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ABSTRACT

Context. The publication of the Gaia Data Release 2 (Gaia DR2) opens a new era in astronomy. It includes precise astrometric data
(positions, proper motions, and parallaxes) for more than 1.3 billion sources, mostly stars. To analyse such a vast amount of new data,
the use of data-mining techniques and machine-learning algorithms is mandatory.
Aims. A great example of the application of such techniques and algorithms is the search for open clusters (OCs), groups of stars that
were born and move together, located in the disc. Our aim is to develop a method to automatically explore the data space, requiring
minimal manual intervention.
Methods. We explore the performance of a density-based clustering algorithm, DBSCAN, to find clusters in the data together with a
supervised learning method such as an artificial neural network (ANN) to automatically distinguish between real OCs and statistical
clusters.
Results. The development and implementation of this method in a five-dimensional space (l, b, $, µα∗ , µδ) with the Tycho-Gaia
Astrometric Solution (TGAS) data, and a posterior validation using Gaia DR2 data, lead to the proposal of a set of new nearby OCs.
Conclusions. We have developed a method to find OCs in astrometric data, designed to be applied to the full Gaia DR2 archive.
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1. Introduction

The volume of data in the astronomical catalogues is con-
tinuously increasing with time, and therefore its analysis is
becoming a highly complex task. In this context, the Gaia mis-
sion, with the publication of its first data release (Gaia DR1,
Gaia Collaboration 2016) containing positions for more than
one billion sources, opened a new era in astronomy. In spite of
this large number of stars, however, full five-parameter astro-
metric data, that is, positions, parallax, and proper motions
(α, δ,$, µα∗ , µδ) are available only for a relatively small sub-
set. This subset is the Tycho-Gaia Astrometric Solution (TGAS
Lindegren et al. 2016; Michalik et al. 2015), which provides a
good starting point to devise and test scientific analysis tools
in preparation for the larger releases, and in particular for
the recently published second Gaia data release (Gaia DR2,
Gaia Collaboration 2018). In Gaia DR2, precise five-parameter
astrometric data for more than 1.3 billion stars are available, to-
gether with three-band photometry. The analysis of such a vast
amount of data is simply not possible with the usual techniques
that require a manual supervision, and has to rely on the use of
data-mining techniques and machine-learning algorithms. In this
paper we develop a set of such techniques, allowing an automatic
exploration of the data space for the detection of open clusters
(OCs); we apply them to TGAS and we check the validity of the
results with the DR2 data, in preparation for its application to the
full dataset.

The analysis tools developed in this paper are designed for
the automated detection of OCs. According to the currently
accepted scenarios of star formation, most of the stars are

born in groups from giant molecular clouds (see for instance
Lada et al. 1993). Such groups, of up to a few thousand stars,
can lose members or even completely dissolve due to internal
and close external encounters with stars and gas clouds in their
orbits in the Galactic disc. Open clusters, being the fundamen-
tal building blocks of galaxies, are key objects for several as-
trophysical aspects: (a) very young OCs are informative of the
star formation mechanism (the fragmentation of the gas clouds,
the time sequence of formation, the initial mass function (IMF)),
(b) young OCs trace the star forming regions (young clusters are
seen near their birth place), (c) the evaporation of OC stars into
the field stellar population (by studying the internal kinematics
and the mass segregations), (d) intermediate and old OCs allow
for the study of chemical enrichment of the galactic disc due to
more precise determination of ages than for field stars (gra-
dients with galactocentric distance and age can be analysed),
(e) the stellar structure and evolution (colour magnitude dia-
grams (CMDs) provide empirical isochrones to compare with
the theoretical models). The most updated and complete com-
pilations of known OCs are those in Dias et al. (2002) and
Kharchenko et al. (2013)1. Both lists are internally homoge-
neous in their determination of mean proper motions, distances,
reddening and ages, but there is no full agreement between them
on which group of stars is considered a cluster or an asterism.
In total, there are about 2500 known OCs, most of them detected
as stellar overdensities in the sky and confirmed through proper
motions and/or CMDs. About 50% of the OCs in these sam-
ples are closer than 2 kpc and about 90% are closer than 5 kpc.
1 Supplemented by Schmeja et al. (2014) and Scholz et al. (2015).
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Certainly, our knowledge of OCs beyond 1–2 kpc is rather in-
complete due to the decreasing angular size and luminosity of
the clusters with distance and the obscuration by the interstel-
lar dust. Froebrich (2017) identified 125 compact (distant) and
so-far unknown OCs using deep high-resolution near-infrared
(NIR) surveys, again by identifying overdensities in the spatial
distribution confirmed as OCs using CMDs.

The recently released Gaia DR2 provides an ideal dataset
for the detection of so-far unknown OCs. Identifying cluster-
ing of objects in a multidimensional space (positions, proper
motions, parallaxes and photometry) allows for a much more ef-
ficient detection of these objects than simply using the usual two-
dimensional (2D) (sky positions) approach. With this purpose
in mind we have devised a method to systematically search for
OCs in Gaia data in an automatic way and we have, as an ini-
tial validation step, applied it to the TGAS subset of Gaia DR1
(Gaia Collaboration 2016). Although the 2 million stars in TGAS
have a relatively bright limiting magnitude of ∼12, the inclu-
sion of the proper motions and parallaxes allows us to detect
sparse or poorly populated clusters that have so far gone unde-
tected in the solar neighbourhood2. Importantly, the inclusion
of additional dimensions and the better precision of the data in-
creases the statistical significance of the overdensities. These
overdensities are detected using a density-based clustering
algorithm named DBSCAN (Ester et al. 1996), which has been
previously used to find spatial overdensities (Caballero & Dinis
2008) or cluster membership determination (Wilkinson et al.
2018; Gao et al. 2014, 2017); they are subjected to a confirmation
step using a classification algorithm based on an artificial neural
network (Hinton 1989) to recognise isochrone patterns on CMDs.
The thus-detected candidate OCs are finally validated by hand
using Gaia DR2 (Gaia Collaboration 2018) photometric data, in
order to confirm the validity of the methodology in view of its
application to the full Gaia DR2 archive in an upcoming paper.

This paper is organised as follows: in Sect. 2, we describe the
clustering algorithm used. In Sect. 3, we optimise the choice of
the values of the algorithm parameters by applying it to a simu-
lated dataset. In Sect. 2.3, the neural network classification algo-
rithm used to discriminate between real OCs and detections due
to random noise is described. In Sect. 4, we discuss the results
of the method when applied to the TGAS dataset, materialised
in a list of 31 OC candidates. Finally, these candidates are man-
ually validated using Gaia DR2 photometric datasetta in Sect. 5,
allowing to us confirm most of them. Conclusions are presented
in Sect. 6.

2. Methods

The methodology used to identify groups of stars as possible
new OCs is sketched in Fig. 1. Starting from the whole TGAS
catalogue and after applying a preprocessing step (see Sect. 2.1),
an unsupervised clustering algorithm named DBSCAN3 detects
statistical clusters (see Sect. 2.2) in the data. After removing
the OCs already catalogued in MWSC, an Artificial Neural
Network3 is applied to automate the distinction between statisti-
cal clusters and physical OCs, based on a CMD built using the
photometric data from the 2MASS catalogue.

2 For instance Röser et al. (2016) discovered nine OCs within 500 pc
from the Sun based on proper-motion analysis using a combination of
Tycho-2 and URAT1 catalogues. The existence of still-undiscovered
nearby OCs cannot therefore be discarded.
3 Algorithm from the scikit-learn python package (Pedregosa et al.
2011).

TGAS

Preprocess

DBSCAN DBSCAN Clusters

ANN

New OCs

CMDs of Gaia DR1 OCs

MWSC

shift

Fig. 1. Flow chart of the method applied to find OCs. Solid boxes rep-
resent code, solid ellipses represent generated catalogues, and dashed
ellipses represent external catalogues.

2.1. Preprocessing

Most of the catalogued OCs are found in the Galactic disc
(|b|< 20 deg), for example, 96% of the clusters from the
Dias catalogue (Dias et al. 2002) and 94% from the MWSC
(Kharchenko et al. 2013) lie in that region. We therefore explore
the Milky Way disc scanning all longitudes in the region ±20 deg
in latitude. In addition, we remove stars with extreme proper
motions and large or negative parallaxes. This helps in the
determination of the DBSCAN parameter ε (see Sect. 2.2) with
almost no loss of generality because these conditions would
make any OC easily detectable. A star with the following values
is rejected by the algorithm: |µα∗ |, |µδ|> 30 mas yr−1, $< 0 mas
and $> 7 mas.

The resulting sky area of study is further divided into smaller
regions, rectangles of size L deg, where the clustering algorithm
is to be applied. The reason for this division is twofold. On the
one hand, it saves computational time because the volume of
the data in the region is much smaller. On the other hand, the
DBSCAN algorithm needs a starting point to define an averaged
density of stars in the region; with smaller regions this average
is more representative than if we take the whole sky, where the
density can significantly vary from one region to another. Once
we have the sky divided into rectangles, to avoid the redundant
detection of split clusters that might be spread over more than
one of these regions or may be in the intersection of two regions,
any cluster found with at least one star on the edge of the rect-
angle is rejected. To deal with the border conflicts the rectangles
are shifted L/3 and 2L/3 and the algorithm is run one more time
for each shift. During these shifts, the algorithm explores regions
where |b|> 20 deg, so clusters in that region might appear. The
clusters found in the second or third run are then only taken into
account if none of its members is in any cluster of the previ-
ous runs; in this way we ensure that no clusters are missed or
detected more than once because they are on the borders of the
regions.

The last step in the preprocessing is the scaling of the
star parameters used by DBSCAN. The algorithm makes use
of the distance between sources in the N-dimensional space to
define if the stars are clustered or not. Because there is no di-
mension preferred in the five-dimensional (5D) parameter space
(l, b, $, µα∗ , µδ), we standardise the parameters (rescale them to
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mean zero and variance one) so that their weights in the process
are equalised.

2.2. DBSCAN

Once the region of the search is defined and the average distance
between stars in the parameter space is determined, an automatic
search for groups of stars that form an overdensity in the 5D
space is started.

The clustering algorithm DBSCAN (Ester et al. 1996)
is a density-based algorithm that makes use of the notion
of distance between two sources in the data to define a set
of nearby points as a cluster; it has the advantage over other
methods of being able to find arbitrarily shaped clusters. An
OC naturally falls in the following description: groups of stars
with a common origin, meaning that they share a common loca-
tion (l, b, $) and motion (µα∗ , µδ). The TGAS (Lindegren et al.
2016) data set contains precise information for these five pa-
rameters, so one can define the distance between two stars
(i and j) as

d(i, j) =
√

(li − l j)2 + (bi − b j)2 + ($i −$ j)2 + (µα∗ ,i − µα∗ , j)2 + (µδ,i − µδ, j)2·

(1)

The choice of this euclidean distance is due to its simplicity,
although a distance with specific weights on the different
parameters, in order to optimise the search for different kinds
of clusters (rich or poor, sparse or compact, etc.) or to take into
account the uncertainities of each value, could be investigated.
We also note that the distance is calculated with the standardised
values of these parameters.

The definition of a DBSCAN cluster depends on two
paramters: ε and minPts. A hypersphere of radius ε is built cen-
tred on each source, and if the number of sources that fall inside
the hypersphere is greater than or equal to the pre-set minPts, the
points are considered to be clustered. This definition of cluster
allows us to make the distinction between three types of sources
in the data set: i) core points, sources that have a number of
neighbours (within the hypersphere of radius ε) greater than or
equal to minPts, ii) members, sources that do not have these
neighbours in their hyperspheres but fall in the hypersphere of
a core point, and iii) field stars, sources than do not fulfil any of
the two previous conditions. For an intuitive 2D description of a
cluster in DBSCAN, see Fig. 2.

Determination of the ε and minPts parameters

Therefore the DBSCAN algorithm depends only on two param-
eters, the minimum number of sources (minPts) to consider that
a cluster exists and the radius (ε) of the hypersphere in which to
search for these minPts sources. In order to determine the opti-
mum value of minPts for OC detection, the algorithm is tested
with a simulated sample and a set of the values that perform best
is chosen (see Sect. 3). In particular, the determination of ε is
crucial for the efficiency of the detection, and the selected values
can affect the number and shape of the clusters found.

Aiming to reduce the free input parameters, we have imple-
mented an automated determination of the ε value that best fits
the data on a given region. Since a cluster is a concentration of
stars in the parameter space, the distance of each star belong-
ing to a cluster to its kth nearest neighbour should be smaller
than the average distance between stars belonging to the field
(Fig. 3). Our determination of ε, taking advantage of this fact, is
as follows:

ε

Fig. 2. Schematic representation of a DBSCAN cluster with minPts = 3.
Points in green represent core points, each point has minPts points in its
(green solid) hypersphere. The blue triangle represents a member point,
it does not have minPts in its (blue dashed) hypersphere but it is reached
by a core point. The red square represents a field star; it does not have
any other point in its (red dash-dot) hypersphere. All the hyperspheres
have radius equal to ε.

– Compute the kth nearest-neighbour distance (kNND) his-
togram for each region and store its minimum as εkNN.

– Generate a new random sample, of the same number of stars,
according to the distribution of each astrometric parameter
estimated using a Gaussian kernel density estimator. Subse-
quently, compute the kNND histogram for these stars and
store the minimum value as εrand. Since we are generating
random samples, the minimum number of the kNND distri-
bution will vary upon each realisation; in order to minimise
this effect we store the average over 30 repetitions of this
step: εrand.

– Finally, to obtain the most concentrated stars (which will be
considered as the candidate members of the OC) and min-
imise the contamination from field stars, the choice of the
parameter is ε = (εkNN + εrand)/2.

Figure 3 shows a real distribution of seventh-nearest neighbour
distance (7th-NND) around the cluster NGC 6633 (in blue) to-
gether with a random resampled 7th-NND histogram (in orange)
with the choice of ε in that region (red line); the peak belonging
to the cluster is well separated from field stars through ε. In addi-
tion, the figure shows the histogram of distances to the seventh-
nearest neighbour of each star in the NGC 6633 cluster (in
green), where the members are taken from Gaia Collaboration
(2017).

The choice of the value for k has to be related to the
expected members of the cluster. Here, since minPts determines
the minimum members of a cluster, the value for k is set to
k = minPts− 1. Two free parameters (L, minPts) are left to be
optimised using simulations (see Sect. 3).

2.3. Identification of open clusters

At this point, when DBSCAN has found a list of candidate OCs,
the method needs to be refined to distinguish real OCs from the
statistical clusters (random accumulation of points). This step is
an automatisation of what is usually done by visual inspection;
plot the CMD of the sky region and see if the clusterized stars
follow an isochrone. We treat this as a pattern-recognition prob-
lem, where artificial neural networks (ANNs) with a multilayer
perceptron architecture have been shown to be a good approach
(Bishop 1995; Duda et al. 2000). Similar problems, such as the
identification of globular clusters (Brescia et al. 2012) or a
selection for quasi stellar objects (QSOs; Yèche et al. 2010),
have also been solved using a multilayer perceptron.
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Fig. 3. Histogram of the 7th-NNDs of the region around the cluster NGC
6633. The blue line shows the 7th-NND histogram of all the stars in that
sky region in TGAS. Orange line shows the 7th-NND histogram of one
realization of a random resample. Green line shows the 7th-NND his-
togram for the listed members of NGC 6633 (more visible in the zoom
plot). The red line corresponds to the chosen value of ε in this region.
The plot was made with the parameters L = 14 deg and minPts = 8.

2.3.1. Artificial neural networks

Artificial neural networks are computing models that try to
mimic how a biological brain works. In particular, the multilayer
perceptron consists in a set of at least three layers of nodes (neu-
rons) capable of classifying a given input feature vector into the
class it belongs.

Figure 4 shows a schematic representation of a multilayer
perceptron with one hidden layer. The left-most (input) layer
represents the set of input features {x1, x2, . . . , xn}. This is
followed by the hidden layer, where each hidden neuron
(labeled as hi) weights the received input from the previous layer
as νi =ωi1x1 +ωi2x2 + · · ·+ωinxn, and responds according to an
activation function, in our case we use a hyperbolic tangent acti-
vation function

y(νi) = tanh(νi), (2)

which is then passed to the output layer that performs the classi-
fication.

2.3.2. Data preparation

Artificial neural networks are supervised classification algo-
rithms that require a pre-classified learning sample to train them.
In our case, the data used to train the model are the OCs
taken from Gaia Collaboration (2017). These clusters are well-
characterised; they have a reasonable number of members and
show clear isochrones in the CMD, and are the target of our
pattern-recognition algorithm. Furthermore, they have the same
astrometric uncertainties as our data so they are representative of
our problem. In order to train the model, and to increase the size
of the training set, several subsets of these OC member stars are
randomly selected and plotted in a CMD to serve as patterns.
Moreover, CMDs that do not correspond to clusters are also
needed as examples of negatives for the training. In this case, we
inspect the output from DBSCAN (for pairs of (L,minPts) that
were not used in the detection step) and select sets of clusterized
stars not following any isochrone.

Figure 5 shows two examples of training data sets for
the model. The upper plot corresponds to members of the
Coma Berenices cluster listed in Gaia Collaboration (2017). The

x1

x2

xn

...

h1

h2

hk

...

out

Fig. 4. Schematic representation of a multilayer perceptron with one
hidden layer. The xi values represent the input data. The hi labels repre-
sent neurons in the hidden layer.
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Fig. 5. Examples of training data for the ANN classificator. The upper
plot corresponds to a density map of a CMD of a subset of the members
of Coma Berenices. The lower plot is the density map of a CMD of a
cluster found by DBSCAN that we labelled as noise. In both cases, the
colours represent the value of each pixel, and this is the input of the
ANN model.

members are randomly chosen to form a set of ten sub-clusters,
each one with characteristics similar to those found by DB-
SCAN. The CMD of these sub-clusters is then converted to a
density map so that the value of each pixel can be used as the
input for the ANN. A density map of one of these sub-clusters
is shown in the upper plot. The lower plot corresponds to non-
clusters for the training on negative identifications.

2.3.3. Performance of the classification

The ANN classificator is trained with a total of 296 images, con-
taining a balanced relation between CMDs from true (real) OCs
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and CMDs from field stars. For performance estimation pur-
poses, this whole set is divided into a training and a test set,
containing 67% and 33% , respectively. The test CMDs are clas-
sified with a precision of a 97.95% to the right class (OC or field
stars). Even though the model is then trained with all the 296
CMDs, the precision reached in the test set is only an estima-
tion of the upper limit because the ANN has learnt from the OCs
in Gaia DR1 listed in Gaia Collaboration (2017). The detection
of new OCs is then limited to have the same characteristics as
those in Gaia Collaboration (2017), where there are a total of 19
nearby OCs with ages ranging from 40 to 850 Myr, and no sig-
nificant differential extinction. A training set that is larger and
wider in terms of characteristics of the OCs needs to be built in
order to apply the method to the Gaia DR2 data.

3. Simulations

A simulation of TGAS-like data is used to test the clustering
method and set the optimal parameters to detect as many clusters
as possible with a minimum of false positives.

As described in Arenou et al. (2017), the simulation con-
sists in astrometric data from Tycho-2 stars taken as nominal
where errors coming from the AGIS solution have been added.
The proper motions used for the simulation are those from
Tycho-2; to prevent their dispersion from spuriously increas-
ing when adding the TGAS errors, they were “deconvolved”
using Eq. 10 from Arenou & Luri (1999). In the case of the
parallaxes, for nearby stars, the simulated value is a weighted
average of “deconvolved” Hipparcos parallaxes, while for the
more distant stars, it is taken from the photometric parallax in
the Pickles & Depagne (2011) catalogue. The simulation of the
TGAS-like errors follows the description from Michalik et al.
(2015), which is based on the algorithms from Lindegren et al.
(2012). In short, this dataset is very representative of the real
TGAS dataset that we use both in terms of its distribution of
parameters (taken from Tycho) and its astrometric errors (gener-
ated to be as close as possible to the TGAS ones).

The OCs are added to this dataset a posteriori, simulated
using the Gaia Object Generator (GOG; Luri et al. 2014) (see
details of how they are simulated in Roelens 2013). For each
cluster, the stars with G > 12 are filtered out due to the limiting
magnitude in TGAS. Moreover, the simulation provides true val-
ues for the astrometric parameters to which observational errors
are added. Using the uncertainties published in the TGAS cat-
alogue, a normal random number is drawn centred in the true
value, to compute the observed quantities.

Choice of the parameters

Selection of the best parameters to run the algorithm is made in
terms of noise and efficiency. Their definition, in terms of true
positive rate (tp), false positive rate (fp), and false negative rate
(fn), is fp/tp for noise and fn/tp for the efficiency.

In order to find the pairs of parameters that best perform, the
algorithm was run over several pairs of (L,minPts). The sweep
over this parameter space allowed us to select the set of pairs
of parameters that are less contaminated by spurious clusters.
Figure 6 shows the performance of each pair of (L,minPts) for
the investigated pairs. The reddest pixel represents the best per-
forming pairs of parameters while the bluest pixels represent
the worst performing pairs. In the best case, with noise around
∼0.25, we are introducing one spurious cluster in the detection
every four real clusters, while in the worst case, we have a noise
around 0.5. An efficiency of 0.25 means that we do not detect

one out of four real clusters. The selection was made in an
attempt to find a balance between noise and efficiency; the black
box in Fig. 6 represents the selected pairs of (L,minPts), which
are L ∈ [12, 16] and minPts ∈ [5, 9].

4. Results

The whole method is run over the TGAS data to obtain a list
of OC candidates. First, the DBSCAN algorithm is applied to
the preselected data (see Sect. 2.1) with the optimal values for
the parameters L = {12, 13, 14, 15, 16} and minPts = {5, 6, 7, 8, 9}.
This results in a list of clusterized stars, including real clusters
already catalogued, non-catalogued possible clusters, and noise.
Although the clusters that are already catalogued are useful to
verify that the algorithm is capable of finding real clusters, they
are discarded (see Fig. 1). To do this, all the clusters found by
DBSCAN whose centre lies within a box of 2 deg× 2 deg cen-
tred in a cluster present in the MWSC catalogue are discarded.
In this way, we ensure a list composed only of new cluster can-
didates. Röser et al. (2016) published a list of nine nearby OCs
using proper motions from a combination of Tycho-2 with
URAT1 catalogues. We did not include these clusters in the
“cross-match with known clusters” step, in order to use them
to check the method.

The classification of these clusters into probable OC can-
didates and statistical clusters is done with the ANN algo-
rithm. The model is trained with CMDs from real clusters (see
Sect. 2.3.2) with the photometric data from 2MASS and TGAS,
and it is capable of identifying isochrone patterns in CMDs. The
isochrone patterns identified by the ANN model are based on
those of the OCs listed in Gaia Collaboration (2017). Only the
clusters found to follow an isochrone with a confidence level
higher than 90% are selected.

Table 1 lists 31 open cluster candidates resulting from the
application of the above-described algorithms. We include the
mean sky position, proper motions, and parallaxes of the identi-
fied members. We do not provide uncertainties because the data
have been superseeded by Gaia DR2. Because the method is run
over 25 different pairs of parameters (L,minPts), the final list is
sorted by the number of appearances of the clusters in the dif-
ferent pairs of parameters. The value Nfound indicates how many
times the cluster has been found for the used pairs of (L,minPts).

As mentioned above, we did not include the OCs in
Röser et al. (2016) in the list of previously known clusters and
therefore we expect some overlap with our candidates. This is
the case for our UBC1 and UBC12, which are RSG4 and RSG3,
respectively.

Of the other seven clusters, RSG2 was not found, possi-
bly due its high galactic latitude and its high µδ mean, which
is −29.54 mas yr−1. Because our preprocessing removes stars
with |µα∗ |, |µδ|> 30 mas yr−1 (see Sect. 2.1) and due to the proper
motion uncertainties in the TGAS catalogue, we may lose part
of the members and, so, the algorithm does not consider the
surviving members as a cluster. On the other hand, the cri-
terium to match our candidates with the list of known OCs is
purely positional (within a box of 2 deg× 2 deg). We do not
impose a match in proper motions and/or parallaxes because of
the large differences between the values quoted in MWSC and
Dias et al. (2002), which makes us doubt the reliability of some
values. This criterion discards candidate clusters that are in the
vicinity of know clusters, and this is the case of RSG1, RSG5,
RSG6, RSG7, RSG8 and RSG9. Our candidate list is therefore
not complete, especially at very low latitudes where the density
of known clusters increases.
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Fig. 6. Performance of the algorithm with a different set of parameters (L,minPts) tested with simulated data. Top panels: true positive (left),
false positive (middle), and false negative (right) rates. We highlight the inversion of the colour bar in the true positive rate to always represent
the reddest pixels as the best performing pair of parameters. Bottom panels: noise (left) and efficiency (right). The black box encloses the area of
pixels corresponding to the selected pairs of parameters.

UBC7 shares proper motions and parallaxes with
Collinder 135. It is located at 2.3 deg from the quoted
Collinder 135 centre and for this reason it is not matched in
our step to discard already known clusters. Figure 7 shows a
cone search of 10 deg centred in UBC7 where a pattern in the
data is clearly visible. This pattern is an artefact of the Gaia
scanning law in the 14 month mission of Gaia DR1. UBC7 is
located where two stripes cross and this, together with the fact
that their stars also share parallaxes and proper motions, leads
to its detection as a separate cluster. This is an indication that
the inhomogeneities in the sky coverage of TGAS data might
lead to the detection of spurious clusters. Collinder 135 is not
detected by DBSCAN because their members lie in a region not
well covered by the observations. Furthermore, they are more
spread than UBC7 and they are not recognised as a group.
It could be that Collinder 135 is larger than quoted in the
literature and includes UBC7.

5. Validation using Gaia DR2

Gaia DR2 provides an excellent set of data for the confirmation
of our candidate members because of the improved precision of
the astrometric parameters, the availability of those parameters
for the stars down to ∼21 mag, and the availability of precise G,
GBP and GRP photometry.

In order to validate each cluster, we run our method again
with a set of DR2 objects selected in a region around its cen-
tre (a cone search of 1 or 2 deg depending on the mean par-
allax of the cluster). The determination of the ε parameter for
DBSCAN is now more complicated due to the higher density
of stars in the Gaia DR2 data, reaching, in some studied cases,
∼150 000 stars in that region. Because our goal here is simply to
validate the already found candidates (not detecting new OCs)
and thus validate our method, we apply a set of cuts in the data.
These cuts are mainly in magnitude and parallax to increase the

contrast between the cluster and field populations, to avoid large
uncertainties, and to discard distant stars (our candidates being
detected with TGAS data, the clusters are necessarily nearby;
see Fig. 8).

Figure 9 shows an example of UBC1 in the TGAS (top pan-
els) and Gaia DR2 (bottom panels) data. Left plots show the spa-
tial distribution of the member stars found in each data set; in the
TGAS case, this shows a squared area of 10 deg× 10 deg whilst
in Gaia DR2, it is a cone search of 2 deg. The middle plots show
the members in the proper motion space and we can see that in
Gaia DR2 data the stars are more compact. The major difference
is in the rightmost plots where a CMD is shown for both cases,
one using photometry from 2MASS (top) and one using only
Gaia data (bottom). The much better quality of the Gaia photo-
metric data (both plots share the same stars for G ≤ 12) allows
us to see the isochrone pattern that the member stars follow with
greatly improved clarity.

We are able to re-detect, and thus confirm, a high percent-
age of the listed OCs using DBSCAN in a region around the
cluster. Table 2 lists the confirmed OCs. The clusters that we
consider as confirmed are those which share most of the stars
with those previously found in TGAS. See plots similar to Fig. 9
in Appendix A for all the OCs. Gaia DR2 includes mean radial
velocities for stars brighter than 12 mag. In Table 2 we include
the mean radial velocity for the OCs derived from the identified
members.

The non-confirmed clusters are UBC15, UBC16, UBC18,
UBC22, UBC23, UBC24, UBC25, UBC28, UBC29 and
UBC30. They are all in the second half of Table 1, which means
that they are the least-frequently found (Nfound < 5) within the
explored parameters (L,minPts). The criteria followed in order
to sort the list of candidates is reasonable; 100% of the
clusters with Nfound ≥ 5 are confirmed, while for Nfound < 5, 59%
are confirmed. As a whole, we are able to confirm ∼70% of the
proposed candidates; this is within the expected performance
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Table 1. List of the 31 open cluster candidates.

Name α
(deg)

δ
(deg)

l
(deg)

b
(deg)

$
(mas)

µα∗
(mas yr−1)

µδ
(mas yr−1) Nfound

UBC1a 287.83 56.62 87.30 19.77 3.04 −2.80 3.69 27
UBC2 4.90 46.38 117.22 −16.13 1.62 −5.95 −5.67 24
UBC3 283.74 12.29 44.29 4.80 0.53 −1.57 −2.31 21
UBC4 60.73 35.23 161.37 −12.97 1.74 −0.08 −5.36 21
UBC5 238.65 −47.66 331.90 4.63 1.61 −7.21 −4.80 18
UBC6 343.87 51.14 105.06 −7.65 1.35 −7.46 −4.54 15
UBC7b 106.64 −37.54 248.52 −13.36 3.67 −9.43 7.03 14
UBC8 84.65 56.99 155.06 13.35 2.17 −3.35 −3.24 13
UBC9 276.60 26.42 54.48 16.84 2.80 −0.12 −5.31 12
UBC10 324.20 60.86 101.34 6.43 0.99 −1.73 −3.15 10
UBC11 246.61 −60.17 326.80 −7.69 2.15 −0.25 −7.34 10
UBC12c 126.11 −8.39 231.65 16.32 2.32 −8.19 4.47 6
UBC13 121.24 4.14 217.71 18.23 1.75 −7.22 −1.48 5
UBC14 295.01 3.21 41.43 −9.29 1.33 0.56 −1.76 5
UBC15 268.05 −25.89 3.35 0.30 0.77 1.06 −1.38 4
UBC16 143.77 −27.40 258.09 17.91 1.93 −4.67 2.15 3
UBC17 83.15 −1.57 205.11 −18.20 2.70 −0.02 −0.41 3
UBC18 97.59 −39.65 247.88 −20.72 1.40 0.91 6.70 2
UBC19 56.63 29.93 162.35 −19.22 2.70 2.39 −4.56 2
UBC20 278.66 −13.77 18.77 −2.59 0.50 −0.13 −2.13 2
UBC21 130.06 −21.06 244.72 12.45 1.18 −6.13 2.40 2
UBC22 90.00 14.14 194.46 −4.62 0.66 0.06 −2.93 1
UBC23 252.57 −4.79 13.50 24.14 1.76 −4.41 −6.76 1
UBC24 256.48 1.26 21.39 23.91 2.02 −3.66 −1.65 1
UBC25 257.20 −17.50 4.98 13.31 1.20 −4.20 −4.87 1
UBC26 285.49 22.05 53.83 7.66 1.63 2.07 −5.44 1
UBC27 294.30 15.57 51.98 −2.72 0.85 −1.36 −5.90 1
UBC28 332.41 66.51 107.78 8.53 1.02 −4.34 −3.39 1
UBC29 129.43 −16.54 240.57 14.58 1.21 −6.38 2.13 1
UBC30 3.15 73.14 120.08 10.49 1.12 2.10 0.62 1
UBC31 61.06 32.14 163.74 −15.04 2.85 3.69 −5.04 1

Notes. The parameters are the mean of the members found with TGAS. Nfound refers to the times each cluster has been found within the explored
parameters (L,minPts). UBC stands for University of Barcelona Cluster. (a)is RSG4 in Röser et al. (2016). (b)probably related to Collinder 135.
(c)is RSG3 in Röser et al. (2016).
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Fig. 7. Cone search of 10 deg centred in UBC7 in the TGAS data with
more than 120 photometric observations. Blue dots represent members
of UBC7. The red, yellow, and green circles represent the r0, r1 and
r2 radius in the MWSC catalogue for Collinder 135. The black box is
the 2 deg× 2 deg zone where all candidate clusters are considered as
known clusters. The visible stripes on the data are due to the Gaia
scanning law.
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Fig. 8. Normalized parallax distribution of the found OCs (blue) and the
ones listed in MWSC (orange). The newly detected OCs are closer than
most of the catalogued clusters in MWSC.

limits obtained in the simulations, where we have around 25%
and 50% in terms of noise (see Sect. 3).

In the following sections we make comments on some of the
confirmed clusters.

A59, page 7 of 18

https://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/201833390&pdf_id=7
https://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/201833390&pdf_id=8


A&A 618, A59 (2018)

84 86 88 90 92

18

20

22

24

−30 −20 −10 0 10 20 30
µα∗

−30

−20

−10

0

10

20

30

µ
δ

−050 −025 000 025 050 075 100 125 150
jm − ksm

5

6

7

8

9

10

11

12

13

G

Fig. 9. Visualisation of UBC1 from Table 1. Top panels left plot: position of the member stars (blue) along with field stars (grey) in a
10 deg× 10 deg area in TGAS data. Middle plot: same stars in the proper motion space. Right plot: CMD of the stars in the field using pho-
tometry from Gaia and 2MASS; member stars follow an isochrone. Bottom panels: equivalent for Gaia DR2 data. The major difference is in the
CMD, where the members detected in Gaia DR2 are clearly following an isochrone due to the better quality of the photometric Gaia data.

5.1. General comments

The confirmed OCs are distributed on the Galactic disc, and
they tend to be at galactic latitudes |b|> 5 deg. Figure 10 shows
the distribution of the found OCs together with the ones listed
in MWSC. They are also nearby compared to those in MWSC
(see Fig. 8), most of them within 1 kpc with the exception
of UBC3, UBC6, and UBC27 which are detected with paral-
laxes of 0.58± 0.04 mas, 0.67± 0.01 mas and 0.88± 0.03 mas,
respectively.

5.2. UBC1 and UBC12

As mentioned in Sect. 4, UBC1 and UBC12 are RSG4 and
RSG3, respectively, in Röser et al. (2016). They are located at
about 330 and 430 pc, respectively. There is relatively good
agreement in terms of proper motions of RSG3. On the con-
trary, for RSG4, the values are significantly discrepant at the
level of 12σ.

5.3. UBC3

UBC3 is also a poor cluster located at about 1.7 kpc, the far-
thest cluster among our confirmed candidates. The presence of
stars in the red clump area indicates an intermediate age clus-
ter. There are only two stars with radial velocity in DR2 and
both are in disagreement. One of those stars is also discordant in
terms of its position in the CMD. This could be indicative of a
non-membership.

5.4. UBC4, UBC19, and UBC31

UBC19 and UBC31 have proper motions and parallaxes com-
patible with being substructures of the association Per OB2, if
we accept sizes of more than 8 deg for the association. Whether
or not they are part of Per OB2 should be investigated through a
deep study of a large area. UBC19 has a celestial position near
to Alessi Teustch 10 cluster in Dias et al. (2002), but their proper
motions do not match. UBC4 has similar parameters but lies
slightly farther at about 570 pc.

5.5. UBC7 and Collinder 135

Gaia DR2 data allow us to study UBC7 and Collinder 135 at
fainter magnitudes than TGAS. The DR2 data do not show the
scanning law pattern that TGAS shows, and still we see two
concentrations on the sky (see Fig. 11) with slightly different
mean proper motions and parallaxes. The values of the
mean and error of the mean for UBC7 are (µα∗ ,µδ) =
(−9.74± 0.02, 6.99± 0.02) mas yr−1 and $= 3.563± 0.006 mas
and for Collinder 135 are (µα∗ ,µδ) = (−10.09± 0.02, 6.20±
0.03) mas yr−1 and $= 3.310± 0.004 mas (computed with the
members found with the method described in this paper). To
discard possible artefacts due to effects of regional systematic
error (Lindegren et al. 2018), we have used the photometry and
inspected the CMDs. The sequences overlap, revealing the fact
that both clusters have the same age or very similar. When ap-
parent magnitudes are converted into absolute magnitudes us-
ing the individual parallaxes of the stars, the overlap of the two
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Table 2. List of the confirmed OCs.

Name
α

(deg)
δ

(deg)
l

(deg)
b

(deg)
$

(deg)
µα∗

(mas yr−1)
µδ

(mas yr−1)
Vrad

(km s−1)
N (NVrad )

UBC1 288.00 (0.84) 56.83 (0.63) 87.55 (0.74) 19.76 (0.35) 3.05 (0.02) −2.49 (0.25) 3.69 (0.24) −21.46 (2.36) 47 (14)
UBC2 5.80 (0.84) 46.59 (0.34) 117.89 (0.62) −15.99 (0.32) 1.74 (0.03) −6.34 (0.12) −5.03 (0.13) −9.73 (2.22) 23 (4)
UBC3 283.77 (0.16) 12.34 (0.22) 44.35 (0.24) 4.79 (0.12) 0.58 (0.04) −0.60 (0.08) −1.36 (0.09) −7.25 (13.54) 29 (2)
UBC4 60.96 (1.07) 35.35 (0.74) 161.42 (1.05) −12.75 (0.50) 1.64 (0.05) −0.75 (0.13) −5.72 (0.13) 3.67 (1.65) 44 (3)
UBC5 238.42 (0.74) −47.72 (0.41) 331.74 (0.56) 4.68 (0.32) 1.78 (0.01) −6.69 (0.15) −4.18 (0.09) −14.91 (−) 29 (1)
UBC6 343.95 (0.48) 51.19 (0.19) 105.13 (0.29) −7.63 (0.21) 0.67 (0.01) −4.64 (0.06) −4.90 (0.08) −31.64 (1.51) 76 (3)
UBC7 106.92 (0.61) −37.74 (0.65) 248.80 (0.71) −13.25 (0.42) 3.56 (0.05) −9.74 (0.19) 6.99 (0.20) 16.42 (4.71) 77 (21)
UBC8 84.36 (0.86) 57.16 (0.54) 154.83 (0.64) 13.30 (0.36) 2.05 (0.03) −3.14 (0.17) −3.99 (0.16) −5.96 (3.94) 103 (21)
UBC9 276.64 (0.41) 26.40 (0.39) 54.48 (0.40) 16.80 (0.38) 2.87 (0.02) 0.60 (0.16) −5.35 (0.18) −17.98 (3.12) 25 (6)

UBC10a 324.46 (1.36) 61.75 (0.95) 102.03 (1.02) 7.02 (0.55) 1.07 (0.01) −2.14 (0.11) −3.03 (0.12) −23.12 (−) 43 (1)
UBC10b 326.87 (0.96) 61.10 (0.47) 102.49 (0.36) 5.75 (0.55) 1.01 (0.01) −3.46 (0.09) −1.86 (0.10) −46.90 (−) 40 (1)
UBC11 246.16 (1.91) −59.94 (0.87) 326.81 (1.15) −7.39 (0.61) 2.13 (0.04) −0.30 (0.37) −6.78 (0.28) −18.18 (5.35) 44 (4)
UBC12 126.13 (0.65) −8.56 (0.47) 231.81 (0.71) 16.24 (0.41) 2.21 (0.05) −8.27 (0.20) 4.07 (0.28) 31.34 (−) 19 (1)
UBC13 120.90 (0.79) 3.60 (1.14) 218.04 (1.02) 17.68 (0.99) 1.60 (0.04) −7.76 (0.19) −1.16 (0.21) 22.91 (5.48) 36 (6)
UBC14 294.80 (0.58) 3.64 (1.01) 41.70 (1.06) −8.91 (0.52) 1.30 (0.02) 0.14 (0.16) −2.09 (0.20) −9.85 (−) 46 (1)
UBC17a 83.38 (0.22) −1.58 (0.86) 205.23 (1.04) −18.01 (1.06) 2.74 (0.04) 1.59 (0.27) −1.20 (0.35) 18.96 (7.64) 180 (18)
UBC17b 83.35 (0.76) −1.54 (0.94) 205.18 (0.95) −18.02 (0.79) 2.36 (0.04) 0.05 (0.17) −0.16 (0.24) 33.19 (4.41) 103 (4)
UBC19 56.48 (0.37) 29.91 (0.22) 162.25 (0.24) −19.32 (0.32) 2.39 (0.11) 2.71 (0.53) −5.19 (0.27) 31.38 (3.46) 34 (2)
UBC21 130.35 (0.81) −20.68 (0.94) 244.56 (1.10) 12.87 (0.55) 1.12 (0.02) −6.51 (0.22) 2.48 (0.17) − (−) 47 (0)
UBC26 285.24 (0.69) 21.92 (0.74) 53.61 (0.86) 7.80 (0.49) 1.66 (0.03) 2.01 (0.17) −5.18 (0.21) 6.79 (17.43) 64 (2)
UBC27 294.31 (0.25) 15.58 (0.25) 52.00 (0.24) −2.73 (0.25) 0.88 (0.03) −0.82 (0.07) −6.22 (0.08) − (−) 65 (0)
UBC31 61.11 (1.21) 32.76 (1.13) 163.33 (1.04) −14.55 (1.14) 2.70 (0.07) 3.77 (0.22) −5.43 (0.24) 22.74 (5.73) 84 (12)
UBC32 279.43 (0.66) −14.04 (0.93) 18.87 (0.96) −3.38 (0.60) 3.56 (0.04) −1.75 (0.26) −9.26 (0.29) −21.58 (7.24) 60 (14)

Notes. The parameters are the mean (and standard deviation) of the members found with Gaia DR2. We also include radial velocity for those stars
available. N refers to the number of members found (and members to compute mean radial velocity).
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Fig. 10. Spatial distribution in (l, b) of the found OCs (red) together with the ones listed in MWSC (black). The confirmed OCs tend to be at
latitudes |b| > 5 deg.

sequences is even greater. This confirms that the difference in
parallax is a true difference and not an artefact.

Given the differences in proper motions and parallaxes and
given the separation in the sky, we therefore conclude that UBC7
and Collinder 135 are two distinct groups, most probably formed
in the same process given the similarity of their ages.

5.6. UBC10

This is a rather sparse cluster according to the members derived
for the analysis in an area of 1 deg radius with Gaia DR2. In ad-
dition, the celestial position and parallax of this cluster indicate a
potential relationship with the Cep OB2 association. Therefore,
we have explored a larger area of 2 deg and there are several
subgroups of proper motions and parallaxes certainly distributed
towards the position of Cep OB2. A global analysis of an even
larger area would confirm or discard the existence of new sub-
groups in this association.

5.7. UBC17

The large sample of stars of Gaia DR2 with respect to TGAS
has revealed two groups of proper motions and parallaxes. The
distances and proper motions relate them to the Ori OB1 associ-
ation. Exploring a larger area of 2 deg we can identify ACCC19,
Collinder 170, and sigma Ori clusters. This is an indication
of the rich structure of the region and so a global analysis of
an even larger area encompassing the whole Ori OB1 associ-
ation is needed, which is, however, beyond the scope of this
paper.

5.8. UBC32

UBC20 TGAS DBSCAN candidate cluster was located at a par-
allax of about 0.5 mas. However, during the analysis of Gaia
DR2, although such a cluster was not found, a clear detection at
a parallax of 3.5 mas has been revealed. It is poor and sparse, and
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Fig. 11. Cone search of 5 deg in the area of UBC7 (blue) and
Collinder 135 (orange). The grey dots correspond to the stars brighter
than G = 17 mag with more than 120 photometric observations in
Gaia DR2 data. We have checked that the lower stellar density between
the two clusters only appears for parallaxes smaller than 1.5 mas, mean-
ing that it is caused by dust in the background and does not impact our
results for the clusters.

decentred with respect to the studied area towards lower galactic
latitudes.

6. Conclusions

We have designed, implemented, and tested an automated data-
mining system for the detection of OCs using astrometric data.
The method is based on i) DBSCAN, an unsupervised learning
algorithm to find groups of stars in a N-dimensional space (our
implementation uses five parameters l, b, $, µα∗ , µδ) and ii) an
ANN trained to distinguish between real OCs and spurious sta-
tistical clusters by analysis of CMDs. This system is designed
to work with minimal manual intervention for its application to
large datasets, and in particular to the Gaia second data release,
Gaia DR2.

In this paper, we have tuned and tested the performance of
the method by running it using the simulated data and the TGAS
dataset, which is small enough to manually check the results.
This execution has generated a list of detections that, after re-
moval of know OCs from MWSC, contains 31 new candidates.
Using Gaia DR2 data we manually examined these candidates
and confirmed around 70% of them as OCs, with 100% success in
Nfound > 5. In addition, in the confirmation step, we are able to spot
richer structures, in particular regions that require further study.

From this exercise, we have confirmed that our method can
reliably detect OCs. We have also shown that the TGAS data
contain some artefacts due to the nature of the Gaia scanning
law. We expect these effects to be much reduced (but not com-
pletely removed) in Gaia DR2, which includes the observa-
tions of 22 months of data and where the sky coverage is much
more uniform (see Lindegren et al. 2018). Also, the bright limit-
ing magnitude of TGAS prevented the detection of distant (and
therefore faint) clusters, which will be detected with the much
deeper Gaia DR2 data.

Finally, the method leads to reliable results, but we have also
identified some limitations. On the one hand, the representative-
ness of the training dataset for the ANN is crucial to distinguish
real and non-real OCs, and we need to build a wider and more

realistic training set of CMDs of OCs to use with Gaia DR2. On
the other hand, since OCs appear more compact or more sparse
depending on their distance, there is not a universal value of the
ε parameter in DBSCAN that can allow the detection of all of
them. Therefore, this parameter needs to be adapted to the dif-
ferent possible characteristics of OCs in DR2.
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Appendix A: Colour-magnitude diagrams of the
identified open clusters

Fig. A.1. Member stars (blue) together with field stars (grey) for UBC1 in (l, b) (left panel) and in proper motion space (middle panel). The CMD
shows the sequence of the identified members (outlining an empirical isochrone) (right panel).

Fig. A.2. As in Fig. A.1 but for UBC2.

Fig. A.3. As in Fig. A.1 but for UBC3.
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Fig. A.4. As in Fig. A.1 but for UBC4.

Fig. A.5. As in Fig. A.1 but for UBC5.

Fig. A.6. As in Fig. A.1 but for UBC6.
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Fig. A.7. As in Fig. A.1 but for UBC7.

Fig. A.8. As in Fig. A.1 but for UBC8.

Fig. A.9. As in Fig. A.1 but for UBC9.
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Fig. A.10. As in Fig. A.1 but for UBC10a.

Fig. A.11. As in Fig. A.1 but for UBC10b.

Fig. A.12. As in Fig. A.1 but for UBC11.
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Fig. A.13. As in Fig. A.1 but for UBC12.

Fig. A.14. As in Fig. A.1 but for UBC13.

Fig. A.15. As in Fig. A.1 but for UBC14.
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Fig. A.16. As in Fig. A.1 but for UBC17a.

Fig. A.17. As in Fig. A.1 but for UBC17b.

Fig. A.18. As in Fig. A.1 but for UBC19.
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Fig. A.19. As in Fig. A.1 but for UBC21.

Fig. A.20. As in Fig. A.1 but for UBC26.

Fig. A.21. As in Fig. A.1 but for UBC27.
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Fig. A.22. As in Fig. A.1 but for UBC31.

Fig. A.23. As in Fig. A.1 but for UBC32.
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