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Redundant Systems 

ABSTXACT 

This paper attempts to study the effect of the order of redundancy of a system on 
its instantaneous failure rate, and its life expectancy. Closed form solutions are 
presented for types of systems which are commonly met with in engineering practice. 
Both subsystem redundancy and component redundancy are investigated and the 
latter is shown to he, in general, superior. 

INTRODUCTION 

It is well known that the reliability of engineering systems can be 
enhanced by increasing the level of redundancy used. The term redundancy 
is generally used to connote the replacement of a subsystem (or component) 
that has failed, by another subsystem (or component) which is in working 
order. Systems that perform just as “well,” despite the failure of one or more 
of their subsystems (or components), may in this sense, then, be termed 
redundant. Often, several subsystems in an engineering system may be 
constructed and put into operation in a “parallel” configuration, thereby 
ensuring the continued functioning of the composite assembly in spite of the 
possible failure of one or more (but not all) of these similar redundant units. 
Examples of the use of this philosophy can be found in numerous and diverse 
areas of engineering such as computer technology, nuclear engineering, 
guidance and navigation of aerosystems, structural design, and lifeline en- 
gineering. 

Though several investigators (e.g. [l; 21) have studied the effect of 
redundancies on survival probabilities of parallel configurations, few if any 
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have obtained closed form solutions for the system life expectancies and the 
associated variances. By using an instantaneous failure rate of the form potk, 
k > 0, in this note we explicitly compare the survival functions for various k 
values as well as the closed form results for the life expectancies. Further- 
more, the concept of component redundancy is considered, and it is shown 
that the composite system reliability obtained with component redundancy 
is, in general, higher than that achievable with subsystem redundancy. 

SUBSYSTEM REDUNDANCY 

Consider a “parallel” system configuration having a total of N similar 
subsystems. We shall refer to N- 1 as the order of the redundancy. Let the 
lifetime of each subsystem be represented by a random variable To. We 
define, for each of the subsystems, the survival function s,(t) as [l] 

s,(t)=Pr{T,>t}. (1) 

Thus the probability q,,(t) dt that a subsystem will fail in It, t +dt] is given 
by the relation 

qo(t)= -2. 

Defining by h,(t) th e instantaneous failure rate, we have [2] 

X,(t)cZt~Pr{failureoccursin]t, t+dt]( 

system performs well at time t} 

A Pr{t<T< t+dt} 

Pr{T>t} 

s,(t) dt dt) & 
z-c--. 

s,(t) so(t) 
(3) 

The function h,(t) is nonnegative. 
We note that the probabilities X,(t)dt and qo(t)dt are quite different 

from one another. The latter is the a priori probability that failure occurs in 
] t, t + dt], whereas the former is the conditional probability that failme 
occurs in ] t, t+dt], conditioned upon the subsystem functioning adequately 
up to time t. 
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Noting (3), we then have 

2 +h,(t)s,(t)=0, q@) = 1, 

whose solution is 

so(t)=exp( -(k0(7)d7). 
0 

Thus the survival function of the subsystem can be ascertained if its 
instantaneous failure rate is known. StatisticaIly, A,(t)At may be estimated 
by the ratio of the number of subsystems that fail in ] t, t + At] to those that 
are in adequate condition at time t. 

In this sequel we shall assume A,(t) to have the form 

Xo(t)=/@tk , k>O, (6) 

where ~5”) is a constant. 
The form of the relation (6), in particular, encompasses three types of 

systems which are commonly encountered in engineering practice. They are 
represented by: 

(a) k- 0, representing subsystems with a constant failure rate, such as 
many electronic components and some electromechanical systems; 

(b) 0 < k < 1, representing subsystems whose failure rate increases with 
time, though the rate of increase decreases with increasing time; and 

(c) k > 1, representing subsystems with a progressively increasing failure 
rate, the rate of increase of h,(t) being nondecreasing with increasing time. 

Many mechanical and structural systems fall into categories (b) or (c). The 
superscript k on the CL,, lk) is used to indicate that for each k the dimension of 
pbk) (and therefore its physical interpretation) changes. 

Using (5), then 

shk) =q( -phk)E) k exp( -fck’(t)). 

The statistical moments of the subsystem lifetime, T,, become 

Ek[ TJ = - I Y” &ik)( t) 
0 

(8) 
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The subscripts and superscripts k will be used to correspond to the exponent 
of Eq. (6). 

Now consider IV+ 1 such subsystems connected in a “parallel” configura- 
tion. The survival function, s$)(t), of the composite system corresponding to 
an order of redundancy of N would then become 

s$‘(t)=l-[l-s~Q(t)]“+l, (9) 

and the normalized instantaneous composite system failure rate, ti#(t), 
would become by (3) 

- A %‘b) tN+ 1) sbk’(t) . x$‘(t) 3 - = 

1 

A$‘( t) l-~&~)(t) [l_s~W(t)]-N-l_l 
* (10) 

We note that even if the instantaneous failure rate for each subsystem 
were a constant (k= 0), the instantaneous failure rate for the composite 
system would indeed be a function of time. 

Figure l(a)-(d) h s ows the survival functions ~$)(t(~‘) for k-0, l/2, 1, 
and 2. The time scale (tck) k t/Ek[To]) is normalized with respect to the 
expected life Ek [ To J of the system with zero order redundancy. This normali- 
zation, besides being physically meaningful, yields results which are indepen- 
dent of the choice of the parameter value pbk’, for using the expression for 
E, [ If’,‘,] (which is derived a little later), the argument, flk)( t), of the exponen- 
tial as defined by relation (7), becomes 

We observe that the survival functions ~$)(t(~)) differ quite substantially 
from s$,k)(t(k)) when t ck) < 1 This indicates that for periods of time less than . 

the expected life of each of the individual subsystems, the increase in the 
redundancy diminshes the a priti failure probability of the composite 
system considerably. Furthermore, comparing the curves for different k 
values, we find that the effect of redundancy for tck) < 1 is more beneficial 
for larger k values. Clearly for large enough tck)( i(k) >>> 1). the survival 
function will approach that of a single subsystem, each of the subsystems in 
the composite having far exceeded their indivdual life expectancies at such 
large times. The more rapidly the instantaneous failme rate of each subsys- 
tem increases with time, the sooner (in time) the survival function of the 
composite will reach that of the single subsystem. 
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Figure 2(a)-(d) sh ows the normaIized instantaneous failure rates, X$( ilk)), 
for k- 0, i, 1, ed 2. For values of i(k) < 1, there is a considerable drop in 
the value of A$)( tCk)). For N> 1, E& (10) yields 

hI[ji(~~(t)]-ln[N+l]+(N+l)ln[l-s~k)(t)]. (11) 

In fact, if the order of the redundancy is increased from N to M, the 
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logarithm of the ratio (for large N and M), becomes 

h[ g+[ g+] +( g+)h[ l-g)(t)]. (12) 

Clearly the benefit of increasing the redundancy decreases as N (and 
therefore M) increases. In the range of principal interest, namely i(k) < 1, the 
expressions (11) and (12) are reasonably accurate for TQ-5. For i(k) > 1, we 
have stk)( it’))<< 1, so that the second term in (11) yields a smalI contribution 
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to reducing the instantaneous system failme rate. In the range P < 1, the 
higher k values yield, in general, lower instantaneous faihue rates. However, 
the rapid increase of the subsystem instantaneous failure rate with time, 
associated with the higher k values, causes the @(&‘)) to rapidly approach 
$t)( 6’)) for it’;) >>l. 

The expected life of the composite system, E, [TN], having an order of 
redundancy of N, can be expressed as 

E,[T,] = - 
/ 

%iq.y(t) 
0 

Using (6) and (7), this yields 

Ek[TN]=(N+l)E,[TO] l+~~l(~)(-l)-(m+l)-(k+a’~‘k+l’], 
I 

where E,[T,] is the expected life of each subsystem and is given by 

Ek[TQ]=[ $l’“““r(s)* 

(13) 

(14 

(15) 

Figure 3 shows the variation of the normalized life expectancy of the 
composite system, defined as 

Ek[ TN] &.[ TN] ’ -, 
Ek[ TQl (16) 

with changing orders of redundancy, N. The normalization once again makes 
the results invariant with respect to pbk). 

We observe that whereas the instantaneous failme rates ti$(itk)) are 
dramatically reduced, for t -ck) < 1, by increasing the order of the redundancy, 
the expected life of the redundant system is less substantially altered. By way 
of example, for k= 1, going from zero redundancy to that of order 5, while 
reducing the instantaneous failure rate (t(r) < 1) by at least a factor of 7, 
changes the life expectancy by only a factor of 1.2. As the order of 
redundancy increases, this difference becomes more and more pronounced. 
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The second moment of the system life, TN, can be expressed using (8), (9), 

and (3) as 

E,[T$]=(N+l)E,[T,2] l+~~l(~)(-l)m(_+l)-‘~+3”‘~+1’}, (17) 
1 

where E, [Tt] is the second moment of the life To of each subsystem and is 
defined by the relation 

The variance of the system’s life expectancy can be obtained as 

(18) 

Vark[ TN] =Ek[ Ti] - tEk[ TNI >“4 (19) 
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Figure 4 shows the normalized standard deviation 

for different orders of redundancy. As N increases the standard deviation 
uk[ TN] decreases. The larger values of & [ TN] corresponding to the lower k 
values are thus accompanied by larger standard deviations. 

COMPONENT REDUNDANCY 

The concept of subsystem redundancy requires the replacement of one 
subsystem by another so as to ensure the continued functioning of the 
composite assembly. Let us now assume that each of the N similar subsys- 
tems is composed of k components c,, i= 1,2,. . . , 1. The subsystems being 
similar, the component c,, i E (1, Z), of one subsystem is (statistically) similar 
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to the corresponding component in any of the other systems. For simplicity 
we assume that the components c, are in a “series” configuration so that each 
subsystem, by itself, has zero redundancy. 

Instead of subsystem replacement, we now permit component replace- 
ment. Thus when the failure of any component c, belonging to one sribsys- 
tern occurs, that component is replaced by the corresponding component 
from another subsystem. Thus we have an ongoing “cannibalization” process 
where different subsystems are exploited to keep one of them in working 
condition. 

Let q(t) be the survival function of the component c,. If N+ 1 similar 
subsystems are used, then the survival function for the composite system 
assembly with component redundancy becomes 

s;(t)= ,il {I- [l-r,(t)y+‘}. (21) 

On the other hand, with subsystem redundancy, the survival function .sN(t) 
becomes 

s,(t)=l-[l-Tl(t)~~(t)...r~(t)lN+’ (22) 

Appendix 1 shows that 

Consider the case where each subsystem is composed of 1 components in a 
“series” configuration, each of which has a constant instantaneous failure 
rate pa/l. Thus, 

q=exp -&t, [ I 1 

and the instantaneous failure rate of each subsystem is pa. 
Figure 5 shows the variation of the survival probability, for Z= 2, with 

various orders of subsystem redundancy. We observe that component re- 
placement decreases the a priori failure probability substantially. This effect 
is more prominent for large values of N and ilo) < 1. 

Figure 6 illustrates the case of a composite system having an order of 
redundancy of unity. The effect on s:(t) of the number of components, I, in 
each subsystem is illustrated. The degenerate case Z= 1 corresponds to 
subsystem redundancy and is shown for comparison. A similar result is 
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shown in Figure 7 for a system whose subsystem redundancy is two (N-2). 
As observed, component redundancy greatly increases the survival probabil- 
ity of the composite system even for 6’) -2. 

CONCLUSIONS AND DISCUSSION 

Tbis paper gives closed form solutions for the instantaneous failure rate, 
the life expectancy, and the standard deviation of the life of a composite 
system formed by having several similar redundant subsystems arranged in a 
“parallel” configuration. The instantaneous failure rate of each subsystem is 
chosen to be of a form commonly met with in actual engineering practice. 

The results show that while such redundancy can greatly reduce the 
system’s instantaneous failure rate, only modest increases in the expected life 
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of the system can be anticipated over periods of time less than the life 
expectancy of each of the individual subsystems. 

Lastly, the concept of component redundancy has been broached, and it 
has been shown to be in general more effective than subsystem redundancy 
in enhancing the reliability of composite redundant systems. 

APPENDIX I 

To show that sz( t) > sN( t), we first prove a useful lemma. 

LEMMA. Given s and t such that 0 < s, t < 1, for any integer n > 0, 

(s+t-st)“>s”+t”-(St)” b-1) 

PROOF. If s and/or t equals zero, the result is obvious. We shall then 
prove the result for 0 <s, t < 1. The result is correct for n= 1. We shah 
assume that it is valid for n = N and thence prove it correct for n = N+ 1. 
Thus, 

4 sN+tN-(st)N](s+t-st) 

+st[ tN-’ -tN] +st[ sN--l -sN] 

- (st)N[ t+s]. o-4 

Then to show (L-1) to be valid for n =N+ 1 it wilI suffice if we can show 
that 

st[ tN-’ - tN] +st[ sN-l -SN] >(st)N[ t+s-22st]. b-9 

Dividing both sides of the inequality by (st)N, (L-3) becomes 
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and 

-+Jl-t]+-&[l-s]>2-s-t, (L-5) 

2-t-s> t+s-2st, b-6) 

because (G6) implies 

1+st>s+t, (G7) 

which is obvious, since 1 -s > t(1 - s). Thus (LA) is valid and the proof is 
complete. 

We note in passing from (L5) that the inequality (Ll) becomes stronger 
with increasing values of N. 

THEOREM. Given q(t), i=1,2 ,..., 1 such that O<r,(t) < 1, for all t, we 
have 

fi [l-(l-t;(t))“]>l-[l-r~(t)r&)~~*r~(t)]~. (A-1) 
i=l 

fm any integer n > 0. 

PROOF. The proof is done by induction. The result is obvious for all n, 
with z= 1. 

Assume the result is true for n= N and Z= L - 1, we shall prove that it is 
true for n=N and l=L: 

h {l-[l-r,(t)]Nj=( LI~l{l-[l-~~t~l”)]{~-~~-~~~~~lU) 
i-1 i-l 

x {l-[l--rJt)lN}. 
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Denoting l-q(t)rt(t)* - * rL_l(t) by s and 1-rL(t) by t, we then have 

i {1-[1-~(t)]“}>[l-S~][l-tq 
i-l 

where O<s, t< 1. 

Noting that 

we need now only to show that 

[l-SN][l-tq >1-(s+t-st)? (A-2) 

Simplifying (A-2) yields 

(s+t-st)N>sN+tN-(st)N, (A-4 

which is true by the lemma. 
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