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Abstract— State-of-the-art calibration methods typically
choose to use a checkerboard as the calibration target for its
simplicity and robustness. They however require the complete
checkerboard be captured to break symmetry. More recent
multi-camera systems such as Google Jump, Jaunt, and camera
arrays have limited overlapping field-of-view (FoV) and having
all cameras viewing the complete checkerboard is extremely
difficult in reality. Tailored patterns such as CALTag [1] intro-
duce new image features within the checker blocks for breaking
symmetry but they also break the grid topology. We present
a new technique using such patterned calibration targets for
a broad range of multi-camera systems. Our key observation
is that applying directional gradient filters yields to heteroge-
neous responses on grid vs. non-grid features: the former are
isolated and the latter are highly inter-connected. We therefore
apply a simple but highly efficient technique to eliminate
non-grid outliers based on connected component analysis and
gradient histograms. Finally, we recover the complete grid by
approximating each local checkerboard as a parallelogram and
imposing the topology constraint. We conduct comprehensive
experiments on a number of recent multi-camera systems and
our technique significantly outperforms the state-of-the-art in
accuracy and robustness.

I. INTRODUCTION

The first step in 3D computer vision tasks is camera cal-
ibration. State-of-the-art multi-camera calibration solutions
unanimously choose to use a checkerboard as the calibration
target for its simplicity and accuracy. The fundamental
problem there is to establish correspondences across multiple
cameras [2]. The process needs to be fully automatic and
the solution needs to be efficient and reliable to noise,
illumination inconsistencies, blurs, etc. The simplest choice
of the calibration pattern is a checkerboard where reliable
corner detection schemes can be directly used. However, the
checkerboard patterns also introduce ambiguity: unless the
complete checkerboard is captured, the correspondences ex-
hibit ambiguity due to symmetry. Hence an implicit assump-
tion in many state-of-the-art solutions is that the cameras
have a large overlapping field-of-view (FoV).

More recent multi-camera systems such as Google Jump,
Jaunt, and circular camera arrays employ a very different
layout: the cameras are strategically separated to cover
different parts of the scene. Such systems attempt to use
as few cameras as possible to reduce both the cost and the
storage/bandwidth, and therefore the cameras exhibit very
limited overlapping FoV. Directly applying the state-of-the-
art solutions such as [3], [4] to calibrating the cameras
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(a) A 4×4 high resolution camera array

(b) A 360 circular camera array

(c) A 2×4 low resolution camera array

(d) A 1×4 circular camera array

Fig. 1. Real multi-camera systems and calibration results by our method.

results in capturing many more images than the traditional
binocular calibration case since a large proportion of partial
checkerboard images are rejected. In short, multi-camera
calibration is still far from being solved [5] especially on
contemporary camera systems.

The most straightforward approach to make partial images
useful is to use textural patterns. For example, CALTag
[1] exploits rich features on specially designed patterns to
break symmetry. A downside though is that it would be
difficult to impose the grid topology which is crucial for
maintaining accuracy in calibration. We present a new simple
but effective calibration technique suitable for a broad range
of multi-camera systems by employing a much broader
range of patterns. The key to our approach is that applying
directional gradient filters yields to heterogeneous responses
on grid vs. non-grid features: the former are scattered and



(a) A random noise
pattern [8]

(b) An ARTag pattern
[9]

(c) A five shades of grey
pattern [11]

(d) A CALTag pattern
[1]

(e) Our hand written
pattern

(f) Our rounded letters
pattern

(g) Our sliced letters
pattern

(h) Our cartoon letters
pattern

(i) Our random symbols
pattern

Fig. 2. Examples of related self-identified patterns (a∼d) and our tagged
checkerboard pattens (e∼i).

the latter are highly inter-connected. We then develop highly
efficient techniques to eliminate the non-grid features based
on connectivity and gradient histogram analysis and recover
the complete grid via the topology constraint. We conduct
comprehensive experiments on a number of recent multi-
camera systems. In several cases, we show that by even
adding hand written characters onto the checkerboard grid
produces highly accurate calibration results (e.g., Fig. 15)).
Our technique therefore provides more practical and effective
alternative to the state-of-the-art.

II. RELATED WORK

According to early work of [6], [7], it is well known
that one can recover both intrinsic and extrinsic parameters
of a moving camera at the same time if we have at least
three images of the same object (with sufficient feature
points) assuming intrinsic parameters remain constant. This
is known as camera self-calibration. Nevertheless, in practice
it is rather difficult to ensure the accuracy of the parameters
through self-calibration from arbitrary, unknown objects [2].
Especially, such self-calibration is not suitable for cases
when the camera system cannot be easily moved due to
cable restriction or fixtures; also such method does not apply
to scenes where there might be multiple moving objects or
non-rigid objects (such as human bodies).

Hence in practice, especially in applications where high
accuracy of calibration parameters is needed (such as in
Robotics or Virtual Reality), calibration is usually conducted
beforehand with a pre-designed calibration rig (or pattern).
The most classical designed pattern is a checkerboard.
Thanks to its regular shape and high contrast appearance,
not only can we conveniently compute the correspondence of

corner features of the checkerboard with subpixel accuracy,
but also can easily estimate the 3D pose of the checkerboard.
There are many established methods that can automatically
detect checkerboards in images [3], [4], [5]. However, images
containing only an incomplete pattern cannot be used for esti-
mating relative pose of the checkerboard due to ambiguity. In
reality, ensuring every image containing the whole pattern is
very difficult and sometimes impossible [5], especially when
we calibrate a system of many cameras, such as the ones
shown in Fig. 1.

To overcome this problem, the so-called self-identified pat-
terns are introduced. That is, relative pose of the calibration
rig can be estimated even if only part of pattern is detected
and matched in images. Many self-identified patterns and
detection methods have been introduced in the past several
years. [8] has designed a random noise based planar pattern
(see Fig. 2(a) for example). Based on this pattern, point
correspondences can be solved by matching SURF features.
However, feature matching is not robust enough in practice.
Calibration may fail due to too many outliers (see our
experiment).

[9], [10] have designed a pattern by regularly placing
some square coded tags on a plane, and each square tag
can be uniquely identified by its code (see Fig. 2(b)). [1]
has extended this idea by placing tags in the square region
of a checkerboard (see Fig. 2(d)). This not only makes the
pattern more compact, but also leads to more accurate point
location estimation for X-junctions [3]. However, these tag-
based methods suffer when the camera is not ideal (e.g.,
low-resolution or high noise level) [3]. The main reason
is that these methods are based on region detection. Since
region detection is usually less reliable than edge and corner
detection, that makes such tag-based methods more prone to
failures in practice than the checkerboard.

[11] has designed a square-based pattern by encoding iden-
tity information through variation of neighboring squares’
shade of grey (see Fig. 2(c)). Although detecting this pattern
can help to estimate camera pose even in real time, this
method is not quite suitable for camera calibration since it
relies on line fitting and vanishing point estimation which do
not work so well when there is large lens distortion [3].

III. TCAD: TAG-FLEXIBLE CHECKERBOARD ADVANCE
DETECTOR

In this work, we propose to use the CALTag like pattern,
but instead of binary codes, our method allows many differ-
ent types of identity tags or textures to be used in the square
regions of the checkerboard. Since we are flexible with the
tags, it is difficult to use any region based methods for
detection. So we are compelled to use the low-level corner
features for correspondence and recovering geometry. Since
each image may only contain a partial region of the whole
pattern, one needs to detect as many as possible corners of
the visible part of the checkerboard. As the tags inside the
squares also contain many “corner-like” feature points, this
poses a good challenge: how to extract the true corners of



Input image Generate corner candidates ܥ from 
corner response map(CRM) [4]

Remove non‐isolated candidates 
in CRM, ܥ → ୒୐ܥ

Non‐inner corner elimination by 
clustering their gradient histogram, 

୒୐ܥ → ୅ୌܥ

Grow checkerboard 
grid, ܥ୅ୌ → ࣠

Fine‐tuning grid points, 
࣠ → Output

Fig. 3. The processing pipeline of TCAD.

the checkerboard despite all the additional corner features?
Our method is essentially to address this challenge.

To produce candidate corner points, we use the same cor-
ner detector as the Matlab build-in function detectChecker-
boardPoints [12] which is based on [4]. The work of [4]
is essentially developed for plain checkerboard pattern: first
some corner candidates are found and then a rectangular grid
is grown from these candidates. To apply the same idea to
the checkerboard filled with tags, we have designed several
additional techniques in order to robustly detect corners of
the checkerboard among all corner candidates from the tags.
The overall pipeline of our method is shown on Fig.3.

A. Preprocessing

The preprocessing step is to produce a set of possible
corner candidates, denoted as C. For each image, we generate
two sets of candidates from the corner response maps (CRM)
produced by the method of [4] using the 0-degree filter and
45-degree filter, respectively. Fig. 4(b) shows an example of
the response map and the suggested corner candidates. The
CRM has the same size as the input image, and its value
at each pixel represents the likelihood of the pixel to be an
inner corner of the checkerboard.

B. Filtering Corner Candidates

As the example shown in Fig. 4(b), due to the filled tags,
the CRM produces too many candidates (363 in this case) but
only a few of them are the desired corner of the checkerboard
(54 in this case). In order to reliably grow the checkerboard
grid, all the false candidates introduced by points on the tags
should be filtered out.

1) Eliminate large corner clusters in CRM: According
to the preprocessing step, inner corners of a checkerboard
should be distinctive peaks on CRM. By taking advantage of
this property, many incorrect candidates could be removed.
We treat CRM as an image, and use Otsu’s method [13] to
binarize it (see Fig. 4(c)). As we can see, each inner corner
represents a highly localized cluster on this image and yet
most corner features from the tags form larger clusters. So
to detect and remove such (false) large clusters of corners
from the tags, we build a graph G from this binary image,
with vertices V and edges E defined as follows:

G = (V,E), (1)

V = {vi|vi ∈ bw(CRM),vi = 1}, (2)

E = {(vi,v j)|vi ∈V,v j ∈V,norm(vi,v j)≤
√

2} (3)

where bw(CRM) is the binarized image of CRM. We then
remove candidates belonging to large connected components
of this graph.

More formally, we want to find the subset of the original
candidates which satisfied:

CNL = {ci|ci ∈C,max
v j∈V

(dist(G,ci,v j))≤ Lmax} (4)

where dist(G,ci,v j) means the shortest distance from ci to
v j on G, and Lmax is the maximum threshold value of the
shortest distance. Since the graph has the same edge weight,
we can use BFS (Breadth-First-Search) to compute the length
of all paths starting from a candidate to other vertices in
its component. Therefore the remaining set CNL does not
contain candidates which has a connected path larger than
the threshold Lmax (see Fig.4(d)).

2) Filter corner candidates by gradient histogram: After
the previous step, there are still some unwanted candidates
since they might belong to a small connected component
after binarization. In this step, we further remove false
candidates whose gradient characteristic does not resemble
that of a checkerboard corner. [4] adjusts the score of
each candidate based on how the gradient of the candidate
matches that of a correct corner. It works for relatively
clean checkerboard. However, such simple method is not
robust enough to work for our images (as we will compare
extensively in our experiments).

To significantly improve the robustness of checkerboard
corner detection, we need to utilize the characteristics of
gradients around the candidates in much greater details. In
addition, since in our images, most corners (including those
of the checkerboard) are subject to significant perspective
and lens distortion, it is difficult to generate a template (as
[4] did) for the corners of the checkerboard. We need to
rely on the consistency of the gradient characteristics of the
correct corners to remove all other outliers.

a) Fast gradient histogram computation: We compute
the gradients around a candidate in its n×n neighborhood (by
default n = 20). To compute the histogram of the gradients,
we discretize 360 degrees into 64 bins, and the value of each
bin represents the number of pixels whose gradient direction
is within 1

2 ·
2π

#Bins of this bin.



(a) Input image (b) Corner response map
(CRM) and corner candidate
set C

(c) Binary CRM (d) Removed candidates on
large clusters (the set CNL)

(e) Removed candidates af-
ter histogram filtering (the set
CAH)

(f) Grown checkerboard (the
set F )

(g) Warped detected
point grid

(h) The location of detected
point grid
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(j) The pattern template

Fig. 4. Intermediate results of TCAD. Only the results under 0 degree filter are demonstrated here for example, but both 0 degree and 45 degree filters
are in the process actually.

Counting gradients in n× n neighborhoods for all can-
didates, it requires O(|CNL| · n2) running time, where |CNL|
means the size of the set CNL.

To reduce the computational cost, we borrow the idea from
integral histogram [14]. Denote H as the histogram operator
H(R) ≡ h, where R represents an image region and h is
the histogram of R. We build a histogram area table (HAT)
and each element of HAT represents HAT(i, j)≡H(R(i, j)),
where R(i, j) = {I(x,y)|x ≤ i,y ≤ j} in which I is the input
image, and it can be efficiently computed by

HAT(i, j) = H(I(i, j))+HAT(i−1, j)+HAT(i, j−1)
−HAT(i−1, j−1). (5)

As we see, it takes O(|I|) time to compute HAT, where |I|
represents the number of pixel of I. Nevertheless, notice that
HAT can be computed in our preprocessing step where we
need image gradients to produce the corner candidates. Once
we have HAT, it is easy to verify that the histogram of any
rectangular region can be computed in O(1) time by

H(R) = HAT(D)+HAT(A)−HAT(B)−HAT(C), (6)

where R is a region and A, B, C, D are the four vertexes of
R (as shown in Fig.5).

b) Histogram clustering: Since typical corners of the
checkerboard resemble a saddle point or an X-junction [3],
their histograms will has four dominant bins which other
random corners do not have (see Fig. 6). From our experi-
ence, conventional similarity measures (such as χ2 distance)

A B

C D

R

Fig. 5. Demonstration of the relationship between H and HAT.
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(a) The gradient histogram of the
red point in Fig.4(a) which is an
inner conner of the checkerboard
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(b) The gradient histogram of the
green point in Fig.4(a) which is
NOT an inner conner

Fig. 6. The difference of histograms between inner corner’s and unwanted
candidate’s.

between histograms are not robust enough as the peaks of the
histogram of different corners of the checkerboard may shift
due to distortion. Hence, we need a procedure that explicitly
identify and match those peaks, and measure how close those
peaks are in orientation.

To this end, we extract four peaks of a histogram hci

for each candidate ci ∈ CNL and denote them as D(hci) ≡
{d1,d2,d3,d4}, where di (i = 1,2,3,4) is the i-th largest
bin of hci . The similarity between the histograms of two
candidates ci and c j can be defined as

S(ci,c j) =

{
1 max(DA(hci ,hc j))< Thangle,

0 otherwise,
(7)

where DA(hci ,hc j) means the angle difference of any one-
one matching between D(hci) and D(hc j). Based on this
measurement, we can define the similarity set of ci as

T (ci)≡ {c j|c j ∈CNL,S(ci,c j) = 1}. (8)

The largest similarity set then corresponds to the set of
corners on the checkerboard which we denote as

CAH = arg max
T (ci),ci∈CNL

|T (ci)|. (9)



(a) A seed point with its 4 neigh-
bors forming a cross

(b) Growing into a 3×3 point grid

(c) Growing into a 3×4 point grid
by expanding a boundary of (b)

(d) The largest point grid for the
initial candidate seed

Fig. 7. Intermediate results of checkerboard growing.

The remaining clusters (points) are all removed. Fig.4(e)
shows the result of this step applied to a real image.

C. Growing Checkerboard

As we can see from Fig. 4(e), after the previous filtering
steps, there might still be a few outliers left. Notice that
so far we have only used local information in previous
processing/filtering steps, we now use the global structural
information of checkerboard grid to remove the remaining
outliers and reconstruct the visible part of the grid. We follow
a similar procedure in [4] for recovering the grid, but we here
utilize some new techniques to select the candidates and grow
the grid more robustly (see Fig. 7 for an illustration of the
procedure).

Denote the set of identified inner corners of the checker-
board as F and initially F = /0. First, a candidate with high
score to be an inner corner will be selected as the seed point
and added into F . Second, using the 4 directions identified
from the histogram clustering in previous step, we can grow
F by finding 4 candidates which not only align with these
4 directions, but also closest to the seed point. After that
all points in F will form a cross. By using our selection
method, the initial 3× 3 point grid will be generated. We
then repeatedly expand the boundary of the point grid until
we can no longer make it larger.

Our contribution here is to robustly select candidates in
each growing step. While finding candidates along lines of
the existing grid F is easy, it is difficult to locate points off
such lines. Notice that the image of each small square of
a checkerboard is nearly a parallelogram, even under large
lens distortion or severe perspective. So whenever we need
to find a candidate point off the lines of the existing grid,
we enforce the newly selected point to form a parallelogram
with points in F .

(a) Detected grid
points

(b) Before fine
tuning

(c) After fine tun-
ing

Fig. 8. Example of an inaccurate grid point. (b) Point number 15 is not
exactly a corner of the checkerboard. (c) Point location fine-tuned by our
method.

arg min
ci∈CAH

Es(ci)

El(ci)

s.t. Es(ci) =
‖e1 + e2− e3‖
‖e1− e2‖

, El(ci) = CRM(ci). (10)

where

e1 = ci−P1, P1 = arg min
f∈F

(dist(ci, f )), (11)

e2 = ci−P2, P2 = argmin
f∈F−{P1}

(dist(ci, f )), (12)

e3 = ci−P3, P3 = arg min
f∈F−{P1,P2}

(dist(ci, f )). (13)

Small value of Es(ci) indicates that ci satisfy the parallel-
ogram constrain. El(ci) indicates the likelihood of ci being
an inner corner (from CRM). The optimal solution of this
problem will be the candidate added to F .

D. Fine-tuning Inaccurate Grid Points

Although very unlikely to happen, a few points in the
grid grown might belong to incorrect candidates (see Fig. 8
for example). The main reason is that some poorly designed
tags may produce corners very similar to those of the
checkerboard.

In order to correct such errors and fine tune the detected
grid, we know from [15] that homogeneous coordinates of a
point on the planar calibration rig xc

i and its image coordi-
nates xd

i satisfy the constraint xd
i

T Fxc
i = 0 for some matrix

F ∈ℜ3×3. We can robustly estimate F using RANSAC since
most of the points in the detected grid are correct. For
points that violate this constraint for the estimated F , we
search around its neighborhood in C for xd

i that satisfies this
constraint. Fig. 8(c) shows an example of the fine-tuning
result.

E. Identify Detected Grid Points

Since the checkerboard pattern is textured with tags, may
methods can be used to identify the detected grid points
against the original calibration pattern. For challenging con-
ditions, one could use powerful features such as SIFT or
classification tools such as DNN (Deep Neural Networks) to
recognize those tags. But based on our experience with all the
experiments presented in this paper, we found that a simple
patch-based matching technique suffices our purpose. We
first correct the perspective and scale distortion by warping



(a) The CALTag pat-
tern

(b) Our hand written
pattern

(c) Our rounded letters
pattern

(d) Our sliced letters
pattern

(e) Our cartoon letters
pattern

(f) Our random sym-
bols pattern

Fig. 9. Patterns of our Dataset with grids detected by our method.

the image with a homography estimated from detected point
grid and a standard grid (see Fig. 4(g) for an example).
Then we use NCC (Normalized Cross Correlation) to match
the regions of the warped image to those of the calibration
pattern. Once the regions are matched, the identity of each
point (against the calibration pattern) can be found (see Fig.
4(i)).

IV. EXPERIMENTAL EVALUATION

We evaluate our method TCAD by comparing with the
state-of-the-art calibration methods, namely Matlab [4], OC-
PAD [5], and CALTag [1] on 1. some popular standard
datasets and our own dataset (that further tests robustness
of various methods); 2. calibrating several real-world multi-
camera systems (as those shown in Fig. 1).

A. Evaluation on Calibration Datasets

The datasets we used in this paper are: various stan-
dard checkerboard datasets used in [3], [5] and our tagged
checkerboard dataset.1 We measure the detection perfor-
mance by counting the number of images with missed
detections (MD, reporting nothing on a valid image), false
detections (FD, reporting at least one false detected corner),
and successful detections (SD, reporting a point grid without
error).

The detection performance of all the methods on all
datasets are summarized in Table I (Each method we used
for comparison is implemented by their authors). Although
Matlab and OCPAD slightly outperform our method on the
low-quality dataset MesaSR4000, our method is the only
method that performs perfectly on the remaining datasets.

In order to evaluate our method’s performance and ro-
bustness under different resolution, distortion, and pattern
designs, we build a comprehensive dataset of images taken
with a cellphone camera (5312× 2988), a cheap fisheye
camera (1920× 1080), and GoPro Hero 4 (under WVGA
mode, 848× 480). Six tagged patterns are used for our
dataset, as shown in Fig.9. Except for the CALTag pattern,
84 images are taken for each pattern by the three cameras
(28 images each).The number of CALTag pattern images
(Fig. 9(a)) is 155, which is more than the others. The

1We will release our dataset and code upon publication.

reason is to give more thorough comparison with the original
CALTag method [1]. The evaluation results are shown and
compared in Table I. As one can see, our method significantly
outperforms all existing methods on this dataset. Out of all
the 575 images, and our method only failed on five whereas
other methods all fail badly on some (or all) of the patterns or
on images taken by some cameras. This suggests our method
is indeed very robust to practical variations of real cameras.

Our method is designed for off-line calibration tasks,
therefor reducing the running time is not our first priority.
However, we show the running time of our method in Table
II for those readers who care about real time applications.
Our method is implemented in MATLAB (not optimized)
and the test platform is a desktop computer with a Core i7
CPU (Intel Core i7-6950X) and 128 GB of DDR4 memory.

B. Evaluation on Real Multi-camera Systems

We now evaluate and compare our method by calibrating
several real multi-camera systems for various practical :

I The first one is a large baseline light-field system
which consists of 4×4 Canon DV cameras, and each
camera’s resolution is 1920×1080 (see Fig. 1(a)).

II A 360 circular camera array for 3D panorama which
consists of 12 GoPro Hero 4 and each cameras’ reso-
lution is 1440×1080 (see Fig. 1(b)).

III A 2× 4 low-resolution webcam array and each cam-
eras’ resolution is 192×144 (see Fig. 1(c)).

IV A 1×4 circular camera array for reconstruction which
consists of 4 high resolution Canon DSLR (Digital Sin-
gle Lens Reflex) cameras and each camera’s resolution
is 6000×4000 (see Fig. 1(d)).

V A self-made stereo cameras are consist of 2 GoPro
Hero 4 (under 5MP mode, 2560×1920), with a base-
line about 30cm. The calibration rig is simply some
words written on a standard checkerboard printed on
an A4 paper.

We evaluate our method by calibrating these camera
systems and comparing with existing methods such as the
random pattern based method and CALTag. Since system I,
II, III and V are made up of pre-calibrated cameras with
fixed focal length and system IV is made up of DSLR
cameras with adjustable focal length, our calibration tasks
are (i) extrinsic calibration of system (I-III,V) and (ii) joint
intrinsic and extrinsic calibration of system IV. The calibra-
tion results are compared by measuring the mean vertical
parallax (MVP) of each pair after epipolar rectification.
Since the random pattern based method fails to calibrate
the 4×4 camera array, we only compares the result of our
method with CALTag [1]. Since our method can also work
on the CALTag pattern, we use only the CALTag pattern to
compare, to be fair for [1].

a) The 4× 4 light-field system: Since for this system,
the baseline is large (400mm) and each camera’s FoV is quite
small (about 50 deg in horizontal and 30 deg in vertical), it
is impossible to ensure all cameras see the entire calibration
pattern. In this experiment, we randomly move the CALTag
pattern in front of the camera array and capture 20 images for



TABLE I
COMPARISON OF DETECTION RESULTS FOR MATLAB [4], OCPAD [5], CALTAG [1] AND OUR METHOD (TCAD). THE PERFORMANCE IS MEASURED

BY COUNTING THE NUMBER OF IMAGES WITH MISS DETECTIONS (MD), FALSE DETECTIONS (FD), AND SUCCESSFUL DETECTIONS (SD).

Datasets
Methods number of Matlab[4] OCPAD[5] CALTag[1] TCAD

images MD FD SD MD FD SD MD FD SD MD FD SD
MesaSR4000(StereoWideBaseline) 206 1 2 203 5 0 201 206 0 0 11 2 191

uEye(StereoWideBaseline) 206 0 0 206 0 0 206 206 0 0 0 0 206
GoPro Hero3 100 0 1 99 23 0 77 100 0 0 0 0 100
OCPAD(full) 162 0 0 162 3 0 159 162 0 0 0 0 162

OCPAD(partial-full) 162 0 4 158 95 0 67 162 0 0 0 0 162

O
ur

D
at

as
et

CALTag Pattern 9(a) 155 27 64 64 129 0 26 27 4 124 1 0 154
Hand Written Pattern 9(b) 84 31 38 13 52 1 31 84 0 0 1 0 83

Rounded Letters Pattern 9(c) 84 18 50 16 70 0 14 83 1 0 0 0 84
Sliced Letters Pattern 9(d) 84 21 55 8 76 0 8 83 1 0 1 1 82

Cartoon Letters Pattern 9(e) 84 60 22 2 66 0 18 84 0 0 1 0 83
Random Symbols Pattern 9(f) 84 18 53 13 83 0 1 84 0 0 1 0 83

TABLE II
COMPUTATION TIMES OF TCAD. THE PERFORMANCE IS MEASURED BY THE AVERAGE AND MAXIMUM COMPUTATION TIMES (AT AND MT).

MesaSR uEye GoPro3 OCPAD OCPAD Pattern 9(a) Pattern 9(b) -
4000 (full) (partial) phone fisheye GoPro4 phone fisheye GoPro4 -

AT 2.05s 4.02s 4.67s 3.61s 2.52s 5.98s 5.74s 4.63s 6.15s 5.69s 4.13s -
MT 6.80s 6.86s 18.89s 7.77s 4.14s 12.52s 10.10s 9.95s 9.87s 9.03s 6.86s -

Pattern 9(c) Pattern 9(d) Pattern 9(e) Pattern 9(f)
phone fisheye GoPro4 phone fisheye GoPro4 phone fisheye GoPro4 phone fisheye GoPro4

AT 5.06s 4.63s 4.41s 5.82s 6.09s 5.02s 5.48s 5.59s 4.33s 5.01s 5.27s 4.72s
MT 8.37s 8.43s 8.73s 7.99s 11.54s 6.98s 8.33s 10.01s 7.37s 7.63s 9.07s 9.51s
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(a) MVP for the 4×4 light field system
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(b) MVP for the 360 panorama sys-
tem
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(c) MVP for the 2×4 cam-
era system
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(d) MVP for the 1× 4
DLSR camera system

Fig. 10. Compare the mean vertical parallax (MVP) after rectifying the images captured by three real camera systems (see Fig. 1). Since CALTag fails
in detecting patterns on images from the 360 panorama system and the 2×4 low-resolution light field system, we only show results of our method in (b)
and (c).

each camera synchronously. We use these images to estimate
camera poses and take another 20 images of our tagged
pattern to verify the rectification results. Fig. 11 shows an
example of rectification result based on our method. In
addition, Fig. 10(a) compares mean vertical parallax (MVP)
for CALTag and TCAD. Cam6 was picked as the reference
camera and other cameras are rectified against it. As we see,
TCAD’s mean error is always less than 0.6 pixel for each
camera, consistently less than CALTag.

b) The circular 360 panorama system: Calibrating this
system is more tricky than the first one since GoPro cameras
have large lens distortion and the overlap region is even
smaller. We capture 26 images by moving the calibration
pattern around the systems. Since the CALTag method fails,
we only show the results of TCAD in Fig. 12 and Fig. 10(b).

c) The low-resolution 2×4 light field system: Calibrat-
ing this system is more difficult than others. The main reason
is that CALTag cannot even detect the pattens from this

system due to its low resolution. The experiment settings
are exactly same to the first one, and we show the results
of TCAD in Fig. 13 and Fig. 10(c), and the Cam5 is the
reference camera and other cameras are rectified against it.

d) The 1× 4 DLSR camera system: Calibrating this
system requires more human effort than other systems. We
capture 40 images by randomly moving the pattern inside
the shooting scope. Each camera’s intrinsic parameters are
computed at first, then relative poses of these cameras are
recovered as the second system. We show the results of
TCAD in Fig. 14 and Fig. 10(d).

e) The stereo pair by hand-writing pattern: The hand
writing pattern used here is shown in Fig. 9(b), some ancient
Chinese characters are written on a checkerboard printed on
an A4 paper. 10 images are used to estimate the camera
poses, and the rectification mean error is 0.3415 pixel on the
remaining 18 image pairs. One rectification result is shown
as Fig. 15.



(a) The original image pair

(b) The rectified image pair

Fig. 11. A rectification result of the 4×4 light field system.

(a) The original image pair (b) The rectified image pair

Fig. 12. Rectification result of the 360 panorama system.

(a) The original image pair (b) The rectified image pair

Fig. 13. Rectification result of the 2×4 light field system.

V. CONCLUSION

Due to the emerging applications of VR and AR, the
demand for high-accuracy multi-camera systems is increas-
ing explosively. However people continue to struggle with
accurately calibrating a multi-camera system under diverse
practical conditions [5]. In this paper we have developed
a robust and accurate calibration method TCAD (includ-
ing both calibration patterns and algorithms) that addresses
various practical difficulties in calibration: diverse camera
configurations, severe perspective, large lens distortion, low-
resolution, and limited FoV and incomplete images of the
calibration pattern, etc. Through extensive experiments on
standard calibration datasets and on our own dataset and
multiple practical camera systems, the new method signif-
icantly outperforms existing calibration methods in terms of
both accuracy and robustness.
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