

Degree project

A Non-functional evaluation

of NoSQL Database

Management Systems

Author: Johan Landbris

Supervisor: Mauro Caporuscio

Examiner: Johan Hagelbäck

Date:2015-10-20

Course Code: 2DV00E, 15 credits

Subject: Computer Science

Level: Bachelor

Department of Computer Science

Abstract

NoSQL is basically a family name for all Database Management Systems

(DBMS) that is not Relational DBMS. The fast growth of all social networks

has led to a huge amount of unstructured data that NoSQL DBMS is

supposed to handle better than Relational DBMS. Most comparisons

performed are between Relational DBMS and NoSQL DBMS. In this paper,

the comparison is about non-functional properties for different types of

NoSQL DBMS instead. Three of the most common NoSQL types are

Document Stores, Key-Value Stores and Column Stores. The most used

DBMS of those types are MongoDB, Redis and Apache Cassandra. After

working with the databases and performing YCSB Benchmarking the

conclusion is that if the database should handle an enormous amount of data,

Cassandra is most probably best choice. If speed is the most important

property and if all data fits within the memory; Redis is probably the most

well suited database. If the database needs to be flexible and versatile,

MongoDB is probably the best choice.

Contents

List of figures 4

1 Introduction 5
1.1 Introduction/Background 5

1.2 Previous research 5
1.3 Purpose and research question/hypothesis 6
1.4 Scope/limitation 6

2 Background/Theory 7

2.1 Relational Database Management Systems 7
2.1.1 ACID Acronym – Relational DBMS properties 7

2.2 NoSQL 8
2.2.1 History about NoSQL 8

2.2.2 BASE Acronym – NoSQL properties 9

2.2.3 CAP Theorem 9
2.2.5 Key-value store 10

2.2.6 Column store 12
2.2.7 Document store 14

3 Method 17

3.1 Scientific approach 17
3.2 Human centered approach 17

3.2.1 Survey 17

3.2.2 Interviews 18

3.3 Yahoo! Cloud Serving Benchmark (YCSB) 19

4 Results/Analysis 20
4.1 Survey 20
4.3 YCSB benchmarking 21

4.2.1 Workload 21
4.2.2 CPU Load 25

4.2.3 Memory Load 26

5 Discussion 27
5.1 Problem solving/results 27
5.2 Method reflection 28

6 Conclusion 29
6.1 Conclusions 29
6.2 Further Research 29

References 30

List of figures

Figure 2.1: Typical row in a RDBMS. 7

Figure 2.2: Basic example of a Key-value relation. 10

Figure 2.3: Typical row in a row store. 12

Figure 2.4: Typical row in a column store. 12

Figure 2.5: Relationships with references between documents [15]. 15

Figure 2.6: Embedded document relationship [15]. 15

Figure 3.1: Survey sent to companies. 18

Figure 4.1: Survey and interviews. 20

Figure 4.2: Workload A – 50 % reads, 50 % writes. 21

Figure 4.3: Workload B – 95 % reads, 5 % writes. 22

Figure 4.4: Workload C – 100 % reads. 22

Figure 4.5: Workload D – Read latest workload. 23

Figure 4.6: Workload F – Read-modify-write. 23

Figure 4.7: CPU Load – Average CPU Load. 25

Figure 4.8: Memory load – Average memory load. 26

1 Introduction

This chapter gives a brief summary of NoSQL databases along with existing

research regarding the subject. It will also mention the limitations and the

research questions for this thesis project.

1.1 Introduction/Background

NoSQL (usually interpreted as Not only SQL) Data Base Management

Systems (DBMS) are a relatively new kind of databases. NoSQL DBMS are

increasingly used, but Relational DBMS (RDBMS) are still dominating the

market. Over 90% of all systems are using RDBMS [1].

NoSQL is basically a family name for all DBMS that is not

RDBMS. The main reason for the need to invent NoSQL DBMS is the fast

growth of all social networks, which has led to a huge amount of unstructured

data that NoSQL is supposed to handle better than RDBMS. NoSQL DBMS

are supposed to be more scalable and take advantage of new nodes and

clusters without the need of additional management.

NoSQL can infer a lot of different types of databases. Three of

the most common NoSQL types are Document Stores, Key-Value Stores and

Column Stores [2]. The most used DBMS of the types are MongoDB, Redis

and Apache Cassandra. Those are the databases that will be looked at in this

article.

1.2 Previous research

Most benchmarks and comparisons of different DBMS are performed

between different kinds of Relational DBMS [3]. In some cases benchmarks

are performed between Relational databases and NoSQL DBMS, but not by

the most used NoSQL DBMS types [4]. The benchmarks that have been

performed between different NoSQL DBMS are mainly focused on

functional requirements [5]. This article focuses benchmarking on non-

functional properties of the most popular NoSQL DBMS of the most used

NoSQL types, along with a few functional requirement benchmarks. The

properties chosen to be benchmarked are based on what is most of interest to

computer related companies.

1.3 Purpose and research question/hypothesis

RQ1. Which is the set of non-functional properties of interest for

industry?

RQ2. Based on RQ1 properties; which is the most versatile NoSQL

DBMS?

Since NoSQL DBMS are becoming more popular, it would be interesting to

understand the set of non-functional properties to take into account when

selecting among the NoSQL DBMS products available on the market.

1.4 Scope/limitation

The non-functional properties that will be investigated in the article are the

following:

 Efficiency – Find out which database are the most effective in terms

of CPU- and memory usage.

 Performance – Perform benchmarks measuring the time of inserting,

finding and deleting data.

 Usability – Discover which one of them that is most user-friendly and

easiest to set up.

 Flexibility – Find out which one that is easiest to upgrade and extend.

 Availability – Manageability, recoverability, reliability, serviceability

[6].

The research will be limited to three different NoSQL DBMS. The most

popular NoSQL DBMS types are Document stores, Key-value stores and

Column stores [2]. The most used Document store is MongoDB, Redis is the

most used Key-value store and the most popular Column store is Cassandra.

Those three NoSQL DBMS will be used in this thesis project.

2 Background/Theory

This chapter contains information about all major technologies and terms that

have been involved in this thesis project. Firstly, a brief summary of

RDBMS, followed by a summary of NoSQL DBMS. The NoSQL summary

goes more into details about different NoSQL types and especially about the

databases that are used in the benchmarks described in the Result chapter.

The ACID, BASE and CAP theorems are also described in this chapter.

2.1 Relational Database Management Systems

This is by far the most popular kind of database management systems.

According to the dbengines website, the three most used DBMS are RDBMS

[2]. They are the “old” kind of databases where tables consist of rows and

columns and each column has a specified type. Information is stored once for

each column. A row only contains values for record, no type information. All

rows in a table have the same columns and are homogenous. A RDBMS must

read the entire row in order to access the requested column data, which many

times lead to an unnecessary amount of reads. That in mind - RDBMS

generally still performs faster reads than writes. Figure 2.1 shows a typical

row in a RDBMS.

Username
(String)

First_name
(String)

Last_name
(String)

Gender
(String)

Age
(Integer)

JohanL Johan Landbris Male 25

Figure 2.1: Displaying a typical row in a RDBMS.

2.1.1 ACID Acronym – Relational DBMS properties

RDBMS generally follow the ACID acronym. In theory, each letter is

essential. For a very long time, all webpages were able to handle the traffic

with RDBMS and the ACID acronym. However, they lack in availability and

performance when handling huge amount of data [7].

 Atomic: Everything in a transaction succeeds or everything fails. All

or nothing rule.

 Consistent: A transaction cannot leave the database in an inconsistent

state. Everything is always in order in the database and it never

violates any rules – the database is consistent both in the beginning

and in the end of a transaction. Only valid data will be written to the

database. If a transaction violates the consistency rules, the

transaction will not go through and the database will be restored to a

previous state without any failures – a consistent state.

 Isolated: Transactions cannot interfere with each other. Every

transaction is completely independent.

 Durable: A completed transaction persists even when servers restart,

system failures or power loss etc.

2.2 NoSQL

NoSQL (usually interpreted as Not only SQL) Data Base Management

Systems are a relatively new kind of databases. One definition of NoSQL is

“Different NoSQL databases take different approaches. What they have in

common is that they're not relational. Their primary advantage is that, unlike

relational databases, they handle unstructured data such as word-processing

files, e-mail, multimedia, and social media efficiently” [8]. However, since

NoSQL DBMS comes in so many different shapes, it is hard to give a general

definition. NoSQL is basically a family name for all DBMS that is not

RDBMS. The main reason for the need to invent NoSQL DBMS is the fast

growth of all social networks, which has led to a huge amount of unstructured

data that NoSQL is supposed to handle better than RDBMS. NoSQL DBMS

are supposed to be more scalable and take advantage of new nodes and

clusters without the need of additional management. NoSQL should therefore

be cheaper to maintain than RDBMS, both because of less management and

the horizontal scalability with many cheaper servers instead of a few

expensive servers.

2.2.1 History about NoSQL

The term NoSQL was first used in 1998 by Carlo Strozzi [9]. He had an open

source project which did not offer an ordinary SQL interface. He called his

database “NoSQL” and stored all data as ASCII files which was a first step

towards something else than RDBMS. This, however, does not have anything

to do with today’s NoSQL RDBMS. The term has no scientific accepted

definition since it is such a broad term.

2.2.2 BASE Acronym – NoSQL properties

The BASE acronym is usually used to describe properties of NoSQL

databases. It has some similarities to the ACID acronym which instead is

used to describe Relational DBMS properties. See the ACID Acronym –

Relational DBMS properties chapter (2.1.1) for differences between the two

acronyms.

 Basic Availability: The system does guarantee the availability of the

data - every request will be answered. Even if the database has

multiple failures, it should be available. NoSQL DBMS usually

spreads data to multiple storage systems and therefor the fault

tolerance is spread. Even if one event fails the fault handling is

performed in that specific data store and the whole system does not go

down and is still available.

 Soft-state: The system state may change over time, even without any

operation performed, therefore – the system state is always soft.

 Eventual consistency: The system will eventually be consistent once

it stops receiving input. Consistency infers that a transaction cannot

leave the database in an inconsistent state. Everything is always in

order in the database and it never violates any rules – the database is

consistent both in the beginning and in the end of a transaction. Only

valid data will be written to the database. If a transaction violates the

consistency rules, the transaction will not go through and the database

will be restored to a previous state without any failures – a consistent

state.

2.2.3 CAP Theorem

The CAP theorem explains the theoretical gap between ACID and BASE

compliant databases and it claims that it is impossible for a database to be all

three letters [10].

 Consistency: A transaction cannot leave the database in an

inconsistent state. Everything is always in order in the database and it

never violates any rules – the database is consistent both in the

beginning and in the end of a transaction. Only valid data will be

written to the database. If a transaction violates the consistency rules,

the transaction will not go through and the database will be restored to

a previous state without any failures – a consistent state.

 Availability: The given system is available when needed – there will

always be a response to any request.

 Partition Tolerance: A system should continue to operate even when

there is partial data loss, temporary system failure or interruption. A

single node failure should not cause the system to stop working. No

failure other than total network failure is allowed to cause the system

to behave differently.

2.2.4 Clustering

A big difference between NoSQL DBMS and RDBMS is that NoSQL

generally cluster much easier, which is a very common requirement in most

large systems these days. In context of databases, clustering infers that many

instances or servers connect to the same database. A major advantage with

clustering is the fault tolerance, since there are several servers or instances

running. If one server or instance is shut down, a user can connect to one of

the servers or instances still running. Another advantage is that a cluster in

general connects a user to the server or instance with the least load at the

connecting moment.

2.2.5 Key-value store

Key-value stores are often described as the simplest version of a NoSQL

DBMS. It stores records in only two columns. One column contains the key,

often stored as a string. The other column contains the value, the actual data.

The user can only access the value if the Key is known. It is not possible the

other way around – trying to find the Key by knowing the Value. The data or

value often consists of a primitive such as a string or integer. Figure 2.2

shows a typical Key-value relation.

Key Value

car1_seats 5

car1_color Green

car5_year 1994

car5_color Blue

car1_year 2003

car44_seats 5

car44_year 2011

Figure 2.2: Describing a basic example of a Key-value relation.

The “car” and a number is the only common part for each key. Three

properties are mentioned in this example – seats, color and year. Each car

does not have to store every property and no primary key. There are many

different key-value stores on the market and they work a bit differently. This

is however a basic explanation that applies to most of them. Redis is an open-

source key-value database created by Salvatore Sanfilippo in 2009 [11]. The

company started with a few sponsors along with donations, but it is now

sponsored by Pivotal. Redis is now by far the most used key-value store [12].

Redis is an in-memory key-value store. A major difference between Redis

and many other key-value stores is that Redis can handle a large number of

different datatypes, which makes it very versatile. The value can for example,

along with primitive datatypes, also consist of lists, hashes or sets. Redis

handles the whole dataset in memory until data is written to disc

asynchronously. The administrator can decide how often Redis should save

the data from memory to disc. If the system crashes, some of the data still in

memory might get lost if it is not saved to disc. Redis is therefore considered

to be a CP in the CAP theorem. Please see the BASE chapter (2.2.2),

especially the BA part for more information about availability along with the

CAP chapter (2.2.3). Redis supports the following languages:

 C

 C#

 C++

 Clojure

 Dart

 Erlang

 Go

 Haskell

 Java

 JavaScript

 Lisp

 Lua

 Objective-C

 Perl

 PHP

 Python

 Ruby

 Scala

 Smalltalk

 Tcl

Redis supports the following operating systems:

 BSD

 Linux

 OS X

 Windows

2.2.6 Column store

A column store has all data organized and stored in columns instead of the

usual RDBMS rows. A row in a column store has some kind of row id, where

each column value is associated with each other. Instead of searching each

row, column stores only focus on the column that is of interest. That is, in

theory, faster than a row store. An example: A database has 10.000 users,

which equals 10.000 rows, one for each user. If the user wants Username and

Gender for a user, a row store must search each column for each row, which

can be up to 10.000x5=50.000 column values. Figure 2.3 shows a typical row

in a row store.

Username First_name Last_name Gender Age

JohanL Johan Landbris Male 25

Figure 2.3: Displaying a typical row in a row store.

If the same search is performed in a column oriented store, the maximum

column values that can be looked into are 10.000x2=20.000 since column

stores only focus on the columns that are relevant. Figure 2.4 highlights the

difference between a row store and a column store.

Username First_name Last_name Gender Age

JohanL Johan Landbris Male 25

Figure 2.4: Highlighting the relevant columns in a column store.

Apache Cassandra is a combination of Google Bigtable and Amazon

Dynamo that was incubated in Facebook. In July 2008 Cassandra became an

open-source and in March 2009 Cassandra became an Apache project [13].

Cassandra is a peer-to-peer distributed system with nodes, where data is

distributed to all nodes within the cluster. All nodes are the same and equal in

Cassandra, meaning there is no central master node. Data is partitioned

among all nodes in a cluster. Each node communicates with each other and

exchanges information across the cluster every second, which is referred to as

a gossip protocol. A collection of all related nodes are called Data center. A

column family is a container with a collection of rows. Every row contains

columns which are in order. Column families represent the structure of the

data. New nodes can be added to the Cassandra cluster without the need to

shut down the system. Cassandra satisfies Availability and Partition tolerance

(AP) according to the CAP theorem, since data is not written to disc until the

Mem-Table is full. See the CAP chapter (2.2.3) for a more detailed

explanation. Cassandra writes data to disc in the following sequence:

1. Commit log: Data is first written to a commit log, where all data is

saved as a backup if the system should crash.

2. Node: Data is sent to an appropriate Node. When the node gets the

data it saves it in a local log and sends it to the correct mem-table for

the column family.

3. Mem-table: In-memory temporarily storage for Cassandra, works a lot

like key-value pairs. When the memory is full or when time is up

(decided by the user), the mem-table is flushed to disc, SSTable.

4. SSTable (Stored String Table): SSTable is the disc store for

Cassandra. Cassandra makes sure data ends up in the correct SSTable

with help of a Bloom filter.

5. Bloom filter: Bloom filters basically test whether the incoming data is

a member of this set or SSTable. Bloom filter is also used for read

requests. The filter checks the probability for a SSTable to contain the

requested data.

6. When all column families from the Commit log are pushed to disc,

they are deleted.

7. Compaction: Cassandra can free disc space by merging large

accumulated data files. Data is indexed, sorted, merged and collected

from many old SSTables into a new SSTable. This makes scan time a

lot faster.

Cassandra reads data from disc in the following sequence:

1. Cassandra checks the Bloom filter, which decides the probability for

the SSTable to contain the requested data.

2. If the probability/chance is good, Cassandra looks at the partition key

cache which is a cache of the partition index which is a list of primary

keys and start position of data, for tables.

If an index entry is found in cache: The compression map is used to find the

block containing the data. The requested data is merged from all SSTables, or

if the data is found in the mem-table, for faster future reads and is returned.

If an index entry is not found in cache: Cassandra searches the

partition summary, a subset of the partition index, to determine the

approximate disc location of the index entry. Depending on the results from

the partition summary, Cassandra performs a sequential read of columns in

the SSTables of interest. Correct data is merged and returned. Cassandra

supports the following languages:

 C

 C#

 C++

 Clojure

 Erlang

 Go

 Haskell

 Java

 JavaScript

 Perl

 PHP

 Python

 Ruby

 Scala

Cassandra supports the following operating systems:

 BSD

 Linux

 OS X

 Windows

2.2.7 Document store

Document stores or document-oriented databases are one of the most

common NoSQL types along with Column store, Key-value store and Graph

store. They are in some ways a sub category of Key-value stores since each

document is recognized with a key. Document stores contain, as the name

reveals, documents. All data is stored in the document itself and is totally

schema-free without tables, row or columns. Each document is totally

independent from the others. This makes document-oriented databases

flexible. They can simply add or delete a field from a document without

disturbing other documents. In contrast to relational database management

systems there is no need to have any empty fields. Common document

encodings are for example JSON, BSON and XML.

 MongoDB was developed in 2007 by 10gen and was available

as open source in 2009 with the possibility for a commercial license [14].

MongoDB has a flexible schema, in contrast to most relational databases

where the developer must decide the schema for each table before any data is

inserted. Instead of tables, MongoDB uses collections. A collection is a group

of documents, but documents within the collection can still have different

fields. Documents in a collection usually fill the same purpose though.

MongoDB documents are stored in BSON format, which is a binary version

of JSON documents. BSON can contain more data types than JSON.

Documents can be linked or referenced to each other with a key. Embedded

documents are an alternative to references, where all information is

embedded in a single document instead of using references to many

documents. Generally, embedded documents provide better performance but

reference documents are more flexible. Figure 2.5 shows relationships with

references between documents and Figure 2.6 shows embedded documents

relationships.

Figure 2.5: Displaying relationships with references between documents [15].

Figure 2.6: Displaying embedded document relationship [15].

MongoDB supports the following languages:

 Actionscript

 C

 C#

 C++

 Clojure

 ColdFusion

 D

 Dart

 Delphi

 Erlang

 Go

 Groovy

 Haskell

 Java

 JavaScript

 Lisp

 Lua

 MatLab

 Perl

 PHP

 PowerShell

 Prolog

 Python

 R

 Ruby

 Scala

 Smalltalk

MongoDB supports the following operating systems:

 Linux

 OS X

 Solaris

 Windows

3 Method

This chapter describes the approach throughout the whole thesis project, along with

some specific technical solutions.

3.1 Scientific approach

To discover which non-functional properties for databases that was most

important for companies, a survey was sent out to computer related

companies.. Phone interviews were conducted with people working at

different computer related companies. YSCB (Yahoo! Cloud Serving

Benchmark) was used to benchmark the non-functional properties based on

the survey and interview answers.

3.2 Human centered approach

The information about which non-function properties that should be

benchmarked and used as the base for this research was decided from a

survey along with interviews with computer related companies.

3.2.1 Survey

The survey was sent as a link to 20 companies. It was created and handled

online with the help of a webpage, SurveyMonkey[16]. All survey answers

were anonymous. Figure 3.1 shows the survey sent out to companies.

Figure 3.1: Displaying the survey sent to companies.

3.2.2 Interviews

The interviews conducted were over phone with 6 of the companies that was

originally being sent the survey. The questions asked during the interviews

were based on the survey. All interview answers were anonymous.

3.3 Yahoo! Cloud Serving Benchmark (YCSB)

Since NoSQL DBMS still are quite new, there are not that many good and

fair benchmarking tools. There are, however, a lot of existing benchmarking

tools for RDBMS but they are, for obvious reasons, not compatible with

NoSQL DBMS. Most of the existing NoSQL tools are either provided by the

database company itself, or not compatible with different NoSQL types. It is

hard to develop a benchmarking tool for all NoSQL types (See the Column

Store (2.2.5), Key-value Store (2.2.4) and Document Store (2.2.6) chapters

for additional information about the differences in NoSQL DBMS). The

Yahoo! Cloud Serving Benchmark was chosen for this project, since it is the

most fair, independent and versatile choice.

Yahoo! Cloud Serving Benchmark is not very useful by itself,

but it provides a good framework for benchmarking NoSQL DBMS [17]. The

YCSB client is a generator of workloads. YCSB provides a few typical

workloads for the most common operations for a DBMS. Basically, the

YCSB client generates a workload. The workload could be one of the core

workloads pre-defined by YCSB or the user can create a customized

workload. The YCSB client is connected to an interface layer of client code

for the DBMS of the user’s choice. A workload is then run through the YCSB

client and is connected to the chosen database server. Here follows a

description of each workload:

 Workload A - Update heavy workload: This workload has a mix of

50/50 reads and writes. An application example is a session store

recording recent actions.

 Workload B - Read mostly workload: This workload has a 95/5

reads/write mix. Application example: photo tagging; add a tag is an

update, but most operations are to read tags.

 Workload C - Read only: This workload is 100% read. Application

example: user profile cache, where profiles are constructed elsewhere

(e.g., Hadoop).

 Workload D - Read latest workload: In this workload, new records are

inserted, and the most recently inserted records are the most popular.

Application example: user status updates; people want to read the

latest.

 Workload E - Short ranges: In this workload, short ranges of records

are queried, instead of individual records. Application example:

threaded conversations, where each scan is for the posts in a given

thread (assumed to be clustered by thread id).

 Workload F - Read-modify-write: In this workload, the client will

read a record, modify it, and write back the changes. Application

example: user database, where user records are read and modified by

the user or to record user activity.

4 Results/Analysis

This chapter displays results from the surveys and interviews along with

YCSB benchmark results.

4.1 Survey

Figure 4.1 shows a diagram with survey and interview answers from

computer related companies. The question asked is “How important are the

following non-functional properties when deciding database?”. Rating 1

infers not important and rating 5 infers important.

Figure 4.1: Survey and interviews.

The survey displayed that according to the companies; Dependability

(availability, manageability, recoverability, reliability, serviceability) was the

most important non-functional property, followed by Performance (access

time - Create, Read, Update, and Delete data) and Efficiency (CPU- and

memory load).

4.2 Interviews

The interviews were conducted over phone and they gave a more versatile

picture of the non-functional properties of interest. They generated very

different responses depending on the database size and what the database was

used for. Some companies with different databases had different non-

functional property ranking for each database. However, in general the result

was very similar to the Survey answers.

4.3 YCSB benchmarking

Technical specification for the computer used when performing YCSB

benchmarking:

CPU: Intel Core i5 3570k, 3,4 Ghz

Harddrive: Seagate Barracuda ST1000DM003 1TB 7200 RPM

Memory: 8 GB DDR3 1600MHz

Operating system: Ubuntu 14.04.2 LTS

4.2.1 Workload

Figure 4.2 shows results for Workload A – 50 % reads, 50 % writes.

Figure 4.2: Workload A – 50 % reads, 50 % writes.

http://www.newegg.com/Product/Product.aspx?Item=N82E16822148840

Figure 4.3 shows results for Workload B – 95 % reads, 5 % writes.

Figure 4.3: Workload B – 95 % reads, 5 % writes.

Figure 4.4 shows results for Workload C – 100 % reads.

Figure 4.4: Workload C – 100 % reads.

Figure 4.5 shows results for Workload D – Read latest workload.

Figure 4.5: Workload D – Read latest workload.

Figure 4.6 shows results for Workload F – Read-modify-write.

Figure 4.6: Workload F – Read-modify-write.

Redis benchmark results for Workload A (50% reads and 50% writes), is

better than Workload B (95 % reads and 5 % writes) and Workload C (100 %

reads). Redis therefore generally writes faster than it reads. The reason for

this is because Redis initially only writes to the memory. Redis handles the

whole dataset in memory until data is written to disc asynchronously. The

administrator decides how often Redis should save the data from memory to

disc. When performing a read on the other hand, Redis sometimes needs to

look for data on disc if it is not found in memory.

In Workload A (50% reads and 50% writes), Cassandra is

performing better than Workload B (95 % reads and 5 % writes) and

Workload C (100 % reads). It means that Cassandra writes data faster than it

reads. This was never the case when dealing with traditional SQL databases

since they are implemented differently that Cassandra. When writing,

Cassandra first writes all data to memory until it is full and flushed to disc.

Reads on the other hand almost always need access the permanent disc

storage, SSTable, along with searching the memory storage, mem-table (See

chapter 2.2.6 Column store for more information about the Cassandra

write/read sequence). In Workload D (Read latest workload) Cassandra

performs very well since in most cases it has to read from the mem-table

since the mem-table most likely has not yet been flushed to disc.

MongoDB benchmark shows that Workload B (95 % reads and

5 % writes) and Workload C (100 % reads) outperforms Workload A (50%

reads and 50% writes). MongoDB therefore reads way faster than it writes

much like a traditional RDBMS. Even benchmark results from Workload D

(Read latest workload) outperforms Workload A (50% reads and 50%

writes).

Redis is the fastest of the three in almost all cases besides

Workload D where Cassandra is a bit faster. MongoDB is the slowest in all

cases besides Workload F where Cassandra is the slowest.

4.2.2 CPU Load

Figure 4.7 shows results for average CPU load.

Figure 4.7: CPU Load – Average CPU Load.

Redis’s CPU load was around 55% for each benchmark, way lower than both

Cassandra and MongoDB. The reason is probably because of its in-memory

approach. Cassandra’s average CPU load was around 88% and average CPU

load for MongoDB was about 85% throughout all benchmarks.

4.2.3 Memory Load

Figure 4.8 shows results for average memory load.

Figure 4.8: Memory load – Average memory load.

Redis’s memory load was about 25% for each benchmark. It was much

higher than both Cassandra’s and MongoDB’s. Just as the CPU load, the

reason is probably because its in-memory approach. For Cassandra, memory

load was a bit higher when writing than reading with an average of around

14%. MongoDB had an average memory load on about 18% for each

benchmark.

5 Discussion

This chapter analyzes and discusses the results displayed in chapter 4 –

Results/Empirical data. It also includes a reflection regarding method choices

throughout the thesis project.

5.1 Problem solving/results

Redis turned out to be the fastest, quite far ahead of the other two in almost

every benchmark. Cassandra was often the second fastest and MongoDB the

slowest. Redis Memory load was the highest and its CPU load was the

lowest. Cassandra and MongoDB were quite equal in both CPU load and

Memory load.

The reason for Redis's outstanding speed is probably because

Redis is less complicated than the other two since it is a Key-value store (See

chapter 2.2.5 for more information about Key-value stores). Redis also

handles all data in memory which makes it rapidly fast. That is why Redis's

average Memory load was above Cassandra's and MongoDB's. I found Redis

to be easy to both set up and work with.

Cassandra performed good in each benchmark. It is not the best

but not the worst either. Cassandra's main advantage over the other two

databases is its scalability and clustering possibilities. A Cassandra cluster

scales linearly and is relatively easy to set up. However, Cassandra is the

most difficult to work with and it is quite hard to make changes to it. It is

very different in both setup and commands compared to traditional relational

DBMS’s.

MongoDB performed the worst in almost every benchmark.

The main advantage of MongoDB is its flexibility. Each document could

have completely different fields even within the same collection, which

makes it very versatile (See chapter 2.2.7.1.1 for more information about

MongoDB Function). I found MongoDB to be the easiest to work with, since

it reminds a lot of Relational DBMS. MongoDB scales well, but not as good

as linearly.

In one sense Redis, Cassandra and MongoDB are very similar

since they after all are databases that handle and stores data. When looking

closer, they are however very different. I could recommend all three

databases, totally depending on the usage. If the database should handle an

enormous amount of data, Cassandra is most probably the way to go.

However, very few applications and systems are in need for such large

amount of data that it should be worth it. If speed is the main thing, Redis is

probably the most well suited choice if the operations are not too advanced

and the database size can fit within the memory. If the database needs to be

flexible and not really sure how it should be designed or how big it will be,

MongoDB is probably a good choice.

Since each database is best suited for some specific tasks, one

common option in bigger systems is to combine different database types

within the same system where each database is best suited for its specific

task. When choosing database the CAP theorem (see chapter 2.2.3) can also

be considered, were Redis and MongoDB is considered to be CP and

Cassandra is AP.

In almost every case, MongoDB is a good choice. It is easy to

use and understand and it is relatively fast even though it is slower than

Cassandra and Redis. It is also flexible and scales quite well. Average-sized

systems very seldom need the speed of Redis or the scalability of Cassandra,

so in these cases MongoDB is the most versatile NoSQL DBMS of the three.

But, once again, it completely depends on the situation.

5.2 Method reflection

I should have asked more companies to get a clearer picture of what non-

functional properties that was of interest. Since only 7 companies responded

the survey and 6 interviews were conducted, the answer may not be totally

reliable.

I would also have liked to perform a few benchmarks using

clusters, since that is the case in many big companies. This is however not

very easy considering the limited time and resources for a thesis project.

Overall I am relatively pleased with my choice of method.

6 Conclusion

This chapter gives a brief summary of the conclusion of the thesis project. It

also suggests further research regarding similar research area.

6.1 Conclusions

RQ1. Which is the set of non-functional properties of interest for

industry?

RQ2. Based on RQ1 properties; which is the most versatile NoSQL

DBMS?

Research question 1 is not answered since the survey and interviews did not

generate enough answers from computer related companies.

Research question 2 is answered, but since the question is based

on research question 1, the answer is a bit subjective. Cassandra is most

probably the best choice if the database should handle an enormous amount

of data. Redis is probably the most well suited database if speed is the most

important property and if all data fits within the memory. MongoDB is

probably the best choice if the database needs to be flexible and versatile.

6.2 Further Research

I am suggesting performing benchmarks using clusters for each database. To

find out if it is easily done and if it scales well without too much loss in

performance and usability.

References

[1] RDBMS dominate the database market, but NoSQL systems are catching

up. URL: http://www.db-engines.com/en/blog_post/23.

URL last accessed 2015-10-11.

[2] DB-engines ranking. URL: http://www.db-engines.com/en/ranking.

URL last accessed 2015-10-11.

[3] M. Åsberg. “Jämförelse av Oracle och MySQL med fokus på användning

i laborationer för universitetsutbildning”. Institutionen för datavetenskap,

2008.

[4] E. Chavez Alcarraz, M. Moraga. “Linked data performance in different

databases: Comparison between SQL and NoSQL databases”. KTH, School

of Technology and Health, 2014.

[5] Comparison of relational database systems. URL:

https://www.digitalocean.com/community/tutorials/sqlite-vs-mysql-vs-

postgresql-a-comparison-of-relational-database-management-systems.

URL last accessed 2015-10-11.

[6] Defining database availability.

URL: https://datatechnologytoday.wordpress.com/2013/06/24/defining-

database-availability/. URL last accessed 2015-10-11.

[7] ACID versus BASE for database transactions. URL:

http://www.johndcook.com/blog/2009/07/06/brewer-cap-theorem-base/.

URL last accessed 2015-10-11.

[8] Leavitt and Neal. Will NoSQL Databases Live Up to Their

Promise?. Leavitt Communications, 2010.

[9] World of NoSQL databases.

URL: http://www.leopard.in.ua/2013/11/08/nosql-world/.

URL last accessed 2015-10-11.

[10] Brewer’s CAP Theorem. URL:

http://www.julianbrowne.com/article/viewer/brewers-cap-theorem.

URL last accessed 2015-10-11.

[11] Redis documentation. URL: http://www.redis.io/documentation.

URL last accessed 2015-10-11.

[12] DB-Engines ranking of Key-value stores. URL: http://www.db-

engines.com/en/ranking/key-value+store. URL last accessed 2015-10-11.

[13] Cassandra documentation. URL: http://wiki.apache.org/cassandra/.

URL last accessed 2015-10-11.

[14] MongoDB documentation. URL: http://www.mongodb.org/about/.

URL last accessed 2015-10-11.

[15] MongoDB data model design. URL:

http://docs.mongodb.org/manual/core/data-model-design/.

URL last accessed 2015-10-11.

[16] Survey creating webpage. URL: https://sv.surveymonkey.com/.

URL last accessed 2015-10-11.

[17] Yahoo! Cloud Serving Benchmark.

URL: https://www.github.com/brianfrankcooper/YCSB/wiki.

URL last accessed 2015-10-11.

