
International Journal of Computer Applications (0975 – 8887)

Volume 6– No.12, September 2010

52

A Novel Data Driven Algorithm for Tamil Morphological

Generator
Anand Kumar M, Dhanalakshmi V V

Rekha R U, Soman K.P
CEN, Amrita Vishwa Vidyapeetham

Coimbatore, India

 Rajendran S

Dept. of Linguistics

 Tamil University

 Thanjavur, India

ABSTRACT

Tamil is a morphologically rich language with agglutinative

nature. Being agglutinative language most of the word features

are postpositionally affixed to the root word. The morphological

generator takes lemma, POS category and morpho-lexical

description as input and gives a word-form as output. It is a

reverse process of morphological analyzer. In any natural

language generation system, morphological generator is an

essential component in post processing stage. Morphological

generator system implemented here is based on a new algorithm,

which is simple, efficient and does not require any rules and

morpheme dictionary. A paradigm classification is done for noun

and verb based on Dr.S.Rajendran’s paradigm classification.

Tamil verbs are classified into 32 paradigms with 1884 inflected

forms. Like verbs, nouns are classified into 25 paradigms with

325 word forms. This approach requires only minimum amount

of data. So this approach can be easily implemented to less

resourced and morphologically rich languages.

General Terms

Data driven approach, Natural Language Processing,

Morphological Generator, Machine Translation

Keywords

Paradigm, Suffix table, word-forms, Morpho-lexical information,

Tamil morphological generator

1. INTRODUCTION
The aim of Natural Language Processing (NLP) is studying the

problems in the automatic generation and understanding of

natural languages. Computational models of natural language

have to be build for its various analysis and generation. Tamil is

morphologically rich and agglutinative language [10]. Tamil

words are postpositionally inflected with various grammatical

features. Tamil verb specifies almost everything like gender,

number, and person markings and also with auxiliaries which

represents mood and aspect [9]. Tamil noun inflects for plural,

case suffixes and post positions. Morphological generator

generates a word-form from a lemma, a word class tag, and

morpho-lexical description. In Tamil language the lemma

undergoes morphological change when it get attach to certain

morphemes. This system handles morpho-phonemic change

without any hand coded rules.

Morphological generator can be an individual module or

integrated with several NLP applications like machine

translation, automatic sentence generation, etc. Any automated

machine translation system requires, morphological analyzer of

source language and morphological generator of the target

language. In this paper we describe a fast and simple

morphological generator for Tamil using an efficient algorithm.

This novel approach can be applied to any morphologically rich

language. As the user gives the information of the lemma, POS

category and morpho-lexical inflection, the developed algorithm

generates the intended word form. Three different modules are

developed to build this system. The first module takes the lemma

and POS category as input and gives the lemma’s paradigm

number and word’s stem as output. The second module takes

morpho-lexical information as the input and gives its index

number as the output. In third module a suffix-table is used to

generate the word with the information from the above two

modules. The result obtained is encouraging.

2. RELATED WORKS
The most competent approach to morphological generator is

using Finite State Transducers [3]. Letter transducers based

morphological analyzer and generator was developed by Alicia

Garrido. Perez Aguiar has used an intuitive pattern-matching

approach for developing morphological generator to Spanish

language. Guido Minnen and his team have developed a

morphological generator based on Finite state techniques and it

is implemented using the widely available Unix Flex utility [5].

 For Indian languages many attempts have been made to build

morphological generator. A Hindi morphological generator has

been developed based on database driven approach [4]. Tel-More

Morphological generator for Telugu is based on linguistic rules

and Perl program [8]. Morphological generator has been

designed for syntactic categories of Tamil using Paradigm based

approach and sandhi rules [1]. Finite state machines are used for

developing morphological generator for Tamil [2].

3. MORPHOLOGICAL GENERATOR FOR

TAMIL
Generally, morphological generator tool is developed using rule

based approach where it requires a set of morpho-phonemic

(spelling) rules and morpheme dictionary. In this novel approach

rules and dictionaries are not necessary. This algorithm only

requires the Suffix table and the code for paradigm classification.

Here, the morphological generator receives an input in the form

of lemma+word_class+ Morpho-lexical Information, where

lemma specifies the lemma of the word-form to be generated,

word_class specifies the grammatical category (POS category)

and Morpho-lexical Information specifies the type of inflection.

International Journal of Computer Applications (0975 – 8887)

Volume 6– No.12, September 2010

53

The Morpho-lexical Information has been extracted from our

morphological analyzer tool for Tamil [7]. Example of the Tamil

morphological generator system is given bellow.

Example for Tamil Morphological Generation

 + V + FT_3SM =

 Odu + V + FT_3SM = OduvAn

(Run)

 + N + ACC =

 kAdu + N + ACC = kAddai

(Forest)

LOC =

 maram + N + LOC = maraththil

(Tree)

In the above example “V” represents verb and “FT_3SM”

represents future tense with third person singular masculine.”N”

be a symbol of noun and ACC means accusative case and LOC

represents locative case marker.

3.1 Challenges in Tamil Morphological

Generator
Tamil is morphologically rich and agglutinative language.

Each verb can be inflecting with more than two thousand form

including auxiliaries and clitics. The inflection also includes

finite, infinite, adjectival, adverbial and conditional forms of

verbs. In the generation of these verbal forms the inflections vary

from one set of verbs to another. To solve this complexity, a

classification of Tamil verbs based on tense markers and

inflections is made. The verbs have been classified into thirty-

two paradigms, based on their tense markers and

morphophonemic change. Nouns are classified into twenty-five

paradigms [9]. Verb paradigms are given bellow (see Table 1).

Table 1. Verb Paradigms

-padi -ERRu -sAku

-cey -pukaz -vidu

-kAN -AL -peRu

-col -uN -Aku

-kal -pUN -akal

-kEL உவ -uva -Eru

-wil -azu -puku

-Odu -thin -En

-aRi -vizu நட -wada

-vA -kol -en

-pO -woku

Normally paradigm based approach is used for developing

morphological generator. In paradigm based approach, the

paradigm number of the input root word is identified using the

dictionary. The dictionary contains lemma with word class and

its paradigm number. If user’s input lemma is not present in the

dictionary the system will fail to identify its paradigm number.

At the same time, it is not possible to build a dictionary with all

the lemmas. We cannot include all the proper nouns and

compound word forms. Noun paradigms are given bellow (see

Table 2).

Table 2. Noun Paradigms

-pul -kal -manithan

-poy -kAl -yAnai

ஈ -E -muL -thOL

-pO -AN -maram

-mAn -kaN -poruL

-thEr -wAy -kAdu

-pOn -Aru -warampu

-paS -eli -vaNdu

-kadA

This challenging task can be solved if the system can

automatically identify the paradigm number of the lemma. When

the user gives the lemma as an input our system automatically

identifies its paradigm number based on the lemma’s end

characters. Another challenging task is to handle the morpho-

phonemic change. Our system handles this very simply, by

joining the stem of the generating word with the remaining

inflections in the suffix table. So there is no need for any

separate morpho-phonemic rule. Creation of this suffix table

plays an important role in this challenging job. The creation of

the suffix table is explained in the next sub section.

3.2 Creation of Suffix Table
The Suffix table is the most essential file in this algorithm. This

is a simple two-dimensional (2D) table where row corresponds to

the morpho-lexical form and column corresponds to the paradigm

number. Each syntactic category has its own suffix table. Here

we have only created for noun and verb. The noun suffix table

contains 325 rows (word-forms) and 25 columns (paradigms)

similarly verb suffix table contains 628 rows and 32 columns

(paradigms).

Number of paradigms for each word class (noun/verb) is defined.

In Tamil there are 32 paradigms for verb and 25 for noun [9].

Table -3 shows the number of paradigms and inflections of verb

and noun which we handled. WO-AUX means count of the verb

forms without auxiliaries and clitics and WO-PP means, count of

the noun forms without postposition inflections. Total represents

the total number of inflections that we have handled in this

generator system.

International Journal of Computer Applications (0975 – 8887)

Volume 6– No.12, September 2010

54

Table 3. Paradigms and Inflections

 No. of

Paradigms

No. of Inflections

WO-AUX WO-PP Total

Verb 32 95 -- 1884

Noun 25 -- 30 325

For every paradigm a word is selected and this is termed as

head word. For this head word, all morpho-lexical forms are

created for noun and verb individually. In Tamil there are more

than thousand word-forms are possible for each verb. Here we

have selected 628 most frequently used Morpho-lexical forms for

verb including 25 auxiliary verbs (clitics are handed separately)

and for noun it is 325 including postpositions. The similar

verb/noun morpho-lexical information pattern should be followed

for all the paradigms. A morpho-lexical Information list is also

created for the above morpho-lexical forms. Using all the word-

forms a table is created, each column of the table corresponds to

its paradigm. In that table, stem of the each paradigm is removed

from its word-form. Now this table is represented as a Suffix

table. Table.4 illustrates the sample suffix-table for Tamil verbs.

In this table row (MLI-1, MLI-2…) specifies the morpho-lexical

inflection and column (P-1, P-2…) indicates paradigm number.

Table 4. Suffix Table

3.3 Algorithm Developed for Morphological

Generator
In this section we are going to describe about the new algorithm

which is developed for morphological generator. The main

advantage for this algorithm is simple and accurate. This

algorithm is implemented using Perl program. The simple

algorithm and its explanation is given bellow,

Input = (Lemma +word class + morpho-lexical Information)

1. lemma,wc,morph =SPLIT(Input)

2. roman_lemma=ROMAN(lemma)

3. parnum=PARNUM(roman_lemma,wc)

4. col-index=parnum

5. row-index=INDEX(morph,wc)

6. suff=SUFFIX-TABLE[row-index][col-index]

7. stem=STEM(roman_lemma,wc,parnum)

8. word=JOIN(stem,suff)

9. output=UNICODE(word)

Where, in the first step, lemma represents the lemma, wc

represents the word class and morph represents the morpho-

lexical information. The input from the user is divided into

lemma, word class and Morpho-lexical information this is done

by using the SPLIT function. The lemma or the root word in

Unicode format is romanized using the function ROMAN.

 roman_lemma represents the romanized lemma. parnum

represents paradigm number of lemma.PARNUM identifies the

paradigm number this is done using the Perl program.

Romanized lemma and paradigm number are given as input to

STEM function along with the word class. This function, stems

the lemma. The morpho-lexical information given by user is

matched with the morpho-lexical information list, and the

corresponding index number is retrieved, this index number is

referred as row-index. Paradigm number of the input lemma is

named as col-index. Using the row and column index the suffix

part is retrieved from the Suffix-table. The stem and the

retrieved suffix are attached to generate the word form. This

word form is then converted to Unicode format which is the final

output.

3.4 Implementation
The morphological generator system needs to handle three major

things, first one is the lemma part, then the word class and

finally the morpho-lexical information. By the way the generator

is implemented makes it distinct from other morphological

generator. The input which is in Unicode format is first

Romanized and then the paradigm number is identified by end

characters. For sake of easy computation we are using romanized

form. A Perl program has been written for identifying paradigm

number, which is referred as column index. The morpho-lexical

information of the required word class is given by the user as

input. From the morpho-lexicon information list the index

number of the corresponding input is identified, this is referred

as row index. A verb and noun suffix tables are used in this

system. Using the word class specified by the user the system

uses the corresponding suffix table. In this two-dimensional

suffix table rows are morpho-lexical information index and

columns are paradigm numbers.

For each paradigm we have created a complete set of

morphological inflections corresponding to the morpho-lexical

information list. Finally using the column index and row index

morphological suffix is retrieved from the suffix table. This

suffix form is affixed with the stem to generate the word form. In

this work a morphological generator is designed for each of the

syntactic categories and then combined to generate a complete

sentence. Bellow steps explain the simple procedure of the

system.

 Step1: Identify Paradigm of the Root word

 Step2: Stem the root word based on Paradigm

 Step3: Find Morpho-lexical Index

 Step4: Retrieve Inflection from Suffix Table

 Step5: Append Inflection with the Stem.

International Journal of Computer Applications (0975 – 8887)

Volume 6– No.12, September 2010

55

 “Figure 1. Morphological Generator System”

3.5 Advantages of this system
Morphological Generator is needed for various applications in

Natural Language Processing. It acts as post-processing

component in NLP applications like Machine translation. In this

system we have also handled some difficult tasks like morpho-

phonemic change and automatic paradigm identification. Some of

the important advantages of this novel approach are mentioned

below.

 Automatic paradigm identification.

 Uses Very less data.

 Simple, efficient and High Speed.

 Handles compound words and Proper nouns.

 Handles Transitive and Intransitive forms

 No morpho-phonemic Rules.

 No verb/noun dictionary for paradigm identification.

 No morpheme dictionary.

 Easily updatable.

 Applicable for any morphologically rich language.

4. GUI
The Graphical User Interface (GUI) (see in figure 2) of

morphological generator tool has been developed using Net

beans IDE and Perl programme. In this user friendly environment

the user have to enter the lemma in Tamil and select the

corresponding word class (noun or verb). Based on the word

class our tool visualizes the possible morpho-lexical information

in the bellow field. From this morpho-lexical information user

have to select the inflection and click the generate button to

generate the intended word. If the user wants to exercise the tool,

they require little linguistic knowledge about the inflections of

word-form. We cannot anticipate this from all the users so we

have an option in our tool to generate all the possible word-forms

for a user’s input lemma.

 “Figure 2. GUI for Morphological Generator”

5. CONCLUSION AND FUTURE WORK
The Morphological generator which is explained here is a

novel approach. It is developed using a very simple and efficient

method. This is not a language specific method, so this can be

applicable for any morphologically rich language. Using this

approach now we are developing morphological generator for

Malayalam and Telugu languages. This system provides a vast

application in NLP field mainly in Machine Translation.

 It is used in noun declension, verb conjugation and automatic

sentence generation. This system is unique that handles

auxiliaries and clitics for verbs. It does not require any spelling

rules and dictionary. This work can be further used for

implementing morphology based translation system, from any

language to Tamil. Using this morphological generator we have

also developed a verb conjugator and noun declension. Currently

we are developing SMT (Statistical Machine Translation) system

for English to Tamil language where this Morphological

generator is an important component in the post processing stage.

6. ACKNOWLEDGMENTS
This work was part of the “Creation of Machine Translation

Tools and resources for English to Dravidian Languages”

project funded by MHRD Government of India. We would also

like to thank MHRD) for the successful completion of this work.

7. REFERENCES
[1] Anandan, P., Geetha, T.V., and Paratasarathy, R. 2001.“

Morphological Generator for Tamil ”, In Proceedings of the

Tamil Inayam Conference, Malaysia, 46-54.

[2] A. G. Menon, S. Saravanan, R. Loganathan, Dr. K. P.

Soman,“ Amrita Morph Analyzer and Generator for Tamil:

International Journal of Computer Applications (0975 – 8887)

Volume 6– No.12, September 2010

56

A Rule-Based Approach ” Proceedings of Tamil Internet

Conference 2009 , Cologne, Germany,October 2009.

[3] Garrido, Alicia, Amaia Iturraspe, Sandra Montserrat,

Herm ı́nia Pastor, and Mikel L. Forcada. 1999. “A compiler

for morphological analysers and generators based on finite-

state transducers ”. Procesamiento del Lenguaje Natural,

25:93–98.

[4] Goyal, V, Singh Lehal, G. “Hindi Morphological Analyzer

and Generator ” Emerging Trends in Engineering and

Technology, 2008. ICETET '08.

[5] Guido Minnen, John Carroll, and Darren Pearce. 2000.

“Robust applied morphological generation.” Proceedings of

the First International Natural Language Generation

Conference, pages 201.208, 12.16 June.

[6] Irimia, E. ROG - A Paradigmatic Morphological Generator

for Romanian.,2007, In Proceedings of the 3rd Language &

Technology Conference: Human Language Technologies as

a Challenge for Computer Science and Linguistics. Poznań,

Poland.

[7] M Anand kumar, V Dhanalakshmi. , K P Soman, S

Rajendran ,“A Novel Apporach For Tamil Morphological

Analyzer” Proceedings of Tamil Internet Conference 2009 ,

Cologne, Germany, Page no: 23-35, October 2009.

[8] Madhavi Ganapathiraju and Lori Levin, 2006, - “TelMore:

Morphological Generator for Telugu Nouns and Verbs ”.

Proc. Second International Conference on Universal Digital

Library, Vol Alexandria, Egypt, Nov 17-19, 2006

[9] S.Rajendran, Arulmozi, S., Ramesh Kumar, Viswanathan,

S. 2001. “Computational morphology of verbal complex “.

Language in india Volume 3 : 4 April 2003

[10] Thomas Lehmann, 1992 second edition. “A Grammar of

Modern Tamil ”. Pondicherry Institute of Linguistics and

Culture, Pondicherry.

