
A New Era of Open-Source
System-on-Chip Design

Christopher Batten

Computer Systems Laboratory
Electrical and Computer Engineering, Cornell University

On Sabbatical as a Visiting Scholar
Computer Laboratory, University of Cambridge

• Open-Source HW • PyMTL Motivation PyMTL v2 PyMTL v3 PyMTL&OSH Celerity Arch Celerity Case Study Celerity&OSH

Motivating Trends in Computer Architecture

Transistors
(Thousands)

MIPS
R2K

Intel
P4

Data collected by M. Horowitz, F. Labonte, O. Shacham, K. Olukotun, L. Hammond, C. Batten
1975 1980 1985 1990 1995 2000 2005 2010 2015

100

101

102

103

104

105

106

107

DEC
Alpha
21264

Typical
Power (W)

Frequency
(MHz)

SPECint
Performance

~9%/year

~15%/year

Number
of Cores

Intel 48-Core Prototype

AMD 4-Core Opteron
 Data-Parallelism via
 GPGPUs & Vector

Hardware
Specialization

 Fine-Grain Task-
 Level Parallelism
 Instruction Set
 Specialization
 Subgraph
 Specialization
 Application-Specific
 Accelerators
 Domain-Specific
 Accelerators
 Coarse-Grain
 Reconfig Arrays
 Field-Programmable
 Gate Arrays

Cornell University Christopher Batten 2 / 50

• Open-Source HW • PyMTL Motivation PyMTL v2 PyMTL v3 PyMTL&OSH Celerity Arch Celerity Case Study Celerity&OSH

Hardware Specialization from Cloud to IoT

Cloud
Computing

Internet
of

Things

Google TPU
I Training is done using the

TensorFlow C++ framework
I Training can take weeks
I Google TPU is custom chip to

accelerate training and inference

Movidius Myriad 2
I Custom chip for ML on

embedded IoT devices
I Specifically focused on vision

processing
I 12 specialized vector VLIW

processors

Cornell University Christopher Batten 3 / 50

• Open-Source HW • PyMTL Motivation PyMTL v2 PyMTL v3 PyMTL&OSH Celerity Arch Celerity Case Study Celerity&OSH

I Graphcore
I Nervana
I Cerebras
I Wave Computing
I Horizon Robotics
I Cambricon
I DeePhi
I Esperanto
I SambaNova
I Eyeriss
I Tenstorrent
I Mythic
I ThinkForce
I Groq
I Lightmatter

How can we accelerate
innovation in

accelerator-centric
system-on-chip design?

Cornell University Christopher Batten 4 / 50

• Open-Source HW • PyMTL Motivation PyMTL v2 PyMTL v3 PyMTL&OSH Celerity Arch Celerity Case Study Celerity&OSH

Software Innovation Today

Your proprietary code
 • Instagram
 • $500K seed with 13 people → $1B

Open-source software
 • Python
 • Django
 • Memcached
 • Postgres/SQL
 • Redis
 • nginx
 • Apache, Gnuicorn
 • Linux
 • GCC

"What Powers Instagram:
Hundreds of Instances,

Dozens of Technologies"
https://goo.gl/76fWrM

Like climbing an iceberg – much is hidden!

Adapted from M. Taylor, “Open Source HW in 2030,” Arch 2030 Workshop @ ISCA’16

Cornell University Christopher Batten 5 / 50

• Open-Source HW • PyMTL Motivation PyMTL v2 PyMTL v3 PyMTL&OSH Celerity Arch Celerity Case Study Celerity&OSH

Hardware Innovation Today

Closed source
 • ARM A57, A7, M4, M0
 • ARM on-chip interconnect
 • Standard cells, I/O pads, DDR Phy
 • SRAM memory compilers
 • VCS, Modelsim
 • DC, ICC, Formality, Primetime
 • Stratus, Innovus, Voltus
 • Calibre DRC/RCX/LVS, SPICE

What you have to build
 • New machine learning accelerator
 • Other unrelated components,
 anything you cannot afford to buy
 or for which COTS IP does not do

Like climbing a mountain – nothing is hidden!

Adapted from M. Taylor, “Open Source HW in 2030,” Arch 2030 Workshop @ ISCA’16

Cornell University Christopher Batten 6 / 50

• Open-Source HW • PyMTL Motivation PyMTL v2 PyMTL v3 PyMTL&OSH Celerity Arch Celerity Case Study Celerity&OSH

Chip Costs Are Skyrocketing

$120M

$500K

Adapted from M. Taylor, “Open Source HW in 2030,” Arch 2030 Workshop @ ISCA’16; original: International Business Strategies & T. Austin.

Cornell University Christopher Batten 7 / 50

• Open-Source HW • PyMTL Motivation PyMTL v2 PyMTL v3 PyMTL&OSH Celerity Arch Celerity Case Study Celerity&OSH

ASIC Starts Are Declining
HW diversity of computing devices is
dwindling…

Source: Gartner Group, T. Austin

20

0

2000

4000

6000

8000

10000

12000

1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014

To
ta
l&A

SI
C&
St
ar
ts

Year

the HW field in general?
Adapted from M. Taylor, “Open Source HW in 2030,” Arch 2030 Workshop @ ISCA’16; original: Gartner Group & T. Austin

Cornell University Christopher Batten 8 / 50

• Open-Source HW • PyMTL Motivation PyMTL v2 PyMTL v3 PyMTL&OSH Celerity Arch Celerity Case Study Celerity&OSH

Minimum Viable Product/Prototype

$120M

$5M

$500K for
4x Performance Penalty
(post-Dennard scaling)

Adapted from M. Taylor, “Open Source HW in 2030,” Arch 2030 Workshop @ ISCA’16; original: International Business Strategies & T. Austin.

Cornell University Christopher Batten 9 / 50

• Open-Source HW • PyMTL Motivation PyMTL v2 PyMTL v3 PyMTL&OSH Celerity Arch Celerity Case Study Celerity&OSH

Minimum Viable Product/Prototype

$120M

Can we use open-source
software/hardware to

address remaining costs?

Adapted from M. Taylor, “Open Source HW in 2030,” Arch 2030 Workshop @ ISCA’16; original: International Business Strategies & T. Austin.

Cornell University Christopher Batten 9 / 50

• Open-Source HW • PyMTL Motivation PyMTL v2 PyMTL v3 PyMTL&OSH Celerity Arch Celerity Case Study Celerity&OSH

How can HW design be more like SW design?

Open-Source Software Hardware

high-level
languages

Python, Ruby, R,
Javascript, Julia

Chisel, PyMTL, PyRTL, MyHDL,
JHDL, C�ash

libraries C++ STL,
Python std libs

BaseJump

systems Linux, Apache, MySQL,
memcached

Rocket, Pulp/Ariane, OpenPiton,
Boom, FabScalar, MIAOW, Nyuzi

standards POSIX RISC-V ISA, RoCC, TileLink

tools GCC, LLVM, CPython,
MRI, PyPy, V8

Icarus Verilog, Verilator, qflow,
Yosys, TimberWolf, qrouter,
magic, klayout, ngspice

methodologies agile software design agile hardware design

cloud IaaS, elastic computing IaaS, elastic CAD

Cornell University Christopher Batten 10 / 50

• Open-Source HW • PyMTL Motivation PyMTL v2 PyMTL v3 PyMTL&OSH Celerity Arch Celerity Case Study Celerity&OSH

Ubuntu Server 16.04 LTS (ami-43a15f3e)

% sudo apt-get update

% sudo apt-get -y install build-essential qflow

% mkdir qflow && cd qflow

% wget http://opencircuitdesign.com/qflow/example/map9v3.v

% qflow synthesize place route map9v3 # yosys, graywolf, qrouter

% wget http://opencircuitdesign.com/qflow/example/osu035_stdcells.gds2

% magic # design def/lef -> magic format

>>> lef read /usr/share/qflow/tech/osu035/osu035_stdcells.lef

>>> def read map9v3.def

>>> writeall force map9v3

% magic # stdcell gds -> magic format

>>> gds read osu035_stdcells.gds2

>>> writeall force

% magic map9v3

>>> gds write map9v3 # design + stdcells magic format -> gds

% sudo apt-get -y install libqt4-dev-bin libqt4-dev libz-dev

% wget http://www.klayout.org/downloads/source/klayout-0.24.9.tar.gz

% tar -xzvf klayout-0.24.9.tar.gz && cd klayout-0.24.9

% ./build.sh -noruby -nopython

% wget http://www.csl.cornell.edu/~cbatten/scmos.lyp

% ./bin.linux-64-gcc-release/klayout -l scmos.lyp ../map9v3.gds

Cornell University Christopher Batten 11 / 50

• Open-Source HW • PyMTL Motivation PyMTL v2 PyMTL v3 PyMTL&OSH Celerity Arch Celerity Case Study Celerity&OSH

“I’m doing a (free) operating system
(just a hobby, won’t be big and professional like gnu)

for 386(486) AT clones.”
— Linus Torvalds, 1991

Cornell University Christopher Batten 12 / 50

Open-Source HW PyMTL Motivation PyMTL v2 PyMTL v3 PyMTL&OSH Celerity Arch Celerity Case Study Celerity&OSH

Open-Source HW PyMTL Motivation • PyMTL v2 • PyMTL v3 PyMTL+OSH Celerity Arch Celerity Case Study Celerity+OSH

PyMTL v2 Syntax and Semantics

1 from pymtl import *

2

3 class RegIncrRTL(Model):

4

5 def __init__(s, dtype):

6 s.in_ = InPort (dtype)

7 s.out = OutPort(dtype)

8 s.tmp = Wire (dtype)

9

10 @s.tick_rtl

11 def seq_logic():

12 s.tmp.next = s.in_

13

14 @s.combinational

15 def comb_logic():

16 s.out.value = s.tmp + 1

Cornell University Christopher Batten 19 / 48

A New Era of
Open-Source SoC Design

I The PyMTL Framework
. PyMTL Motivation
. PyMTL Version 2
. PyMTL Version 3 (Mamba)
. PyMTL & Open-Source Hardware

I The Celerity SoC
. Celerity Architecture
. Celerity Case Study
. Celerity & Open-Source Hardware

I A Call to Action

Cornell University Christopher Batten 13 / 50

Open-Source HW PyMTL Motivation PyMTL v2 PyMTL v3 PyMTL&OSH Celerity Arch Celerity Case Study Celerity&OSH

PyMTL
PyMTL: A Unified Framework for

Vertically Integrated Computer Architecture Research

Derek Lockhart, Gary Zibrat, Christopher Batten
47th ACM/IEEE Int’l Symp. on Microarchitecture (MICRO)

Cambridge, UK, Dec. 2014

Mamba: Closing the Performance Gap in
Productive Hardware Development Frameworks

Shunning Jiang, Berkin Ilbeyi, Christopher Batten
55th ACM/IEEE Design Automation Conf. (DAC)

San Francisco, CA, June 2018

Cornell University Christopher Batten 14 / 50

Open-Source HW • PyMTL Motivation • PyMTL v2 PyMTL v3 PyMTL&OSH Celerity Arch Celerity Case Study Celerity&OSH

Multi-Level Modeling Methodologies

Applications

Transistors

Algorithms

Compilers

Instruction Set Architecture

Microarchitecture

VLSI

Cycle-Level Modeling
– Behavior
– Cycle-Approximate
– Analytical Area, Energy, Timing

Functional-Level Modeling
– Behavior

Register-Transfer-Level Modeling
– Behavior
– Cycle-Accurate Timing
– Gate-Level Area, Energy, Timing

Cornell University Christopher Batten 15 / 50

Open-Source HW • PyMTL Motivation • PyMTL v2 PyMTL v3 PyMTL&OSH Celerity Arch Celerity Case Study Celerity&OSH

Multi-Level Modeling Methodologies

Cycle-Level Modeling

Functional-Level Modeling

Register-Transfer-Level Modeling

– Algorithm/ISA Development

– MATLAB/Python, C++ ISA Sim

– Design-Space Exploration

– C++ Simulation Framework

– gem5, SESC, McPAT

– Prototyping & AET Validation

– Verilog, VHDL Languages

– HW-Focused Concurrent Structural

– SW-Focused Object-Oriented

– EDA Toolflow

Multi-Level Modeling
Challenge

FL, CL, RTL modeling
use very different

languages, patterns,
tools, and methodologies

SystemC is a good example
of a unified multi-level
modeling framework

Is SystemC the best
we can do in terms of

productive
multi-level modeling?

Cornell University Christopher Batten 15 / 50

Open-Source HW • PyMTL Motivation • PyMTL v2 PyMTL v3 PyMTL&OSH Celerity Arch Celerity Case Study Celerity&OSH

VLSI Design Methodologies

DUT

Sim

TB

 HDL
(Verilog)

FPGA/
 ASIC

synth

Fast edit-sim-debug loop

Difficult to create highly
parameterized generators

Single language for
structural, behavioral, + TB

HDL
Hardware Description

Language

DUT'

Sim

TB'

 HDL
(Verilog)

DUT

 Mixed
(Verilog+Perl)

TB

gen

gen

FPGA/
 ASIC

synth

Slower edit-sim-debug loop

Easier to create highly
parameterized generators

Multiple languages create
"semantic gap"

Example: Genesis2

HPF
Hardware Preprocessing

Framework

DUT'

Sim

TB'

 HDL
(Verilog)

DUT

Host Language
 (Scala)

TB TB

FPGA/
 ASIC

gen

gen

synth

* *

Slower edit-sim-debug loop

Easier to create highly
parameterized generators

Cannot use power of host
language for verification

Example: Chisel

HGF
Hardware Generation

Framework

Single language for
structural + behavioral

Cornell University Christopher Batten 16 / 50

Open-Source HW • PyMTL Motivation • PyMTL v2 PyMTL v3 PyMTL&OSH Celerity Arch Celerity Case Study Celerity&OSH

Productive Multi-Level Modeling and VLSI Design

Multi-Level Modeling
SystemC

VLSI Design
Chisel

DUT'

Sim

 HDL
(Verilog)

DUT

Host Language
 (Python)

TB

Sim

 cosim

FPGA/
 ASIC

gen synth

HGSF
Hardware Generation and

Simulation Framework Fast edit-sim-debug loop

Easy to create highly
parameterized generators
Use power of host
language for verification

Single language for
structural, behavioral, + TB

Single framework for ML
modeling & VLSI design

Cornell University Christopher Batten 17 / 50

Open-Source HW PyMTL Motivation • PyMTL v2 • PyMTL v3 PyMTL&OSH Celerity Arch Celerity Case Study Celerity&OSH

PyMTL
PyMTL is a Python-based hardware generation

and simulation framework for SoC design
which enables productive

multi-level modeling and VLSI implementation

Cornell University Christopher Batten 18 / 50

Open-Source HW PyMTL Motivation • PyMTL v2 • PyMTL v3 PyMTL&OSH Celerity Arch Celerity Case Study Celerity&OSH

The PyMTL Framework

Model

PyMTL
Specifications

(Python)

Config

Elaboration Model
Instance

PyMTL "Kernel"
(Python)

Simulatable
Model

Test & Sim
Harnesses

PyMTL
Passes
(Python)

Simulation
Pass

Translation
Pass Verilog

Analysis
Pass

Analysis
Output

Transform
Pass

New
Model

Cornell University Christopher Batten 19 / 50

Open-Source HW PyMTL Motivation • PyMTL v2 • PyMTL v3 PyMTL&OSH Celerity Arch Celerity Case Study Celerity&OSH

PyMTL v2 Syntax and Semantics

1 from pymtl import *

2

3 class RegIncrRTL(Model):

4

5 def __init__(s, dtype):

6 s.in_ = InPort (dtype)

7 s.out = OutPort(dtype)

8 s.tmp = Wire (dtype)

9

10 @s.tick_rtl

11 def seq_logic():

12 s.tmp.next = s.in_

13

14 @s.combinational

15 def comb_logic():

16 s.out.value = s.tmp + 1

s.in_ s.out
+1

s.tmp

Cornell University Christopher Batten 20 / 50

Open-Source HW PyMTL Motivation • PyMTL v2 • PyMTL v3 PyMTL&OSH Celerity Arch Celerity Case Study Celerity&OSH

1 class GcdUnitFL(Model):

2 def __init__(s):

3

4 # Interface

5 s.req = InValRdyBundle (GcdUnitReqMsg())

6 s.resp = OutValRdyBundle (Bits(16))

7

8 # Adapters (e.g., TLM Transactors)

9 s.req_q = InValRdyQueueAdapter (s.req)

10 s.resp_q = OutValRdyQueueAdapter (s.resp)

11

12 # Concurrent block

13 @s.tick_fl

14 def block():

15 req_msg = s.req_q.popleft()

16 result = gcd(req_msg.a, req_msg.b)

17 s.resp_q.append(result)

req_msg
req_val
req_rdy

32 16
resp_msg
resp_val
resp_rdy

GCD
in_q out_q

Cornell University Christopher Batten 21 / 50

Open-Source HW PyMTL Motivation • PyMTL v2 • PyMTL v3 PyMTL&OSH Celerity Arch Celerity Case Study Celerity&OSH

Performance/Productivity Gap

Python is growing in popularity in many domains of scientific and
high-performance computing. How do they close this gap?

I Python-Wrapped C/C++ Libraries
(NumPy, CVXOPT, NLPy, pythonoCC, gem5)

I Numerical Just-In-Time Compilers
(Numba, Parakeet)

I Just-In-Time Compiled Interpreters
(PyPy, Pyston)

I Selective Embedded Just-In-Time Specialization
(SEJITS)

Cornell University Christopher Batten 22 / 50

Open-Source HW PyMTL Motivation • PyMTL v2 • PyMTL v3 PyMTL&OSH Celerity Arch Celerity Case Study Celerity&OSH

PyMTL Hybrid Python/C++ Co-SimulationPyMTL(SimJIT(Architecture(

PyMTL:'A'Unified'Framework'for'Ver8cally'Integrated'
Computer'Architecture'Research'

PyMTL'
RTL'Model'
Instance'

TranslaGon'

Verilator'

LLVM/GCC' Wrapper'
Gen'

Verilog'
Source'

PyMTL'
CFFI'Model'
Instance'

RTL'C++'
Source'

C'Interface'
Source'

C'Shared'
Library'

TranslaGon'
Cache'

SimJITFRTL'Tool'

33'/'39'

Cornell University Christopher Batten 23 / 50

Open-Source HW PyMTL Motivation PyMTL v2 • PyMTL v3 • PyMTL&OSH Celerity Arch Celerity Case Study Celerity&OSH

Evaluating HDLs, HGFs, and HGSFs

I Apple-to-apple comparison of simulator performance

I 64-bit radix-four integer iterative divider

I All implementations use same control/datapath split
with the same level of detail

I Modeling and simulation frameworks:
. Verilog: Commercial verilog simulator, Icarus, Verilator
. HGF: Chisel
. HGSFs: PyMTL, MyHDL, PyRTL, Migen

Cornell University Christopher Batten 24 / 50

Open-Source HW PyMTL Motivation PyMTL v2 • PyMTL v3 • PyMTL&OSH Celerity Arch Celerity Case Study Celerity&OSH

Productivity/Performance Gap

I Higher is better

I Log scale (gap is larger than it seems)

I Commercial Verilog simulator is
20⇥ faster than Icarus

I Verilator requires C++ testbench,
only works with synthesizable code,
takes significant time to compile,
but is 200⇥ faster than Icarus

Cornell University Christopher Batten 25 / 50

Open-Source HW PyMTL Motivation PyMTL v2 • PyMTL v3 • PyMTL&OSH Celerity Arch Celerity Case Study Celerity&OSH

Productivity/Performance Gap

I Chisel (HGF) generates Verilog and uses Verilog simulator

Cornell University Christopher Batten 25 / 50

Open-Source HW PyMTL Motivation PyMTL v2 • PyMTL v3 • PyMTL&OSH Celerity Arch Celerity Case Study Celerity&OSH

Productivity/Performance Gap

I Using CPython interpreter, Python-based HGSFs are much slower
than commercial Verilog simulators; even slower than Icarus!

Cornell University Christopher Batten 25 / 50

Open-Source HW PyMTL Motivation PyMTL v2 • PyMTL v3 • PyMTL&OSH Celerity Arch Celerity Case Study Celerity&OSH

Productivity/Performance Gap

I Using PyPy JIT compiler, Python-based HGSFs achieve ⇡10⇥
speedup, but still significantly slower than commercial Verilog
simulator

Cornell University Christopher Batten 25 / 50

Open-Source HW PyMTL Motivation PyMTL v2 • PyMTL v3 • PyMTL&OSH Celerity Arch Celerity Case Study Celerity&OSH

Productivity/Performance Gap

I Hybrid C/C++ co-simulation improves performance but:
. only works for a synthesizable subset
. may require designer to simultaneously work with C/C++ and Python

Cornell University Christopher Batten 25 / 50

Open-Source HW PyMTL Motivation PyMTL v2 • PyMTL v3 • PyMTL&OSH Celerity Arch Celerity Case Study Celerity&OSH

Productivity/Performance Gap

I Mamba is 20⇥ faster than PyMTLv2, 4.5⇥ faster that PyMTLv2 with
hybrid co-simulation, comparable to commercial simulators

I Mamba uses careful co-optimization of the framework and the JIT

Cornell University Christopher Batten 25 / 50

Open-Source HW PyMTL Motivation PyMTL v2 • PyMTL v3 • PyMTL&OSH Celerity Arch Celerity Case Study Celerity&OSH

PyMTL ASIC Tapeouts

BRGTC1 in 2016
RISC processor, 16KB SRAM

HLS-generated accelerator

2x2mm, 1.2M-trans, IBM 130nm

Memory

Instruction Memory Arbiter

L1 Data $
(32KB)

LLFU Arbiter

Int Mul/Div
FPU

L1 Instruction $
(32KB)

H
os

t I
nt

er
fa

ce
Sy

nt
he

si
za

bl
e

PL
L

ArbiterData

BRGTC2 in 2018
4xRV32IMAF cores with “smart”

sharing L1$/LLFU, PLL

1x1.2mm, ⇡10M-trans, TSMC 28nm

Cornell University Christopher Batten 26 / 50

Open-Source HW PyMTL Motivation PyMTL v2 PyMTL v3 • PyMTL&OSH • Celerity Arch Celerity Case Study Celerity&OSH

PyMTL and Open-Source Hardware

I State-of-the-art in open-source HDL simulators
. Icarus Verilog: Verilog interpreter-based simulator
. Verilator: Verilog AOT-compiled simulator
. GHDL: VHDL AOT-compiled simulator
. No open-source simulator supports modern verification environments

I PyMTL as an open-source design, simulation, verification environment

. Open-source hardware developers can use Verilog RTL for design and
Python, a well-known general-purpose language, for verification

. PyMTL for FL design enables creating high-level golden reference models

. PyMTL for RTL design enables creating highly parameterized hardware
components which is critical for encouraging reuse in an open-source
ecosystem

Cornell University Christopher Batten 27 / 50

Open-Source HW PyMTL Motivation PyMTL v2 PyMTL v3 • PyMTL&OSH • Celerity Arch Celerity Case Study Celerity&OSH

PyMTL and Open-Source Hardware

P

I$

D$

Network

Network

Network

P

I$

P

I$

P

I$

D$ D$ D$

Undergraduate Comp Arch Course
Labs use PyMTL for verification,
PyMTL or Verilog for RTL design

Graduate ASIC Design Course
Labs use PyMTL for verification,

PyMTL or Verilog for RTL design, standard ASIC flow

DARPA POSH Open-Source Hardware Program
PyMTL used as a powerful open-source generator

for both design and verification

Cornell University Christopher Batten 28 / 50

Open-Source HW PyMTL Motivation PyMTL v2 PyMTL v3 • PyMTL&OSH • Celerity Arch Celerity Case Study Celerity&OSH

PyMTL

PyMTL Take-Away Points

I PyMTL is a productive Python-based
hardware generation and simulation
framework to enable productive multi-level
modeling and VLSI design

I PyMTL v3 helps close the HGSF
performance/productivity gap

I PyMTL is an example of emerging
frameworks that can potentially transform
open-source hardware design

I Beta version of PyMTL v2 is available for
researchers to experiment with
https://github.com/cornell-brg/pymtl

Cornell University Christopher Batten 29 / 50

Open-Source HW PyMTL Motivation PyMTL v2 PyMTL v3 PyMTL&OSH Celerity Arch Celerity Case Study Celerity&OSH

Open-Source HW PyMTL Motivation • PyMTL v2 • PyMTL v3 PyMTL+OSH Celerity Arch Celerity Case Study Celerity+OSH

PyMTL v2 Syntax and Semantics

1 from pymtl import *

2

3 class RegIncrRTL(Model):

4

5 def __init__(s, dtype):

6 s.in_ = InPort (dtype)

7 s.out = OutPort(dtype)

8 s.tmp = Wire (dtype)

9

10 @s.tick_rtl

11 def seq_logic():

12 s.tmp.next = s.in_

13

14 @s.combinational

15 def comb_logic():

16 s.out.value = s.tmp + 1

Cornell University Christopher Batten 19 / 48

A New Era of
Open-Source SoC Design

I The PyMTL Framework
. PyMTL Motivation
. PyMTL Version 2
. PyMTL Version 3 (Mamba)
. PyMTL & Open-Source Hardware

I The Celerity SoC
. Celerity Architecture
. Celerity Case Study
. Celerity & Open-Source Hardware

I A Call to Action

Cornell University Christopher Batten 30 / 50

Open-Source HW PyMTL Motivation PyMTL v2 PyMTL v3 PyMTL&OSH Celerity Arch Celerity Case Study Celerity&OSH

The Celerity Open-Source 511-Core RISC-V
Tiered Accelerator Fabric:

Fast Architectures & Design Methodologies for Fast Chips

Scott Davidson, Shaolin Xie, Christopher Torng, Khalid Al-Hawaj
Austin Rovinski, Tutu Ajayi, Luis Vega, Chun Zhao, Ritchie Zhao

Steve Dai, Aporva Amarnath, Bandhav Veluri, Paul Gao, Anuj Rao
Gai Liu, Rajesh K. Gupta, Zhiru Zhang, Ronald G. Dreslinski

Christopher Batten, Michael B. Taylor.

IEEE Micro, 38(2):3041, Mar/Apr. 2018

• TSMC 16nm FFC
• 25mm2 die area (5mm x 5mm)
• ~385 million transistors
• 511 RISC-V cores

• 5 Linux-capable “Rocket Cores”
• 496-core mesh tiled array “Manycore”
• 10-core mesh tiled array “Manycore” (low voltage)

• 1 Binarized Neural Network Specialized Accelerator
• On-chip synthesizable PLLs and DC/DC LDO

• Developed in-house
• 3 Clock domains

• 400 MHz – DDR I/O
• 625 MHz – Rocket core + Specialized accelerator
• 1.05 GHz – Manycore array

• 672-pin flip chip BGA package
• 9-months from PDK access to tape-out

Celerity: Chip Overview
• TSMC 16nm FFC
• 25mm2 die area (5mm x 5mm)
• ~385 million transistors
• 511 RISC-V cores

• 5 Linux-capable “Rocket Cores”
• 496-core mesh tiled array “Manycore”
• 10-core mesh tiled array “Manycore” (low voltage)

• 1 Binarized Neural Network Specialized Accelerator
• On-chip synthesizable PLLs and DC/DC LDO

• Developed in-house
• 3 Clock domains

• 400 MHz – DDR I/O
• 625 MHz – Rocket core + Specialized accelerator
• 1.05 GHz – Manycore array

• 672-pin flip chip BGA package
• 9-months from PDK access to tape-out

Celerity: Chip Overview

• TSMC 16nm FFC
• 25mm2 die area (5mm x 5mm)
• ~385 million transistors
• 511 RISC-V cores

• 5 Linux-capable “Rocket Cores”
• 496-core mesh tiled array “Manycore”
• 10-core mesh tiled array “Manycore” (low voltage)

• 1 Binarized Neural Network Specialized Accelerator
• On-chip synthesizable PLLs and DC/DC LDO

• Developed in-house
• 3 Clock domains

• 400 MHz – DDR I/O
• 625 MHz – Rocket core + Specialized accelerator
• 1.05 GHz – Manycore array

• 672-pin flip chip BGA package
• 9-months from PDK access to tape-out

Celerity: Chip Overview

Cornell University Christopher Batten 31 / 50

Open-Source HW PyMTL Motivation PyMTL v2 PyMTL v3 PyMTL&OSH • Celerity Arch • Celerity Case Study Celerity&OSH

Celerity System-on-Chip Overview

Target Workload: High-Performance Embedded Computing
I 5⇥ 5mm in TSMC 16 nm FFC
I 385 million transistors
I 511 RISC-V cores

. 5 Linux-capable Rocket cores

. 496-core tiled manycore

. 10-core low-voltage array
I 1 BNN accelerator
I 1 synthesizable PLL
I 1 synthesizable LDO Vreg
I 3 clock domains
I 672-pin flip chip BGA package
I 9-months from PDK access to

tape-out

Cornell University Christopher Batten 32 / 50

Open-Source HW PyMTL Motivation PyMTL v2 PyMTL v3 PyMTL&OSH • Celerity Arch • Celerity Case Study Celerity&OSH

Tiered Accelerator Fabrics

Flexibility

Efficiency

• General-purpose computation
• Operating systems, I/O

• Fixed-function
• Extremely energy efficient

• Flexible and energy-efficient
• Exploits coarse- and
 fine-grain parallelism

General-Purpose Tier

Massively Parallel Tier

Specialization Tier

Cornell University Christopher Batten 33 / 50

Open-Source HW PyMTL Motivation PyMTL v2 PyMTL v3 PyMTL&OSH • Celerity Arch • Celerity Case Study Celerity&OSH

Celerity: General-Purpose Tier
Of

f-C
hi

p
I/O

A
X

I

R
oC

CRISC-V Rocket Core

I-CacheD-Cache

A
X

I

R
oC

CRISC-V Rocket Core

I-CacheD-Cache

A
X

I

R
oC

CRISC-V Rocket Core

I-CacheD-Cache

A
X

I

R
oC

CRISC-V Rocket Core

I-CacheD-Cache

A
X

I

R
oC

CRISC-V Rocket Core

I-CacheD-Cache

I Role of the General-Purpose Tier
. General-purpose computation
. Exception handling
. Operating system (e.g., TCP/IP)
. Cache memory hierarchy for all tiers

I In Celerity
. 5 Rocket cores from UC Berkeley
. Generated from Chisel
. RV64G ISA
. 5-stage, in-order, scalar processor
. Double-precision floating point
. I-Cache: 16KB 4-way assoc.
. D-Cache: 16KB 4-way assoc.
. 0.97 mm2 per core @ 625 MHz

Cornell University Christopher Batten 34 / 50

Open-Source HW PyMTL Motivation PyMTL v2 PyMTL v3 PyMTL&OSH • Celerity Arch • Celerity Case Study Celerity&OSH

Celerity: Massively Parallel Tier
Of

f-C
hi

p
I/O

A
X

I

R
oC

CRISC-V Rocket Core

I-CacheD-Cache

A
X

I

R
oC

CRISC-V Rocket Core

I-CacheD-Cache

A
X

I

R
oC

CRISC-V Rocket Core

I-CacheD-Cache

A
X

I

R
oC

CRISC-V Rocket Core

I-CacheD-Cache

A
X

I

R
oC

CRISC-V Rocket Core

I-CacheD-Cache

RISC-V
Vanilla-5

Core

I Mem

X
B

A
R

N
oC

 R
outer

D Mem

Cornell University Christopher Batten 35 / 50

Open-Source HW PyMTL Motivation PyMTL v2 PyMTL v3 PyMTL&OSH • Celerity Arch • Celerity Case Study Celerity&OSH

Celerity: Massively Parallel Tier

I Role of the Massively Parallel Tier
. Improve energy efficiency over general-

purpose tier by exploiting massive
parallelism

I 496 low-power RISC-V Vanilla-5 cores
. RV32IM ISA
. 5-stage, in-order, scalar cores
. 4KB instruction memory per tile
. 4KB data memory per tile
. 0.024 mm2 per tile @ 1.05 GHz

I 16⇥ 31 tiled mesh array
. MIMD programming model
. XY-dimension network-on-chip (NoC)
. 32 b/cycle channels
. Manycore I/O uses same network

Of
f-C

hi
p

I/O

A
X

I

R
oC

CRISC-V Rocket Core

I-CacheD-Cache

A
X

I

R
oC

CRISC-V Rocket Core

I-CacheD-Cache

A
X

I

R
oC

CRISC-V Rocket Core

I-CacheD-Cache
A

X
I

R
oC

CRISC-V Rocket Core

I-CacheD-Cache

A
X

I

R
oC

CRISC-V Rocket Core

I-CacheD-Cache

RISC-V
Vanilla-5

Core

I Mem

X
B

A
R

N
oC

 R
outer

D Mem

Cornell University Christopher Batten 36 / 50

Open-Source HW PyMTL Motivation PyMTL v2 PyMTL v3 PyMTL&OSH • Celerity Arch • Celerity Case Study Celerity&OSH

Celerity: Specialization TierCelerity: Specialization Tier
Of

f-C
hi

p
I/O

A
X

I

R
oC

CRISC-V Rocket Core

I-CacheD-Cache

A
X

I

R
oC

CRISC-V Rocket Core

I-CacheD-Cache

A
X

I

R
oC

CRISC-V Rocket Core

I-CacheD-Cache

A
X

I

R
oC

CRISC-V Rocket Core

I-CacheD-Cache

A
X

I

R
oC

CRISC-V Rocket Core

I-CacheD-Cache

RISC-V
Vanilla-5

Core

I Mem

X
B

A
R

N
oC

 R
outer

D Mem

Role of Specialization Tier
Ultra-high-energy efficiency for critical applications

Cornell University Christopher Batten 37 / 50

Open-Source HW PyMTL Motivation PyMTL v2 PyMTL v3 PyMTL&OSH Celerity Arch • Celerity Case Study • Celerity&OSH

Case Study: Mapping Flexible Image Recognition
to a Tiered Accelerator Fabric

Convolution Pooling Convolution Pooling Fully-Connected

dog (0.01)
cat (0.04)

boat (0.94)
bird (0.02)

General-Purpose Tier

Specialization Tier

Massively Parallel Tier

I Step 1: Implement the algorithm using the
general-purpose tier

I Step 2: Accelerate algo using either
massively parallel tier OR specialization tier

I Step 3: Improve performance by
cooperatively using both the specialization
AND the massively parallel tier

Cornell University Christopher Batten 38 / 50

Open-Source HW PyMTL Motivation PyMTL v2 PyMTL v3 PyMTL&OSH Celerity Arch • Celerity Case Study • Celerity&OSH

Step 1: Algo to App – Binarized Neural Networks
Step 1: Algorithm to Application
Binarized Neural Networks

weights and activations can achieve an accuracy of 89.8% on CIFAR-10

• Performance target requires ultra-low latency (batch size of one) and
high throughput (60 classifications/second)

[3] M. Rastergari, et al. “Xnor-net: Imagenet classification using binary convolutional neural networks,” In European Conference on Computer Vision, 2016.
[4] M. Courbariaux, et al. “Binarized neural networks: Training deep neural networks with weights and activations constrained to +1 or -1,” arXiv preprint arXiv:1602.02830 (2016).

I Training usually uses floating point, while inference usually uses lower
precision weights and activations (often 8-bit or lower) to reduce
implementation complexity

I Recent work has shown single-bit precision weights and activations
can achieve an accuracy of 89.8% on CIFAR-10

I Performance target requires ultra-low latency (batch size of one) and
high throughput (60 classifications/second)

M. Rastergari, et al. “Xnor-net ...” ICCV, 2016; M. Courbariaux, et al. “Binarized neural networks ...” arXiv:1602.02830, 2016.

Cornell University Christopher Batten 39 / 50

Open-Source HW PyMTL Motivation PyMTL v2 PyMTL v3 PyMTL&OSH Celerity Arch • Celerity Case Study • Celerity&OSH

Step 1: Algo to App – Characterizing BNN Execution
Step 1: Algorithm to Application
Characterizing BNN Execution

• Using just the general-purpose tier is 200x slower than performance target
• Binarized convolutional layers consume over 97% of dynamic instruction count
• Perfect acceleration of just the binarized convolutional layers is still 5x slower than performance target
• Perfect acceleration of all layers using the massively parallel tier could meet performance target

but with significant energy consumption

I Using just the general-purpose tier is 200⇥ slower than performance
target of 60 classifications/second

I Binarized convolutional layers consume over 97% of the dynamic
instruction count

I Perfect acceleration of just the binarized convolutional layers is still
5⇥ slower than performance target

Cornell University Christopher Batten 40 / 50

Open-Source HW PyMTL Motivation PyMTL v2 PyMTL v3 PyMTL&OSH Celerity Arch • Celerity Case Study • Celerity&OSH

Step 2: App to Accel – BNN Specialized Accelerator

Step 2: Application to Accelerator
BNN Specialized Accelerator

1. Accelerator is
configured to process
a layer through RoCC
command messages

2. Memory Unit starts
streaming the weights
into the accelerator
and unpacking the
binarized weights into
appropriate buffers

3. Binary convolution
compute unit
processes input fmaps
and weights to
produce output fmaps

Cornell University Christopher Batten 41 / 50

Open-Source HW PyMTL Motivation PyMTL v2 PyMTL v3 PyMTL&OSH Celerity Arch • Celerity Case Study • Celerity&OSH

Step 2: App to Accel – Design Methodology
Step 2: Application to Accelerator
Design Methodology

o HLS enabled quick implementation of an
accelerator for an emerging algorithm
▪ Algorithm to initial accelerator in weeks
▪ Rapid design-space exploration

o HLS greatly simplified timing closure
▪ Improved clock frequency by 43% in few days
▪ Easily mitigated long paths at the interfaces

with latency insensitive interfaces and
pipeline register insertion

o HLS tools are still evolving
▪ Six weeks to debug tool bug with data-

dependent access to multi-dimensional arrays

SystemCConstraints

StratusHLS

RTL

PyMTL

Wrappers &
Adapters

Final RTL

I Enabled quick implementation of
an accelerator for an emerging
algorithm
. Algo to initial accelerator in weeks
. Rapid design-space exploration

I Greatly simplified timing closure
. Improved clock frequency by 43%

in few days
. Easily mitigated long paths at

interfaces with latency insensitive
design

I Tools are still evolving
. Six weeks to debug tool bug with

data- dependent access to
multi-dimensional arrays

Cornell University Christopher Batten 42 / 50

Open-Source HW PyMTL Motivation PyMTL v2 PyMTL v3 PyMTL&OSH Celerity Arch • Celerity Case Study • Celerity&OSH

Performance Benefits of Cooperatively Using the
Specialization and Massively Parallel Tiers

Step 1 Step 2 Step 3
GP Tier Spec Tier Spec+MP Tiers

Runtime (ms) 4,024.0 20.0 3.2

Performance (images/sec) 0.3 50.0 312.5

Power (Watts) 0.1 0.2 0.4

Efficiency (images/J) 2.5 250.0 625.0

Relative Efficiency 1⇥ 100⇥ 250⇥

I GP Tier: Software implementation assuming ideal performance estimated
with an optimistic one instruction per cycle

I Spec/MP Tier: Full-system post-place-and-route gate-level simulation of the
spec/MP tiers running with a frequency of 625 MHz

Cornell University Christopher Batten 43 / 50

Open-Source HW PyMTL Motivation PyMTL v2 PyMTL v3 PyMTL&OSH Celerity Arch Celerity Case Study • Celerity&OSH •

How were we able to build such a complex SoC?

I 5⇥ 5mm in TSMC 16 nm FFC
I 385 million transistors
I mixed-signal design
I front- and back-end design

I in nine months
I with 10 core graduate students
I with little tapeout experience
I across four locations

Open-source software and
hardware was critical to the

success of the project!

Cornell University Christopher Batten 44 / 50

Open-Source HW PyMTL Motivation PyMTL v2 PyMTL v3 PyMTL&OSH Celerity Arch Celerity Case Study • Celerity&OSH •

Leveraging the Open-Source RISC-V Ecosystem

I RISC-V Software Toolchain
. Complete, off-the-shelf software stack for

both GP and manycore

I RISC-V Instruction Set Architecture
. Designed to be modular and extensible
. Easy to connect to RoCC interface
. Standard instruction verification suites

I RISC-V Microarchitecture
. Rocket: high-performance RV64G core
. Vanilla-5: high-efficiency RV32IM core
. Standard on-chip network specs (NASTI)

I RISC-V VLSI and System Design
. Previous spins of chips for reference
. Turn-key FPGA gateware

Register-Transfer Level

Circuits
Devices

Instruction Set Architecture

Programming Language
Algorithm

Microarchitecture

Technology

Application

Operating System

Gate Level

Compiler

Developed at UC Berkeley
http://riscv.org

Cornell University Christopher Batten 45 / 50

Open-Source HW PyMTL Motivation PyMTL v2 PyMTL v3 PyMTL&OSH Celerity Arch Celerity Case Study • Celerity&OSH •

Leveraging the Open-Source BaseJump Ecosystem

BaseJump DoubleTrouble:
HW Emulation Motherboard

BaseJump Socket:
IO Padring

BaseJump RealTrouble:
Bring-up Motherboard

HD
L

De
sig

n
BaseJump STL:

Standard library of
hardware components

BaseJump Socket:
BGA Package

BaseJump:
Open FPGA

Firmware

Developed at UCSD and
University of Washington http://bjump.org

Cornell University Christopher Batten 46 / 50

Open-Source HW PyMTL Motivation PyMTL v2 PyMTL v3 PyMTL&OSH Celerity Arch Celerity Case Study • Celerity&OSH •

Contributing Back to the Open-Source Ecosystem
Of

f-C
hi

p
I/O

A
X

I

R
oC

CRISC-V Rocket Core

I-CacheD-Cache

A
X

I

R
oC

CRISC-V Rocket Core

I-CacheD-Cache

A
X

I

R
oC

CRISC-V Rocket Core

I-CacheD-Cache

A
X

I

R
oC

CRISC-V Rocket Core

I-CacheD-Cache

A
X

I

R
oC

CRISC-V Rocket Core

I-CacheD-Cache

RISC-V
Vanilla-5

Core

I Mem

X
B

A
R

N
oC

 R
outer

D Mem

http://opencelerity.org

Upstream patches to gem5 for multi-core RISC-V simulation

Cornell University Christopher Batten 47 / 50

Open-Source HW PyMTL Motivation PyMTL v2 PyMTL v3 PyMTL&OSH Celerity Arch Celerity Case Study Celerity&OSH

Open-Source HW PyMTL Motivation • PyMTL v2 • PyMTL v3 PyMTL+OSH Celerity Arch Celerity Case Study Celerity+OSH

PyMTL v2 Syntax and Semantics

1 from pymtl import *

2

3 class RegIncrRTL(Model):

4

5 def __init__(s, dtype):

6 s.in_ = InPort (dtype)

7 s.out = OutPort(dtype)

8 s.tmp = Wire (dtype)

9

10 @s.tick_rtl

11 def seq_logic():

12 s.tmp.next = s.in_

13

14 @s.combinational

15 def comb_logic():

16 s.out.value = s.tmp + 1

Cornell University Christopher Batten 19 / 48

A New Era of
Open-Source SoC Design

I The PyMTL Framework
. PyMTL Motivation
. PyMTL Version 2
. PyMTL Version 3 (Mamba)
. PyMTL & Open-Source Hardware

I The Celerity SoC
. Celerity Architecture
. Celerity Case Study
. Celerity & Open-Source Hardware

I A Call to Action

Cornell University Christopher Batten 48 / 50

Open-Source HW PyMTL Motivation PyMTL v2 PyMTL v3 PyMTL&OSH Celerity Arch Celerity Case Study Celerity&OSH

A Call to Action

I Open-source hardware needs
developers who
. ... are idealistic
. ... have lots of free time
. ... will work for free

I Who might that be?

Students!

I Academics have a practical and
ethical motivation for using,
developing, and promoting
open-source electronic design
automation tools and open-source
hardware designs

Cornell University Christopher Batten 49 / 50

Open-Source HW PyMTL Motivation PyMTL v2 PyMTL v3 PyMTL&OSH Celerity Arch Celerity Case Study Celerity&OSH

Shreesha Srinath, Christopher Torng, Berkin Ilbeyi, Moyang Wang
Shunning Jiang, Khalid Al-Hawaj, Tuan Ta, Lin Cheng

and many M.S./B.S. students

Equipment, Tools, and IP
Intel, NVIDIA, Synopsys, Cadence, Xilinx, ARM

Cornell University Christopher Batten 50 / 50

