitutions.

Buffering small blocks of data and compressing each block separately solves
these problems. The algorithm reads and stores data until the buffer is full or
only a minimum number of unused characters remain. The algorithm then com-
presses the buffer and outputs the compressed buffer along with its pair table.
Using a different pair table for each data block also provides local adaptation
to varying data and improves overall compression.

Listing 1 and Listing 2 show pseudocode for the compression and expansion
algorithms.

2 Implementation

Listing 3 and Listing 4 provide complete C programs for compression and ex-
pansion of files. The code is not machine dependent and should work with any
ANSI C compiler. For simplicity, error handling is minimal. You may want
to add checks for hash table overflow, expand stack overflow and input/output
errors. The expansion program is much simpler and faster than the compression
program.

The compression algorithm spends the most time finding the most frequent
pair of adjacent characters in the data. The program maintains a hash table
consisting of arrays left[], right[], and count[] to count pair frequencies. The
hash table size HASHSIZE must be a power of two, and should not be too
much smaller than the buffer size BLOCKSIZE or overflow may occur. Pro-
grammers can adjust the value of BLOCKSIZE for optimum performance, up
to a maximum of 32767 bytes. The parameter THRESHOLD, which specifies
the minimum occurrence count of pairs to be compressed, can also be adjusted.

Once the algorithm finds the most frequently occurring pair, it must replace
the pair throughout the data buffer with an unused character. The algorithm
performs this replacement in place within a single buffer. As it replaces each
pair, the algorithm updates the hash table’s pair counts. This method of up-
dating the hash table is faster than rebuilding the entire hash table after each
pair substitution.

3 Pair Table Compression

After the program has compressed a buffer, the pair table contains entries of
those pairs of bytes that were replaced by single bytes within the buffer. Figure 1
shows a sample pair table resulting from compression of a string of 9 characters,
with a hypothetical character set limited to 8 characters. The pair table does not
store the replacement bytes; rather, a pair’s position in the table indicates the
value of the replacement byte. For example, in Figure 1, pair ’A’:’B’ is found in
the pair table’s 8th entry, which indicates that this particular pair was replaced

2

Figure 1: Illustration of compression process with hypothetical character set

by the character ’H’. Those entries in the pair table not containing a replaced
pair are distinguished by a left code whose value is equal to its index (index ==
leftcodef[index]). (Note: The compression algorithm uses the array rightcode[]
for two different purposes. During the initial part of the compression process,
function fileread uses the rightcode[] array to flag used vs. unused characters.
After buffer compression, rightcode[] serves as half of the pair table.)

The algorithm must write the pair substitution tables to the output along
with the packed data. It would be simple just to write the character code
and pair for each substitution. Unfortunately, this method would require three
bytes per code and would waste space. Therefore, this program applies a form
of encoding to also compress the pair table before it is written to the output.

To compress the pair table, the program steps through the table from the
first entry thru its last entry, classifying each entry as representing a replaced
pair (index != leftcode[index]) or as not representing a replaced pair (index ==
leftcode[index]). To encode a group of contiguous replaced pairs, the program
emits a positive count byte followed by the pairs. To encode a group of con-
tiguous table entries that don’t represent replaced pairs, the program emits a
negative count byte followed by one pair.

In the encoded pair table a positive count byte indicates to the expansion
program how many of the following pairs of bytes to read, while a negative byte
causes the expansion program to skip a range of the character set and then read
a single pair. This technique allows many pairs to be stored with only two bytes
per code.

To further increase pair table compression, I’ve modified the algorithm from
the preceding description to avoid disrupting runs of pairs where possible.
Specifically, the algorithm does not encode an isolated, single byte not rep-

3

Figure 2: Illustration of expansion process

resenting a pair; instead, the algorithm writes the byte to output along with
the pair data without an accompanying right code. The expansion algorithm
knows that the byte does not represent pair data because the byte occurs at a
position such that byte value == leftcode[byte value].

4 Expansion

As opposed to the compression algorithm, which makes multiple passes over the
data, the expansion algorithm operates in a single pass. You can think of the
expansion algorithm as a black box which obtains input bytes from one of two
sources, the input file, or a stack (see Figure 2) . Regardless of an input byte’s
source, the algorithm processes each byte according to the following rule: if the

4

byte is a literal, the algorithm passes it to the output; if the byte represents a
pair, the algorithm replaces it with a pair and pushes the pair onto the stack.

Now, to complete the loop, the algorithm selects its input source according
to the following rule: If the stack contains data, the algorithm obtains its next
input byte from the stack. If the stack is empty, the algorithm obtains its next
input byte from the input file.

The effect of these rules is “local” expansion of byte pairs; that is, if a byte
expands to a pair, and that pair contains one or more bytes in need of expansion,
the algorithm will expand the newly created bytes before it reads any more from
the input file.

5 Advantages of BPE

One significant advantage of the BPE algorithm is that compression never in-
creases the data size. This guarantee makes BPE suitable for real-time ap-
plications where the type of data to be compressed may be unknown. If no
compression can be performed, BPE passes the data through unchanged except
for the addition of a few header bytes to each block of data. Some algorithms,
including LZW, can greatly inflate the size of certain data sets, such as ran-
domized data or pre-compressed files.

LZW compression adapts linearly to frequently occurring patterns, building
up strings one character at a time. The BPE algorithm adapts exponentially to
patterns, since both bytes in a pair can represent previously defined pair codes.
The previously defined pair codes can themselves contain nested codes and
can expand into long strings. This difference between LZW and BPE provides
better compression for BPE in some cases. For example, under BPE a run of
1024 identical bytes in a row is reduced to a single byte after only ten pair
substitutions. This nesting of pair codes is the real power of the algorithm. The
following example illustrates this process:

Original input data string: ABABCABCD

Change pair AB to unused X: XXCXCD

Change pair XC to unused Y: XYYD

Finally, both BPE’s compression and expansion algorithms require little
memory for data arrays, 5 to 30K for compression and only 550 bytes for ex-
pansion. The expansion routine is so simple that, coded in assembler, it should
require only about 2K of memory for all code and data.

6 Results

The BPE program delivers performance comparable to LZW, as shown in Ta-
ble 1. I compressed and expanded what I consider to be a typical binary file,
the Windows 3.1 program WIN386.EXE. I measured the timing on a 33MHz
486DX PC compatible using MS-DOS 5.0 and Borland C++ 3.0.

5

12 bit LZW 14 bit LZW Default BPE Small BPE Fast BPE

Original file
size (bytes)

544,789 544,789 544,789 544,789 544,789

Compressed file
size (bytes)

299,118 292,588 276,955 293,520 295,729

Compression time
(secs)

28 28 55 41 30

Expansion time
(secs)

27 25 20 21 19

Compression data
size (bytes)

25,100 90,200 17,800 4,400 17,800

Expansion data
size (bytes)

20,000 72,200 550 550 550

Table 1: Comparison of LZW and BPE performance

I tested the BPE program against the LZW program, LZW15V.C, from The
Data Compression Book by Mark Nelson [1], using 12-bit codes with a 5021
entry hash table and 14-bit codes with a 18041 entry hash table. The 12-bit
version uses less memory for data but does not compress quite as well. I also
tested several other LZW programs and obtained similar results.

The Default BPE column shows the results of using the default parameters
from Listing 3, which are tuned for good performance on all types of files,
including binary and text. Although BPE packed this binary file slightly better
than LZW, performance will vary on other files depending on the type of data.

The Small BPE column shows the results of reducing the amount of memory
available for the compression program data arrays. I changed BLOCKSIZE from
5000 to 800 and HASHSIZE from 4096 to 1024. These changes only slightly
decreased the compression ratio on the binary file, but the smaller buffer size
will not work as well on text files.

The Fast BPE column shows the results of increasing compression speed,
by changing THRESHOLD from 3 to 10. This change caused the program to
skip pairs with less than 10 occurrences. Since the program compresses most
frequently occurring pairs first, skipping low-frequency pairs near the end of
block processing has little effect on the amount of compression but can signifi-
cantly improve speed. This change reduced the compression time from 55 to 30
seconds.

7 Enhancing BPE

The BPE algorithm could be enhanced by block size optimization. The block
size is critical to both the compression ratio and speed. Large blocks work better
for text, small blocks work better for binary data.

8 Conclusion

It’s surprising that the BPE algorithm works as well as it does, considering that
it discards all information on previous data and does not use variable-sized bit
codes, contrary to many modern compression techniques. The BPE compres-
sion algorithm is useful for applications requiring simple, fast expansion of com-
pressed data, such as self-extracting programs, image display, communication

6

links and embedded systems. Advantages include a small expansion routine, low
memory usage, tunable performance, and good performance on worst-case data.
The disadvantages of BPE are slow compression speed and a lower compression
ratio than provided by some of the commonly used algorithms, such as LZW.
Even with these disadvantages, BPE is a worthwhile technique to have at your
disposal.

References

[1] Nelson, M. The Data Compression Book. M&M books, 1991.

[2] Welch, T. A. A technique for high-performance data compression. Com-
puter, 6 (1984), 8–19.

[3] Ziv, J., and Lempel, A. A universal algorithm for sequential data com-
pression. IEEE Transactions on information theory 23, 3 (1977), 337–343.

Listing 1 Compression algorithm (pseudocode)

While not end of file

Read next block of data into buffer and

enter all pairs in hash table with counts of their occurrence

While compression possible

Find most frequent byte pair

Replace pair with an unused byte

If substitution deletes a pair from buffer,

decrease its count in the hash table

If substitution adds a new pair to the buffer,

increase its count in the hash table

Add pair to pair table

End while

Write pair table and packed data

End while

Listing 2 Expansion algorithm (pseudocode)

While not end of file

Read pair table from input

While more data in block

If stack empty, read byte from input

Else pop byte from stack

If byte in table, push pair on stack

Else write byte to output

End while

End while

7

Listing 3 Compression program

/* compress.c */

/* Copyright 1994 by Philip Gage */

#include <stdio.h>

#define BLOCKSIZE 5000 /* Maximum block size */

#define HASHSIZE 4096 /* Size of hash table */

#define MAXCHARS 200 /* Char set per block */

#define THRESHOLD 3 /* Minimum pair count */

unsigned char buffer[BLOCKSIZE]; /* Data block */

unsigned char leftcode[256]; /* Pair table */

unsigned char rightcode[256]; /* Pair table */

unsigned char left[HASHSIZE]; /* Hash table */

unsigned char right[HASHSIZE]; /* Hash table */

unsigned char count[HASHSIZE]; /* Pair count */

int size; /* Size of current data block */

/* Function prototypes */

int lookup (unsigned char, unsigned char);

int fileread (FILE *);

void filewrite (FILE *);

void compress (FILE *, FILE *);

/* Return index of character pair in hash table */

/* Deleted nodes have count of 1 for hashing */

int lookup (unsigned char a, unsigned char b)

{

int index;

/* Compute hash key from both characters */

index= (a ^ (b << 5)) & (HASHSIZE-1);

/* Search for pair or first empty slot */

while ((left[index[!= a || right[index] != b) &&

count[index] != 0)

index = (index + 1) & (HASHSIZE-1);

/* Store pair in table */

left[index] = a;

right[index]= b;

return index;

}

8

/* Read next block from input file into buffer */

int fileread (FILE *input)

{

int c, index, used=0;

/* Reset hash table and pair table */

for (c = 0; c < HASHSIZE; c++)

count[c] = 0;

for (c = 0; c < 256; c++) {

leftcode[c] = c;

rightcode[c] = 0;

}

size= 0;

/* Read data until full or few unused chars */

while (size < BLOCKSIZE && used < MAXCHARS &&

(c = getc(input)) != EOF) {

if (size > 0) {

index = lookup(buffer[size-1],c);

if (count[index] < 255) ++count[index];

}

buffer[size++] = c;

/* Use rightcode to flag data chars found */

if (!rightcode[c]) {

rightcode[c] = 1;

used++;

}

}

return c == EOF;

}

/* Write each pair table and data block to output */

void filewrite (FILE *output)

{

int i, len, c = 0;

/* For each character 0..255 */

while (c < 256) {

/* If not a pair code, count run of literals */

if (c == leftcode[c]) {

len = 1; c++;

while (len<127 && c<256 && c==leftcode[c]) {

len++; c++;

}

9

putc(len + 127,output); len = 0;

if (c == 256) break;

}

/* Else count run of pair codes */

else {

len = 0; c++;

while (len<127 && c<256 && c!=leftcode[c] ||

len<125 && c<254 && c+1!=leftcode[c+1]) {

len++; c++;

}

putc(len,output);

c -= len + 1;

}

/* Write range of pairs to output */

for (i = 0; i <= len; i++) {

putc(leftcode[c],output);

if (c != leftcode[c])

putc(rightcode[c],output);

c++;

}

}

/* Write size bytes and compressed data block */

putc(size/256,output);

putc(size%256,output);

fwrite(buffer,size,1,output);

}

/* Compress from input file to output file */

void compress (FILE *infile, FILE *outfile)

{

int leftch, rightch, code, oldsize;

int index, r, w, best, done = 0;

/* Compress each data block until end of file */

while (!done) {

done = fileread(infile);

code = 256;

/* Compress this block */

for (;;) {

/* Get next unused char for pair code */

10

for (code--; code >= 0; code--)

if (code==leftcode[code] && !rightcode[code])

break;

/* Must quit if no unused chars left */

if (code < 0) break;

/* Find most frequent pair of chars */

for (best=2, index=0; index<HASHSIZE; index++)

if (count[index] > best) {

best = count[index];

leftch = left[index];

rightch = right[index];

}

/* Done if no more compression possible */

if (best < THRESHOLD) break;

/* Replace pairs in data, adjust pair counts */

oldsize = size - 1;

for (w = 0, r = 0; r < oldsize; r++) {

if (buffer[r] == leftch &&

buffer[r+1] == rightch) {

if (r > 0) {

index = lookup(buffer[w-1],leftch);

if (count[index] > 1) --count[index];

index = lookup(buffer[w-1],code);

if (count[index] < 255) ++count[index];

}

if (r < oldsize - 1) {

index = lookup(rightch,buffer[r+2]);

if (count[index] > 1) --count[index];

index = lookup(code,buffer[r+2]);

if (count[index] < 255) ++count[index];

}

buffer[w++] = code;

r++; size--;

}

else buffer[w++] = buffer[r];

}

buffer[w] = buffer[r];

/* Add to pair substitution table */

leftcode[code] = leftch;

rightcode[code] = rightch;

11

/* Delete pair from hash table */

index = lookup(leftch,rightch);

count[index] = 1;

}

filewrite(outfile);

}

}

void main (int argc, char *argv[])

{

FILE *infile, *outfile;

if (argc != 3)

printf("Usage: compress infile outfile\n");

else if ((infile=fopen(argv[1],"rb"))==NULL)

printf("Error opening input %s\n",argv[1]);

else if ((outfile=fopen(argv[2],"wb"))==NULL)

printf("Error opening output %s\n",argv[2]);

else {

compress(infile,outfile);

fclose(outfile);

fclose(infile);

}

}

/*End of File */

Listing 4 Expansion program

/* expand.c */

/* Copyright 1994 by Philip Gage */

#include <stdio.h>

/* Decompress data from input to output */

void expand (FILE *input, FILE *output)

{

unsigned char left[256], right[256], stack[30];

short int c, count, i, size;

/* Unpack each block until end of file */

while ((count = getc(input)) != EOF) {

/* Set left to itself as literal flag */

12

for (i = 0; i < 256; i++)

left[i] = i;

/* Read pair table */

for (c = 0;;) {

/* Skip range of literal bytes */

if (count > 127) {

c += count - 127;

count = 0;

}

if (c == 256) break;

/* Read pairs, skip right if literal */

for (i = 0; i <= count; i++, c++) {

left[c] = getc(input);

if (c != left[c])

right[c] = getc(input);

}

if (c == 256) break;

count = getc(input);

}

/* Calculate packed data block size */

size = 256 * getc(input) + getc(input);

/* Unpack data block */

for (i = 0;;) {

/* Pop byte from stack or read byte */

if (i)

c = stack[--i];

else {

if (!size--) break;

c = getc(input);

}

/* Output byte or push pair on stack */

if (c == left[c])

putc(c,output);

else {

stack[i++] = right[c];

stack[i++] = left[c];

}

}

}

13

}

void main (int argc, char *argv[])

{

FILE *infile, *outfile;

if (argc != 3)

printf("Usage: expand infile outfile\n");

else if ((infile=fopen(argv[1],"rb"))==NULL)

printf("Error opening input %s\n",argv[1]);

else if ((outfile=fopen(argv[2],"wb"))==NULL)

printf("Error opening output %s\n",argv[2]);

else {

expand(infile,outfile);

fclose(outfile);

fclose(infile);

}

}

/* End of File */

14

