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A NEW LEARNING TRAJECTORY FOR TRIGONOMETRIC FUNCTIONS 

Özcan Demir and André Heck 

Korteweg-de Vries Institute for Mathematics, University of Amsterdam, The Netherlands 

Educational research has shown that many secondary school students consider the subject of trigo-

nometric functions as difficult and only develop shallow and fragmented understanding. It is un-

clear which of the two popular approaches to introducing trigonometry, namely the ratio method 

and the unit circle method, works best. In this study we propose a new framework for trigonometric 

understanding and a new, dynamic geometry supported trajectory for learning trigonometric func-

tions. We also report on the results of a classroom case study in which the new approach has been 

implemented and researched. We discuss the task-related difficulties that students faced in their 

concept development and we describe their trigonometric understanding in terms of our framework. 

BACKGROUND 

In the triangular geometry, the sine and cosine of an acute angle are defined as ratios of pairs of 

sides of a right triangle. This is referred to as the ratio method of introducing trigonometric func-

tions. The right triangle is often embedded in the unit circle, but then the notion of angle actually 

gets the meaning of rotation angle. The sine and cosine of a particular angle are now defined as the 

horizontal and vertical coordinate of a point obtained by rotating the point (1,0) about the origin 

over the angle. This is called the unit circle method. It is unclear which approach works best. In 

practice, a combination of these approaches is often applied. In both approaches, the trigonometric 

functions are functions of an angle and not of a real number. This is more or less repaired by intro-

ducing the radian. It is important to make clear to students that the notion of angle differs in the two 

approaches: it is in the ratio method an angle of a triangle with values between 0 and 90 degrees, 

whereas it is in the unit circle method a rotation angle which has both a magnitude and a direction.  

The research literature on students‘ understanding of trigonometric functions is sparse, but most 

studies conclude that students develop in the aforementioned approaches a shallow and disconnect-

ed understanding of trigonometric functions and underlying concepts, and have difficulty using sine 

and cosine functions defined over the domain of real numbers (Challenger, 2009; Moore, 2010, in 

press; Weber, 2005, 2008). The sine and cosine functions may have been defined, but the graphs of 

these real functions remain mysterious or merely diagrams produced by a graphing calculator or 

mathematics software. The complex nature of trigonometry makes it challenging for students to 

understand the topic deeply and conceptually. 

In this paper we present a model of trigonometric understanding. It played an important role in the 

design of a new instructional approach to sine and cosine functions and in the analysis of the data 

regarding students‘ understanding of these functions that were collected in a classroom case study.  

A MODEL OF TRIGONOMETRIC UNDERSTANDING 

Our model of trigonometric understanding is based on a conceptual analysis of mathematical ideas 

within and among three contexts of trigonometry, namely triangle trigonometry, unit circle trigono-

metry, and trigonometric function graphs (Figure 1). The conceptual analysis of trigonometry based 

on angle measure by Thompson (2008) was a source of inspiration: we also strive for coherence 

between mathematical meanings at various levels of trigonometry. But our approach differs in two 

aspects: (1) we use the functional relationship between arc length and corresponding vertical posi-

tion for the case of sine in the unit circle prior to angle measure; (2) our model is broader than 

Thompson‘s example using angle measure in the sense that it includes trigonometric functions in 
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the domain of real numbers. We presume that it is easier for students to study first covariation of 

quantities having the same unit for measurement — in our approach a relationship between path 

length and displacement along coordinate axes — than to start with a function from angle measure 

(degrees or radians) to length measure (using the length of the hypotenuse of a right triangle or the 

radius of a circle as a unit). 

 
Figure 1: A model of trigonometric understanding 

The contexts TT, UCT, and TFG represent three contexts in which trigonometry can be partially 

understood, while the central point U represents the desired trigonometric understanding of stu-

dents. The numbered line segments indicate that trigonometric understanding should entail aspects 

in the three contexts and the connections among them. It is important to keep in mind that point U 

should not be considered static. It may have different places in between the three contexts with 

respect to the quality of different students‘ understanding because different tasks may require dif-

ferent aspects of trigonometric understanding. The line segments labelled 1, 2 and 3 represent 

understanding of different aspects within three different contexts. These aspects are not only about 

factual knowledge, but also concern the students‘ ability to elaborate on them. A deeper level of 

understanding is represented by the thicker line segments 4 and 5 in Figure 1, which represent 

understanding the connections among the contexts represented by the dashed lines. Various aspects 

were hypothesized as important for students‘ trigonometric understanding: they are listed in Table 1 

and formed the basis of the design of a hypothetical learning trajectory of trigonometric functions.  

segment context or 

connection 

Aspects of trigonometric understanding 

1 Triangle 

(TT) 

Ratio definition of sine and cosine in a right triangle, and applications 

2 Unit circle 

(UCT) 

Coordinate definitions of sine and cosine, and applications with angles or real numbers 

Application of the coordinate definitions to evaluate sine and cosine for certain inputs 

Trigonometric relationships deducible from the unit circle, e.g. sine is an odd function 

Relationship between arcs and subtended angles through the notion of radian 

Converting between degrees and radians via proportionality 

3 Graphs 

(TFG) 

Connection of the sine and cosine graph with real functions 

Functional properties of trigonometric graphs, e.g., domain and range of functions 

Trigonometric relation revealed by the graphs, e.g., even and odd property of functions 

4 Connection 

TT-UCT 

Integration of the ratio method with the unit circle method via reference triangles, 

affording trigonometric values of angles larger than 90 degrees 

5 Connection 

UCT-TFG 

Construction and interpretation of trigonometric graphs 

Explanation of properties of trigonometric functions 

Table 1: Aspects of the new model of trigonometric understanding 
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A NEW LEARNING TRAJECTORY FOR TRIGONOMETRY 

The basic idea in the new approach is to avoid an early introduction of radians as angle measure, but 

instead make the winding function of the real line onto the unit circle the principal concept and use 

the concept of arc and arc length to introduce sine and cosine as real functions. We presume that, 

when the sine function is introduced, it is easier for secondary students to consider a function with 

distance as input and height as output than to consider a functional relationship between angle 

measure and height. The nature and unit of the involved quantities are in this case the same. Also it 

is important in our approach that students can first practice with pencil and paper and develop 

understanding of the geometric construction of the sine and cosine function. Our reasoning is simi-

lar to that of Weber (2005) and Moore (2010): students better experience the application of a partic-

ular process and reflect on it before they mentally apply the same process. To get hands-on experi-

ence with the process of applying a winding function onto the unit circle and with coordinate func-

tions, students first explore the winding function defined on a regular polygon that circumscribes the 

unit circle and is oriented in the Cartesian plane such that the point (1,0) is a midpoint of a vertical 

edge. A point P moves counter-clockwise along the rim of the regular polygon and the covariation 

of the travelled distance and the vertical position is studied. In case of an n-gon, this leads to a sine-

like function sn. Students begin with the construction of the function s4 by pencil and paper.  Next 

they explore the same construction by a dynamic geometry package; see Figure 2 for a screenshot of 

the GeoGebra activity used in class. The purpose of this applet is to promote student construction of 

knowledge: it is meant to function as a didactic object (Thompson, 2002), that is, as an object to talk 

about in a way that enables and supports reflective mathematical discourse. 

 

Figure 2: Screenshot of a GeoGebra activity on the graph of the sine-like function s4. 

The next step in the trajectory is to extend the graph over the negative horizontal axis and to make a 

similar construction of a cosine-like function c4. Various trigonometric-like properties of the func-

tions s4 and c4 can be explored such as s4(x+8) = s4(x), s4( x) = s4(x), and s4(2 x) = c4(x), for all x. 

Also note that by construction s4(x) = x for small values of x. What can be done for a square can also 

be done for a pentagon, hexagon, and so on. With great effort, students can explore cases for small 

values of n by pencil and paper, but for most regular n-gons dynamic geometry software is helpful: 

see the screenshot of a GeoGebra activity in Figure 3 and 4.  

 

Figure 3: Screenshot of a GeoGebra activity on the graph of the sine-like function s5.  

 

Figure 4: Screenshot of a GeoGebra activity on the graph of the sine-like function s30. 



122 

ISBN: 978-88-6629-000-1                Proceedings of ICTMT11 – Eds. E. Faggiano & A. Montone                    

 

The graph of s30 is very smooth and it can hardly be distinguished with the naked eye from the sine 

graph. Functions s and c can now be introduced by taking limits: s = limn sn  and c = limn cn. 

Of course, this is not done in a formal way at secondary school level. It is only important that the 

students realize that the winding function for the unit circle can be defined in a way similar to the 

construction using regular n-gons and that the graphs of sn and cn look for large n almost the same as 

the graphs in case the unit circle is used instead of a regular polygon with many edges. We hope and 

expect that students develop in this way a process view of the sine- and cosine-like mathematical 

functions that helps them to understand the mental construction of the sine and cosine functions.  

Until this point on the learning trajectory no attention has been paid to rotation angles and no link 

has been laid with the geometric definition of sine and cosine. Presuming that the students already 

know that the circumference of the unit circle equals 2  and that a point on the rim of the unit circle 

is mapped by a rotation of 360 degrees about the origin onto itself, they can find out that a counter-

clockwise walk along the rim of the unit circle starting from (1,0) over a distance of x units corre-

sponds with a rotation of x 180°/  about the origin. By drawing a right triangle for a point on the 

unit circle and using the ratio definition of sine, students can find out that s(x) = sin(x 180°/  ). This 

formula allows them to compute function values such as s( ) and s( ). The introduction of radian 

finally boils down to the understanding that an arc of length 1 corresponds with a rotation angle of 

180°/  and that this leads to s(x) = sin(x rad). We are close to calling s the sine function and deno-

ting it by sin, too. The introduction of the cosine function can similarly be realized. This finalizes 

the linking of the unit circle geometry with the triangle geometry.  

CLASSROOM CASE STUDY 

Based on the model of trigonometric understanding (Figure 1 and Table 1) and the new approach 

outlined in the previous section, we examined students‘ concept development and understanding of 

sine and cosine functions through a classroom case study. Demir (2012) has written a detailed report 

about this research study. Here we only outline the work and some of the results. 

The classroom study was conducted at a secondary school in Amsterdam with a class of 24 pre-

university students (17 female and 7 male; age 16-17 yr.), who were classified by their teacher as a 

high achievement group in mathematics. The first author designed and taught five lessons in class. 

The cooperating teacher wrote observational notes, translated English mathematical terminology 

into Dutch when needed, and also helped students during their work. Students‘ readiness for the in-

struction was evaluated one week before the start of the instructional sequence through a half-hour 

diagnostic test. In the lessons, students were encouraged to construct their knowledge through inter-

actions with peers, the researcher (acting as teacher) and the regular teacher. Working in pairs and 

whole classroom discussions were important elements of the lessons. The grouping of the students 

in dyads was done on the basis of advice of the cooperating teacher. GeoGebra applets were used as 

didactic objects in combination with tasks given to students through worksheets.  

The research was conducted to find answers to two descriptive research questions: (1) What task-

related difficulties do students face in their concept development within the designed instructional 

sequence based on the new hypothetical learning trajectory of trigonometric functions? (2) What 

characteristics relating to students‘ understanding of sine and cosine can be found in the data resul-

ting from the intervention based on the new model of trigonometric understanding 

We applied classical research methods for data collection. Participatory classroom observation was 

an important data source. We held interviews with the cooperating teacher after each lesson to re-

cord her impressions of the activities and of how the instructional materials and the ICT tools had 

functioned. Four semi-structured audio-recorded interviews were held with students after the in-

structional sequence for the purpose of getting an impression of their understanding of the key 
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mathematical points underlying the instructional sequence. Audio recordings of discussions of stu-

dents on worksheet tasks gave an impression of their concept development. In each lesson, four 

dyads were recorded. We collected all completed worksheets of pairs of students. We administered 

a 50-minutes trigonometry test after the instructional sequence. It was based on our model of trig-

onometric understanding and designed to assess students‘ understanding.  

Concerning the first research question, the analysis of student‘s responses to worksheet tasks and 

the audio recordings of the related group discussions revealed that in general the students were quite 

successful when working on most tasks. They only faced difficulties in the following tasks regard-

ing their concept development within the instructional sequence: (1) drawing the graph of the verti-

cal position of a moving point along the rim of the unit square against the travelled distance; (2) de-

riving the formula s(x) = sin(x 180°/  ) of the graph of the vertical position of a moving point on the 

unit circle plotted against arc length; (3) converting 180°/   to radians and using it in in the transi-

tion to function on real numbers; and (4) calculating the sine and cosine of 210°. 

It was clear that the first task was very uncommon to the students. They were only familiar with 

drawing the graph of a function for which a formula has been given. Once they understood the task, 

they knew what to do and could determine points on the graph.  But then it was difficult to decide 

how to connect these points: by line segments or curved segments? Having seen many smooth 

graphs in their school career, students tended to do the same in this task. The difficulties in deriving 

the formula of s(x) had to do with proportional reasoning to connect arcs and subtended angles, and 

with the required movement from specific cases toward a general case expressed via a mathematical 

formula that involves variables. Group discussions revealed that few students could link 180°/  with 

the notion of radian as angle measure. The radian concept was probably at this stage in the instruc-

tional sequence not fully understood yet and the task was therefore too challenging for the students. 

Later on in the learning sequence, many obstacles with the conversion between degrees and radians 

disappeared. The difficulty of calculating sin(210°) and cos(210°) had two sources: (1) some stu-

dents did not recall the related values of sin(30°) or the method how to compute them; and (2) many 

students could not figure out how to link triangle trigonometry with unit circle trigonometry. Whole 

classroom discussed helped students overcome these difficulties. 

Concerning the second research question about the students‘ integrated understanding of trigonom-

etry after the instructional sequence, several findings could be derived from the interviews with stu-

dents and the trigonometry test. Some of them are discussed below.  

In general, the students developed a good level of understanding of aspects in the unit circle context. 

They were able to evaluate trigonometric functions of real numbers by associating them to an arc on 

the unit circle and they understood the notion of radian well enough for the construction of knowl-

edge of trigonometric functions based on the fact that the value of the angle measured in radians is 

equal to the arc length on the unit circle. Although many students understood trigonometric relation-

ship for specific angles, most students were not able not prove a trigonometric equality when ex-

pressed in algebraic format.  

For the context of trigonometric function graphs, we found that the students conceptualized sine and 

cosine as functions of real numbers, and that they grasped how to interpret the graphs in terms of 

domain, range, periodicity, and symmetry properties. 

From the trigonometry test and the interviews with students, we concluded that the students showed 

good understanding of how to integrate right triangle definitions of sine and cosine with the unit cir-

cle method in order to calculate trigonometric values of angles larger than 90°. However, most stu-

dents could not calculate  trigonometric values of well-known angles like 30°, 45°, and 60° because 
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they had not memorized these special values, nor the methods to find the values. Nevertheless, they 

seemed to understand the connections between triangle and unit circle contexts 

Students also developed a deep understanding between the unit circle context and the graph context. 

The most remarkable finding was that the students continued to base their understanding of such 

connections on arcs. This was found on many occasions. Concerning the construction and compre-

hension of trigonometric graphs, it was found that students conceptualized trigonometric graphs 

through the arc length  on the unit circle. They explained coordinates of points on the graph with a 

journey metaphor based on arc length as travelled distances and they related the direction of the 

movement with the sign of an angle or the sign of a real number. Furthermore, students could ex-

plain the shape of trigonometric graphs. 

CONCLUSION 

We proposed the use of arcs of a unit circle to serve as glue between the unit circle trigonometry 

and trigonometric function graphs, and the use of the metaphor of travelling along the rim of a geo-

metric object like a regular polygon or a circle to help students develop coherent meanings based on 

arcs of a unit circle. Angle measure was addressed in our learning trajectory only after most con-

nections between the trigonometric function graphs and the unit circle trigonometry have been set. 

We examined our new approach in a classroom case study. It provided evidence of the effectiveness 

in promoting: (1) integrated understanding of trigonometric functions in such way that students do 

not have as many difficulties and misconceptions as reported before in the research literature on tri-

gonometry; and (2) connected understanding of trigonometric functions as functions defined for 

angles and as functions defined for the domain of real numbers. Students developed good under-

standing of trigonometric graphs and related properties of the trigonometric functions.  
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