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Abstract

In this paper, a new Petrov-Galerkin formulation is presented for solving convection-
dominated problems. The method developed achieves the quasi-optimal convergence
rates when the solution is regular and provides the necessary stability to avoid spurious
oscillations when strong gradients are presented. Such important properties allow the
use of p refinement to improve the solution in regions with discontinuities because of
the stability engendered by the new Petrov-Galerkin method. In this matter, a proper
evaluation of the intrinsic time scale function, appearing in the design of this method,
is crucial to guarantee the required accuracy.

1. Introduction

It is well known that the convection-dominated flows present numerical difficulties as-
sociated to the representation of steep gradients occurring when boundary layers are pre-
sented. Considerable success has been achieved by using Petrov-Galerkin finite element
models mainly due to the possibility of using discontinuous weighting functions as first pro-
posed by Brooks and Hughes [1]. They designed the St1'eamline Upwind Petrov-Galerkin
method (SDPG) which introduces consistently an additional stability term in the upwind
direction. The result is a method with good stability properties and accuracy if the exact
solution is regular: optimal error estimates are obtained for the derivatives in the streamline
direction and quasi-optimal error estimates are obtained for the function [2] showing con-
vergence improvement over the Galerkin method. For non-regular solutions these estimates
still are confirmed out of neighborhoods containing sharp layers, where spurious oscillations
remain. In order to prevent those "wiggles" the CAD method (Consistent Approximate Up-
wind method) was designed in [3] by introducing the concept of the approximate upwind
direction, meaning that the real (physical) streamline is not always the appropriate upwind
direction [3]. Practically such an idea leads to a method that keeps the perturbation term
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provided by the SDPG and adds a discontinuity-capturing perturbation, which is henceforth
referred as the CAD perturbation. It provides an extra control over the derivatives in the
direction of the approximate gradient and, as it is by design proportional to the residual
of the approximate solution, it is supposed to vanish in smooth regions. This means that,
as the CAD perturbation term is introduced due to an inability of the SDPG to prevent
oscillations near boundary layers, it should act only in those regions in order to keep the
SDPG accuracy in smooth regions. However, it was observed in [4] a loss of accuracy of the
CAD's approximation when compared with the SDPG's if the exact solution is regular. This
fact was the motivation for the development of a new method that recovers the accuracy of
the SDPG for regular solutions and keeps the stability of the CAD in sharp layers. This aim
is achieved by weighting the CAD's approximate upwind direction such that the regularity
of the approximate solution is implicitly taken into account. We also derive here appropri-
ate intrinsic time scale functions, dependent on the hierarchical interpolation order, such
that quasi-optimal error estimates are attained for regular solutions and higher interpolation
orders.

An outline of this paper is as follows. In section 2, we present the convection-dominated
problem and its variational formulation. In section 3, we recall some Petrov-Galerkin meth-
ods, including the SDPG and the CAD methods. We also present in this section the new
Petrov-Galerkin method, a variant of the CAD. In section 4, we discuss the definition of
the intrinsic time scale functions appearing in the design of those methods. Numerical ex-
periments are conducted in section 5 in order to demonstrate the efficiency of the proposed
scheme as compared to the SDPG and the CAD. Conclusions are drawn in section 6.

2. Problem Statement

In this work, we are interested in solving the stationary linear convection-dominated
convection-diffusion problem of the form

u .Vc.p+ V . (-KVc.p) + uc.p = f(x)

with the boundary conditions

In n (1)

c.p(x) = g(x) ;

-KVc.p . n = q(x) ;
(2)

where the bounded domain n E ~n has a smooth boundary f = fg U fq, fg n fq = 0,
and an outward unit normal n. The unknown field c.p= c.p(x) is the physical quantity to
be transported by a flow characterized by the velocity field u = (Ul, ... , un), the (small)
diffusion tensor K = K(x) and by the reaction term u = u(x), subject to the source term
f(x). The functions g(x) and q(x) are given data.
It is well known that if the boundary data g(x) is discontinuous there may be regions in n,

called layers, where the solution c.pvaries dramatically. The width of such layers depends on
the amount of diffusion present in the fluid flow, being very small for convection-dominated
problems. In this case, the use of the standard Galerkin method produces globally oscillating
approximate solution unless an extremely fine mesh is used, which most of the time leads to
an unbearable computational cost for practical purposes. To resolve accurately those sharp
layers is the major concern in this work. To this end, let us first introduce some notations.

Let
(3)



(6)

and
v = {O(x) : 0 E HI (n) , Olr

g
= o} (4)

be the set of kinematically admissible functions and the space of admissible variations, re-
spectively, where HS (n) is the usual Sobolev space. Let (<p, 0) = (<p, O)n = J <pO dx and

n
1I<p11~ = (<p,<p).

The variational formulation for (1) consists of:

Find c.pE S such that

(u· Vc.p,O) + (KVc.p, VO) + (uc.p,O) - (J,O) - (q,O)r = 0, VO E V,
q

(5)

where (q,O)r = J qO ds.
q rq

3. Approximate Solution

Let us consider a finite element partition 1rh of triangular elements ne such that n = U ne
e=1

Ne

and n ne = 0, where Ne is the total number of elements in 1rh. The finite dimensional
e=1

counterparts of (3) and (4) are

Sh = {<ph E CO (n), <phlne E P: , vne E 1r
h, <phlrg = g}

and
(7)

where P: is the space of polynomials of degree less or equal to k and the subscript e denotes
the restriction of a given function to the element ne.

With these definitions, the Petrov-Galerkin approximation of problem (5) is the following;

Find c.ph E Sh such that

(8)

where
Re (c.ph) = u· Vc.ph +V . (-KVc.ph) + uc.ph - f

is the residual of the approximate solution and

(9)

G (c.ph,Oh) = (u. Vc.ph,Oh) + (KVc.ph, VOh) + (uc.ph,Oh) ,

F (Oh) = (J,Oh) + (q,Oh)r
q

•



Remarks:

1. in the formulation (8), the space of weighting functions is constructed by adding to
the standard Galerkin weighting function ()h E Vh a perturbation pZ in each element
ne. Different choices of this perturbation generate different Petrov-Galerkin methods
but all of them sharing the consistency property, in the sense that the exact solution
satisfies the approximate problem;

2. the operator G (', .) defined previously stands for the Galerkin contribution to (8).

3.1. The SUPG Method

As described in [1], the SUPG method introduces a discontinuous perturbation in the
streamline direction defined as

hP = TS U . '\7()he e e V , e = 1, ... , Ne , (10)

where T: is the intrinsic time scale function (or upwind function), which is given by

S ~ehe
Te = 21uel ' (11)

with he being the characteristic element length in the streamline direction and ~e the non-
dimensional numerical diffusivity, whose expression will be discussed in the next section.
Rewriting the variational formulation (8) introducing the SUPG operator - S (', .) - we obtain:

Find c.ph E Sh such that

(12)

where

S (c.p\()h) = e~1 {(T: DVc.p\ VOh)Oe - (V. KVc.p\T: Ue' V()h)Oe

+ (uc.ph , T: Ue . VOh) oj '
N.

F (Oh) = F (()h) +L (J.T: Ue . V()h) Oe
e=1

(13)

(14)

In the above expression D = Ue 0 Ue, 0 denoting the tensor product. It is exactly the
quadratic term containing the tensor D which is responsible for the additional stability
engendered by the SUPG, as shown in [2]. On the other hand, the function T: must satisfy
some requirements such that the second term under summation in (13) does not decrease
the stability (see [2] for more details).

Assuming only essential boundary conditions (fq = f) for simplicity and defining e =
c.p - c.ph, where c.p denotes the exact solution of (1), the main results in [2] concerning the
stability of the SUPG using a mesh with mesh length hare:



• the bilinear form G ( ., .) + s (.,.)satisfies

(15)

where c is a constant independent of c.p and the mesh size hand 111·111 is the mesh-
dependent norm given by

N.

111'¢11112= (KV'¢1, V'¢1) + (u'¢1, '¢1) +L (T: DVc.ph, VOh)
e=1 Oe

(16)

• if c.pE HT (n) the following error estimate holds:

(17)

where '·IT denotes the semi-norm in the Sobolev space HT (n) and v = min(k + 1, r).

3.2. The CAU Method

As mentioned before, the approximation solution provided by the formulation (12) is not
free of spurious oscillations when boundary layers are presented. They are precluded by
adding to the left hand side of (12) the operator

N.
C (c.ph, ()h) =L (T~ CV c.ph, VOh ) Oe

e=1

(18)

(19)

where C = (ue - y~) 0 (ue - y~). This operator plays the role of a discontinuity-capturing
operator, controlling the derivatives in the direction of V c.ph. In its definition, an auxiliary
vector field yh is introduced, which was designed in [3] such that, in each element ne ,
e = 1, ... , Ne ,

where
Qh = {19~; 19~. Vc.ph - V . KVc.ph + uc.ph - f = a in each ne}

This condition ensures that c.ph ~ c.p ===> yh ~ U and leads to
h~O h~O

(20)

if IVc.phl = 0 ;yh = Ue

(21)
e

~Re cP V h
IVc.phl # 0 .y~ = Ue - IVcphl c.p if

Moreover, from (1) and (20), the CAU method imposes implicitly the following restriction

(22)

which shows that the operator (18) can also be written either

(23)

or
Ne

C (c.ph, ()h) =L ((ue - y~) .Vc.ph, T~ (ue - y~) .V ()h ) Oe

e=1

(24)



Remarks:

1. this method is non-linear even if the original problem is linear since the quantity
( Ue - vZ) depends on the approximate solution c.ph;

2. the CAD method can be seen as introducing the perturbation pZ
1, ... Ne , in the approximate upwind direction u~ given by

(25)

with v~ as defined in (21). Thus, ideally when Re (c.ph)
u~ ~ T: Ue , recovering the SUPG perturbation;

h-+O

3. eventually, the direction of (ue - v~) - the direction of V c.ph - can coincide with the
streamline direction, leading to an over-diffusive approximate solution because of the
doubling effect caused by the simultaneous action of S (.,.) and C (.,.) over the same
direction. To avoid such effect, it was suggested in [5] to take:

T~ = max{O,~ - T: } , (26)

where T~ is the intrinsic time scale function associated with the CAU operator, deter-
mined as

(27)

where h~ is the characteristic element length in the (ue - v~) direction and ~~ is the
non-dimensional numerical diffusivity associated with the CAU operator. Rewriting
(26), it follows that

otherwise;

T~ = a
(28)

4. no requirement was compelled about the relative orientation between the approximate
streamline direction v~ and the real streamline Ue • However, it is quite obvious that
the streamline v~ should have no component in the direction opposite to the real
streamline. Indeed, some numerical experiments have shown that a loss of stability
can occur for distorted element geometries when Ue • vZ ::; O. Thus, in order to assure
that

Ue . v~ > 0 in each element ne , (29)

a variant of the CAU method was introduced in [4], called the VCAU method. In the
VCAU the latter condition is automatically satisfied by changing T~ for a new functionT:c such that in each element we have

. JUe-V~1. > 1 ,
If Iuel -

otherwise;

(30)



5. it was shown in [4] that in the presence of either source and transient terms or internal
and/or external boundary layers, the VCAU's approximate solutions are always stable,
much better than those obtained with the SUPG [1] or the combination of the SUPG
and discontinuity-capturing proposed in [5]. However, a loss of accuracy was observed
when compared with the quasi-optimal SUPG's approximations for regular problems
with smooth exact solutions [4]. The idea of the new method which will be derived in
the following is to use the same CAU's approximate upwind direction given in (25),
incorporating in the VCAU's upwind function, T:c, an additional control that takes
into account the regularity of the solution.

3.3. Recovering the Accuracy of the CAU - The RVCAU Method

In the design of the approximate upwind direction (25), the term (ue - vZ) is the one
responsible for controlling over the approximate gradient direction, which is crucial in avoid-
ing localized spurious oscillations near sharp layers. This term is weighted by the upwind
function T:c as defined in (30) which, in spite of being designed to fulfill some stability re-
quirements, is primarily responsible for the accuracy of the method. Ideally, this function
should vanish when (and where) the solution is regular in order to recover the quasi-optimal
rates provided by the SUPG. In that case, this means that the difference (T~ - Tn in (26)
should be less or equal to zero. This approach was used in [4] to modify T:c by using a
feedback function which takes into account the regularity of the solution. The method gen-
erated preserves the accuracy of the SUPG's regular approximations but its extension for
systems of equations, like the Navier-Stokes equations, is not straightforward. On the other
hand, the CAU method has already been successfully generalized for systems in [6]. Besides,
we claim that we can get the same good behavior by subtracting from the VCAU's upwind
function the effect produced by the SUPG operator over the approximate gradient direction.
This means that the loss of accuracy is mainly associated with the inappropriate procedure
currently used to avoid the doubling effect.

Let us call 1Je the function to be designed to compensate the mentioned effect. Using
(13), (14) and (18) we have

1Je ( Ue - v~) 0 (ue - v~)Vc.ph . V c.ph = T: Re (c.ph) Ue . V c.ph .

Using now the restriction (22) we obtain

(31)

Notice that 1Je should not be less than T: in order to recover (30) when the direction of
the real streamline Ue and the approximate gradient direction, the direction of (ue - v~),
coincide. Thus, we define

Tie = T: max (1, 1Je) , e = 1, ... , Ne • (32)

Hereby, the new upwind function in each element is

(33)



providing a reduction of the amount of artificial diffusivity over the approximate gradient
direction since Tie is always positive. Thus, the new variant of the CAU method is given by:

Find c.ph E Sh such that

(34)

where
Ne

cnew (c.ph, Oh) =L (r;ew CV c.ph, V ()h) Oe .

e=1
(35)

Remark: the stability of this new method follows directly from that of the SUPG, i.e.,

Clearly, the method (34) is more coercive than (12): the perturbation terms that emanate
by the concept of the approximate upwind direction are in fact adding the term (35) to the
SUPG's perturbation, providing the improvement of the solution stability in the presence of
sharp layers. Otherwise, if the solution is regular, this term vanishes and (15) is recovered.

In section 5 some numerical results are presented to demonstrate the very good numerical
performance of this new variant of the VCAU, which is referred here as RVCAU because of
its property of recovering the convergence rates for smooth solutions, to approximate regular
as well as solutions with sharp boundary layers.

4. The Upwind Parameter for Higher Order Approximations

The development of accurate Petrov-Galerkin procedures for convection-dominated prob-
lems is strongly dependent on the design of the intrinsic time scale function. In particular,
for the RVCA U, the parameters to be estimated are those associated with the choice of the
intrinsic time scale function of the SUPG - T: (11), i.e., he and ~e' Besides, it is well known
that choosing

1
t - t - t t = coth Pe - P ,~-~e-~~ e (37)

the SUPG approximation of the one-dimensional steady-state case with no source term in
which u and K are constant, using a regular mesh with linear elements of length he = h,
is a nodally exact solution [7]. This also occurs for the RVCAU approximation since, in
this particular case, the streamline direction coincides with the direction of the approximate
gradient, implying that T;-ew vanishes.

In the definition (37), the element Peclet number Pe, which measures the relative impor-
tance between the convective and diffusive phenomena, is used to build the doubly asymp-
totic behavior of~: it goes to one when Pe is large (the convection-dominated case) and
vanishes when Pe is small, meaning that the necessary stability is already provided by the



physical diffusion K . Although the nodally exact property is not extended to the case of
non-constant coefficients and irregular meshes, the function ~opt still works for each element
individually [8]. In addition to that, the definition (11) can also be used for multidimensional
case, provided a reasonable definition of he is available [1]. The main question here is: how
should ~e (or T:) be defined if interpolation orders other than one are used?

Based on numerical experiments using quadratic elements, it was suggested in [9] that
approximately the half value of ~opt should be used to provide the stability using the Galerkin-
Least Square method, i.e.,

k=l

k=2 6 = t 6·
(38)

In general, and leading to the same result, it was proposed in [8] to extend the Petrov-
Galerkin perturbation function using for quadratic elements half of the one used for linear
elements. In [10] that choice was justified by studying exact discrete solutions for one-
dimensional quadratic and hierarchical elements, using the SUPG formulation. Although
the procedure used there does not seem feasible for interpolation orders greater than two,
as pointed out by the authors, they showed that it is necessary to have two different non-
dimensional diffusivity functions for each element, one for the extreme nodes of the element
and other for the central node, so as to achieve nodally exact results. They also mentioned
the possibility of using a unique function and, in this case, the best choice happens to be
the same as that one heuristically obtained in [8, 9].

An interesting conclusion in those studies is that the non-dimensional numerical diffusiv-
ity function is very sensitive to the order of the element. Thus, its definition must depend in
some sense on the interpolation order in each element. We have performed some experiments
using a unique function for every element degree of freedom and the results suggest that we
can generalize the upper bound of ~ for the convection-dominated case, when Pe ---+ 00, as a
function of the hierarchical order of interpolation k in the following way: denoting Pe as the
order of the element e, e = 1, ... , Ne, when Pe ---+ 00 we should select

Pe = 1

Pe = 2

pe = k

I6="2
(39)

Remark: some very interesting results yield of this choice:

• the control in the streamline direction engendered by the SUPG method depends,
in each element, on the factor he/Pe. The analysis of this method for non-constant
polynomial interpolation order, following the same procedure used in [2] and applying
the Babuska and Suri's Lemma [11] leads to

(40)



assuming that c.p has enough regularity. This relation means that the error estimate
for the function is quasi-optimal with a gap of (he/Pe)~' keeping the optimal estimates
for derivatives in the streamline directionj

• the method (34) attains the same quasi-optimal convergence rates of the SUPG for
globally smooth solutions, as it will be shown by the numerical examples in the next
sectionj

• since the additional control introduced by (35) depends on the element size as well as
the element order, high-order interpolating can also be used successfully to improve
the approximation of boundary-layers; this opens a challenging possibility of combining
the RVCAU method with hp adaptive refinement schemes in order to solve problems
presenting regions with regular as well as non-regular solutions;

• obviously it is possible to infer other definitions than (39) for the asymptotic limit of
~. Indirectly this was done in [12] where a priori estimate error was performed for hp-
versions of the discontinuous Galerkin approximation of purely convective problems.
In that case, the inverse of the square of the spectral order was chosen. Although this
choice when applied to (34) leads to almost the same convergence rates for smooth
solutions, the stability decreases too fast in the presence of sharp gradients when the
interpolation order grows.

5. Numerical Examples

In this section we present numerical results obtained by applying the proposed method-
ology to the solution of a variety of convection-dominated problems in which the medium is
assumed homogeneous and isotropic with a constant physical diffusivity K = 10-8 and no
reaction term, solved in a unit square domain n = (0,1 )x(O, 1).

The non-linear CAU and RVCAU formulations are solved using the SUPG's approximate
solution as the initial guess and delaying the C operator one iteration until the following
convergence criteria is satisfied:

ntdof I hi hi I 10-3~ax c.pn - c.pn-I < ,
1=1

where ntdof is the total number of degree of freedom and n is the iteration number.

5.1. Example 1: "Sine function"

To verify the convergence rates, in this first example the source term f (x) was chosen so
that the exact solution is the continuous function

c.p(x) = sin (21rx)

with ut = (1,0) and an inflow 9 = O. Figure 1 shows the error measure in the norm
(16) as a function of the characteristic length h. Three regular triangular meshes are used,
corresponding to a uniformly divided unit square with 4, 8 and 16 divisions. The slope of
the lines corresponding to a fixed value of the interpolation order k confirms the expected
k + t rate. In Figure 2 the error is shown as a function of the number of unknowns. The
h-refinements are shown by the solid lines for fixed k and the p-refinements are shown by the



dashed lines. It is clear that an improvement in accuracy is obtained by using higher-order
elements for the same number of unknowns.
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Fig. 2. "Sine function": convergence rates for RVCA U

5.2. Example 2: "Roof problem"

This example deals with a source term defined as

f(Xl={ -:
if a < x ~ 0.5

if a < x ~ 0.5

with homogeneous Dirichlet boundary conditions on all the sides of the domain and a velocity
field ut = (1,0). The exact solution consists of by two inclined planes, symmetric about



x = 0.5. Because of the boundary conditions, external boundary layers are formed along
y = a and y = 1. The approximate solutions along x = 0.5 obtained by using the SUPG, the
CAU and the RVCAU methods are depicted in Figure 3 using a mesh with 10 divisions in each
side of the domain and linear elements. We see that both CAU and RVCAU do not present
localized oscillations near the boundary layers, typical of the SUPG solution. Moreover,
the results in Figure 4 indicate a remarkable improvement in the accuracy of the CAU
and RVCAU's approximate solution when the interpolation order is increased. However, a
different behavior is observed for the SUPG's solution since the oscillations become greater.

0.8

0.7

0.6

0.5

g 0.4
S
~ 0.3

0.2

0.1

0.0

-0.1
0.0 0.2 0.4 0.6

Y Coordinate
0.8 1.0

Fig. 3. "Roof problem": solution at x = 0.5, p = 1.
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~ 0.3

0.2

0.1

0.0

-0.1
0.0 0.2

Fig. 4. "Roof problem": solution at x = 0.5, p = 2.



In smooth regions as, for example, along y = 0.5, both the RVCAU and SUPG methods
lead to the same solution (the exact one). A more refined mesh (20 divisions in each side)
improves the solution near the boundary layer using the RVCAU but is not fine enough to
prevent the oscillations appearing in the SUPG solution as shown in Figure 5.

1.0O.B

-- SUPGp=l
--- RVCAU P = 1
--- SUPGp=2
-+-- RVCAU P = 2

0.4 0.6
Y Coordinate

O.B

0.7

0.6

0.5

.§ 0.4
'S

~ 0.3

0.2

0.1

0.0

-0.1
0.0 0.2

Fig. 5. "Roof problem": solution at x = 0.5.

5.3. Example 3: "Advection skew to the mesh"

We consider now the well known problem of the advection skewed with respect to the
mesh. In this problem, f (x) = 0, ut = (1,1) and the following Dirichlet boundary conditions
are assumed:

c.p(x,l)=Oj

c.p(x,O) = 1;

c.p(O,y) = 1 if y::; 0.2;

c.p(0, y) = a if y > 0.2 ,

implying that the exact solution presents an internal boundary layer.
The numerical results for the mid-section y = 0.5 are shown in Figures 6-8, obtained for a

mesh with 10 divisions in each side of the domain. These results point out the improvement
in representing boundary layers when using p-refinement provided we have a stable method,
free of spurious oscillations (Figure 6). Clearly, this behavior does nor occur for the SUPG
method (Figure 7) and in Figure 8 these methods are compared for p = 4. The apparent
improvement in the solution produced when increasing the interpolation order near sharp
gradients suggests that the algorithm can be a very useful tool in delivering accurate solutions
in regions containing discontinuities or high gradients.
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Fig. 6. "Advection skew to the mesh": RVCAU's approximation at y = 0.5.
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Fig. 7. "Advection skew to the mesh": SUPG's approximation at y = 0.5.
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Fig. 8. "Advection skew to the mesh": comparison between
RVCAU's and SUPG's approximations at y = 0.5 for p = 4.

6. Conclusions

In this paper, a new Petrov-Galerkin formulation is designed, which is derived from
the CAU method [3] by changing the approximate upwind direction. Applying the upwind
functions heuristically designed for higher order elements, this method achieves the same
good stability properties of the CAU method in representing steep gradients as well as the
accuracy of the SUPG method for smooth solutions. Moreover, remarkable improvement is
observed in the approximation of boundary layers when this method is combined with a p-
refinement scheme. Indeed, this fact opens a fascinating possibility of combining this stable
method with a hp adaptive refinement technique so as to solve more accurately and faster a
great variety of problems in computational fluid mechanics when convection phenomena are
dominated.
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