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Abstract: In this paper, valuation of a derivative partially collateralized in a specific foreign currency defined in
its credit support annex traded between default-free counterparties is studied. Two pricing approaches – by hedg-
ing and by expectation – are presented to obtain the same valuation formulae. Our findings show that the current
marking-to-market value of such a derivative consists of three components: the price of the perfectly collateral-
ized derivative (a.k.a. price by collateral rate discounting), the value adjustment due to different funding spreads
between the payoff currency and the collateral currency, and the value adjustment due to funding requirements
of the uncollateralized exposure. These results generalize previous works on discounting for fully collateralized
derivatives and on funding value adjustment for partially collateralized or uncollateralized derivatives.
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1 Introduction

The impact of collateralization to valuation of over-the-counter (OTC) derivatives is well recognized and observed
in the market, in particular when the borrowing rate of the derivative desk is significantly higher than the return
rate of the collateral (a.k.a. collateral rate) designated in its credit support annex (CSA) since the recent credit and
liquidity crunch. The conventional LIBOR-OIS1 spread is usually regarded as an indicator of such a gap. This
impact has been extensively investigated in practice and in theory (e.g., [1, 2, 3]). As a consequence, the approach
to discounting projected cashflows with the collateral rate, a.k.a. collateral rate discounting or CSA discounting, is
addressed. Collateral rate discounting for a derivative with its payoff in a single currency, however, implies several
model assumptions [2, 3], including:

1. Full collateralization, i.e., the posted collateral amount equals to the marking-to-market (MtM) of the deriva-
tive;

2. Bilateral collateralization with the same collateral rate for both counterparties, i.e., each counterparty posts
collateral when the derivative has a negative MtM from its view (out of the money) and receives the same
return rate on the collateral;

3. Continuous settlement, i.e., the collateral adjustment is settled immediately when MtM changes;

4. Domestic collateralization, i.e., collateral in the same currency as that of the derivative payoff;

5. Cash-equivalent collateral, i.e., the posted collateral must have the highest quality and be “risk-free”.
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Furthermore, the authors are grateful for the helpful discussion with Eugene Wang, Samuel Du, Wanhe Zhang, Ion Rada, Jun Yuan, and
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Bay Street, 11th Floor, South Tower, Toronto, ON M5J 2J5, Canada.
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Intuitively, under above assumptions, a derivative may be regarded as “secured” and the counterparty credit
risk (CCR) becomes negligible. In this paper, a collateralized derivative with all above assumptions being fulfilled
is referred as perfectly collateralized, whereas the term full collateralization refers to the relaxation of perfect collat-
eralization with collateral currency being allowed different from payoff currency. As shown in [3, 4, 5, 6, 7], the
value of such a derivative depends on the collateral currency even in the fully collateralized case. We here restrict
ourselves within the case of a specific foreign collateral currency for any derivative, so the embedded cheapest-to-
deliver (CTD) option of collateral posting for some CSAs that allow more than one collateral currency is out of the
scope of this paper. A derivative with its payoff in a single currency is called domestic collateralized if it is (possibly
partially) collateralized in its payoff currency, and foreign collateralized if its specific collateral currency is different
from the payoff currency.

It is also worth noting that an implicit assumption widely made for pricing by replication is that the unsecured
borrowing rate and unsecured lending rate of the derivative desk are the same. This assumption might be regarded
as counter-intuitive. However, the derivative desk has to borrow cash from its funding source (e.g., treasury desk)
to start trading, so it is usually in debt regarding cash positions and needs to pay its borrowing rate as well. With
any extra cash, the derivative desk tends to reduce its borrowing positions of cash, if it cannot lend it with a higher
rate. Therefore, it is safe to make such an assumption, and our results could be extend to the case without this
assumption. In our framework, this borrowing/lending rate is referred as the (unsecured) funding rate of this
counterparty, and the spread between its funding rate and the collateral rate determined in CSA is named funding
spread.

The collateral settled in a daily basis is the most common practice, in particular, in consistent with the require-
ments by clearing houses (e.g., LCH). Therefore, in many cases the collateral rate is defined to be the overnight
index rate of the collateral currency in accordance with the settlement frequency. In such a case, the collateral rate
discounting is equivalent to the overnight rate discounting, a.k.a. OIS discounting. In addition, eligible collateral
assets may not be limited to cash, and government bonds in payoff currency with minimum sovereign risk are
frequently agreed for collateral. It also occurs that risky assets are posted as collateral with certain hair-cut. Again,
in our theoretical framework it is assumed that collateral is posted only in cash.

Despite of collateralization in foreign currency, partial collateralization is also considered in this paper2. There-
fore, the presented results generalize many previous works, and the value adjustments due to collateral currency
and funding cost/benefit incurred by partial collateralization3 are both included. Similar to [2], counterparties of
the derivative are both assumed default free, and the extension of our results to defaultable counterparties will be
a topic of our future research.

1.1 Related Works

The theoretical foundation of valuation for derivatives partially collateralized in domestic currency is developed
in the seminal work [2] by a replication and PDE approach, where both counterparties are assumed default free.
As special cases, the approaches of collateral rate discounting and funding rate discounting are presented for the
perfectly collateralized case and uncollateralized case, respectively. Furthermore, the funding value adjustment
(FVA) due to partial collateralization is also implied in [2]. A small gap in the theory in [2] is pointed out and filled
in [8], and is acknowledged in the Correction Note at the end of [7], while the results in [2] are valid. Alternatively,
two different valuation approaches by expectation for perfectly collateralized derivatives are proposed in [3] to
obtain the collateral rate discounting results as well as the application in interest rate curve building. These works
are further extended to the case of fully collateralized case with foreign collateral currency [3, 4, 5] to build the
multiple discounting framework. It is also worth noting that the valuation methodologies in [2] and in [3, 4, 5]
may be under different measures. Such a difference is addressed in this paper, as well as the link between them.

Prior to this paper, attempt is made by a research team of the 16th IMA Workshop on Mathematical Modeling
in Industry for Graduate Students [9] to develop valuation methodologies for derivatives partially collateralized
in foreign currency, where some similar results to this work are reported.

For uncollateralized derivative traded between defaultable counterparties, the comprehensive valuation method-
ologies are studied in [10, 11] by replication and in [12] by expectation, to include both bilateral credit value ad-
justment (CVA)4 and funding cost. The impact of collateral currency is not covered in these works. The replication

2That is, the assumptions 1 and 4 of perfect collateralization are both relaxed.
3Intuitively, this cost or benefit happens when a perfectly collateralized derivative is employed to hedge a partially collateralized derivative

to match the cashflows. The extra posted or received collateral for the hedging position may be borrowed or lent with a rate higher than the
collateral rate, resulting in such a cost or a benefit.

4A.k.a. CVA and DVA (debt/debit/default value adjustment).
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approach is further applied in [6, 13] to capture the impact of collateral and its currency for partially collateral-
ized derivative and the results reported there are similar to part of results in this paper, where this adjustment is
termed as liquidity value adjustment (LVA) in those works. On the other hand, a collateral rate adjustment (CRA)
is proposed on top of OIS discounting results in [14, 15] for perfectly collateralized derivatives with collateral rate
different from OIS rate, while only very limited technical details are provided.

A comprehensive list of literature on new discounting theory due to collateralization as well as CVA, DVA and
FVA can be found in [16], while we here restrict ourselves within the framework without CCR as in [2], and give
only a few previous works directly related to our work in above.

1.2 Our Contribution

We study the derivative with payoff in a single currency and partially collateralized in a specific foreign currency
traded between two default free counterparties. To calculate its present value with respect to the impact of collat-
eral, two types of approaches are employed.

In the first type of approach, following the ideas in [2], a portfolio including underlying asset of the deriva-
tive and cash positions with various funding sources and return rates is constructed to replicate the value of the
derivative, which might be regarded as a generalization of the Black-Scholes-Merton’s framework as well. With
the similar analysis on self-financing condition to [8], a PDE is formulated. Applying Feynman-Kac formula yields
our main results on the value of such a derivative under a measure that each underlying asset follows a Wiener
process with drift equivalent to its actual funding cost (which could be either a rate secured by the asset or the
unsecured funding rate of the derivative desk).

In the second type of approach, valuation methodologies by expectation under risk neutral measure with risk
free rate equivalent to the unsecured funding rate of the derivative desk are developed, similar to [3, 4, 5]. Within
this type of approach, the expectation is calculated either of a self-financing portfolio of the derivative and cash
positions, or of all the future cashflows including both the derivative payoff and re-investment return of collateral.
The resulting valuation formulae are consistent with those of our first type of approach in the case that positions of
underlying assets in the replication portfolio are maintained by unsecured funding rate, i.e., the underlying assets
are not eligible for collateral. Thus, a uniform valuation framework is developed.

The current MtM value of such a derivative can be further decomposed into three components: the pricing by
discounting derivative payoff with the return rate as if it was collateralized in payoff currency5, a value adjustment
due to the mismatch of funding spreads6 of the payoff (domestic) currency and the collateral (foreign) currency,
and the value adjustment resulting from the uncollateralized portion of the derivative value which is further par-
titioned into two parts due to the mismatch of the MtM value of the derivative and due to the mismatch (shortfall)
of the collateral. Several special cases for either domestic collateral or fully collateralization are discussed, and
consistent results to those in [2, 3, 4, 5] are reported.

The remainder of this paper is organized as follows. The model setup and notations are given in Section 2,
the valuation methodology by replication and PDE approach is presented in Section 3 and the methodology by
expectation in Section 4. These results are further discussed in Section 5. Finally, Section 6 concludes this paper.

2 Model Setup and Notations

In a domestic currency d market, let us consider a derivative which matures at T > 0 with a given payoff of Vd
T

in d-currency7. This derivative is collateralized in a specific foreign currency f with currency exchange rate Xt
8

at time t > 0, which is expressed as the number of units in d per one unit in f. The (cash-equivalent) collateral

amount Cf
t in f-currency at time t ∈ [0, T) against the derivative is assumed depending on the CSA definition and

the value of the derivative at t, and may differ from the derivative value denominated in f-currency in general
(partially collateralized) cases.

Assume that the derivative is on a set of underlying assets whose prices St = (S
(1)
t , · · · , S

(n)
t )⊤ ∈ ❘n

+
9 are

5This may be different from the actual collateral currency defined in the CSA as the derivative could be foreign collateralized. This compo-
nent is in fact the collateral rate discounting result, and as a special case, the OIS discounting result if the assumed domestic collateral rate is
its overnight index rate.

6As the spread between the unsecured funding rate of the derivative desk and the return rate of the collateral defined in CSA.
7Assume no intermediate cashflow of the derivative within the time interval (t, T).
8To simplify analysis, we only use the concept of the instantaneous currency exchange rate in this paper.
9
❘ = (−∞, ∞) and❘+ = [0, ∞).
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denominated in d-currency, where n > 1 is an integer. The underlying assets may generate continuous cashflows10

with short rates rD
t =

(

rD,1
t , · · · , rD,n

t

)⊤
∈ ❘n

+. If the i-th underlying asset is eligible for repo collateral, the funding

rate secured with this asset (repo rate) is denoted as rR,i
t , for i ∈ {1, . . . , n}, and let rR

t =
(

rR,1
t , · · · , rR,n

t

)⊤
∈ ❘n

+.

Further denote by rF,d
t and by rF,f

t the short rates of unsecured domestic funding and unsecured foreign funding,

respectively. The short rate of the foreign currency collateral designated in the CSA is referred as rC,f
t , while rC,d

t
is the short rate of the domestic currency collateral if the derivative was domestic collateralized. Further, let us
define

λd := rF,d − rC,d , λf := rF,f − rC,f , (2.1)

which are called domestic and foreign funding spreads, respectively.

At any time t ∈ [0, T), denote by Vd,f
t the d-value of the derivative partially collateralized in f-currency, and by

V̄d,f
t the d-value of the derivative fully collateralized in f-currency, respectively. Note that Cf

t 6= Vd,f
t /Xt in general,

while Cf
t ≡ V̄d,f

t /Xt. If this derivative was partially collateralized in its domestic currency d, its d-value is denoted

as Vd,d
t , where Vd,d

t 6= Cd
t in general for domestic collateral amount Cd

t . Finally, the d-value of the derivative is

V̄d,d
t if it was perfectly collateralized, where V̄d,d

t ≡ Cd
t . Here V̄d,d

t is actually the price of the derivative by OIS
discounting in case the domestic collateral rate is defined as the overnight index rate of d currency. In all these
cases, we always have the following boundary conditions

V
d,ξ
T := V

d,ξ
T− = Vd

T = V̄
d,ξ
T− =: V̄

d,ξ
T , ∀ξ ∈ {d, f} . (2.2)

Conventionally, the term FVA refers to the difference of the value of a derivative against its price by OIS
discounting, as the perfectly collateralized version of a derivative is the most liquid hedging instrument11 without
introducing additional counterparty credit risk and liquidity risk in the current market. Thus, FVA of a partially

collateralized derivative is Vd,f
t − V̄d,d

t .
In this paper, we focus on the derivative with a single payoff in d currency which is partially collateralized in f

currency. The counterparties trading this derivatives are assumed default free.

3 Pricing by Replication

To replicate the derivative, we may consider a trading strategy which contains following components: the underly-
ing assets and their funding positions, the collateral account and an unsecured funding account. Let us elaborate.
Denote

θA
t =

(

θ
(1)
t , · · · , θ

(n)
t

)⊤
∈ ❘n

the holding position of the assets at the time t ∈ [0, T]. Then,

• Amount θ
(i)
t S

(i)
t is needed to finance long or short of the i-th underlying asset with a short rate rR,i

t secured
by the underlying asset, for i ∈ {1, . . . , n}, if the underlying is eligible as collateral; otherwise, an unsecured

funding short rate rF,d
t is needed to finance the position12;

• Dividend cashflow is generated by the i-th underlying at the short rate rD,i
t which is paid to the buyer of the

repo contract13, for i ∈ {1, . . . , n};

• Collateral amount Cf
t is posted at the time of t with a corresponding collateral short rate rC,f

t ;

• Amount Vd,f
t − Xt Cf

t is to be financed with the unsecured domestic funding short rate rF,d
t .

Similar to the discussion in [8], the first component of the trading strategy, denoted as A, is the portfolio of n

repo contracts of the underlying assets. Let vA and gA be the price and the gain (or the yield [17]) processes of A

in the d-currency. As the repo contract can be terminated at zero additional cost, we have

vA
t = 0 ∈ ❘n , ∀t ∈ [0, T]; , (3.1)

10For instance, dividend of underlying stocks.
11And it is easily obtained from a clearing house
12More discussion of this case can be found in Section 5.
13If the repo contract defines that the dividend is paid to the seller, then the short rate of this repo should be rR,i

t − rD,i
t according to the

non-arbitrage arguments, and our results are still valid.
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while the gain process satisfies the following equation

dgA
t = dSt + diag

(

rD
t − rR

t

)

St dt , ∀t ∈ (0, T] , (3.2)

where

diag(a) :=







a1 0
. . .

0 an






, ∀a = (a1, · · · , an)

⊤ ∈ ❘n .

The second component, denoted as C, is the collateral account. Let vC and gC be the price and the gain processes

of C in the d-currency. As the collateral amount in the f-currency is Cf , we have

vC
t = Xt Cf

t , ∀t ∈ [0, T] , (3.3)

and the gain process satisfies

dgC
t = rC,f

t Xt Cf
t dt + Cf

t dXt , ∀t ∈ (0, T] . (3.4)

The last component of the trading strategy, denoted as F, is the unsecured domestic funding account. Let vF and

gF be the price and the gain processes of F in the d-currency. Similar to the second component, we have

vF
t = Vd,f

t − Xt Cf
t , ∀t ∈ [0, T] , (3.5)

and
dgF

t = rF,d
t

(

Vd,f
t − Xt Cf

t

)

dt , ∀t ∈ (0, T] . (3.6)

Let us assume that there exists a function

πd,f : (s, c, x, t) ∈ ❘n
+ ×❘×❘×❘+ 7→ πd,f (s, c, x, t) ∈ ❘

such that the value of the aforementioned derivative can be written as

Vd,f
t = πd,f

(

St, Cf
t , Xt, t

)

, t ∈ [0, T] . (3.7)

On the other hand, consider a strategy
(

θA
t
⊤

, 1, 1
)⊤

on (A, C, F ). Clearly from (3.1), (3.3) and (3.5), the strategy

gives a replication portfolio, denoted as Πt, i.e., for t ∈ [0, T],

Πt = θA
t
⊤
· vA + 1 · vC

t + 1 · vF
t = Vd,f

t , (3.8)

and we further assume that the portfolio is of self-finance [17], then, from (3.2), (3.4) and (3.6), we have

dΠt = θA
t
⊤
·
(

dSt + diag
(

rD
t − rR

t

)

St dt
)

+

1 ·
(

rC,f
t Xt Cf

t dt + Cf
t dXt

)

+ 1 ·
(

rF,d
t (Vd,f

t − Xt Cf
t )dt

)

.
(3.9)

From (3.7) and by using Ito’s lemma, we have

dVd,f
t = dπd,f

(

St, Cf
t , Xt; t

)

=
{∂πd,f

∂t

}

dt +
{∂πd,f

∂s

}

dSt +
{∂πd,f

∂c

}

dCf
t +

{∂πd,f

∂x

}

dXt+

1

2 ∑
α,β∈{s1,··· ,sn ,c,x}

{∂2πd,f

∂α ∂β

}

d[ζ(α), ζ(β)]t ,

(3.10)

where14 s = (s1, · · · , sn)⊤, the mapping ζ is defined by ζ(si) = S(i), i ∈ {1, . . . , n}, ζ(c) = Cf and ζ(x) = X, and
[· , ·]t is a quadratic co-variation/variation process. From (3.8), we have

dΠt = dVd,f
t , t ∈ [0, T] , (3.11)

14
{

πd,f
}

means πd,f
(

St, Cf
t , Xt; t

)

. Similar meaning applies to
{ ∂πd,f

∂t

}

, and etc.
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and then substituting (3.9) and (3.10) into (3.11), we must have

θA
t
⊤

dSt + Cf
t dXt +

[

θA
t
⊤

diag
(

rD
t − rR

t

)

St + rC,f
t Xt Cf

t + rF,d
t (Vd,f

t − Xt Cf
t )
]

dt

=
{∂πd,f

∂s

}

dSt +
{∂πd,f

∂c

}

dCf
t +

{∂πd,f

∂x

}

dXt+
{∂πd,f

∂t

}

dt +
1

2 ∑
α,β∈{s1,··· ,sn ,c,x}

{∂2πd,f

∂α ∂β

}

d[ζ(α), ζ(β)]t , t ∈ [0, T] .

(3.12)

Based on (3.12), we impose
{∂πd,f

∂s

}

= θA
t ,

∂πd,f

∂c
= 0 ,

{∂πd,f

∂x

}

= Cf
t , (3.13)

by which, it suggests that, instead of (3.7), we should have

Vd,f
t = πd,f

∣

∣

∣

(s,x,t)=
(

St , Xt , t
) , t ∈ [0, T] . (3.14)

Hence (3.12) can be re-written as15

[

{∂πd,f

∂s

}

diag
(

rD
t − rR

t

)

St + rF,d
t Vd,f

t +
(

rC,f
t − rF,d

t

)

Xt Cf
t

]

dt

=
{∂πd,f

∂t

}

dt +
1

2 ∑
α,β∈{s1,··· ,sn ,x}

{∂2πd,f

∂α ∂β

}

d[ζ(α), ζ(β)]t , t ∈ [0, T] ,

or
{∂πd,f

∂t

}

dt +
{∂πd,f

∂s

}

diag
(

rR
t − rD

t

)

St dt +

1

2

[

n

∑
i,j=1

{∂2πd,f

∂si ∂sj

}

d[S(i), S(j)]t + 2
n

∑
i=1

{∂2πd,f

∂si ∂x

}

d[S(i), X]t +
{∂2πd,f

∂2x

}

d[X, X]t

]

=
[

rF,d
t Vd,f

t +
(

rC,f
t − rF,d

t

)

Xt Cf
t

]

dt , t ∈ [0, T] .

(3.15)

Let us introduce dynamics for the asset price St and the FX rate Xt. Let µA and σA be❘n-valued and❘n
+-valued

processes, respectively, µX and σX be❘-valued and❘+-valued processes, respectively. Assume that, under a given
measure, St and Xt satisfy the following dynamics

d

(

St

Xt

)

=

(

µA

µX

)

dt +

(

diag
(

σA
)

0

0 σX

)

d

(

WA
t

WX
t

)

, (3.16)

where (WA⊤
, WX)⊤ is some❘n+1-valued correlated Wiener process with

d

[(

WA

WX

)]

t

= ρ dt , ρ =

(

ρA ρX

ρX⊤
1

)

, (3.17)

and [ρ](n+1)×(n+1) is a given correlation matrix. From (3.17), we also have

d

[(

S
X

)]

t

=

(

diag
(

σA
)

ρAdiag
(

σA
)

diag
(

σA
)

ρXσX

σXρX⊤
diag

(

σA
)

σX σX

)

dt . (3.18)

Then one may find a measure, denoted as Q, such that, under Q, the dynamics (3.16) can be written as

d

(

St

Xt

)

=

(

µ̃A

µ̃X

)

dt +

(

diag
(

σA
)

0

0 σX

)

d

(

W̃
A
t

W̃X
t

)

,

(

µ̃A

µ̃X

)

:=

(

diag
(

rR
t − rD

t

)

St
(

rF,d
t − rF,f

t

)

Xt

)

(3.19)

15From the second equation in (3.13), we have
∂2πd,f

∂α∂c
= 0, ∀α ∈ {s1, · · · , sn, c, x}.
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where (W̃
A⊤, W̃X)⊤ is some❘n+1-valued ρ-correlated Wiener process under Q16. With the consideration of (3.18)

and (3.19) together with the third equation in (3.13) and also by using (2.1), we re-visit (3.15), which can be now
further re-written as

{∂πd,f

∂t

}

dt +
{∂πd,f

∂s

}

diag
(

rR
t − rD

t

)

St dt +
{∂πd,f

∂x

}(

rF,d
t − rF,f

t

)

Xt dt +

1

2

[

n

∑
i,j=1

{∂2πd,f

∂si ∂sj

}

σA
i ρX

i,jσ
A
j + 2

n

∑
i=1

{∂2πd,f

∂si ∂x

}

σA
i ρX

i σX +
{∂2πd,f

∂2x

}

σX σX

]

dt

=
[

rF,d
t Vd,f

t +
(

rC,f
t − rF,d

t

)

Xt Cf
t

]

dt +
{∂πd,f

∂x

}(

rF,d
t − rF,f

t

)

Xt dt

=
[

rF,d
t Vd,f

t +
(

rC,f
t − rF,d

t

)

Xt Cf
t

]

dt +
(

rF,d
t − rF,f

t

)

Xt Cf
t dt

=
[

rF,d
t

{

πd,f
}

− λf
t Xt Cf

t

]

dt , t ∈ [0, T] .

(3.20)

Now from (3.20), we may conclude that if the derivative price Vd,f
t has the form of (3.14), then the function πd,f

is a solution of the following PDE’s solution

D.πd,f = rF,d πd,f − λf x Cf , (3.21)

with a terminal condition for πd,f (s, x, T) which is given by the derivative matured payoff, i.e.,

πd,f (s, x, T)
∣

∣

∣

(s,x)=(ST ,XT)
= Vd

T , (3.22)

where

D :=
∂ ·

∂t
+

∂ ·

∂s
diag

(

rR − rD
)

s +
∂ ·

∂x

(

rF,d − rF,f
)

x +

1

2

[

n

∑
i,j=1

σA
i ρA

i,j σA
j

∂2 ·

∂si ∂sj
+ 2

n

∑
i=1

σA
i ρX

i σX ∂2 ·

∂si ∂x
+ σX σX ∂2 ·

∂2x

]

,
(3.23)

which is called the Dynkin or Kolmogorov backward operator. We also assume that σA, σX, ρ, rR, rD, rF,d, λf
t , and

Cf are all functions of (St, Xt, t). According to Feynman-Kac formula (e.g., Theorem 5.7.6 of [18] or Appendix E
of [17]), the following theorem holds about the solution to (3.21)-(3.22):

Theorem 3.1. With regular conditions for (3.21)-(3.22), its unique solution with sub-exponential growth admits the follow-
ing stochastic representation:

Vd,f
t = EQ

t

[

e−
´ T

t rF,d
u du Vd

T +

ˆ T

t
e−
´ u

t rF,d
v dvλf

u Xu Cf
u du

]

, (3.24)

where Q is the measure introduced in (3.19). Particularly, we have the following special results:
(I.1) if it is partially collateralized in the d-currency, i.e., in the domestic collateral, setting X ≡ 1 and replacing f in (3.24)
by d, then as in [2],

Vd,d
t = EQ

t

[

e−
´ T

t rF,d
u du Vd

T +

ˆ T

t
e−
´ u

t rF,d
v dvλd

u Cd
u du

]

; (3.25)

(I.2) if it is fully collateralized in f-currency, i.e., X Cf = V̄d,f in (3.24), then as in [3, 4, 5],

V̄d,f
t = EQ

t

[

e−
´ T

t rF,d
u du Vd

T +

ˆ T

t
e−
´ u

t rF,d
v dvλf

u V̄d,f
u du

]

; (3.26)

16Actually, we may first get

λ :=

(

diag
(

σA
)

0
0 σX

)−1 (
µA − diag

(

rR − rD
)

S

µX − (rF,d − rF,f )X

)

.

We further assume that λ satisfies some regular conditions such that the measure Q can be obtained by the Girsanov transformation with the
kernel of λ and

d

(

W̃
A
t

W̃X
t

)

= d

(

WA
t

WX
t

)

+ λ dt .
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(I.3) if it is perfectly collateralized, i.e., Cd = V̄d,d in (3.25) or replacing f in (3.26) by d, then as in [2],

V̄d,d
t = EQ

t

[

e−
´ T

t rF,d
u du Vd

T +

ˆ T

t
e−
´ u

t rF,d
v dvλd

u V̄d,d
u du

]

; and (3.27)

(I.4) finally, if it is uncollateralized, i.e., Cf ≡ 0 in (3.24) or Cd ≡ 0 in (3.25), then as in [2],

Vd
t = EQ

t

[

e−
´ T

t rF,d
u du Vd

T

]

, (3.28)

where Vd
t is the price without collateral.

As similarly pointed in [2], we may express (3.24) in the following way17:

Theorem 3.2. The solution (3.24) has another equivalent form:

Vd,f
t = EQ

t

[

e−
´ T

t rC,d
u du Vd

T −

ˆ T

t
e−
´ u

t rC,d
v dv

(

λd
u Vd,f

u − λf
u Xu Cf

u

)

du

]

. (3.29)

Similarly, we also have the following special results:
(II.1) if it is partially collateralized in d-currency, then as in [2],

Vd,d
t = EQ

t

[

e−
´ T

t rC,d
u du Vd

T −

ˆ T

t
e−
´ u

t rC,d
v dv λd

u

(

Vd,d
u − Cd

u

)

du

]

; (3.30)

(II.2) if it is fully collateralized in f-currency, then

V̄d,f
t = EQ

t

[

e−
´ T

t rC,d
u du Vd

T −

ˆ T

t
e−
´ u

t rC,d
v dv

(

λd
u − λf

u

)

V̄d,f
u du

]

; (3.31)

(II.3) if it is perfectly collateralized, then as in [2, 3],

V̄d,d
t = EQ

t

[

e−
´ T

t rC,d
u du Vd

T

]

; and (3.32)

(II.4) finally, if it is uncollateralized, then as in [2],

Vd
t = EQ

t

[

e−
´ T

t rC,d
u du Vd

T −

ˆ T

t
e−
´ u

t rC,d
v dv λd

u Vd
u du

]

. (3.33)

From equations (3.11) and by substituting the dynamics (3.19) into (3.9), we have, under the measure Q,

dVd,f
t =

[

rF,d
t Vd,f

t −
(

rF,f
t − rC,f

t

)

Xt Cf
t

]

dt + (· · · )d

(

W̃
A
t

W̃X
t

)

(or) =:
(

rF,d
t Vd,f

t − λf
t Xt Cf

t

)

dt + Σdrv
t dWdrv

t ,

(3.34)

where Σdrv is the diffusion term of the derivative price Vd,f and Wdrv is some Q-Wiener process. By the discussion
in Chapter 5 of [17], the conditional expected rate of change of the derivative value at time t becomes18

lim
τ→t

d

dτ+
EQ

t

[

Vd,f
τ

]

=
(

rF,d
t Vd,f

t − λf
t Xt Cf

t

)

,

17If we claim that the solution πd,f to (3.21)-(3.22) exists, then it also satisfies (3.29), which may be obtained by re-arranging the right hand
side of (3.21) to be

rC,d πd,f −
[

−(rF,d − rC,d)πd,f + λf x Cf

]

= rC,d πd,f −
[

−λd πd,f + λf x Cf

]

,

and applying Theorem 5.7.6 of [18] again. We provide another rigorous proof in Appendix A.
18“ d/ dτ+” is the right derivative at τ.
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or by using the associated abuses of notation, we may write

EQ
t

[

dVd,f
t

]

=
(

rF,d
t Vd,f

t − λf
t Xt Cf

t

)

dt .

Thus, the growth rate of the derivative (under the measure Q) is the domestic funding rate rF,d
t applied to its value

less the foreign funding spread λf
t applied to the d-currency equivalent collateral.

Let us consider three special cases, in which two of them are “boundary” cases. The first “boundary” case is

that the derivative is uncollateralized, i.e., Cf
t ≡ 0, then, from (3.34), we have

EQ
t

[

dVd
t

]

= rF,d
t Vd

t dt ,

i.e., e
´ t

0 −rF,d
u du Vd

t is a Q-martingale. Then time t MtM value of the uncollateralized derivative can be simply written
as

Vd
t = EQ

t

[

e−
´ T

t rF,d
u duVd

T

]

, (3.35)

which is consistent with the traditional funding rate discounting [2]19. In the other “boundary” case, the derivative
is fully collateralized in f-currency. Then (3.34) gives

EQ
t

[

dV̄d,f
t

]

=
(

rF,d
t − λf

t

)

V̄d,f
t dt ,

which implies e
´ t

0 −(rF,d
u −λf

u)du V̄d,f
t is a Q-martingale. Therefore, the time t MtM value of the fully foreign collater-

alized derivative becomes

V̄d,f
t = EQ

t

[

e−
´ T

t (rF,d
u −λf

u)duVd
T

]

, (3.36)

which is equivalent to those in [3, 5]. In the two “boundary” cases, we clearly see that the current value of the
derivative is the expectation of its matured payoff with an appropriate “discounting”. In other words, the time t

value of the derivative is indifferent to a path towards Vd
T .

In the last case, we introduce a collateral-ratio process γ such that

γt Vd,f
t := Xt Cf

t , ∀t ∈ [0, T] , (3.37)

which is a generalization of that in [6, 13]. Then, we similarly have

EQ
t

[

dVd,f
t

]

=
(

rF,d
t − γt λf

t

)

Vd,f
t dt ,

which also implies e
´ t

0 −(rF,d
u −γu λf

u)du Vd,f
t is a Q-martingale, and hence the time t MtM value of the partially foreign

collateralized derivative becomes

Vd,f
t = EQ

t

[

e−
´ T

t (rF,d
u −γu λf

u)duVd
T

]

. (3.38)

One, however, should not be misled by the expression of (3.38). Since the collateral ratio process (3.37) may depend

on the value process Vd,f , hence in general the expectation (3.38) may be subject to a distribution of value paths in

{Vd,f
t : t ∈ [t, T]}.

4 Pricing by Expectation

In [3, 5], the impact of collateralization on the derivative pricing has been studied with all conditions for perfect
collateralization except (4). In this section, by relaxing condition (1) for perfect collateralization as well to allow
different types of collateralization, we elaborate two different approaches to generalize the result by [3, 5].

19Conventional “LIBOR discounting” when the funding rate is assumed LIBOR rate. This result may also be directly obtained by (3.24).
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4.1 First Approach - Cashflow Analysis

Cashflows of a collateralized European style derivative consist of a final payoff at its maturity plus intermediate

collateral account flows throughout the life of the trade. For the final payoff, at maturity T, the derivative pays Vd
T ,

hence the time t PV of the final payoff is

EQd

t

[

e−
´ T

t rF,d
u duVd

T

]

(4.1)

in the d−currency, where the conditional expectation is under the domestic risk neutral measure Qd, which corre-

sponds to the unsecured domestic funding rate rF,d
u .

For intermediate cashflows in the collateral account, let Πm = {t0,m, t1,m, . . . , tm,m} be a partition of [t, T], i.e.,

t = t0,m ≤ t1,m ≤ · · · ≤ tm,m = T, m > 1.

Define ‖Πm‖ := maxi=1,...,m ∆t
(m)
i where ∆t

(m)
i = ti,m − ti−1,m, 1 6 i 6 m. We consider a sequence of infinitesimal

fine partitions {Πm : m = 1, 2, · · · } with ‖Πm‖ → 0 as m → ∞. For any sufficient large m ≫ 1, consider the time

interval [ti−1,m, ti,m] for any i = 1, . . . , m. At time ti−1,m, if the MtM of the derivative is positive, i.e. Vd,f
ti−1,m

> 0, then

the buyer of the derivative contract will receive collateral Cf
ti−1,m

in the f-currency from his counterparty. Once the

collateral is received, the buyer can lend it out in the foreign money market to earn the unsecured foreign funding

rate rF,f
ti−1,m

. Meantime, according to CSA, the buyer has to pay his counterparty interest on the collateral at the

foreign collateral rate rC,f
ti−1,m

. If Vd,f
ti−1,m

< 0, due to the bilateral collateralization assumption, the buyer has to borrow

−Cf
ti−1,m

in the f-currency at the unsecured foreign funding rate rF,f
ti−1,m

to post collateral to his counterparty,20 and

earn the same foreign collateral rate rC,f
ti−1

on the posted collateral. In either case, at the end of the infinitesimal fine

time interval, ti,m, the net cashflow in the collateral account for the buyer is λf
ti−1,m

Cf
ti−1,m

∆t
(m)
i in the f-currency,

where λf
ti−1,m

= rF,f
ti−1,m

− rC,f
ti−1,m

. Therefore, the PV of total intermediate cashflows in the collateral account at time t,

as m → ∞, becomes

EQf

t

[

lim
m→∞

m

∑
i=1

e−
´ ti,m

t rF,f
v dvλf

ti−1,m
Cf

ti−1,m
∆t

(m)
i

]

= EQf

t

[

ˆ T

t
e−
´ u

t rF,f
v dvλf

uCf
u du

]

in the f-currency, or equivalently,

XtE
Qf

t

[

ˆ T

t
e−
´ u

t rF,f
v dvλf

uCf
u du

]

(4.2)

in the d-currency, and the conditional expectation is under the foreign risk neutral measure Qf , which corresponds

to the unsecured foreign funding rate rF,f
u . Combining (4.1) and (4.2), the time t PV of the collateralized derivative

is

Vd,f
t = EQd

t

[

e−
´ T

t rF,d
u duVd

T

]

+ XtE
Qf

t

[

ˆ T

t
e−
´ u

t rF,f
v dvλf

uCf
u du

]

. (4.3)

Notice that, expectations in (4.3) are under different measures, which is unpleasant. Theorem 4.1 shows that

the pricing formula (4.3) can be transformed to be under the single domestic risk neutral measure Qd. A proof of
Theorem 4.1 is attached in Appendix B.

Theorem 4.1. The current MtM value of a partially foreign collateralized derivative in (4.3) is equivalent to:

Vd,f
t = EQd

t

[

e−
´ T

t rF,d
u duVd

T +

ˆ T

t
e−
´ u

t rF,d
v dvλf

uXuCf
u du

]

. (4.4)

The pricing formula (4.4) is conceptually intuitive, but, similar to (3.24), both are not convenient to use in
practice, since they are recursive formulas. To simplify (4.4), we begin with the following theorem:

20Here we assume that Cf
ti−1,m

and Vd,f
ti−1

have the same sign.
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Theorem 4.2. Let

Mt := e−
´ t

0 rF,d
u duVd,f

t +

ˆ t

0
e−
´ s

0 rF,d
v dvλf

uXuCf
u du,

then Mt is a martingale under Qd, and Vd,f
t follows the following stochastic process

dVd,f
t =

(

rF,d
t Vd,f

t − λf
t XtC

f
t

)

dt + e
´ t

0 rF,d
u du dMt. (4.5)

A proof of Theorem (4.2) is presented in Appendix C. From Theorem 4.2, we have the following two observa-
tions. First of all, if we let

Ys := e−
´ s

t rC,d
u duVd,f

s −

ˆ s

t
e−
´ u

t rC,d
v dv

(

λd
uVd,f

u − λf
uXuCf

u

)

du

for s ∈ [t, T], then

dYs = −rC,d
s e−

´ s
t rC,d

u duVd,f
s ds + e−

´ s
t rC,d

u du dVd,f
s − e−

´ s
t rC,d

v dv
(

λd
s Vd,f

s − λf
sXsCf

s

)

ds. (4.6)

Substituting (4.5) into (4.6) gives

dYs = −rC,d
s e−

´ s
t rC,d

u duVd,f
s ds + e−

´ s
t rC,d

u du
((

rF,d
s Vd,f

s − λf
sXsCf

s

)

ds + e
´ s

0 rF,d
u du dMs

)

−e−
´ s

t rC,d
v dv

(

λd
s Vd,f

s − λf
sXsCf

s

)

ds

= e
´ t

0 rF,d
u due

´ s
t λd

u du dMs. (4.7)

Then (4.7) implies Ys is also a Qd-martingale. By Yt = EQd

t [YT ], we have

Vd,f
t = EQd

t

[

e−
´ T

t rC,d
u duVd

T −

ˆ T

t
e−
´ u

t rC,d
v dv

(

λd
uVd,f

u − λf
uXuCf

u

)

du

]

. (4.8)

Secondly, if the derivative is collateralized with the collateral-ratio γt as defined in (3.37), then from (4.9), we have

dVd,f
t =

(

rF,d
t − γtλ

f
t

)

Vd,f
t dt + e

´ t
0 rF,d

u du dMt, (4.9)

which implies that e
−
´ t

0

(

rF,d
u −λf

uγu

)

du
Vd,f

t is a Qd-martingale. Therefore, the time t PV of the derivative becomes

Vd,f
t = EQd

t

[

e−
´ T

t

(

rF,d
u −γuλf

u

)

duVd
T

]

. (4.10)

Based on the value of γt, we have the following special cases:

• Without collateralization: γt = 0. In this case, the pricing formula (4.10) is simplified to

Vd
t = EQd

t

[

e−
´ T

t rF,d
u duVd

T

]

. (4.11)

• Full collateralization: γt = 1. In this case, the pricing formula (4.10) is simplified to

V̄d,f
t = EQd

t

[

e
−
´ T

t

(

rF,d
u −λf

u

)

du
Vd

T

]

, (4.12)

which is the equation (36) in [3].

One may find that formulae (4.4) and (4.8) are very much similar to (3.24) and (3.29), respectively. Clearly
(4.10), (4.11), (4.12) are also similar to (3.38), (3.35) and (3.36), respectively. However, in general, the measure Q
used in Theorem 3.1 and 3.2 may be different from Qd in Theorem 4.1 and 4.2. More discussion on measures Q
and Qd is in Section 5.
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4.2 Second Approach - Self-Financing Strategy

Using an infinitesimal fine partition Πm = {t0,m, t1,m, . . . , tm,m} defined in the last subsection, consider the follow-
ing trading strategy:

Long θTS
t0

units of derivative at time t0, and keep it until t1,m; At time t1,m, close the existing derivative position,
and immediately reinvest all available funds, including the fund earned by closing the derivative position and cash
earned in the collateral account, in θTS

t1,m
units of the same derivative. Repeat this strategy in each infinitesimal

time interval [ti−1,m, ti,m] until the maturity tm,m = T.

By choosing an appropriate θTS, this trading strategy is self-financing with the initial payment of θTS
t Vd,f

t in d-

currency and the terminal payoff of θTS
T Vd

T in d-currency, and there are no intermediate cash flows during (t, T).

Therefore, by the martingale pricing theory, under the domestic risk neutral measure Qd,

θTS
t Vd,f

t = EQd

t

[

e−
´ T

t rF,d
u duθTS

T Vd
T

]

. (4.13)

The holding position of the derivative, θTS, is determined to make the trading strategy self-financing. As we

discussed in the previous subsection, the collateral account grows at rate of λf
t , therefore, in the continuous model

setting, the gain process of one unit of derivative, denoted as gV , is

dgV
s = dVd,f

s + λf
sXsCf

s ds , s > t . (4.14)

The self-financing condition requires

θTS
s dgV

s = d
(

θTS
s Vd,f

s

)

. (4.15)

Substituting (4.14) into (4.15) gives

θTS
s λf

sXsCf
s ds = Vd,f

s dθTS
s + d[θTS, Vd,f ]s.

If we further assume that the derivative is collateralized with the collateral-ratio as defined in (3.37), then

θTS
s λf

sγsV
d,f
s ds = Vd,f

s dθTS
s + d[θTS, Vd,f ]s. (4.16)

It is not difficult to show that one solution to (4.16) is

θTS
s = e

´ s
t λf

uγu du, s ∈ [t, T], (4.17)

since dθTS
s = λf

sγsθTS
s ds and d[θTS, Vd,f ]s = 0. Clearly, θTS

t = 1. Substitute (4.17) into (4.13), we have

Vd,f
t = EQd

t

[

e−
´ T

t rF,d
u due

´ s
t λf

uγu duVd
T

]

,

which is the pricing formula (4.10) we derived in the last subsection.

5 Further Discussion

5.1 Relationship Between the Values of Two Approaches

As mentioned at the end of Section 4.1, pricing result (4.8) is almost the same as (3.29), except that they are under

two possibly different measures, Qd in Section 4 and Q in Section 3. (The same situation for (4.4) and (3.24).) Recall
from footnote 16, the measure Q is obtained by the Girsanov transformation with an appropriate kernel λ such

that the resulting dynamics of (S, X) has the drift term given in (3.19), while the measure Qd is corresponding

to the numeraire Bd, which is defined in Appendix B, such that (Bd,Qd) is a numeraire pair (see also Chapter 6
in [17] and Chapter 7 in [19]). Clearly Q is not come from an equivalent martingale measure (EMM) for a given

numeraire, which is actually not needed in the approach in Section 3. Hence, in general, Q is different from Qd,
and the MtM value by (3.29) may not be equal to that by (4.8), particularly in an incomplete market.

However, we may consider another situation in the original portfolio A of n asset repo contracts in Section 3.
If none of the underlying assets is acceptable for collateral as in repo contracts, then to construct the replication
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portfolio Πt, one has to finance the long or short θ
(i)
t positions of the i-th asset with its unsecured funding short

rate rF,d
t , for i ∈ {1, . . . , n}. Instead of considering the repo contracts as in Section 3, we study the sub-portfolio

denoted as A’ of the n underlying assets and their funding positions. This portfolio always has value zero because

θ
(i)
t S

(i)
t amount is funded for the i-th position, i.e.,

vA′

t = 0 ∈ ❘n , ∀t ∈ [0, T] , (5.1)

and the gain process

dgA′

t = dSt + diag
(

rD
t − rF,d

t 1n

)

St dt , ∀t ∈ (0, T] , (5.2)

where 1n = (1, · · · , 1)⊤ ∈ ❘n. Comparing the last equation in (3.19), in this case, we have the drift term of (S, X)
dynamics under Q as follows





diag
(

rF,d
t 1n − rD

t

)

St

(

rF,d
t − rF,f

t

)

Xt



 , (5.3)

which tells us that, for the basic asset (S, X·1f , Bd)21, their Bd-deflated gain processes are Q-martingales. Thus both

Q and Qd are EMMs. Under the complete market assumption, we have that the two measures agree at least on the
σ-information at T22, and therefore, in this case, the MtM value given by (3.29) also agrees on that given by (4.8).

5.2 Funding Value Adjustments

In this subsection, it is further assumed that both domestic and foreign collateral rates are overnight index rates
of the corresponding currencies, unless specified otherwise23. It is worth noting that in the MtM value (3.29) for
partially foreign collateralized derivative, the first term, which is also (3.32), is the pricing result for the corre-
sponding perfectly collateralized derivative as in [2, 3]24. The second term, however, is a value adjustment of the
price of perfectly collateralized derivative to incorporate the impact of funding mismatching due to imperfection
of collateralization, or in the conventional term, FVA, which is defined as follows:

FVA(t) := [Vd,f
t (3.29)− V̄d,d

t (3.32)] = −EQ
t

[

ˆ T

t
e−
´ u

t rC,d
v dv

(

λd
u Vd,f

u − λf
u Xu Cf

u

)

du

]

. (5.4)

Clearly, the term FVA is naturally defined as the difference of the value of partially foreign collateralized deriva-
tive less that of the perfectly collateralized derivative. This is consistent with the concepts of FVA in literature, e.g.,
[10, 11, 12]25. From the viewpoint of the derivative desk, it has to hedge a partially foreign collateralized derivative
with the most liquid instrument in the market, i.e., the corresponding perfectly collateralized derivative, to fulfill

the cashflow liability. Hence, any difference between the value Vd,f
t and the price V̄d,d

t incurs extra funding cost or
benefit for the derivative desk.

The FVA term (5.4) can be further decomposed into the following two major components:

FVA(t) = FVA1(t) + FVA2(t) , (5.5)

where

FVA1(t) := [V̄d,f
t (3.31)− V̄d,d

t (3.32)],

FVA2(t) := [Vd,f
t (3.29)− V̄d,f

t (3.31)].
(5.6)

We see that FVA1 means the difference of the value of the fully foreign collateralized derivative less that of the
perfectly collateralized derivative, while FVA2 represents the difference of the value of the partially foreign col-
lateralized derivative less that of the fully foreign collateralized derivative. In below these two FVA terms are
thoroughly studied.

21Term 1f means one unit of f-currency. Hence X·1f is a tradable asset in the d-currency market.
22See, for example, Chapter 7 in [19] and Chapter 6 in [17].
23This assumption may be dropped easily by adding another FVA term as the difference between the current MtM value of the fully domestic

collateralized derivative with a collateral rate different from the overnight index rate and that of the OIS discounting.
24That is the OIS discounting result. In the current market, it is well accepted that most liquid derivatives can be regarded as perfectly

collateralized with overnight index rate as the collateral rate. In particular this is the case for derivatives traded in clearing houses or with
standard CSA. As a consequence, it is safe to assume that most market quotes are such prices by OIS discounting.

25Or the combination of FVA and LVA discussed in [6, 13].
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First, substituting (3.31) and (3.32) into the equation of FVA1 in (5.6) yields

FVA1(t) = −EQ
t

[

ˆ T

t
e−
´ u

t rC,d
v dv(λd

u − λf
u)V̄

d,f
u du

]

, (5.7)

which is due to the mismatch of funding cost to fulfill collateral requirements in fully collateralized case26. If the

funding spreads of payoff and collateral currencies happens to be zero, i.e., λd = λf , then FVA1 vanishes even if
the payoff and collateral are of different currencies. From hedging point of view, when the derivative desk hedge
a fully foreign collateralized derivative with its corresponding perfectly collateralized trade, it receives collateral
(or posts collateral, respective) in f currency if it is in the money (or out of the money, respectively) for the original
derivative, and posts collateral (or receives collateral, respectively) in d currency for the hedging position, with the

corresponding dividend yield λd
u or λf

u. The desk’s collateral commitment and its different funding cost for d and
f currencies leads to the value adjustment in (5.7), which can be a cost or a benefit depending the difference of the
funding spreads of the two currencies27, even though the collateral of the original derivative is always equivalent
to its MtM at any time.

Based on (3.36), an equivalent form of the MtM value of fully foreign collateralized derivative reads:

V̄d,f
t = EQ

t

[

e−
´ T

t rC,d
u due−

´ T
t (λd

u−λf
u)duVd

T

]

, (5.8)

which implies that the fully foreign collateralized derivative would be valued by discounting its payoff with a

synthetic discount curve with short rate rC,d
u + λd

u − λf
u. This approach leads to the multiple discounting framework

depending on collateral currency which is widely employed in industry, e.g., [4, 5]. In this way, impact of FVA1

can be replaced by choosing an appropriate (synthetic) discounting curve, though extra attention should be paid
on the correlation between derivative payoff and the short rates/spreads in the general cases.

Furthermore, for a very special single currency case28, instead of regarding d and f as currencies, let us assume

that the superscript d stands for a “standard” collateralization such that the collateral rate rC,d
u is the overnight

index rate of the payoff/collateral currency, and that the superscript f for a “non-standard” collateralization such

that its collateral rate rC,f
u is different from the overnight index rate. For the same derivative desk the funding rate

is the same, i.e., rF,d
u = rF,f

u . Therefore, to value this fully domestic collateralized derivative with collateral rate
different from overnight rate, it holds that

V̄d,f
t = EQ

t

[

e−
´ T

t rC,f
u duVd

T

]

, (5.9)

i.e., discounting with the “non-standard” collateral rate, which seems likw the collateral rate adjustment (CRA)
proposed in [14, 15] when collateral rate differs from overnight index rate29. From our analysis above, it would
be more appropriate to make this adjustment on the funding spread rather than simply on the collateral rate.
Therefore, this is a funding spread adjustment, or, conventionally, FVA.

Second, Substituting (3.29) and (3.31) into the equation of FVA2 in (5.6) gives

FVA2(t) = −EQ
t

[

ˆ T

t
e−
´ u

t rC,d
v dvλd

u

(

Vd,f
u − V̄d,f

u

)

du

]

−EQ
t

[

ˆ T

t
e−
´ u

t rC,d
v dvλf

u

(

V̄d,f
u − XuCf

u

)

du

]

=: FVAMtM
2 (t) + FVACollateral

2 (t).

(5.10)

FVA2, as the funding value adjustment due to partial collateralization, can be further decomposed into two parts:

FVAMtM
2 (t) due to mismatch between MtM value of the partially collateralized derivative and that of the cor-

responding fully collateralized trade, as well as FVAcollateral
2 (t) due to mismatch (shortfall) of collateral amount

between them. From hedging point of view, the derivative desk hedges a partially foreign collateralized deriva-
tive with its corresponding fully foreign collateralized trade. Since there the two derivatives have different MtMs

26Notice this is not perfect collateralization because the collateral currency is not the same as the derivative payoff currency.
27If the collateral currency can be chosen from a set of different currencies, the derivative desk would choose the one most in its favour to

reduce its funding cost when it is out of the money. This leads to the embedded cheapest-to-deliver (CTD) option in collateral management.
On the other hand, when it is in the money, it seems to sell such a CTD option to its counterparty. This optionality is not within the scope of
this paper.

28Where both payoff and collateral are in the same currency.
29However, the concrete form of CRA is not provided in [14, 15] so we are unable to make accurate comparison.
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Vd,f
u and V̄d,f

u , respectively, the derivative desk’s accounting profit or loss Vd,f
u − V̄d,f

u of the portfolio consisting of
the original derivative and its hedging position denominated in d currency on its book, but this MtM profit or loss

amount is not realized. Otherwise, the derivative desk would have used this realized profit in cash to earn rF,d
u

return (or have borrowed in rF,d
u to cover the realized loss, respectively) if it is in the money (or out of the money,

respectively) for this portfolio, and would have paid back (or have received, respectively) the accrued interest

at next MtM calculation date30, with the return rate rC,d
u due to the cash position and the calculation frequency

equivalent to the collateral position. However, this proceeds of this unrealized profit or loss cannot be booked,

thus FVAMtM
2 (t) occurs. On the other hand, the derivative desk only receives (or posts, respectively) Cf

u amount

of collateral in f currency, but has to post (or receive, respectively) C̄f
u = V̄d,f

u /Xu amount of collateral in f cur-

rency, with dividend yield λf
u. Then FVAcollateral

2 (t) for this part follows. Again, FVA2(t) could be cost or benefit
depending on the MtM dynamics.

In the special case that the collateral is posted in d currency as well, FVA1 vanishes. In addition, though both

FVAMtM
2 (t) and FVAcollateral

2 (t) exist, the same funding spread in (5.10) leads to the cancellation of the term with

V̄d,d
u , leading to the following effectively FVA amount:

FVA = [Vd,d
t (3.30)− V̄d,d

t (3.32)] = −EQ
t

[

ˆ T

t
e−
´ u

t rC,d
v dvλd

u(V
d,d
u − Cd

u)du

]

, (5.11)

which is consistent with the results in [10, 11, 12, 13]. This identical funding spreads in FVAMtM
2 (t) and FVAcollateral

2 (t)
frequently misleads people simply thinking of the credit exposure being directly used for FVA calculation, like in
(5.11).

In a summury, at any future time u ∈ (t, T), let us consider the whole portfolio of a derivative and its collateral.
We notice that any component of this portfolio causes funding adjustment if it cannot be hedged/funded/replicated
by the portfolio of the corresponding perfectly collateralized hedging position with its collateral. Therefore, a term
funding exposure is coined here for such a component with a single funding spread. As a result, the generic FVA
can be formed as follows:

FVA(t) = −EQ
t

[

ˆ T

t
e−
´ u

t rC,d
v dv

(

λ⊤
u · VF

u

)

du

]

, (5.12)

where VF
u = (VF,1

u , . . . , VF,m
u )⊤ and each V

F,j
u is a funding exposure, for j ∈ {1, . . . , m}, and λu = (λ

(1)
u , . . . , λ

(m)
u )⊤

is the vector of corresponding funding spread. Then in the partially foreign collateralized case, in (5.12)

VF
u =

(

V̄d,f
u , Vd,f

u − V̄d,f
u , V̄d,f

u − XuCf
u

)⊤
, λu =

(

λd
u − λf

u, λd
u, λf

u

)⊤
. (5.13)

Even after simplification by cancelling similar terms in (5.12) with (5.13), it still holds that the funding exposures
and corresponding funding spreads are vectors in below

VF
u =

(

Vd,f
u , −XuCf

u

)⊤
, λu =

(

λd
u, λf

u

)⊤
. (5.14)

Give the above generic form (5.12) of FVA as well as the fact that modelling the funding spread of the derivative
desk is at least as hard as counterparty’s default process, it implies that the complexity of FVA calculation is not less
than that of CVA calculation31. Also notice that in the fully foreign collateralized case, though the credit exposure
is zero, FVA1 still exists while CVA vanishes. So in the special case of domestic collateralization, there is only one
type of funding exposure, which happens to be equivalent to the credit exposure, and the FVA calculation may be
similar to CVA calculation.

6 Conclusion

Derivatives partially collateralized in foreign currencies are studied in this paper and the valuation methodologies
by replication and by expectations are presented. These two approaches are further unified and the corresponding
FVA terms are discussed.

30This is also the next collateral calculation/settlement date.
31Notice that here the credit exposure is simply Vd,f

u − XuCf
u if the counterparties were defaultable. This argument also works for the case of

wrong way risk exists, as in that case the correlation between the desk’s funding spread and the exposure has to be taken into account.
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Extension of our work in this paper to the case of defaultable counterparties is of our particular interest. It
is anticipated that CVA and bilateral FVA will be included, and the double counting between funding benefit
adjustment and DVA will be naturally avoided.
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A A Direct Proof of Theorem 3.2

Proof. To show (3.29), first from (3.24), we have

Vd,f
u = EQ

u

[

e−
´ T

u rF,d
v dv Vd

T +

ˆ T

u
e−
´ ξ

u rF,d
v dv λf

ξ XξCf
ξ dξ

]

, ∀u ∈ [t, T].

With the Law of Total Expectation and Fubini’s Theorem, it holds that

EQ
t

[

ˆ T

t
e−
´ u

t rC,d
v dv λd

uVd,f
u du

]

= EQ
t

[

ˆ T

t
e−
´ u

t rC,d
v dv λd

u EQ
u

[

e−
´ T

u rF,d
v dv Vd

T

]

du

]

+

EQ
t

[

ˆ T

t
e−
´ u

t rC,d
v dv λd

u EQ
u

[

ˆ T

u
e−
´ ξ

u rF,d
v dv λf

ξ XξCd
ξ dξ

]

du

]

= EQ
t

[

ˆ T

t
e−
´ u

t rC,d
v dve−

´ T
u rF,d

v dv λd
uVd

T du

]

+ EQ
t

[

ˆ T

t

ˆ T

u
e−
´ u

t rC,d
v dve−

´ ξ
u rF,d

v dv λd
uλf

ξ XξCf
ξ dξ du

]

= EQ
t

[

e−
´ T

t rF,d
v dv Vd

T

ˆ T

t
e
´ u

t λd
v dvλd

u du

]

+ EQ
t

[

ˆ T

t
e−
´ ξ

t rF,d
v dv λf

ξ XξCf
ξ

(

ˆ ξ

t
e
´ u

t λd
v dvλd

u du

)

dξ

]

= EQ
t

[

e−
´ T

t rF,d
v dv Vd

T

(

e
´ u

t λd
v dv
)∣

∣

∣

u=T

u=t

]

+ EQ
t

[

ˆ T

t
e−
´ ξ

t rF,d
v dvλf

ξ XξCf
ξ

(

e
´ u

t λd
v dv
)∣

∣

∣

u=ξ

u=t
dξ

]

= EQ
t

[(

e−
´ T

t rC,d
v dv − e−

´ T
t rF,d

v dv
)

Vd
T

]

+ EQ
t

[

ˆ T

t

(

e−
´ ξ

t rC,d
v dv − e−

´ ξ
t rF,d

v dv
)

λf
ξ XξCf

ξ dξ

]

.

Replacing notation ξ by u in the second term and substituting the above equality to the right-hand side of (3.29)
yield

EQ
t

[

e−
´ T

t rC,d
v dv Vd

T

]

− EQ
t

[

ˆ T

t
e−
´ u

t rC,d
v dv(λd

uVd,f
u − λf

uXuCf
u)du

]

= EQ
t

[

e−
´ T

t rF,d
v dv Vd

T +

ˆ T

t
e−
´ u

t rF,d
v dvλf

uXuCf
u du

]

= Vd,f
t ,

which completes the proof of (3.29).

B A Proof of Theorem 4.1

Proof. Let Bf
t := e

´ t
0 rF,f

u du for t ∈ [0, T], then Bf
t is the numeraire under the foreign risk neutral measure Qf . Sim-

ilarly, let Bd
t := e

´ t
0 rF,d

u du for t ∈ [0, T], then Bd
t is the numeraire under the domestic risk neutral measure Qd.

Applying Fubini’s Theorem to (4.2) gives

XtE
Qf

t

[

ˆ T

t
e−
´ u

t rF,f
v dvλf

uCf
u du

]

= Xt

ˆ T

t
EQf

t

[

e−
´ u

t rF,f
v dvλf

uCf
u

]

du

= Xt

ˆ T

t
EQf

t

[

Bf
t

Bf
u

λf
uCf

u

]

du. (B.1)
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Changing measure from Qf to Qd, we have

EQf

t

[

Bf
t

Bf
u

λf
uCf

u

]

= EQd

t





Bf
t

Bf
u

λf
uCf

u ·
Bf

u/
(

Bd
u/Xu

)

Bf
t /
(

Bd
t /Xt

)





= EQd

t

[

Bd
t

Bd
u

Xu

Xt
λf

uCf
u

]

=
1

Xt
EQd

t

[

Xue−
´ s

t rF,d
u duλf

uCf
u

]

. (B.2)

Substituting (B.2) into (B.1) gives

XtE
Qf

t

[

ˆ T

t
e−
´ u

t rF,f
v dvλf

uCf
u du

]

=

ˆ T

t
EQf

t

[

Xue−
´ s

t rF,d
u duλf

uCf
u

]

du.

Apply Fubini’s Theorem again, we have

XtE
Qf

t

[

ˆ T

t
e−
´ u

t rF,f
v dvλf

uCf
u du

]

= EQd

t

[

ˆ T

t
Xue−

´ s
t rF,d

u duλf
uCf

u du

]

. (B.3)

Combining (4.1) and (B.3), the time t PV of the collateralized derivative is

Vd,f
t = EQd

t

[

e−
´ T

t rF,d
u duVd

T +

ˆ T

t
e−
´ s

t rF,d
u duλf

uXuCf
u du

]

.

in the d-currency.

C A Proof of Theorem 4.2

Proof. The formula (4.4) is equivalent with

Vd,f
t = e

´ t
0 rF,d

u duEQd

t

[

e−
´ T

0 rF,d
u duVd

T +

ˆ T

t
e−
´ u

0 rF,d
v dvλf

uXuCf
u du

]

= e
´ t

0 rF,d
u duEQd

t

[

e−
´ T

0 rF,d
u duVd

T +

ˆ T

0
e−
´ u

0 rF,d
v dvλf

uXuCf
u du −

ˆ t

0
e−
´ u

0 rF,d
v dvλf

uXuCf
u du

]

= e
´ t

0 rF,d
u du

(

EQd

t

[

e−
´ T

0 rF,d
u duVd

T +

ˆ T

0
e−
´ u

0 rF,d
v dvλf

uXuCf
u du

]

−

ˆ t

0
e−
´ u

0 rF,d
v dvλf

uXuCf
u du

)

, (C.1)

or equivalently,

EQd

t

[

e−
´ T

0 rF,d
u duVd

T +

ˆ T

0
e−
´ u

0 rF,d
v dvλf

uXuCf
u du

]

= e−
´ t

0 rF,d
u duVd,f

t +

ˆ t

0
e−
´ u

0 rF,d
v dvλf

uXuCf
u du. (C.2)

If we introduce

Mt := e−
´ t

0 rF,d
u duVd,f

t +

ˆ t

0
e−
´ u

0 rF,d
v dvλf

uXuCf
u du, (C.3)

and notice Vd,f
T = Vd

T as in (2.2), then substituing (C.3) into (C.2) gives

EQd

t [MT ] = Mt, (C.4)

implying that Mt is a martingale under Qd. Meanwhile, (C.3) gives

dMt = −rF,d
t e−

´ t
0 rF,d

u duVd,f
t dt + e−

´ t
0 rF,d

u du dVd,f
t + e−

´ t
0 rF,d

u duλf
t XtC

f
t dt,

or equivalently,

dVd,f
t =

(

rF,d
t Vd,f

t − λf
t XtC

f
t

)

dt + e
´ t

0 rF,d
u du dMt.
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