A Novel Genetic Risk Score Predicts Ischemic Stroke in Patients with Cardiometabolic Disease

Parth N. Patel, MD*, Nicholas A. Marston, MD, MPH*, Frederick K. Kamanu, PhD, Francesco Nordio, PhD, Giorgio M Melloni, PhD, Carolina Roselli, MS, Yared Gurmu, PhD, Lu-Chen Weng, PhD, Marc P. Bonaca, MD, MPH, Robert P. Giugliano, MD, SM, Benjamin M. Scirica, MD, MPH, Michelle O'Donoghue, MD, MPH, Christopher Cannon, MD, Christopher D. Anderson, MD, MMSc, Deepak L. Bhatt, MD, MPH, Philippe Gabriel Steg, MD, Marc Cohen, MD, Robert F. Storey, MD, DM, Peter Sever, PhD, FRCP, Anthony C. Keech, MD, Itamar Raz, MD, Ofri Mosenzon, MD, Michael A. Grosso, MD, Michele F. Mercuri, MD, Hans-Joachim Lanz, MD, Howard Rutman, MD, Elliot M. Antman, MD, Eugene Braunwald, MD, Patrick T. Ellinor, MD, PhD, Steven A. Lubitz, MD, MPH*, Marc S. Sabatine, MD, MPH*, Christian T. Ruff, MD, MPH*

(*contributed equally)

Best of Genetics and Genomics Friday, November 13th, 2020

#AHA20

Disclosures

.....

• None

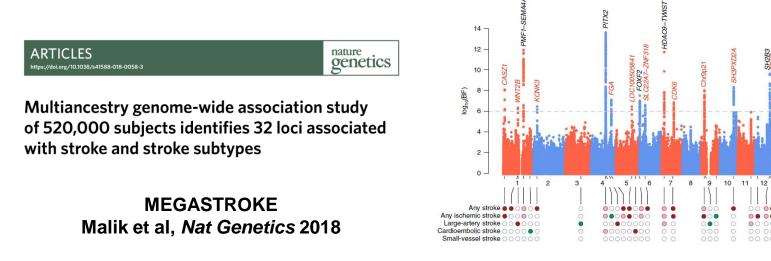
Genetic risk may contribute to risk for ischemic stroke

- Genome-wide association studies have identified single nucleotide polymorphisms (SNPs) that are associated with an increased risk of stroke
- Genetic risk scores (GRS) have garnered interest for their potential to improve risk prediction in many common diseases
- Early attempts at using GRS to predict ischemic stroke have shown promise
- Whether a GRS can independently predict risk for ischemic stroke, in patients who are older and already have established cardiometabolic disease, is still not known

- 1. Evaluate whether a GRS could identify subjects at higher risk for ischemic stroke after accounting for traditional clinical risk factors in five trials across the spectrum of cardiometabolic disease
- 2. Investigate how GRS performance differs across key subgroups

Methods: Study Population

• Five randomized controlled TIMI trials


Trial Name	Brief Description of Cohort		
ENGAGE AF-TIMI 48	Patients with atrial fibrillation		
SOLID-TIMI 52	Patients with recent acute coronary syndrome		
SAVOR-TIMI 53	Patients with T2DM		
PEGASUS-TIMI 54	Patients with prior myocardial infarction		
FOURIER	Patients with prior myocardial infarction, stroke, or PAD		

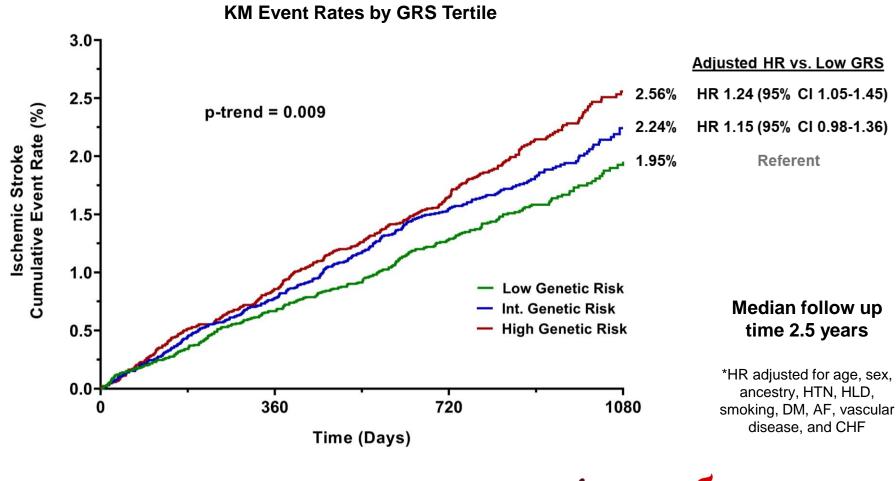
*Subjects who consented for genetic analysis, passed quality control, and were of European ancestry

Methods: Genetic Risk Scoring

- A recently published set of 32 SNPs was used to calculate a GRS in each patient
- Score calculated using the genotype dosage for each allele, multiplied by its weight, and then summed across all variants
- Patients were divided into tertiles of genetic risk

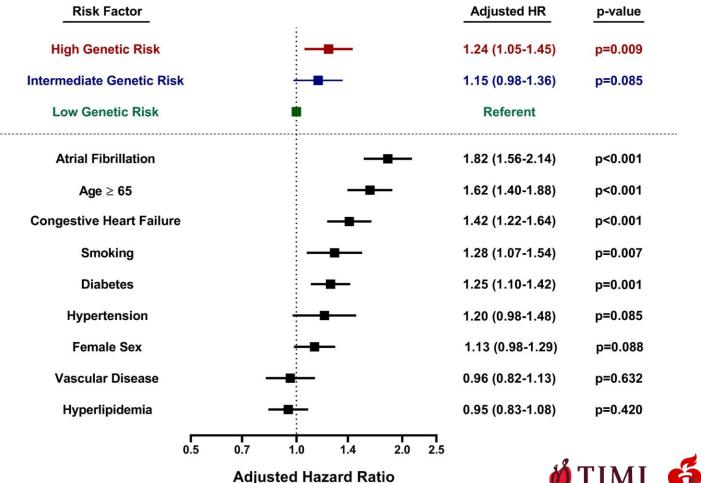
13

- Endpoint: ischemic stroke adjudicated by clinical endpoint committee
- Analysis plan: Cox proportional hazards model
- Adjustments:
 - \circ Age, sex, ancestry
 - HTN, HLD, smoking, DM, AF, vascular disease, and CHF
- Analyses were performed in:
 - Overall genetic cohort
 - Primary vs secondary prevention
 - ENGAGE AF-TIMI 48 trial (Atrial Fibrillation)
 - Across CHA₂DS₂-VASc ranges


Results: Baseline Characteristics

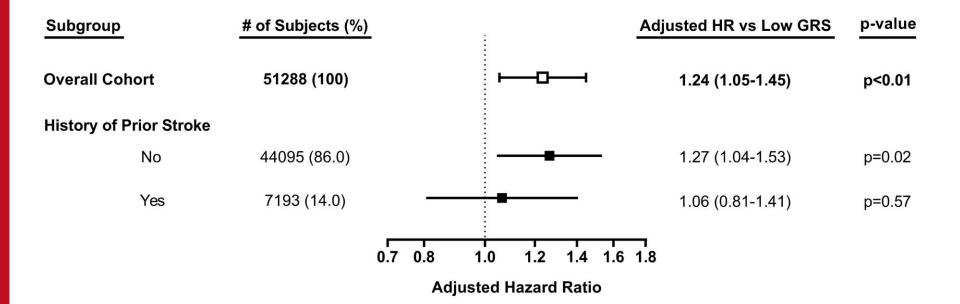
• 51,288 subjects were eligible for inclusion in this analysis

	Low Genetic Risk	Intermediate Genetic Risk	High Genetic Risk	P-Value
Participants	17096	17096	17096	
Demographics				
Age, years (SD)	66.1 (9.2)	65.9 (9.3)	65.6 (9.2)	<0.001
Female Sex (%)	28	28	29	0.005
Medical History (%)				
Hypertension	80	83	84	<0.001
Hyperlipidemia	61	60	60	0.09
Diabetes	43	41	42	<0.001
Smoking	18	18	19	0.33
Atrial Fibrillation	25	28	32	<0.001
Vascular Disease	83	82	80	<0.001
Congestive Heart Failure	26	29	33	<0.001
Stroke/TIA	12	14	15	<0.001


Results: Ischemic Stroke Event Rates by GRS Tertile

Results: GRS Comparison vs Traditional Risk Factors

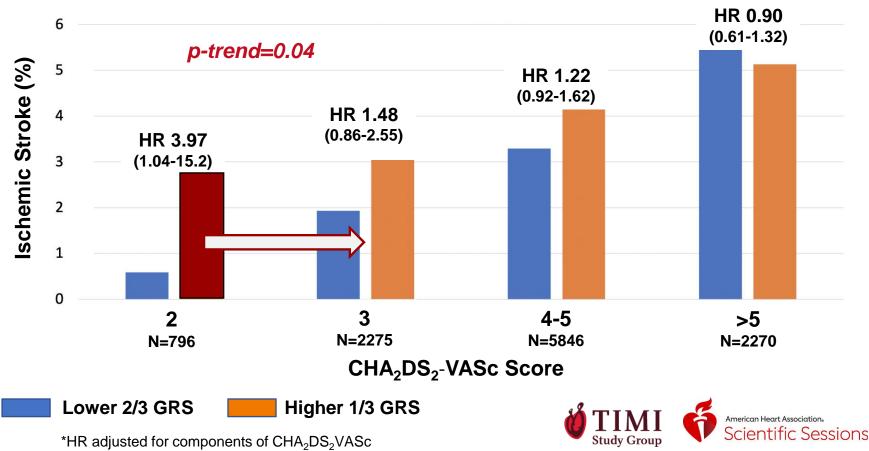
Risk for Ischemic Stroke Across Entire Study Cohort


Median follow up time 2.5 years

*HR adjusted for age, sex, ancestry, HTN, HLD, smoking, DM, AF, vascular disease, and CHF

Results: Subgroups Stratified by Prior Ischemic Stroke

HR for Highest Tertile Genetic Risk Score


Risk For Ischemic Stroke in Patients With AF

Can genetic risk scoring refine stroke risk in ENGAGE AF-TIMI 48, a trial of patients with atrial fibrillation?

Results: GRS Performance in ENGAGE AF-TIMI 48

- GRS was stronger in patients with lower CHA₂DS₂-VASc scores
- High genetic risk reclassified one third of patients with CHA₂DS₂-VASc 2 to risk levels equivalent to CHA₂DS₂-VASc of 3

- Our study population included subjects enrolled in five clinical trials across the spectrum of cardiometabolic disease
- Our analysis was limited to subjects who were of European ancestry
- This study does not explore the biologic heterogeneity of stroke

- Across five clinical trials of subjects with cardiometabolic disease, a 32-SNP GRS was a strong, independent predictor of ischemic stroke
- The predictive value of the GRS appeared strongest in subjects without prior stroke, as well as in those with atrial fibrillation and low CHA₂DS₂-VASc scores
- In patients with atrial fibrillation and CHA₂DS₂-VASc of 2, high genetic risk identified individuals with risk equivalent to CHA₂DS₂-VASc of 3
- These data suggest a potential role for genetic risk scores in therapeutic decision-making

Thank you!

Questions can be emailed to pnpatel@partners.org

A Novel Genetic Risk Score Predicts Ischemic Stroke in Patients with Cardiometabolic Disease

Parth N. Patel, MD*, Nicholas A. Marston, MD, MPH*, Frederick K. Kamanu, PhD, Francesco Nordio, PhD, Giorgio M Melloni, PhD, Carolina Roselli, MS, Yared Gurmu, PhD, Lu-Chen Weng, PhD, Marc P. Bonaca, MD, MPH, Robert P. Giugliano, MD, SM, Benjamin M. Scirica, MD, MPH, Michelle O'Donoghue, MD, MPH, Christopher Cannon, MD, Christopher D. Anderson, MD, MMSc, Deepak L. Bhatt, MD, MPH, Philippe Gabriel Steg, MD, Marc Cohen, MD, Robert F. Storey, MD, DM, Peter Sever, PhD, FRCP, Anthony C. Keech, MD, Itamar Raz, MD, Ofri Mosenzon, MD, Michael A. Grosso, MD, Michele F. Mercuri, MD, Hans-Joachim Lanz, MD, Howard Rutman, MD, Elliot M. Antman, MD, Eugene Braunwald, MD, Patrick T. Ellinor, MD, PhD, Steven A. Lubitz, MD, MPH*, Marc S. Sabatine, MD, MPH*, Christian T. Ruff, MD, MPH*

(*contributed equally)

#AHA20