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In this paper, we introduce a new type of degenerate Genocchi polynomials and numbers, which are called degenerate poly-
Genocchi polynomials and numbers, by using the degenerate polylogarithm function, and we derive several properties of these
polynomials systematically. Then, we also consider the degenerate unipoly-Genocchi polynomials attached to an arithmetic
function, by using the degenerate polylogarithm function, and investigate some identities of those polynomials. In particular, we
give some new explicit expressions and identities of degenerate unipoly polynomials related to special numbers and polynomials.

1. Introduction

In [1, 2], Carlitz initiated a study of degenerate versions of
some special polynomials and numbers, namely, the degen-
erate Bernoulli and Euler polynomials and numbers. Kim
et al. [3–5] have studied the degenerate versions of special
numbers and polynomials actively. These ideas provide a
powerful tool in order to define special numbers and polyno-
mials of their degenerate versions. The notion of degenerate
version forms a special class of polynomials because of their
great applicability. Despite the applicability of special func-
tions in classical analysis and statistics, they also arise in com-
munication systems, quantum mechanics, nonlinear wave
propagation, electric circuit theory, electromagnetic theory,
etc. In particular, Genocchi numbers have been extensively
studied in many different contexts in such branches of math-
ematics as, for instance, elementary number theory, complex
analytic number theory, differential topology (differential
structures on spheres), theory of modular forms (Eisenstein

series), p-adic analytic number theory (p-adic L-functions),
and quantum physics (quantum groups). The works of
Genocchi numbers and their combinatorial relations have
received much attention [6–11]. In the paper, we focus on a
new type of degenerate poly-Genocchi polynomial and
numbers.

The aim of this paper is to introduce a degenerate version
of the poly-Genocchi polynomials and numbers, the so-
called new type of degenerate poly-Genocchi polynomials
and numbers, constructing from the degenerate polyloga-
rithm function. We derive some explicit expressions and
identities for those numbers and polynomials.

The classical Euler polynomials EnðxÞ and the classical
Genocchi polynomials GnðxÞ are, respectively, defined by
the following generating functions (see [12–22]):

2
et + 1 e
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∞

n=0
En xð Þ t
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2t
et + 1 e

xt = 〠
∞

n=0
Gn xð Þ t

n

n!
,  tj j < π: ð2Þ

In the case when x = 0, Enð0Þ≔ En and Gnð0Þ≔Gn are,
respectively, called the Euler numbers and Genocchi
numbers.

The degenerate exponential function [23, 24] is defined
by

exλ tð Þ = 1 + λtð Þx/λ,
e1λ tð Þ = eλ tð Þ λ ∈ℝð Þ:

ð3Þ

Note that

lim
λ⟶0

1 + λtð Þx/λ = 〠
∞

n=0

xntn

n!
= ext : ð4Þ

In [1, 2], Carlitz introduced the degenerate Bernoulli and
degenerate Euler polynomials defined by

t
eλ tð Þ − 1 e

x
λ tð Þ = t

1 + λtð Þ1/λ − 1
1 + λtð Þx/λ = 〠

∞

n=0
βn x ; λð Þ t

n

n!
,

ð5Þ
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eλ tð Þ + 1 e

x
λ tð Þ = 2

1 + λtð Þ1/λ − 1
1 + λtð Þx/λ = 〠

∞

n=0
En x ; λð Þ t

n

n!
:

ð6Þ
In the case when x = 0, Bn,λð0Þ≔ Bn,λ are called the

degenerate Bernoulli numbers and En,λð0Þ≔ En,λ are called
the degenerate Euler numbers.

Let ðxÞn,λ be the degenerate falling factorial sequence
given by

xð Þn,λ ≔ x x − λð Þ⋯ x − n − 1ð Þλð Þ n ≥ 1ð Þ, ð7Þ

with the assumption ðxÞ0,λ = 1.
In [5], Kim et al. considered the degenerate Genocchi

polynomials given by

2t
eλ tð Þ + 1 e

x
λ tð Þ = 〠

∞

n=0
Gn,λ xð Þ t

n

n!
: ð8Þ

In the case when x = 0, Gn,λ ≔Gn,λð0Þ are called the
degenerate Genocchi numbers.

For k ∈ℤ, the polylogarithm function is defined by a
power series in t, which is also a Dirichlet series in k (see
[25, 26]):

Lik tð Þ = 〠
∞

n=1

tn

nk
= t + t2

2k
+ t3

3k
+⋯ tj j < 1ð Þ: ð9Þ

This definition is valid for arbitrary complex order k and
for all complex arguments t with jtj < 1 : it can be extended to
jtj ≥ 1 by analytic continuation.

It is noticed that

Li1 tð Þ = 〠
∞

n=1

tn

n
= − log 1 − tð Þ: ð10Þ

For λ ∈ℝ, Kim and Kim [3] defined the degenerate ver-
sion of the logarithm function, denoted by logλð1 + tÞ, as fol-
lows (see [4]):

logλ 1 + tð Þ = 〠
∞

n=1
λn−1 1ð Þn,1/λ

tn

n!
, ð11Þ

being the inverse of the degenerate version of the exponential
function eλðtÞ as has been shown below:

eλ logλ tð Þð Þ = logλ eλ tð Þð Þ = t: ð12Þ

It is noteworthy to mention that

lim
λ⟶0

logλ 1 + tð Þ = 〠
∞

n=1
−1ð Þn−1 t

n

n!
= log 1 + tð Þ: ð13Þ

The degenerate polylogarithm function [3] is defined by
Kim and Kim to be

lk,λ xð Þ = 〠
∞

n=1

−λð Þn−1 1ð Þn,1/λ
n − 1ð Þ!nk xn k ∈ℤ, xj j < 1ð Þ: ð14Þ

It is clear that (see [27, 28])

lim
λ⟶0

lk,λ xð Þ = 〠
∞

n=1

xn

nk
= Lik xð Þ: ð15Þ

From (11) and (14), we get

l1,λ xð Þ = 〠
∞

n=1

−λð Þn−1 1ð Þn,1/λ
n!

xn = − logλ 1 − xð Þ: ð16Þ

Very recently, Kim and Kim [3] introduced the new type
of degenerate version of the Bernoulli polynomials and num-
bers, by using the degenerate polylogarithm function as fol-
lows:

lk,λ 1 − eλ −tð Þð Þ
1 − eλ −tð Þ exλ tð Þ = 〠

∞

n=0
β

kð Þ
n,λ xð Þ t

n

n!
: ð17Þ

When x = 0, βðkÞ
j,λ ≔ βðkÞ

j,λ ð0Þ are called the new type of
degenerate poly-Bernoulli numbers.

The degenerate Stirling numbers of the first kind [24] are
defined by

1
k!

logλ 1 + tð Þð Þk = 〠
∞

n=k
S1,λ n, kð Þ t

n

n!
k ≥ 0ð Þ: ð18Þ
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It is clear that

lim
λ⟶0

S1,λ n, kð Þ≔ S1 n, kð Þ, ð19Þ

calling the Stirling numbers of the first kind given by (see
[29, 30])

1
k!

log 1 + tð Þð Þk = 〠
∞

n=k
S1 n, kð Þ t

n

n!
k ≥ 0ð Þ: ð20Þ

The degenerate Stirling numbers of the second kind
[31] are given by (see [2, 13–22, 25–32])

1
k!

eλ tð Þ − 1ð Þk = 〠
∞

n=k
S2,λ j, kð Þ t

n

n!
k ≥ 0ð Þ: ð21Þ

Note here that

lim
λ⟶0

S2,λ n, kð Þ≔ S2 n, kð Þ, ð22Þ

standing for the Stirling numbers of the second kind given
by means of the following generating function (see [1–8,
12–38]):

1
k!

et − 1
� �k = 〠

∞

n=k
S2 n, kð Þ t

n

n!
k ≥ 0ð Þ: ð23Þ

This paper is organized as follows. In Section 1, we
recall some necessary stuffs that are needed throughout
this paper. These include the degenerate exponential func-
tions, the degenerate Genocchi polynomials, the degener-
ate Euler polynomials, and the degenerate Stirling
numbers of the first and second kinds. In Section 2, we
introduce the new type of degenerate poly-Genocchi poly-
nomials by making use of the degenerate polylogarithm
function. We express those polynomials in terms of the
degenerate Genocchi polynomials and the degenerate Stir-
ling numbers of the first kind and also of the degenerate
Euler polynomials and the Stirling numbers of the first
kind. We represent the generating function of the degener-
ate poly-Genocchi numbers by iterated integrals from
which we obtain an expression of those numbers in terms
of the degenerate Bernoulli numbers of the second kind.
In Section 3, we introduce the new type of degenerate
unipoly-Genocchi polynomials by making use of the
degenerate polylogarithm function. We express those poly-
nomials in terms of the degenerate Genocchi polynomials
and the degenerate Stirling numbers of the first kind and
also of the degenerate Euler polynomials and the Stirling
numbers of the first kind and second kind.

2. New Type of Degenerate Genocchi Numbers
and Polynomials

In this section, we define the new type of degenerate Genoc-
chi numbers and polynomials by using the degenerate poly-

logarithm function which is called the degenerate poly-
Genocchi polynomials as follows.

For k ∈ℤ, we define the new type of degenerate Genocchi
numbers, which are called the degenerate poly-Genocchi
numbers, as

2
eλ tð Þ + 1 lk,λ 1 − eλ −tð Þð Þ = 〠

∞

n=0
G kð Þ
n,λ

tn

n!
: ð24Þ

Note that

〠
∞

n=0
G 1ð Þ
n,λ

tn

n!
= 2
eλ tð Þ + 1 l1,λ 1 − eλ −tð Þð Þ = 2t

eλ tð Þ + 1 = 〠
∞

n=0
Gn,λ

tn

n!
:

ð25Þ

Thus, we have (see [6])

G 1ð Þ
n,λ =Gn,λ n ≥ 0ð Þ: ð26Þ

Now, we consider the new type of degenerate Genocchi
polynomials which are called the degenerate poly-Genocchi
polynomials defined by

2lk,λ 1 − eλ −tð Þð Þ
eλ tð Þ + 1 exλ tð Þ = 〠

∞

n=0
G kð Þ
n,λ xð Þ t

n

n!
: ð27Þ

In the case when x = 0, GðkÞ
n,λ ≔GðkÞ

n,λð0Þ. Using equation
(27), we see

〠
∞

n=0
G kð Þ
n,λ xð Þ t

n

n!
= 2lk,λ 1 − eλ −tð Þð Þ

eλ tð Þ + 1 exλ tð Þ

= 〠
∞

m=0
G kð Þ
m,λ

tm

m!
〠
∞

n=0
xð Þn,λ

tn

n!

= 〠
∞

n=0
〠
n

m=0
n/mð ÞG kð Þ

m,λ xð Þn−m,λ

 !
tn

n!
:

ð28Þ

Therefore, by equation (28), we obtain the following
theorem.

Theorem 1. Let n be a nonnegative integer. Then,

G kð Þ
n,λ xð Þ = 〠

n

m=0
n/mð ÞG kð Þ

m,λ xð Þn−m,λ: ð29Þ

From (27), we note that

〠
∞

n=0
G kð Þ
n,λ xð Þ t

n

n!
= 2t
eλ tð Þ + 1

exλ tð Þ 1
t
lk,λ 1 − eλ −tð Þð Þ, ð30Þ

3Journal of Function Spaces



〠
∞

n=0
G kð Þ
n,λ xð Þ t

n

n!
= 2t
eλ tð Þ + 1

exλ tð Þ 1
t
〠
∞

m=1

−λð Þm−1 1ð Þm,1/λ
m − 1ð Þ!mk

1 − eλ −tð Þð Þm

= 2t
eλ tð Þ + 1

exλ tð Þ 1
t
〠
∞

m=1

−λð Þm−1 1ð Þm,1/λ
mk−1

� 〠
∞

l=m
−1ð Þl−mS2,λ l,mð Þ t

l

l!
= 2t
eλ tð Þ + 1

exλ tð Þ 1
t

�〠
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l=1
〠
l

m=1
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λm−1 1ð Þm,1/λ −1ð Þl
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 !
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l + 1ð Þ!

 !
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∞

n=0
Gn,λ xð Þ t

n
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 !
〠
∞

l=0
〠
l+1

m=1

λm−1 1ð Þm,1/λ −1ð Þl
mk−1

S2,λ l + 1,mð Þ
l + 1

 !
tl

l!

 !

= 〠
∞

n=0
〠
n

l=0

n

l

 !
〠
l+1

m=1

λm−1 1ð Þm,1/λ −1ð Þl
mk−1

S2,λ l + 1,mð Þ
l + 1

Gn−l,λ xð Þ
 !

tn

n!
:

ð31Þ

Therefore, by equations (30) and (31), we get the follow-
ing theorem.

Theorem 2. Let n be a nonnegative integer. Then,

G kð Þ
n,λ xð Þ = 〠

n

l=0

n

l

 !
〠
l+1

m=1

λm−1 1ð Þm,1/λ −1ð Þl
mk−1

S2,λ l + 1,mð Þ
l + 1

Gn−l,λ xð Þ:

ð32Þ

Using equations (27) and (6), we see

〠
∞

n=0
G kð Þ
n,λ xð Þ t

n

n!
= 2
eλ tð Þ + 1

exλ tð Þlk,λ 1 − eλ −tð Þð Þ, ð33Þ
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∞
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G kð Þ
n,λ xð Þ t

n

n!
= 2
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m − 1ð Þ!mk
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eλ tð Þ + 1

exλ tð Þ
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l=1
〠
l

m=1

λm−1 1ð Þm,1/λ −1ð Þl−1
mk−1 S2,λ l,mð Þ

 !
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l!

= 〠
∞

n=0
En,λ xð Þ t

n

n!

 !
〠
∞

l=1
〠
l

m=1

λm−1 1ð Þm,1/λ −1ð Þl−1
mk−1 S2,λ l,mð Þ

 !
tl

l!

 !

= 〠
∞

n=1
〠
n

l=1

n

l

 !
〠
l

m=1

λm−1 1ð Þm,1/λ −1ð Þl−1
mk−1 S2,λ l,mð ÞEn−l,λ xð Þ

 !
tn

n!
:

ð34Þ

By equations (33) and (34), we obtain the following
theorem.

Theorem 3. Let n be a nonnegative integer. Then,

G kð Þ
n,λ xð Þ = 〠

n

l=1

n

l

 !
〠
l

m=1

λm−1 1ð Þm,1/λ −1ð Þl−1
mk−1 S2,λ l,mð ÞEn−l,λ xð Þ:

ð35Þ

From (27), we have

〠
∞

n=0
G kð Þ
n,λ

xn

n!
= 2
eλ xð Þ + 1

lk,λ 1 − eλ −xð Þð Þ = 2
eλ xð Þ + 1

�
ðx
0

e1−λλ −tð Þ
1 − eλ −tð Þ

ðt
0

e1−λλ −tð Þ
1 − eλ −tð Þ ⋯

ðt
0

e1−λλ −tð Þ
1 − eλ −tð Þ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

k−2ð Þ−times

tdtdt⋯ dt 〠
∞

n=0
G kð Þ
n,λ

xn

n!

= 2
eλ xð Þ + 1

ðx
0

e1−λλ −tð Þ
1 − eλ −tð Þ

ðt
0

e1−λλ −tð Þ
1 − eλ −tð Þ ⋯

ðt
0

e1−λλ −tð Þ
1 − eλ −tð Þ tdtdt⋯ dt

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
k−2ð Þ−times

:

ð36Þ

For k = 2 in (36) and using [3] (Eq. (27)), we get

〠
∞

n=0
G 2ð Þ
n,λ

xn

n!
= 2
eλ xð Þ + 1

ðx
0

t
1 − eλ −tð Þ e

1−λ
λ −tð Þdt

= 2
eλ xð Þ + 1

ðx
0
〠
∞

j=0
βj,λ 1 − λð Þ −1ð Þj t

j

j!
dt

= 2x
eλ xð Þ + 1

〠
∞

j=0

βj,λ 1 − λð Þ
j + 1

−1ð Þj x
j

j!

= 〠
∞

n=0
Gn,λ

xn

n!
〠
∞

j=0

βj,λ 1 − λð Þ
j + 1

−1ð Þj x
j

j!

= 〠
∞

n=0
〠
n

j=0
n/jð Þ −1ð ÞjGn−j,λ

βj,λ 1 − λð Þ
j + 1

 !
xn

n!
:

ð37Þ

Therefore, by equation (37), we get the following
theorem.

Theorem 4. Let n be a nonnegative integer. Then,

G kð Þ
n,λ xð Þ = 〠

n

m=0
n/mð ÞG kð Þ

m,λ xð Þn−m,λ: ð38Þ

In general, by equation (37), we see

〠
∞

n=0
G kð Þ
n,λ

xn

n!
= 2
eλ xð Þ + 1

ðx
0

e1−λλ −tð Þ
1 − eλ −tð Þ

ðt
0

e1−λλ −tð Þ
1 − eλ −tð Þ ⋯

�
ðt
0

e1−λλ −tð Þ
1 − eλ −tð Þ tdtdt⋯ dt

= 〠
∞

n1 ,n2 ,⋯,nk−1=n

1
n1!n2!⋯nk−1!

βn1 ,λ 1 − λð Þ
n1 + 1

βn2 ,λ 1 − λð Þ
n1 + n2 + 1

×⋯
βnk−1 ,λ 1 − λð Þ

n1+⋯+nk−1 + 1
−xð Þn1 ,n2 ,⋯,nk−1 2x

eλ xð Þ + 1

= 〠
∞

n=0
−1ð Þn 〠

n1 ,n2 ,⋯,nk=n

n

n1, n2,⋯, nk

 !
βn1 ,λ 1 − λð Þ

n1 + 1

� βn2 ,λ 1 − λð Þ
n1 + n2 + 1

⋯
βnk−1 ,λ 1 − λð Þ

n1+⋯+nk−1 + 1
Gn,λ

xn

n!
:

ð39Þ

By equation (39), we obtain the following theorem.
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Theorem 5. Let k ∈ℤ and n ≥ 0, we have

G kð Þ
n,λ = −1ð Þn 〠

n1 ,n2 ,⋯,nk=n

n

n1, n2,⋯, nk

 !
βn1 ,λ 1 − λð Þ

n1 + 1

� βn2 ,λ 1 − λð Þ
n1 + n2 + 1

⋯
βnk−1 ,λ 1 − λð Þ

n1+⋯+nk−1 + 1
Gn,λ:

ð40Þ

From (27), we observe that

2lk,l 1 − eλ −tð Þð Þ = 1 + eλ tð Þð Þ 〠
∞

m=0
G kð Þ
m,λ

tm

m!

= 〠
∞

j=1
G kð Þ

j,λ +G kð Þ
j,λ 1ð Þ

� � t j
j!
:

ð41Þ

On the other hand,

2lk,l 1 − eλ −tð Þð Þ = 2〠
∞

r=1

−λð Þr−1 1ð Þr,1/λ
r − 1ð Þ!rk 1 − eλ −tð Þð Þr

= 2 〠
∞

m=1

−λð Þm−1 1ð Þm,1/λ
mk−1

1
m!

1 − eλ −tð Þð Þm

= 2〠
∞

r=1

−λð Þr−1 1ð Þr,1/λ
rk−1

〠
∞

j=r
S2,λ j, rð Þ −1ð Þj−r t

j

j!

= 2〠
∞

j=1
〠
j

r=1

−1ð Þj−1 1ð Þr,1/λ
rk−1

λr−1S2,λ j, rð Þ
 !

t j

j!
:

ð42Þ

Therefore, by equations (41) and (42), we get the follow-
ing theorem.

Theorem 6. Let k ∈ℤ and j ≥ 1. Then,

1
2

G kð Þ
j,λ +G kð Þ

j,λ 1ð Þ
h i

= −1ð Þj−1 〠
j

r=1

1ð Þr,1/λ
rk−1

λr−1S2,λ j, rð Þ: ð43Þ

From equations (27) and (14), we see

2t = 2l1,l 1 − eλ −tð Þð Þ = 2 〠
∞

m=1

−λð Þm−1 1ð Þm,1/λ
m − 1ð Þ!mk

1 − eλ −tð Þð Þm

= 2 〠
∞

m=1

−λð Þm−1 1ð Þm,1/λ
m!

1 − eλ −tð Þð Þm

= 2 〠
∞

m=1
−λð Þm−1 1ð Þm,1/λ 〠

∞

n=m
S2,λ n,mð Þ −1ð Þn−m tn

n!

= 2〠
∞

n=1
〠
n

m=1
−1ð Þn−1 1ð Þm,1/λλ

m−1S2,λ n,mð Þ
 !

tn

n!
:

ð44Þ

By comparing the coefficients on both sides of (44), we
obtain the following theorem.

Theorem 7. For n ∈ℕ, we have

〠
n

m=1
−1ð Þn−1 1ð Þm,1

λ
λm−1S2,λ n,mð Þ = δn,1, ð45Þ

where δn,k is Kronecker’s symbol.
Note that

lim
λ⟶0

G 1ð Þ
n,λ = Gn, lim

λ⟶0
G 1ð Þ
n,λ xð Þ =Gn xð Þ: ð46Þ

3. Degenerate Unipoly-Genocchi Numbers
and Polynomials

Let p be any arithmetic function which is a real or complex
valued function defined on the set of positive integers ℕ.
Kim and Kim [29] defined the unipoly function attached to
polynomials pðxÞ by

uk x ∣ pð Þ = 〠
∞

n=1

p nð Þ
nk

xn k ∈ℤð Þ: ð47Þ

Moreover (see [25]),

uk x ∣ 1ð Þ = 〠
∞

n=1

xn

nk
= Lik xð Þ ð48Þ

is the ordinary polylogarithm function.
In [8], Lee and Kim defined the degenerate unipoly func-

tion attached to polynomials pðxÞ as follows:

uk,λ x ∣ pð Þ = 〠
∞

i=1
p ið Þ −λð Þi−1 1ð Þi,1/λ

ik
xi: ð49Þ

It is worthy to note that

uk,λ x ∣
1
Γ

� �
= lk,λ xð Þ ð50Þ

is the degenerate polylogarithm function.
Now, we define the degenerate unipoly-Genocchi poly-

nomials attached to polynomials pðxÞ by

2uk,λ 1 − eλ −tð Þ ∣ pð Þ
eλ tð Þ + 1 exλ tð Þ = 〠

∞

n=0
G kð Þ
n,λ,p xð Þ t

n

n!
: ð51Þ

In the case when x = 0, GðkÞ
n,λ,p ≔GðkÞ

n,λ,pð0Þ are called the
degenerate unipoly-Genocchi numbers attached to p.
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From (51), we see

〠
∞

n=0
G kð Þ
n,λ,1/Γ

tn

n!
= 2
eλ tð Þ + 1 uk,λ 1 − eλ −tð Þ ∣ 1

Γ

� �

= 2
eλ tð Þ + 1〠

∞

r=1

−λð Þr−1 1ð Þr,1/λ 1 − eλ −tð Þð Þr
rk r − 1ð Þ!

= 2
eλ tð Þ + 1 lk,λ 1 − eλ −tð Þð Þ = 〠

∞

n=0
G kð Þ
n,λ

tn

n!
:

ð52Þ

Thus, by (52), we have

G kð Þ
n,λ,1Γ

=G kð Þ
n,λ: ð53Þ

From (51), we have

〠
∞

n=0
G kð Þ
n,λ,p xð Þ t

n

n!
= 2exλ tð Þ
eλ tð Þ + 1 uk,λ 1 − eλ −tð Þ ∣ pð Þ

= 2exλ tð Þ
eλ tð Þ + 1

1
t
〠
∞

m=1

p mð Þ −λð Þm−1 1ð Þm,1/λ
mk

1 − eλ −tð Þð Þm

= 2t
eλ tð Þ + 1 e

x
λ tð Þ 1

t
〠
∞

m=1

p mð Þ −λð Þm−1 1ð Þm,1/λm!

mk

� 〠
∞

l=m
−1ð Þl−mS2,λ l,mð Þ t

l

l!
= 2t
eλ tð Þ + 1 e

x
λ tð Þ 1

t
〠
∞

l=1

� 〠
l

m=1

λm−1 1ð Þm,1/λ −1ð Þl−1m!

mk
S2,λ l,mð Þ

 !
tl

l!
= 〠

∞

n=0
Gn,λ xð Þ t

n

n!

 !
1
t

� 〠
∞

l=0
〠
l+1

m=1

p mð Þλm−1 1ð Þm,1/λ −1ð Þlm!

mk
S2,λ l + 1,mð Þ

 !
tl+1

l + 1ð Þ!

 !

= 〠
∞

n=0
Gn,λ xð Þ t

n

n!

 !
〠
∞

l=0
〠
l+1

m=1

p mð Þλm−1 1ð Þm,1/λ −1ð Þlm!

mk

S2,λ l + 1,mð Þ
l + 1

 !
tl

l!

 !

= 〠
∞

n=0
〠
n

l=0

n

l

 !
〠
l+1

m=1

p mð Þλm−1 1ð Þm,1/λ −1ð Þlm!

mk

S2,λ l + 1,mð Þ
l + 1 Gn−l,λ xð Þ

 !
tn

n!
:

ð54Þ

Therefore, by equation (54), we get the following
theorem.

Theorem 8. Let n be a nonnegative integer. Then,

G kð Þ
n,λ,p xð Þ = 〠

n

l=0

n

l

 !
〠
l+1

m=1

p mð Þλm−1 1ð Þm,1/λ −1ð Þlm!

mk

S2,λ l + 1,mð Þ
l + 1

Gn−l,λ xð Þ:

ð55Þ

Using equations (49) and (51), we see

〠
∞

n=0
G kð Þ
n,λ xð Þ t

n

n!
= 2
eλ tð Þ + 1

exλ tð Þ 〠
∞

m=1

p mð Þ −λð Þm−1 1ð Þm,1/λ
mk

1 − eλ −tð Þð Þm

= 2
eλ tð Þ + 1

exλ tð Þ 〠
∞

m=1

p mð Þ −λð Þm−1 1ð Þm,1/λm!

mk

� 〠
∞

l=m
−1ð Þl−mS2,λ l,mð Þ t

l

l!
= 2
eλ tð Þ + 1

exλ tð Þ

�〠
∞

l=1
〠
l

m=1

p mð Þλm−1 1ð Þm,1/λ −1ð Þl−1m!

mk
S2,λ l,mð Þ

 !
tl

l!

= 〠
∞

n=0
En,λ xð Þ t

n

n!

 !
〠
∞

l=1
〠
l

m=1

p mð Þλm−1 1ð Þm,1/λ −1ð Þl−1m!

mk
S2,λ l,mð Þ

 !
tl

l!

 !

= 〠
∞

n=1
〠
n

l=1

j

l

 !
〠
l

m=1

p mð Þλm−1 1ð Þm,1/λ −1ð Þl−1m!

mk
S2,λ l,mð ÞEn−l,λ xð Þ

 !
tn

n!
:

ð56Þ

By, equations (51) and (56), we obtain the following
theorem.

Theorem 9. Let n be a nonnegative integer. Then,

G kð Þ
n,λ,p xð Þ = 〠

n

l=1

n

l

 !
〠
l

m=1

p mð Þλm−1 1ð Þm,1/λ −1ð Þl−1m!

mk
S2,λ l,mð ÞEn−l,λ xð Þ:

ð57Þ

From (6), (49), and (51), we get

〠
∞

n=0
G kð Þ
n,λ,p xð Þ t

n

n!
= 2exλ tð Þ
eλ tð Þ + 1

uk,λ 1 − eλ −tð Þ ∣ pð Þ = 2t
eλ tð Þ + 1

eλ tð Þ − 1
eλ tð Þ − 1

exλ tð Þ 1
t

� 〠
∞

m=1

p mð Þ −λð Þm−1 1ð Þm,1/λ
mk

1 − eλ −tð Þð Þm

= 2texλ tð Þ
e2λ tð Þ − 1

eλ tð Þ − 1ð Þ 1
t
〠
∞

m=1

p mð Þ −λð Þm−1 1ð Þm,1/λ
mk

1 − eλ −tð Þð Þm

= 2tex/2λ/2 2tð Þ
eλ/2 2tð Þ − 1

eλ tð Þ − 1ð Þ〠
∞

l=0
〠
l+1

m=1

� p mð Þ −1ð Þl λð Þm−1 1ð Þm,1/λm!

mk
S2,λ l + 1,mð Þ

� tl

l + 1ð Þ! = 〠
∞

n=0
βn,λ/2

x
2

� � 2ntn
n!

 !
〠
∞

i=1
1ð Þi,λ

ti

i!

 !

� 〠
∞

l=0
〠
l+1

m=1

p mð Þλm−1 1ð Þm,1/λ −1ð Þlm!

mk

S2,λ l + 1,mð Þ
l + 1

 !
tl

l!

 !

= 〠
∞

n=0
βn,λ/2

x
2

� � 2ntn
n!

 !
〠
∞

i=0

1ð Þi+1,λ
i + 1

ti

i!

 !

� 〠
∞

l=0
〠
l+1

m=1

p mð Þλm−1 1ð Þm,1/λ −1ð Þlm!

mk

S2,λ l + 1,mð Þ
l + 1

 !
tl

l!

 !

� 〠
∞

n=0
βn,λ/2

x
2

� � 2ntn
n!

 !
〠
∞

i=0
〠
i

l=0

i

l

 !
1ð Þi−l+1,λ
i − l + 1

  

� 〠
l+1

m=1

p mð Þλm−1 1ð Þm,1/λ −1ð Þlm!

mk

S2,λ l + 1,mð Þ
l + 1

!
ti

i!

!

= 〠
∞

n=0
〠
n

i=0
〠
i

l=0

n

i

 !
i

l

 !
〠
l+1

m=1

 

� 1ð Þi−l+1,λp mð Þλm−1 1ð Þm,1/λ −1ð Þlm!

i − l + 1ð Þmk

S2,λ l + 1,mð Þ
l + 1

� 2n−iβn−i,λ/2
x
2

� �
Þ t

n

n!
:

ð58Þ

Therefore, by (58), we obtain the following theorem.

Theorem 10. Let n be a nonnegative integer and k ∈ℤ. Then,

G kð Þ
n,λ,p xð Þ = 〠

n

i=0
〠
i

l=0

n

i

 !
i

l

 !
〠
l+1

m=1

1ð Þi−l+1,λp mð Þλm−1 1ð Þm,1/λ −1ð Þlm!

i − l + 1ð Þmk

� S2,λ l + 1,mð Þ
l + 1

× 2n−iβn−i,λ/2
x
2

� �
:

ð59Þ
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From (51), we have

〠
∞

n=0
G kð Þ
n,λ,p xð Þ t

n

n!
= 2
eλ tð Þ + 1

uk,λ 1 − eλ −tð Þ ∣ pð Þ eλ tð Þ − 1 + 1ð Þx

= 2uk,λ 1 − eλ −tð Þ ∣ pð Þ
eλ tð Þ + 1

〠
∞

i=0
xð Þi

eλ tð Þ − 1ð Þi
i!

= 〠
∞

n=0
G kð Þ
n,λ,p

tn

n!
〠
∞

i=0
xð Þi 〠

∞

l=i
S2,λ l, ið Þ t

l

l!

= 〠
∞

n=0
G kð Þ
n,λ,p

tn

n!
〠
∞

i=0
〠
l

i=0
xð ÞiS2,λ l, ið Þ t

l

l!

= 〠
∞

n=0
〠
n

l=0
〠
l

i=0

n

l

 !
xð ÞiS2,λ l, ið ÞG kð Þ

n−l,λ,p

 !
tn

n!
:

ð60Þ

By equation (60), we get the following theorem.

Theorem 11. Let n be a nonnegative integer and k ∈ℤ. Then,

G kð Þ
n,λ,p xð Þ = 〠

n

l=0
〠
l

i=0

n

l

 !
xð ÞiS2,λ l, ið ÞG kð Þ

n−l,λ,p: ð61Þ

4. Conclusion

In this article, we introduced degenerate poly-Genocchi poly-
nomials and numbers by using the degenerate polylogarithm
function and derived several properties on the degenerate
poly-Genocchi numbers. We represented the generating
function of the degenerate poly-Genocchi numbers by iter-
ated integrals in Theorems 4–6 and explicit degenerate
poly-Genocchi polynomials in terms of the Euler polyno-
mials and degenerate Stirling numbers of the second kind
in Theorem 3. We also represented those numbers in terms
of the degenerate Stirling numbers of the second kind in The-
orem 7. In the last section, we defined the degenerate
unipoly-Genocchi polynomials by using degenerate polylo-
garithm function and obtained the identity degenerate
unipoly-Genocchi polynomials in terms of the degenerate
Genocchi polynomials and degenerate Stirling numbers of
the second kind in Theorem 8, the degenerate Euler polyno-
mials and the degenerate Stirling numbers of the second kind
in Theorem 9, the degenerate Bernoulli and degenerate Stir-
ling numbers of the second kind in Theorem 10, and the
degenerate unipoly-Genocchi numbers and Stirling numbers
of the second kind in Theorem 11. It is important that the
study of the degenerate version is widely applied not only
to numerical theory and combinatorial theory but also to
symmetric identity, differential equations, and probability
theory. In particular, many symmetric identities have been
studied for degenerate versions of many special polynomials
[1, 3, 12, 23, 29–32]. Genocchi numbers have been also exten-
sively studied in many different branches of mathematics.
The works of Genocchi numbers and their combinatorial
relations have received much attention [6–9]. With this in
mind, as a future project, we would like to continue to study

degenerate versions of certain special polynomials and
numbers and their applications to physics, economics, and
engineering as well as mathematics.
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