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Orthogonal frequency division multiplexing (OFDM) is extensively applied in the downlink of narrowband Internet of Things
(NB-IoT). However, the high peak-to-average power ratio (PAPR) of OFDM systems leads to a decrease in transmitter
efficiency. Therefore, the researchers proposed the artificial neural network (ANN) based PAPR reduction schemes. However,
these schemes have the disadvantages of high complexity or cannot overcome the defects of traditional schemes. In this paper, a
novel PAPR reduction scheme based on neural networks (NNs) is proposed for OFDM systems. This scheme establishes a
PAPR reduction module based on NN, which is trained using the low PAPR data obtained by the simplified clipping and
filtering (SCF) method. To overcome the defect of poor BER performance of the SCF scheme, a recovery module is introduced
at the receiver, to recover the distorted signal. To realize the improvement of BER performance and the reduction of PAPR
simultaneously, the two modules are jointly trained based on multiobjective optimization. Experimental results based on a
100MHz OFDM signal show that this scheme can reduce PAPR by 4.5 dB. Meanwhile, the BER of this scheme can be reduced
to 0.001 times that of the SCF scheme.

1. Introduction

Internet of Things (IoT) technologies are getting more and
more attention, with the connection of a large number of
devices [1–3]. The development of IoT technologies will
enable a large number of low-cost devices to be deployed
and connected, facilitating the design and implementation
of low-power networks. Therefore, IoT will become a gate-
way for applications such as smart city systems [4]. In order
to adapt to the strict constraints on bandwidth and power
caused by the large-scale deployment of devices, the narrow-
band IoT (NB-IoT) standard was proposed [4, 5]. The down-
link of NB-IoT systems adopts orthogonal frequency division
multiplexing (OFDM) systems [6]. However, a large subcar-
rier number leads to a high peak-to-average power ratio
(PAPR) in OFDM systems [7]. To meet the linearization
requirements, high PAPR systems will require the power

amplifier (PA) to perform more power back-off, thus reduc-
ing the energy efficiency of the transmitter [8, 9]. Even if lin-
earization techniques such as digital predistortion (DPD) are
used to extend the linear region, they cannot ensure efficient
operation of the transmitter [10]. The research on PAPR
reduction technology has become a hot direction to improve
the efficiency of the transmitter [11, 12].

Traditional PAPR reduction schemes are mainly divided
into two categories. One of the most widely used PAPR
reduction schemes is signal distortion techniques [12],
including clipping and filtering (CF), iterative CF (ICF),
and simplified CF (SCF) [13]. An ICF scheme based on the
time-domain kernel matrix is proposed, to reduce the com-
putational complexity [14]. In addition, the literature [15]
also proposed a noise-shaped ICF scheme based on optimiza-
tion methods. The clipping and filtering operations of these
schemes can reduce the PAPR and also lead to signal
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distortion, so the bit error rate (BER) of the system is reduced
[8]. But these schemes are simple to implement. In particular,
the SCF scheme only needs one iteration to achieve the
reduction of PAPR [13]. Another feasible traditional schemes
for reducing PAPR are the signal scrambling techniques,
including partial transmission sequence and selective map-
ping [16]. The literature [17] also proposed a tone reserva-
tion scheme based on the fast iterative shrinkage-
thresholding algorithm, to improve BER performance. These
schemes need to obtain the scrambled sequences that can
reduce the PAPR and may require sending corresponding
information to the receiver for decoding [16]. However, these
operations lead to large computational complexity [11] and
reduce the utilization of subcarriers.

Recently, artificial neural networks (ANNs) have gained
many applications in the field of wireless communication
due to their powerful nonlinear function approximation abil-
ity [18, 19], which encourages researchers to apply it in the
field of PAPR reduction [8, 11, 13, 20]. At present, PAPR
reduction schemes based on ANN are mainly divided into
two categories. The first proposed schemes are to use ANN
to build the PAPR reduction model, which is trained using
the label data generated by the traditional schemes. For
example, Sohn and Kim [13] proposed to use the SCF scheme
to generate label data with low PAPR, to update the PAPR
reduction model based on a neural network (NN). Wang
et al. [20] proposed to construct a PAPR reduction model
using a multilayer feedforward neural network (FNN), and
the data generated by the tone reservation (TR) scheme were
used to train the model. These schemes effectively reduce the
complexity of the PAPR reduction process using ANN but do
not break through the limitations of traditional schemes [11].
Then, another ANN-based PAPR reduction schemes were
proposed based onmultiobjective optimization. For example,
literature [11] proposed to use the deep neural network
(DNN) model to find the coding method of low PAPR, to
realize the purpose of PPAR reduction. However, with the
increase in the subcarrier number, the complexity of the
DNNmodel will increase significantly [8]. How to use a sim-
ple PAPR reduction model to break through the limitations
of traditional schemes has become an important research
hotspot.

This paper proposes a novel PAPR reduction scheme
based on NN for OFDM systems. This scheme uses single-
layer NN to build the PAPR reduction module, which is
trained with the label data generated by the SCF scheme. In
order to overcome the disadvantage of poor BER perfor-
mance in the SCF scheme, a recovery module is con-
structed at the receiver, to recover the distorted signal. In
order to reduce the PAPR of the system and minimize
BER simultaneously, the PAPR reduction module and
recovery module are jointly updated based on multiobjec-
tive optimization. Because the two modules are con-
structed using simple NNs, the complexity of the
proposed model is very low.

This paper is arranged as follows. In Section 2, the system
model and the traditional SCF scheme are described. The
structure and training method of the proposed model are
analyzed in detail in Section 3. Section 4 compares and ana-

lyzes the proposed scheme with other typical schemes. In
Section 5, the conclusion of this paper is given.

2. System Model and SCF Scheme

2.1. System Model. OFDM modulation is widely applied in
the downlink of NB-IoT systems. In the OFDM system, the
data bits are firstly modulated by the Quadrature Amplitude
Modulation (QAM) to generate the data symbol X = ½X0,
X1,⋯, XK−1�. Then, the generated data symbol vector X is
modulated onto the K subcarriers by the inverse fast Fourier
transform (IFFT), to generate an OFDM symbol. The gener-
ated symbol xðnÞ is written as

x nð Þ = 1ffiffiffiffi
K

p 〠
K−1

k=0
Xke

j2πkn/K , n = 0, 1,⋯, K − 1: ð1Þ

To evaluate the power envelope fluctuation performance,
the PAPR of signal xðnÞ is expressed as

PAPRx nð Þ =
Max

n
x nð Þj j2� �

E x nð Þj j2� � , ð2Þ

whereMax ½·� is for calculating the maximum value; E½·� is for
calculating the mean value.

To test the effect of the PAPR’s reduction between differ-
ent methods, the complementary cumulative distribution
function (CCDF) of PAPR is expressed as

CCDFPAPR = Pr PAPR > PAPR0ð Þ, ð3Þ

where PAPR0 means given clip level.

2.2. SCF Scheme. In order to realize the PAPR’s reduction,
researchers proposed to reduce the PAPR value by clipping
operation and eliminate the out-of-band distortion by filter-
ing operation, namely, CF scheme [21]. The filtering opera-
tion will again lead to an increase in PAPR, so the ICF
scheme is proposed. However, multiple iterations in the
ICF scheme lead to a large number of fast Fourier transform
(FFT) operations [13], which leads to high implementation
complexity. To reduce the computational complexity, the
SCF method can reduce PAPR and eliminate the out-of-
band distortion by only one iteration [22]. The SCF scheme
is described as follows.

(1) Clip the original OFDM signal xðnÞ
The clipped signal x′ðnÞ can be expressed as

x′ nð Þ =
x nð Þ, x nð Þj j ≤ A,
A

x nð Þj j x nð Þ, x nð Þj j > A,

8><
>: ð4Þ

where A = CR ffiffiffiffiffiffiffi
Pav

p
means clipping threshold, Pav means the

original signal’s average power, and CR is clipping ratio.
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(2) Calculate frequency-domain clipping noise FðkÞ
The clipping noise f ðnÞ can be obtained:

f nð Þ = x nð Þ − x′ nð Þ: ð5Þ

The frequency-domain clipping noise FðkÞ is obtained by
FFT for clipping noise f ðnÞ.

(3) Filter the out-of-band signal of clipping noise

The frequency-domain clipping noise after filtering out
out-of-band distortion is written as

~F kð Þ =
F kð Þ, In‐band,
0, Out‐of‐band:

(
ð6Þ

(4) Calculate the frequency-domain signal of the low
PAPR signal

The frequency-domain signal ~Fk is used to reduce the sig-
nal’s PAPR, and the frequency-domain signal with low PAPR
is written as

�X kð Þ = X kð Þ − �β~F kð Þ, ð7Þ

where XðkÞ means the frequency-domain signal of xðnÞ; �β
= ð1 − ð1 − �αÞ3k/2Þ/ð1 − ð1 − �αÞ3/2Þ, �α = ð23/2/ ffiffiffiffiffiffi

3π
p Þ/ðσ/AÞ,

and σ is the standard deviation.

(5) Obtain PAPR reduction signal �xðnÞ by IFFT for
frequency-domain clipping signal �XðkÞ

The SCF scheme is a feasible way to reduce the signal’s
PAPR, but the scheme needs to operate each OFDM symbol
in turn, so the implementation process is still complex.

Meanwhile, the clipping operation brings distortion to the
signal, thus reducing the BER of the system.

3. The Proposed PAPR Reduction Scheme Based
on NN

3.1. The Structure of the Proposed PAPR Reduction Scheme.
To solve the problems of the complex implementation pro-
cess and BER performance degradation of the SCF scheme,
this paper proposes the PAPR reduction model based on
NN. The proposed model consists of two modules: the PAPR
reduction module and the recovery module, as shown in
Figure 1. The PAPR reduction module is used to express
the PAPR reduction process of the SCF scheme. To overcome
the defect of the low BER performance of the SCF scheme, a
recovery module is built in the receiver, to recover the trans-
mission signal. The NN-based PAPR reduction module con-
tains three layers: one input layer, one fully connected (FC)
layer, and one output layer. The input layer of the module
includes two nodes, corresponding to the in-phase and
orthogonal (I/Q) components of xðnÞ, which are described as

x = xI nð Þ, xQ nð Þ� �T , ð8Þ

where xIðnÞ and xQðnÞ are the I/Q components of xðnÞ.
The FC layer uses the weights and biases to extract the

effective information from the input data. The relationship
can be expressed as

hp = ωpx + bp, ð9Þ

where ωp is the weight matrix with a dimension of T1 ∗ 2,
and T1 is the neuron number of the FC layer. bp means the
bias with a dimension of T1 ∗ 1. Then, the information is
passed through the nonlinear activation function, to obtain
the nonlinear fitting ability, which is expressed as

sp = f1 hp
� �

, ð10Þ
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Figure 1: The framework of the proposed PAPR reduction scheme based on NN.
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where f1ð·Þ represents the nonlinear activation function.
Finally, the output layer uses this information to obtain the
model output, which is described as

r = rI nð Þ, rQ nð Þ� �T = ωo1sp + bo1, ð11Þ

where ωo1 is the weight with a dimension 2 ∗ T1, and bo1 is
the bias in the output layer with a dimension of 2 ∗ 1. The
low PAPR signal rðnÞ can be described as rðnÞ = rIðnÞ + 1i
∗ rQðnÞ. The label of the module is the I/Q components of
the low PAPR signal �xðnÞ obtained through the SCF scheme,
which is described as

�x = �xI nð Þ, �xQ nð Þ� �T , ð12Þ

where �xIðnÞ and �xQðnÞ are the I/Q components of the low
PAPR signal �xðnÞ, respectively.

The output signal rðnÞ of the PAPR reduction module is
transmitted by transmitting antenna after passing through

Definition:
1. Define the structure of the two modules;
2. Obtain the OFDM signal xðnÞ and input data x from Equation (8);
3. Define the cost function mðθÞ from Equation (18).

Initialization:

1. Initialize coefficient vector θð0Þ of model;
2. Set the weight α of the objective function m2ðθÞ;
3. Initialize parameters CR and σ of the SCF scheme.

Acquisition of Label Data:
1. Calculate the clipped signal x′ðnÞ from Equation (4);
2. Calculate frequency-domain clipping noise FðkÞ.
3. Calculate the filtered frequency-domain clipping noise ~FðkÞ from Equation (6);
4. Obtain PAPR reduction signal �xðnÞ;
5. Get the label data �x from Equation (12).

Model Training:
Loop:i = 1, 2,⋯, L

1. Compute the output data r and x̂ of the modules from Equation (11) and Equation (15);
2. Compute objective functions m1ðθði−1ÞÞ, m2ðθði−1ÞÞ from Equation (16) and Equation (17);
3. Compute the cost function mðθði−1ÞÞ;
4. Update coefficients θðiÞ according to Adam algorithm.

End

Algorithm 1: Training of the PAPR reduction model.

Table 1: The parameter settings of the two modules in the model.

PAPR reduction module The recovery module
Parameters Settings Parameters Settings

Input node’s number 2 Input node’s number 2

FC layer’s neuron number 8 FC layer’s neuron number 10

FC layer’s activation function “Tanh” FC layer’s activation function “Tanh”

Output layer’s neuron number 2 Output layer’s neuron number 2

Optimization algorithm Adam algorithm

Learning rate 0.0001

Iteration times 20,000
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Figure 2: Convergence curve of model training.
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the digital-to-analog converter (DAC) module and the
upconversion module. The receiving end receives the analog
signal through the receiving antenna and then obtains the
digital signal r̂ðnÞ through the downconversion module and
the analog-to-digital converter (ADC). The recovery module
at the receiving end reconstructs the transmission signal
through the received signal r̂ðnÞ.

The recovery module based on NN also contains three
layers: one input layer, one FC layer, and one output layer.
The input layer of the recovery module contains two nodes,
corresponding to the received signal r̂ðnÞ’s I/Q components,
which are described as

r̂ = r∧I nð Þ, r∧Q nð Þ� �T , ð13Þ

where r̂IðnÞ and r̂QðnÞ are the received signal r̂ðnÞ’s I/Q com-
ponents, respectively.

The FC layer of the recovery module extracts information
from the input data by the weights and biases and then fits
the features through the nonlinear activation function, which
can be expressed as

sr = f2 ωr r̂ + brð Þ, ð14Þ

where ωr is the weight matrix with a dimension of T2 ∗ 2,
and T2 is the neuron number of the FC layer. br is the bias
with a dimension of T2 ∗ 1. f2ð·Þ represents the nonlinear
activation function. Finally, the output layer fits the module
output, which is expressed as

x̂ = x∧I nð Þ, x∧Q nð Þ� �T = ωo2sr + bo2, ð15Þ

where ωo2 is the weight with dimension 2 ∗ T2, and bo2 is the
bias in the output layer with a dimension of 2 ∗ 1. The recon-
structed signal x̂ðnÞ is obtained by x̂ðnÞ = x̂IðnÞ + 1i ∗ x̂QðnÞ.
The label of the recovery module is the original OFDM signal
xðnÞ’s I/Q components. Therefore, the coefficients of the pro-
posed model can be summarized as θ = fωp, bp, ωo1, bo1, ωr ,
br , ωo2, bo2g.
3.2. Training of the Proposed PAPR Reduction Model. To
reduce PAPR and minimize the system’s BER simulta-
neously, the two modules of the proposed model are updated
simultaneously, that is, update coefficients θ of the two mod-
ules at the same time. The PAPR reduction module fits the
process of the PAPR’s reduction of the SCF scheme, so the
original OFDM signal xðnÞ is used to obtain the label �xðnÞ
through the SCF scheme, and then, the label data �x can be
obtained according to Equation (12). We analyze the con-
straints of each module to get the cost function of model
training.

The PAPR reduction module is required to fit the process
of the PAPR’s reduction of the SCF scheme, so the output
data of the module is required to approximate the output
data of the SCF scheme, that is, r approximates to �x. We
define the mean square error (MSE) function to characterize

this objective, which is expressed as

m1 θð Þ = 1
2N 〠

N−1

n=0
rI nð Þ − �xI nð Þð Þ2 + rQ nð Þ − �xQ nð Þ� �2, ð16Þ

where N represents the group number of training data.
In order to overcome the poor BER performance of the

SCF scheme, a recovery module is introduced into the
receiver. Therefore, the recovery module is required to
recover the original signal by the received signal, that is, the
output data of the recovery module is close to the original
data. We also represent this objective through the MSE func-
tion, which is expressed as

m2 θð Þ = 1
2N 〠

N−1

n=0
x∧I nð Þ − xI nð Þð Þ2 + x∧Q nð Þ − xQ nð Þ� �2

:

ð17Þ

The objective function m1ðθÞ is the training target of the
PAPR reduction module, and the objective function m2ðθÞ is
the training target of the recovery module. Since the two
modules are jointly trained, the cost function of model train-
ing should contain the two objective functions. We describe
the cost function mðθÞ of training as

m θð Þ =m1 θð Þ + αm2 θð Þ, ð18Þ

where α represents the weight of the objective functionm2ðθÞ
. The larger α is, the more important the objective function
m2ðθÞ is.

The output r and x̂ of the two modules can be obtained
from Equations (11) and (15). Then, the two modules can
be updated using the Adam optimization algorithm [23]
based on the cost function mðθÞ in Equation (18). During
the training, the objective functionsm1ðθÞ andm2ðθÞ are cal-
culated based on the outputs of the two modules, and then,
the cost function mðθÞ is calculated. According to the cost
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Figure 3: CCDFs of PAPR for the proposed scheme and other
typical schemes.
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function, the coefficients of the model are updated using the
Adam optimization algorithm. In the next iteration, the cost
function is calculated again using the updated model coeffi-
cients. When the iteration number of model training is satis-
fied, the training is terminated. When the proposed model
converges, it means that the two objective functions con-
verge, namely, the PAPR’s reduction and the BER’s minimi-
zation are realized at the same time. The training process of
the model is shown in Algorithm 1.

4. Simulation Results

4.1. Simulation Platform. In the simulation system, a
100MHz OFDM signal containing 1024 orthonormal sub-
carriers is used to verify the proposed scheme. The number
of available subcarriers is 816. The modulation mode of the

data symbol vector is 16-QAM. The OFDM signal consists
of 500 OFDM symbols, including 512,000 sets of data. 8000
sets of data were used to update the model. The wireless com-
munication channel in the simulation system is modeled as
an additive white Gaussian noise (AWGN) channel, and
the signal-to-noise ratio (SNR) is determined as 20 dB during
the training process of the model. The proposed model was
modeled using the TensorFlow module in Python software.
According to the experimental results, the weight of the
objective function m2ðθÞ is set as α = 2. Table 1 shows the
parameter settings of the two modules in the proposed
model. To verify the superiority of the proposed scheme,
the proposed scheme is compared with the ICF scheme,
SCF scheme, and NN-based SCF scheme in terms of CCDF
performance and BER performance. The clipping ratio CR
in the ICF scheme is set to 2.2, and the number of iterations

–2 0 2 4 6 8 10 12 14 16 18 20 22
1E-6

1E-5

1E-4

0.001

0.01

0.1

1

BE
R

Eb/N0 (dB)

ICF scheme
SCF scheme

NN-based SCF
Proposed scheme

Figure 4: Comparison of BER performance between the proposed scheme and other schemes.
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is set to 8. The parameter clipping ratio CR in the SCF
scheme is set to 1.3, and the standard deviation σ is

ffiffiffiffiffiffi
0:5

p
.

The hidden layer of the NN-based SCF scheme contains 10
neurons, and the activation function is “tanh.”

4.2. Experimental Results. Figure 2 shows the convergence
curve of the training of the PAPR reduction model. 8000 sets
of data were used to train the model, and independent 8000
sets of data were used to test the cost function of the model
during each iteration. It can be found that the proposed
model converges synchronously on the training set and the
test set, and the values of the cost function are almost equal.
Therefore, the proposed model has converged after 20,000
iterations without overfitting. The subsequent test results
are based on the trained model.

Figure 3 expresses the CCDF performance of PAPR for
our scheme and other typical schemes. The CCDF perfor-
mance of these schemes is estimated using the OFDM signal
containing 500 OFDM symbols. The PAPR of the output sig-
nal of the ICF scheme is 6.90 dB, that of the SCF scheme is
7.17 dB, that of the NN-based SCF scheme is 6.99 dB, and
that of the proposed scheme is 6.51 dB. As shown in the fig-
ure, for a 0.01 CCDF, our scheme can achieve a 4.5 dB PAPR
reduction, compared with the original OFDM signal. The
SCF scheme and the NN-based SCF scheme can achieve
4.1 dB and 4.3 dB PAPR reduction, compared with the
OFDM signal, for 0.01 CCDF, which is slightly worse than
that of our scheme. ICF can only achieve a 3.7 dB PAPR
reduction for 0.01 CCDF, which is 0.8 dB worse than that
of our scheme. The test results verify the superiority of our
scheme in PAPR performance.

Figure 4 shows the BER performance of our scheme and
other schemes under different SNR. As shown in the figure,
our scheme’s BER can reach 1:8 × 10−6 when SNB is 20 dB,
which is much lower than that of other schemes. The BER
performance of the SCF scheme and NN-based SCF scheme
is about 0.002 when SNB is 20 dB, which is about 1000 times

that of our scheme. The ICF method’s BER is 4 × 10−4 when
SNB is 20 dB, which is about 200 times that of our scheme.
Compared with the SCF scheme and NN-based SCF scheme,
the PAPR performance of the proposed scheme has a small
improvement as shown in Figure 3, but the BER performance
has a significant improvement as shown in Figure 4 (with the
same PAPR conditions), which proves the superiority of the
proposed scheme.

Figure 5 shows the BER performance of the proposed
scheme under different weight α. α represents the weight of
the objective function m2ðθÞ, to determine the importance
of the recovery module to reconstruct the signal. As can be
seen from Figure 5, the larger the weight α is, the better the
BER performance is, and the fitting effect for the SCF scheme
will decrease accordingly.

Figure 6 shows the linearization effect after performing
DPD on the low PAPR signal, where the indirect learning
architecture (ILA) is used to update the DPD coefficients.
The test PA is a Doherty PA with a small-signal gain of
28 dB and a saturation power of 43 dBm. DPD is modeled
as a generalized memory polynomial (GMP) model [24]. It
can be found that the adjacent channel peak-to-average ratio
(ACPR) performance (±25MHz) can be reduced to -46 dB
through DPD. Therefore, the proposed PAPR reduction
scheme can be implemented before DPD.

5. Conclusions

In this paper, a novel PAPR reduction scheme based on NN
is proposed for OFDM systems. This scheme uses the PAPR
reduction module based on NN to fit the PAPR reduction
process of the SCF scheme, to reduce the PAPR of the signal.
To break through the defect of poor BER performance of the
SCF scheme, a recovery module based on NN is introduced
in the receiver, to recover the distorted transmission signal.
Simulation results based on the 100MHz OFDM signal show
the effectiveness of the scheme. This scheme can realize a
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4.5 dB PAPR reduction for 0.01 CCDF. Meanwhile, the BER
of the proposed scheme can be reduced to 0.005 times that of
other schemes when SNB is 20 dB.
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