
A Novel Algorithm for Incompressible Flow Using Only a Coarse Grid Projection

Michael Lentine∗
Stanford University

Industrial Light + Magic

Wen Zheng
Stanford University

Ronald Fedkiw
Stanford University

Industrial Light + Magic

Figure 1: High resolution smoke and water. (Left) Smoke flowing above a sphere on a 512× 1024× 512 grid. (Middle) Water pouring into
a box on a 512× 512× 512 grid. (Right) Smoke flowing around a sphere on a 512× 1024× 512 grid.

Abstract

Large scale fluid simulation can be difficult using existing tech-
niques due to the high computational cost of using large grids. We
present a novel technique for simulating detailed fluids quickly. Our
technique coarsens the Eulerian fluid grid during the pressure solve,
allowing for a fast implicit update but still maintaining the resolu-
tion obtained with a large grid. This allows our simulations to run at
a fraction of the cost of existing techniques while still providing the
fine scale structure and details obtained with a full projection. Our
algorithm scales well to very large grids and large numbers of pro-
cessors, allowing for high fidelity simulations that would otherwise
be intractable.

CR Categories: I.3.5 [Computer Graphics]: Computational Ge-
ometry and Object Modeling—Physically Based Modeling;

Keywords: simulation, incompressible flow, smoke, water

1 Introduction

Physical simulation of fluids is one of the most interesting and chal-
lenging problems because of the amount of small scale details that
realistic fluids exhibit. Although many authors such as [Foster and
Metaxas 1997; Stam 1999; Fedkiw et al. 2001] have used grid-
based techniques to produce visually compelling results, the size of
the grids that these techniques can use is limited by the amount of
computational power available.

As a consequence many authors have developed techniques that add
details to these simulations with noise. For example, Kolmolgorov

∗e-mail: mlentine,zhw,fedkiw@cs.stanford.edu

noise (see [Stam and Fiume 1993; Lamorlette and Foster 2002; Ras-
mussen et al. 2003]) and curl noise (see [Bridson et al. 2007]) can be
used to enhance the visual fidelity of fluid simulations by coupling
the noise to the incompressible Navier-Stokes equations producing
a more detailed flow. Alternatively, [Kim et al. 2008] and [Narain
et al. 2008] determine where to add noise using information from
the existing simulation and then add it as a postprocess which al-
lows them to add noise where it is best suited. Other techniques
such as [Schechter and Bridson 2008] both determine where to add
noise and couple the noise to the Navier-Stokes equations. All of
these techniques are successful at adding details but are nonphys-
ical and can produce significantly less realistic results than simply
simulating with a higher resolution grid.

Another approach is to improve the baseline simulation on the exist-
ing grid. This can be done by using higher order methods in space,
such as BFECC, QUICK, and MacCormack methods (see [Dupont
and Liu 2003; Kim et al. 2005; Selle et al. 2008; Molemaker et al.
2008]), or in time, such as Runge Kutta. One could also work
to maintain certain invariants such as energy (see [Mullen et al.
2009]). Although these methods increase the accuracy and fidelity
of the resulting simulation, they are more expensive than traditional
fluid simulation and are still limited by the Nyquist frequency of the
grid. To increase the grid resolution while keeping the increase in
cost to a minimum, adaptive grid techniques were introduced such
as AMR [Berger and Oliger 1984] and octrees [Losasso et al. 2004].
These techniques are effective at reducing the computational cost
in cells where there is not much detailed motion while maintaining
details where needed. However, the increased complexity of using
these complicated structures both increases computational cost and
hinders the ability to design robust numerical methods.

In contrast to grid-based approaches, particle-based methods (see
e.g. [Reeves 1983; Desbrun and Cani 1996; Müller et al. 2003])
are not limited by the resolution of the grid. However, these ap-
proaches do not store the connectivity of the surface and require
additional computational costs to keep track of the surface and to
re-mesh. Furthermore, these methods increase in cost as they ap-
proach the incompressible limit, and thus many authors use weakly
compressible equation-of-state formulations. There has also been
work on combining particle and grid-based approaches. [Gao et al.
2009] uses a combination of grid and particle-based approaches to
produce realistic simulations at variable speeds. [Selle et al. 2005]
introduced a particle-based method to add vorticity to grid-based
simulations using particles that are able to accurately track the vor-



ticity of the simulation and [Pfaff et al. 2009] extended it to work
well with objects. Although these techniques do add details at little
cost, they are still limited by the base resolution of the simulation.

In order to handle very high resolution grids, [Wicke et al. 2009] in-
troduces a reduced order model that can handle large grids at a small
cost. However, the use of basis functions lacks the physical realism
and details that are achieved through traditional grid-based tech-
niques. [Rasmussen et al. 2003; Horvath and Geiger 2009] intro-
duce methods that can run large scale two-dimensional algorithms
and then can extend the results to three dimensions. Although these
do produce visually compelling results in some instances, the two-
dimensional simulations are not a very good approximation of the
three-dimensional behavior for the more general case.

Recently, there has been a large interest in methods for creat-
ing a higher resolution result from a lower resolution simulation.
[Nielsen et al. 2009] introduced a method for increasing the res-
olution of a simulation to make it more directable, but this also
increases the cost. In liquids, authors have worked to track the sur-
face of the liquid on a higher resolution grid than the underlying
fluid simulation (see e.g. [Kim et al. 2009]). [Yoon et al. 2009]
uses the vortex particle method in order to increase the resolution
of a simulation without the cost of running a simulation on a higher
resolution grid. They demonstrated that the vortex particle method
of [Selle et al. 2005] inherently contains additional computational
detail which is lost when mapping it onto the underlying grid, and
preserve more of it by mapping it on to the higher resolution grid.

In contrast to these methods which rely on a low resolution core
simulation, we propose a method that runs on a high resolution
grid but creates a divergence-free velocity field using a coarser grid
to speed up the calculations. This allows us to run simulations
using higher resolutions while significantly reducing the compu-
tational cost, and possibly more importantly, run simulations that
scale more linearly on large computational frameworks.

2 Performance Analysis

Simulation performance remains a large obstruction to using very
large grids. To alleviate this issue we must develop techniques that
are not only more efficient but can take advantage of the compu-
tational power available which can be on one or across many ma-
chines. Our method improves both the performance on one core
and the scalability across many cores.

2.1 Scaling

Traditional grid-based algorithms have a cost

C = Cl + Cp, (1)

where Cp is the cost of the projection and Cl is the cost of the
remainder of the algorithm. When we increase the resolution of the
grid in three dimensions by a factor of k this becomes roughly

Ck ≈ k4Cl + k4Cp. (2)

This is because as we double the size of the grid we have eight times
as many cells and each cell is half as wide, requiring twice as many
time steps (when assuming a CFL condition). Note that k4Cp is
only an approximation of the real cost since the matrix inversion
does not generally scale linearly with the size of the matrix. One
could use multi-grid methods, limit the number of conjugate gradi-
ent iterations, etc. to make this scale more linearly, but Cp will still
scale no better than k4.

Figure 2: Smoke flowing around a moving sphere with on a 512×
1024 × 512 grid. (Left) uses a CFL number of 0.9 and takes time
steps half as large as those generally taken on a 256 × 512 × 256
grid. (Right) uses a CFL number of 2.2 making the time steps
around 2.5 times as large.

Our goal is to reduce the cost of this system without losing the fine
scale details of a higher resolution simulation. To achieve this, we
break up the projection into a single projection on a coarser grid,
which takes time Ccp, and a number of smaller projections that run
fully decoupled on individual coarse grid cells, costing Cfp. This
makes the cost for our algorithm

C = Cl + Ccp + Cfp. (3)

If we refine our simulation grid, but not our coarse grid, Ccp scales
only with the number of time steps, and the entire algorithm scales
roughly as

Ck ≈ k4Cl + kCcp + k4Cfp. (4)

Even if we assume that Ccp + Cfp > Cp, for some k, kCcp +
k4Cfp < k4Cp. However, we found that Ccp + Cfp > Cp only
for very small resolutions (less than 16 × 16 × 16) meaning that
for reasonably sized examples or large examples our method runs
significantly faster than traditional grid-based methods. We note
that in our experience, about 90% of the time spent in a one-phase
smoke simulation is spent during the projection meaning that Cp

easily dominates Cl. From a complexity point of view this makes
sense since the advection in Cl requires touching every grid point
and its neighbors approximately once whereas a conjugate gradient
algorithm would require touching every grid point and its neighbors
once for every iteration of the conjugate gradient solve.

In spite of the analysis above, in general it seems that one of the k’s
can be removed from (4) instead getting Ck ≈ k3Cl+Ccp+k3Cfp

by keeping the same timestep on the finer grid that was used on the
coarser grid. Semi-Lagrangian advection (see [Stam 1999]) makes
this possible. Although we do not expect this to work for an indefi-
nite number of refinements, for one or two, we have achieved good
results without halving the time step (see for example Figure 2).

2.2 Multi-core and Multi-processor Machines

As chip technology continues to advance, the use of multi-core
and multi-processor machines and GPUs becomes more and more
important, and algorithms such as [Bolz et al. 2003] that can
take advantage of this with little cost are able to run much more
quickly. Simulating one-phase smoke typically consists of two pri-
mary steps, the explicit advection step and the implicit projection
step. Looking at (1), Cl is the advection step and Cp is the pro-
jection step. The advection step easily scales to multiple cores and
multiple processors as one can simply break up the grid into several
distinct parts and run advection on each part individually. The only
issue then becomes how to deal with the boundaries. If the memory
is shared, one can devise various strategies such as keeping sep-
arate copies of the information to alleviate issues with writing to
data that needs to be read. There are also other strategies such
as red/black domain decomposition schemes, locking, etc. Using



Figure 3: An example with smoke flowing around a moving sphere. The Large figure is a 512× 1024× 512 simulation with a 64× 128× 64
coarse grid. The smaller figures are comparisons of a simulation using different grid resolutions. The resolutions are starting from the left to
right, top to bottom: a 512× 1024× 512 simulation with a 64× 128× 64 coarse grid, a 256× 512× 256 simulation with a 64× 128× 64
coarse grid, a 128× 256× 128 simulation with a 64× 128× 64 coarse grid, a 64× 128× 64 base simulation, a 64× 128× 64 simulation
with a 32× 64× 32 coarse grid, and a 64× 128× 64 simulation with a 16× 32× 16 coarse grid with Kolmolgorov noise.

these strategies, one can usually expect to diminish the computa-
tional overhead of the overlapping boundaries. However, for large
problems, where many computational nodes are desired, one would
need a huge many core shared memory machine with a very large
amount of memory – which is quite expensive and can lead to issues
with cooling and energy. If algorithms that run on large computers
become less tightly coupled, they require less synchronization and
thus less shared memory, allowing cluster cores to be physically
further apart (even on separate machines).

Thus, a more typical scenario is to switch to a non-shared memory
model where memory might be shared by clusters of cores but is not
shared between different clusters. Instead, each cluster has its own
RAM. Although much more practical, this large non-shared mem-
ory infrastructure leads to a significant computational overhead as
it requires data communication. That same overhead is also present
when trying to utilize graphics cards. For the advection step Cl,
boundary data only needs to be copied between clusters of cores
once for each time step. Note that to do this a CFL condition is as-
sumed to bound the amount of cells that need to be copied. Projec-
tion, on the other hand, requires at least one copy for each iteration
of the solver. For a typical conjugate gradient solver this means
that we have to copy or exchange data on the boundaries before
every iteration. If we were to use a multi-grid method instead, we
would still need many communications for each step in a V-cycle
and several V-cycles are typically required for convergence.

Practical experience has shown that the computational bottleneck
of exchanging boundary information leads to the projection scal-
ing relativity poorly and dominating the cost of the simulation even

more so than on a single core. Our algorithm on the other hand
uses a far less expensive global solve, Ccp, on a coarse grid, which
increases its computational demands much slower than usual as the
simulation grid is refined (its coefficient is k, not k4, in (4)). An
extremely important aspect of this algorithm is that the computa-
tional cost of increasing the resolution of the grid is mostly con-
tained in Cl and Cfp as can be seen in (4), and both Cl and Cfp

scale extremely well with the number of processors (almost per-
fectly linearly). The reason for this is that they are comprised of
a large number of independent tasks. During the computations of
Cfp, no communication of boundary information is required once
the boundary conditions are initially set. The result is that on a large
number of processors our algorithm is dominated by Ccp, which is
significantly less expensive than Cp.

3 Making a Divergence-Free Flow

In order to use a coarser projection step we must determine how to
make a coarser grid from our simulation grid, solve on coarser grid,
and then map the results to our simulation grid in a way that main-
tains the divergence-free property. Our algorithm for one-phase
smoke proceeds as in [Fedkiw et al. 2001], except instead of solving
the Poisson equation on the fine grid we do the following:

1. Map the velocity field to a coarse uniform grid
2. Make the resulting field divergence free on that coarse grid
3. Map these velocities back to our fine simulation grid
4. Make the resulting field divergence free on the fine grid



3.1 Navier-Stokes Equations

On the fine simulation grid, we solve the inviscid, incompressible
Navier-Stokes equations for the conservation of mass and momen-
tum, given by

�ut + �u · ∇�u = −1
ρ
∇p + �f (5)

∇ · �u = 0, (6)

where �u is the velocity field of the fluid, ρ is the density of the fluid,
�f are any external forces (such as gravity), and p is the fluid pres-
sure. We solve these equations by first calculating an intermediate
velocity field �u� using

�u� − �un

∆t
+ �un · ∇�un = �f (7)

and subsequently adding in the pressure forces via

�un+1 − �u�

∆t
= −1

ρ
∇p, (8)

where the pressure is calculated by solving a Poisson equation of
the form

∇ · 1
ρ
∇p̂ = ∇ · �u� (9)

and p̂ = p∆t.

(7) is solved on the fine simulation grid and represents Cl. The
resulting velocities �u� are then mapped to coarse grid (step 1). (8)
and (9) representing Ccp are then solved on the coarse grid (step
2). After determining �un+1 on the coarse grid, we then determine
�un+1 on the fine grid, as represented by Cfp (steps 3-4).

3.2 Mapping to the Coarse Grid

Conceptually, our scheme was designed by taking a fine simula-
tion grid and performing binary coarsening up to some level as is
done with octrees. This results in both a fine and coarse grid that
we could use in our algorithm. However, our framework is actu-
ally much more flexible and resembles that proposed in [Losasso
et al. 2006]. They started with a base level grid and place an oc-
tree in each cell so that the resolution could be increased locally.
This was done to lower the computational cost of accessing octree
nodes by removing the top of the tree which replaces some number
of levels with uniform grid access. Their octrees could be any size
including no refinement at all, see figures 4(a) and 4(b). The deep-
est levels of their octrees would represent the simulation grid in our
framework whose degrees of freedom we would like to upgrade and
their highest level represents the uniform coarse grid in which we
will carry out the projection Ccp. However, our method for Cfp is
general enough to not only support different levels of octree refine-
ment as shown in figures 4(a) and 4(b) but to also support uniform
grids inserted into each coarse grid cell as shown in Figure 4(c) or
even multiple levels of uniform grids as shown in Figure 4(d). This
flexibility comes from our method for solving each coarse cell indi-
vidually. However, we note that for most of our examples we chose
to use uniform grids within each coarse cell as in Figure 4(c).

From the degree of freedom standpoint, every face on the finest
resolution of all grids represents one degree of freedom for velocity
whereas each face of the base coarse grid represents a degree of
freedom for a much coarser set of velocities. We map the fine grid
velocities to the coarser grid by using an area-weighted average of
all the fine grid velocities which is given by,

�u�
c =

1
n

X

f∈faces

Af�u�
f (10)

(a) (b)

(c) (d)

Figure 4: A refined grid with four coarse cells. (a) A coarse cell
with no refinement. (b) A coarse cell with an octree inside (c) A
coarse cell with a uniform grid inside. (d) A coarse cell with multi-
ple levels of uniform grids inside.

where faces is the set of fine scale faces that overlap with the
coarse face c, Af is the area of the fine face, and n is the num-
ber of elements in faces. One could liken this to methods that map
particles to a background grid such as the PIC/FLIP method pro-
posed in [Zhu and Bridson 2005], the vortex particles proposed
in [Selle et al. 2005], or the SPH method proposed in [Losasso
et al. 2008]. All these authors had proposed methods for mapping
from the velocity degrees of freedom defined on particles to a back-
ground coarse grid, performing computation on the coarse grid, and
then mapping information back. Contrary to these techniques in
which the typical particle to grid mapping aims to have every par-
ticle influence the coarse grid, we do not map velocity degrees of
freedom that are not incident on the coarse faces, meaning that they
have no influence on the coarse grid. We admit that it is desirable to
map more degrees of freedom; however, it turns out that our map-
ping allows for a more efficient handling of boundary conditions
and is one of the key ideas that allows Cfp to scale linearly with
the number of processors.

3.3 Coarse Grid Projection

Although we can use the standard Navier-Stokes equations for the
coarse projection in the absence of objects, we must modify these
equations when dealing with objects or octrees. This is because our
objects are rasterized on the fine simulation grid, and a coarse grid
face can thus contain a fraction of an object. Following [Losasso
et al. 2004], we used the volume-weighted Poisson equation given
by

Vcell∇ ·
„

�u� − 1
ρ
∇p̂

«
= 0. (11)

We can then write

Vcell∇ · �u� = Aface

X

f∈faces

`
�u�

f · �nf

´
βf + (�us · �nf ) (1− βf )

(12)
and

Vcell∇ ·
„

1
ρ
∇p̂

«
= Aface

X

f∈faces

 „
1
ρ
∇p̂

«

f

· �nf

!
βf (13)

where �us is the velocity of the solid and βf is the fraction of the
face that is not covered by a solid. Using (11) with definitions (12)
and (13) instead of (9) on the coarse grid allows for high fidelity
modeling of stationary and moving solids as shown in figures 3 and
5. Note that in (12) and (13) we have factored Aface out in front
of the sum as opposed to [Losasso et al. 2004]. This is because on
coarse grid all of our faces have the same size. As long as this is
true, one can omit Aface from the equations and still retain sym-
metry. Otherwise it is more appropriate to include Aface inside the
summation.



Figure 5: An example with smoke flowing around a static sphere. The large figure is a 512× 1024× 512 simulation with a 64× 128× 64
coarse grid. The smaller figures are comparisons of a simulation using different grid resolutions. The resolutions are starting from the left to
right, top to bottom: a 512× 1024× 512 simulation with a 64× 128× 64 coarse grid, a 256× 512× 256 simulation with a 64× 128× 64
coarse grid, a 128× 256× 128 simulation with a 64× 128× 64 coarse grid, a 64× 128× 64 base simulation, a 64× 128× 64 simulation
with a 32× 64× 32 coarse grid, and a 64× 128× 64 simulation with a 16× 32× 16 coarse grid with Kolmolgorov noise.

3.4 Mapping to the Fine Grid

After solving for a divergence-free field on the coarse grid, we
then need to map results of (8) and (9) back to the fine simulation
grid. As mentioned earlier, many particle methods do this; how-
ever, whereas particle-based methods require every particle degree
of freedom to receive information from the coarse grid, we instead
only map to the fine grid faces that are incident upon the coarse grid
faces which we once again stress is a key to our algorithm. As is
widely done in PIC/FLIP type methods, one can map either veloci-
ties or changes in velocities back to the fine degrees of freedom (see
e.g. [Zhu and Bridson 2005]). In other words, our new velocities for
a given fine simulation grid face are:

�un+1
f = α�un+1

c + (1− α)(�u�
f + �un+1

c − �u�
c) (14)

where α is a constant between 0 and 1, �uc are the velocities on
our coarsened uniform grid and �uf are the velocities on the fine
simulation grid. Note that in the case with α equal to 1, every fine
grid face is set to have the same velocity as the coarse grid face
containing it. In this case, the total flux of material into or out of
any coarse grid cell is defined by the local fluxes of the fine grid
and is still divergence free, although using α equal to 1 severely
dampens the flow field. When α equals 0 the fine grid velocities
�u�

f simply acquire a change in velocity equal to the change that
the coarse grid experienced. Because we created the coarse grid
velocity �u�

c with an area-weighted average of the �u�
f incident upon

the face, adding this change to every fine grid cell incident on the
face creates a net flux of 0 through the cell and thus a divergence-
free flow field as defined by the fine grid faces. This is much less

dissipative because it uses a constant velocity difference to update
the fine grid cells as opposed to a constant velocity. Note that when
α is not 1 or 0, since the divergence operator is linear, one still
obtains a divergence-free field on each coarse cell as defined by the
fine grid velocities. Moreover, one can blend a degree of dissipation
into the numerical method as is typical of a PIC/FLIP scheme. In
our examples, we found that lower values for an α create more
detailed and dynamic results and thus use a value of 0. Of course if
one desires the flow to be more damped a higher value of α could
easily be substituted. However, in our examples, we found that
additional damping was not needed. After the mapping, we must
determine the fine grid velocities interior to each coarse grid cell to
make a divergence-free velocity field.

3.5 Fine Grid Local Projections

The method we used for mapping to the coarse grid, carrying out
the coarse grid projection, and mapping back both gives continuity
across each coarse grid cell as defined by the fine grid velocity de-
grees of freedom as well as a divergence-free coarse velocity field.
In order to create a divergence-free field on the fine grid, we first
consider each coarse grid cell to be its own unique computational
domain. �u� is given for every interior degree of freedom as was
computed previously by (7). We then solve (8) and (9) for those in-
terior degrees of freedom with fixed velocity boundary conditions
for every fine grid velocity incident on the boundaries of this coarse
grid cell.

If the coarse grid cell is not refined as in Figure 4(a), nothing needs



(a) (b) (c) (d) (e)

Figure 6: A 2D smoke simulation run with a 128 × 128 base grid. (a) is a simulation on a 128 × 128 fine grid and a 64 × 64 coarse grid
using interpolation. (b) is our method using a 128 × 128 grid and a 64 × 64 grid for projection. (c) is a base simulation on a 128 × 128
grid. (d) is a simulation on a 256× 256 fine grid and a 128× 128 coarse grid with interpolation. (e) is our method using a 256× 256 grid
with a 128× 128 grid for projection.

to be done. If the coarse grid cell contains a uniform grid as in
Figure 4(c), one simply solves (8) and (9) on that uniform grid. If
the coarse grid cell contains an octree as in Figure 4(b), one can
simply use the octree method of [Losasso et al. 2004] in order to
find a divergence-free set of velocities for the interior degrees of
freedom. We also propose a new method that can be used based
on hierarchical subdivision. Consider Figure 4(b), looking only at
the first level of octree refinement. In this case, four new degrees
of freedom are added, two vertical velocities and two horizontal
velocities. For this example, (8) has four unknowns at the center of
each of the four computational cells. However, because there are
Neumann boundary conditions, the system has a rank 1 degeneracy
and one unknown pressure can be removed. Thus we can set up a
3× 3 system of equations and solve with a fast direct method. For
faces between cells that are not refined any further, that represents
the final velocity degree of freedom. This is true for the bottom and
left velocities in Figure 4(b). For cells that are refined further, e.g.
the top and right velocities in that figure, one can use (14) to map
either the velocities or change in velocity to those faces. One would
then consider each subcell such as the upper right hand corner of
Figure 4(b) and repeat the process by subdividing once and solving
the 3× 3 system.

In two spatial dimensions, these 3 × 3 matrices are very quick to
invert and this leads to a very quick hierarchical solver that can be
efficiently implemented for example on a GPU. In three dimensions
there are eight pressures and seven degrees of freedom, leading to
a 7 × 7 matrix which can also be solved quickly. One might also
imagine using the hierarchical subdivision only to do the first level
and using the octree solver to solve the upper right hand corner
of Figure 4(b). Similarly, consider Figure 4(d), one can use the
first level of the hierarchical approach to get the first four veloci-
ties and then apply a uniform grid solver on the upper right hand
corner. Note that when solving these small matrices, one can use
a direct method, such as Cholesky factorization, since these matri-
ces are symmetric positive definite after the extra degree of free-
dom is eliminated. Because these systems are fairly quick to solve
and because there are many independent systems to solve, one can
imagine using threads to solve these systems simultaneously. This
problem also lends itself well to specialized architectures such as
the GPU that can very quickly execute many low cost processes.
We note that although we implemented and tested all of the above
methods for the fine local projections, for larger subgrids such as
8 × 8 × 8 we primarily used one level of refinement with PCG as
we found that this was fastest.

4 Discussion

In our examples section, we choose various examples of both smoke
and water and ran them using a standard method on a reasonable
base grid. We then analyzed two different strategies for using our
method. One was to carry out grid refinements and achieve scal-
ing as exemplified by (4) where the base grid resolution was used
for our projection in all finer grid simulations. This was done to
illustrate that very high resolution simulations can be run using our
method without suffering the curse of dimensionality on Ccp. As
was proposed in [Fedkiw et al. 2001], the vorticity confinement
used in the base simulation was reduced linearly proportional to the
size of the grid for the finer grid simulations. Even with less vor-
ticity confinement we achieved significantly more computational
detail. We also consider whether our base simulation could be ac-
celerated using an even coarser grid for the projection step. As these
grids became coarser and coarser, for example sixteen grid cells in a
dimension, we did notice artifacts resulting from using our method.
However, we stress that a fluid simulation on a very low resolution
grid would be enormously simplified as shown in Figure 7. To alle-
viate these artifacts on the very coarse grid, we verified that feasible
but not spectacular results could be obtained by using a Kolmolgo-
rov spectrum as done in [Rasmussen et al. 2003] in combination
with a 16 × 32 × 16 grid but stress that it was only used in this
one simulation to demonstrate that even at resolutions we would
not recommend, one could obtain a plausible result.

Figure 6 illustrates that not all algorithms that scale according to
(4) produce good results. Figure 6(c) is a baseline simulation on a
128 × 128 grid to give a sense one would expect to obtain with a
standard method. Figure 6(b) shows our method on a 128 × 128

Figure 7: A comparison between (Left) a simulation using our
method with a fine resolution of 64× 128× 64 and a coarse reso-
lution of 16 × 32 × 16 and (Right) without using our method on a
16× 32× 16 grid.



Figure 8: An example with water pouring into a box. This is a comparison of a simulation using different grid resolutions. The resolutions
are starting from the left to right, top to bottom: a 512 × 512 × 512 simulation with a 128 × 128 × 128 coarse grid, a 256 × 256 × 256
simulation with a 128 × 128 × 128 coarse grid, a 128 × 128 × 128 base simulation, a 128 × 128 × 128 simulation with a 64 × 64 × 64
coarse grid, and a 128× 128× 128 simulation with a 32× 32× 32 coarse grid.

grid using a grid which was coarsened to 64× 64 for the projection
step. Note that figures 6(b) and (c) are quite similar in detail and
structure. Figure 6(a) uses our algorithm except that the fine grid
projections represented by Cfp are replaced with simple interpo-
lation from the coarse grid. This method would also scale as (4)
but produces inferior results. Not only is detail lost, but more im-
portantly, the structure of the smoke is lost due to added viscosity.
This exemplifies the need for the fine grid projections represented
by Cfp in order to obtain detail and structure that would be present
on a finer grid. However, we note that there are other techniques
such as [Kim et al. 2008] and [Yoon et al. 2009] that do not need
to run a large simulation. Instead they run a coarse simulation and
add details as a postprocess at the fine scale.

We carried out this same comparison for the case of using a finer
simulation resolution but using the same resolution for the pro-
jection as the base simulation shown in Figure 6(c). Figure 6(e)
shows the results obtained using our method. Note the highly in-
creased structure and detail whereas Figure 6(d), which is obtained
using interpolation, has no obvious added benefits over Figure 6(c).
In summary, simply using our coarsening methodology with lin-
ear interpolation loses large amounts of detail in coarsening (Fig-
ure 6(c) becomes Figure 6(a)) and gains no detail when refining
(Figure 6(c) becomes Figure 6(d)). In contrast, our method pre-
serves detail when coarsening (Figure 6(c) becomes Figure 6(b)),
and gains significantly more detail when refining (Figure 6(c) be-
comes Figure 6(e)). Although our results do achieve similar details
to the fine grid base simulation, our results do have numerical differ-
ences. Figure 9 demonstrates the quantitative differences between
our method and a standard projection on the fine grid.

While not our original intent, we also explored using our technique
for liquids. As for smoke, refinement worked rather well. An added
complication with water is in dealing with the free surface where
constant pressure Dirichlet boundary conditions are imposed. Since
the coarse grid does not contain the pressure degrees of freedom
to represent the boundary conditions on the fine grid, one has to
either over or under estimate mixed air/water regions. Failing to put
constant pressure Dirichlet boundary conditions on the coarse grid
cell means that that cell will be solved in a divergence-free manner
on the coarse grid, which is preserved by our mapping to the fine
grid. This means that any air pockets in that cell would not collapse
properly. Moreover, wave type forces that are created by different

height columns of water would be lost. If instead, the coarse cell
constant pressure boundary condition is set, this treats the whole
cell as if it was air and may allow too much or too little flow inside
as this cell is not divergence free. This can result in underwater air
pockets not only collapsing but losing mass. We tried both of these
methods and observed both phenomena to some degree.

Because water waves are generated based on pressure differences
one would expect that water would be more sensitive to the coarse
grid approximation than smoke. However, as shown in Figure 8, we
found that refining a reasonable base simulation added detail with-
out noticeable issues until the surface started to become flat and
at rest, at which point some minor artifacts could be seen. Under
coarsening, however, these artifacts were harder to ignore. There-
fore, we decided to use the coarse grid approximation to obtain the
flow field only for cells interior to the water. We then collected
all fine scale cells near the free surface (i.e. fine grid cells inside
a coarse cell that contains a mixture of fluid and air) for a second
Poisson solve that used the velocities from the fine grid projections
as Neumann boundary conditions. Performing this larger solve re-
moved the artifacts albeit adding to the computation cost. However,
since the cells near the surface only represent a lower dimensional
set, essentially two spatial dimensions out of three, this additional
cost disappears under grid refinement, although on the grids we
used there was some overhead. We also note that this overhead
tends to be fairly minimal because the surface solve is only needed
for relatively calm fluid, making the solution quicker to obtain.

Figure 9: A quantitative comparison of our technique and a stan-
dard fluid simulation. (Left) Our technique with a 128 × 256 fine
grid and a 32× 64 coarse gird. (Center) The base simulation with
a 128 × 256 grid. (Right) A comparison of the velocities between
the two techniques. The warmer colors illustrate bigger differences.
The maximum velocity error is about 1%.



Example Fine Coarse Fine Coarse Ours Fine Coarse Ours

1 proc 1 proc 1 proc 64 procs 64 procs 64 procs

Static Sphere 64× 128× 64 16× 32× 16 5.6m/34s 1.2s/0.4s 20s/2s 2.2m/13s 12s/4s 30s/3s
Static Sphere 64× 128× 64 32× 64× 32 5.6m/34s 4.5s/0.9s 20s/2s 2.2m/13s 30s/6s 1m/6s
Static Sphere 128× 256× 128 64× 128× 64 5.8h/7m 5.6m/34s 8.3m/25s 16m/19s 2.2m/13s 2.7m/8s
Static Sphere 256× 512× 256 64× 128× 64 50h/1h 5.6m/34s 1.6h/2m 2h/2.5m 2.2m/13s 9m/11s
Static Sphere 512× 1024× 512 64× 128× 64 - 5.6m/34s - 47h/28m 2.2m/13s 43m/26s

Moving Sphere 64× 128× 64 16× 32× 16 8m/32s 0.5s/0.1s 20s/2s 2m/12s 15s/5s 40s/4s
Moving Sphere 64× 128× 64 32× 64× 32 8m/32s 3s/0.6s 20s/2s 2m/12s 45s/9s 1.1m/7s
Moving Sphere 128× 256× 128 64× 128× 64 9h/7m 8m/32s 16m/31s 10m/20s 2m/12s 6m/12s
Moving Sphere 256× 512× 256 64× 128× 64 75h/1h 8m/32s 2.5h/2m 3h/2.5m 2m/12s 17m/15s
Moving Sphere 512× 1024× 512 64× 128× 64 - 8m/32s - 70h/28m 2m/12s 70m/28s

Water 128× 128× 128 32× 32× 32 10m/15s 20s/2s 5.3m/8s 2m/3s 25s/2.5s 1m/1.5s
Water 128× 128× 128 64× 64× 64 10m/15s 2.3m/7s 6.7m/10s 2m/3s 1m/3s 1m/1.5s
Water 256× 256× 256 128× 128× 128 3.7h/2.2m 10m/15s 2h/74s 43m/17s 2m/3s 11m/4.5s
Water 512× 512× 512 128× 128× 128 - 10m/15s - 16h/3.2m 2m/3s 65m/13s

Table 1: Timing information for our examples as well as base simulations on the fine and coarse grid using both 1 processor and 64
processors. Some large resolution simulations (noted by -) could not be run on a single processor due to RAM restrictions. All of our timings
are given in time per frame/time per time step. Note that all examples were run at 24 frames per second and with a CFL number of 0.9.

5 Examples

We demonstrate the effectiveness of our algorithm on a number of
smoke and water simulations. All our smoke simulations contained
a density source at the bottom of the domain, and our water sim-
ulations contained a water source at the top of the domain. Fig-
ure 6 shows two-dimensional smoke examples for illustration. We
then demonstrate our algorithm for three dimensional examples of
smoke and water. For each of these examples, we first ran a base
simulation without using our method. We then used our method to
coarsen the projection resolution, which improves the performance
while maintaining similar looking results. We also used our method
to refine the base simulation, showing that we can achieve very de-
tailed results in a reasonable amount of time.

5.1 Smoke

We ran a number of three-dimensional smoke simulations as shown
in figures 3 and 5. We would like to point out the stark differences
in detail resulting from the different structures of the smoke that
can be achieved by using our method to refine the grid resolution.
For example, when comparing the smoke examples of Figure 3, we
achieve two distinct vortex rings in the high resolution example but
only achieve one with the lower resolutions. Also note the fine scale
vorticies around the sphere as shown in Figure 5.

5.2 Water

For water, we ran a number of simulations as shown in Figure 8.
For these examples, we used the surface solve towards the end of
the simulations when the fluid starts to settle but did not when there
is highly turbulent flow near the beginning of the simulation. As
with smoke, we can achieve a large amount of additional detail by
using our method to increase the resolution of the water.

5.3 Timing

The timings for our simulations are shown in Table 1. We compare
our results with those obtained by running a base simulation on the
coarse grid, and a base simulation on the refined grid. Note, for
example, that our method runs approximately 67 times faster on
the high resolution static sphere example, shown on line four of the
table above. This makes previously infeasible simulations tractable.
An important detail to note is that a base high resolution simulation
quickly runs up against hard memory limits on a machine. This is
partially alleviated with our method, as there is significantly less
memory access during the projection step.

When comparing our method to base simulations on the coarse grid,
our method runs slower when using a single processor. This is be-
cause a large amount of time is spent in Cfp. However, our method
scales well with a large number of processors, and we achieve sim-
ilar timings to the coarse grid base simulations for each time step.
This is because the cost of Cfp scales linearly and as a result, both
algorithms are dominated by the global projection (Ccp or Cp). We
note that in some cases our method actually runs more quickly per
time step than the base simulation because we take smaller time
steps for a larger resolution grid.

6 Conclusions and Future Work

We have introduced a novel algorithm that improves the perfor-
mance of existing fluid simulations and can achieve realistic re-
sults using large fluid grids. Our algorithm effectively reduces the
amount of time required for the Poisson solve by using a coarse grid
projection and then small projections within each coarse grid cell.

Although our method was used to solve the Poisson equation for
incompressible flow, (8) updates u� to un+1 by subtracting 1

ρ∇p̂.
This means that at every face of our grid we define ∇p̂, the deriva-
tives of p, on the entire grid. We can think of this as solving a
general Poisson equation∇·

“
1
ρ∇p

”
= f for some f . Our method

provides a technique for quickly and efficiently finding an approx-
imation for ∇p on the fine grid. Because many other applications
make use of Poisson equations and/or its derivatives, it would be
interesting to explore the use of our methodology in those areas.
However, one should be cautious of the fact that we are not doing
a formal Hodge decomposition, meaning that the divergence-free
vector field that we get is not the unique field that decomposes u�

into a divergence-free field plus the gradient of a scalar field. That
being said, we have found that this approximation works very well
for our applications and is likely to do so for others.

One interesting avenue of future work would be to integrate our
method with a multi-grid solver. Standard multi-grid solvers of-
ten need special treatment for problems involving free surfaces, ob-
ject boundaries, special exterior domain boundary conditions, etc.
Otherwise, their convergence rate can be a bit slow. The difficulty
lies in that multi-grid solutions do not obtain a divergence-free flow
field until they are fully converged (this is also true for cg and all
traditional methods). Our method provides an interesting twist in
that it can be used as a prolongation operator for multi-grid. One
use of this is that instead of running a multi-grid solver fully to con-
vergence, the solver can be short-circuited and our method can be
used as a final prolongation producing a divergence-free flow field.



Acknowledgements

Research supported in part by ONR N0014-06-1-0393, ONR
N00014-06-1-0505, ONR N00014-05-1-0479 for a computing
cluster, NIH U54-GM072970, NSF ACI-0323866, and King Ab-
dullah University of Science and Technology (KAUST) 42959.
M.L. was supported in part by an Intel Ph.D. Fellowship. We would
like to thank Christos Kozyrakis for additional computing resources
and Jacob Leverich for helping us use those resources.

References

BERGER, M., AND OLIGER, J. 1984. Adaptive mesh refinement
for hyperbolic partial differential equations. J. Comput. Phys.
53, 484–512.

BOLZ, J., FARMER, I., GRINSPUN, E., AND SCHRODER, P. 2003.
Sparse matrix solvers on the gpu: Conjugate gradients and multi-
grid. ACM Trans. Graph. (SIGGRAPH Proc.) 22, 3, 917–924.

BRIDSON, R., HOURIHAM, J., AND NORDENSTAM, M. 2007.
Curl-noise for procedural fluid flow. ACM Trans. Graph. 26, 3,
46.

DESBRUN, M., AND CANI, M.-P. 1996. Smoothed particles:
A new paradigm for animating highly deformable bodies. In
Comput. Anim. and Sim. ’96 (Proc. of EG Wrkshp. on Anim. and
Sim.), Springer-Verlag, R. Boulic and G. Hegron, Eds., 61–76.

DUPONT, T., AND LIU, Y. 2003. Back and forth error compensa-
tion and correction methods for removing errors induced by un-
even gradients of the level set function. J. Comput. Phys. 190/1,
311–324.

FEDKIW, R., STAM, J., AND JENSEN, H. 2001. Visual simulation
of smoke. In Proc. of ACM SIGGRAPH 2001, 15–22.

FOSTER, N., AND METAXAS, D. 1997. Controlling fluid anima-
tion. In Comput. Graph. Int., 178–188.

GAO, Y., LI, C.-F., HU, S.-M., AND BARSKY, B. A. 2009. Simu-
lating gaseous fluids with low and high speeds. Comput. Graph.
Forum 28, 7, 1845–1852.

HORVATH, C., AND GEIGER, W. 2009. Directable, high-resolution
simulation of fire on the gpu. ACM Trans. Graph. 28, 3, 1–8.

KIM, B.-M., LIU, Y., LLAMAS, I., AND ROSSIGNAC, J. 2005.
Using BFECC for fluid simulation. In Eurographics Workshop
on Natural Phenomena 2005.

KIM, T., THÜREY, N., JAMES, D., AND GROSS, M. 2008.
Wavelet turbulence for fluid simulation. In SIGGRAPH ’08:
ACM SIGGRAPH 2008 papers, 1–6.

KIM, D., SONG, O.-Y., AND KO, H.-S. 2009. Stretching and
wiggling liquids. In SIGGRAPH Asia ’09: ACM SIGGRAPH
Asia 2009 papers, ACM, New York, NY, USA, 1–7.

LAMORLETTE, A., AND FOSTER, N. 2002. Structural modeling
of flames for a production environment. ACM Trans. Graph.
(SIGGRAPH Proc.) 21, 3, 729–735.

LOSASSO, F., GIBOU, F., AND FEDKIW, R. 2004. Simulating wa-
ter and smoke with an octree data structure. ACM Trans. Graph.
(SIGGRAPH Proc.) 23, 457–462.

LOSASSO, F., FEDKIW, R., AND OSHER, S. 2006. Spatially adap-
tive techniques for level set methods and incompressible flow.
Computers and Fluids 35, 995–1010.

LOSASSO, F., TALTON, J., KWATRA, N., AND FEDKIW, R. 2008.
Two-way coupled sph and particle level set fluid simulation.
IEEE Trans. on Vis. and Comput. Graph. 14, 4, 797–804.

MOLEMAKER, J., COHEN, J., PATEL, S., AND NOH, J. 2008.
Low viscosity flow simulations for animation. In SCA ’08: Pro-
ceedings of the 2008 ACM SIGGRAPH/Eurographics Sympo-
sium on Computer Animation, Eurographics Association, 9–18.

MULLEN, P., CRANE, K., PAVLOV, D., TONG, Y., AND DES-
BRUN, M. 2009. Energy-preserving integrators for fluid anima-
tion. In SIGGRAPH ’09: ACM SIGGRAPH 2009 papers, 1–8.

MÜLLER, M., CHARYPAR, D., AND GROSS, M. 2003. Particle-
based fluid simulation for interactive applications. In Proc. of the
2003 ACM SIGGRAPH/Eurographics Symp. on Comput. Anim.,
154–159.

NARAIN, R., SEWALL, J., CARLSON, M., AND LIN, M. C. 2008.
Fast animation of turbulence using energy transport and proce-
dural synthesis. In SIGGRAPH Asia ’08: ACM SIGGRAPH Asia
2008 papers, ACM, New York, NY, USA, 1–8.

NIELSEN, M. B., CHRISTENSEN, B. B., ZAFAR, N. B., ROBLE,
D., AND MUSETH, K. 2009. Guiding of smoke ani-
mations through variational coupling of simulations at differ-
ent resolutions. In SCA ’09: Proc. of the 2009 ACM SIG-
GRAPH/Eurographics Symp. on Comput. Anim., 217–226.

PFAFF, T., THUEREY, N., SELLE, A., AND GROSS, M. 2009.
Synthetic turbulence using artificial boundary layers. In SIG-
GRAPH Asia ’09: ACM SIGGRAPH Asia 2009 papers, 1–10.

RASMUSSEN, N., NGUYEN, D., GEIGER, W., AND FEDKIW, R.
2003. Smoke simulation for large scale phenomena. ACM Trans.
Graph. (SIGGRAPH Proc.) 22, 703–707.

REEVES, W. 1983. Particle systems - a technique for modeling a
class of fuzzy objects. In Comput. Graph. (Proc. of SIGGRAPH
83), vol. 17, 359–376.

SCHECHTER, H., AND BRIDSON, R. 2008. Evolving sub-grid
turbulence for smoke animation. In SCA ’08: Proc. of the 2008
ACM SIGGRAPH/Eurographics Symp. on Comput. Anim., 1–7.

SELLE, A., RASMUSSEN, N., AND FEDKIW, R. 2005. A vortex
particle method for smoke, water and explosions. ACM Trans.
Graph. (SIGGRAPH Proc.) 24, 3, 910–914.

SELLE, A., FEDKIW, R., KIM, B., LIU, Y., AND ROSSIGNAC, J.
2008. An unconditionally stable MacCormack method. Journal
of Scientific Computing 35, 2, 350–371.

STAM, J., AND FIUME, E. 1993. Turbulent wind fields for gaseous
phenomena. In Proc. of SIGGRAPH 1993, 369–376.

STAM, J. 1999. Stable fluids. In Proc. of SIGGRAPH 99, 121–128.

WICKE, M., STANTON, M., AND TREUILLE, A. 2009. Modular
bases for fluid dynamics. In SIGGRAPH ’09: ACM SIGGRAPH
2009 papers, ACM, New York, NY, USA, 1–8.

YOON, J.-C., KAM, H. R., HONG, J.-M., KANG, S.-J., AND
KIM, C.-H. 2009. Procedural synthesis using vortex particle
method for fluid simulation. Comput. Graph. Forum 28, 7, 1853–
1859.

ZHU, Y., AND BRIDSON, R. 2005. Animating sand as a fluid.
ACM Trans. Graph. (SIGGRAPH Proc.) 24, 3, 965–972.


