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Atmospheric 
Ice 

• It occurs when water droplets freeze on object 
they contact. 
 

• Liquid below 00C is called SUPERCOOLED which 
causes icing problem. 
 

• Below -200C icing is rare 
 

• Below -420C icing is impossible 
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 Indirect methods of ice detection 

 Involve measuring weather conditions, or measuring the 
variables that cause icing or variables that correlate with 
the occurrence of icing, such as cloud height and visibility  

 Empirical or deterministic models are then used to 
determine when icing is occurring.  

 Direct methods of ice detection 
Based on the principle of detecting property changes caused by 
ice accretion. Examples of such properties include : 

 Changes of a vibrating frequency  
 Changes in electrical properties  
 The load of ice (ISO 12494) . 
 The growth rate of ice  
 Optically 

Common methods of ice detection and 
measurement 
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Capacitive or Dielectric Sensing 
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Relaxation time constant 
 
 In the physical sciences, relaxation 

usually means the return of a 
perturbed system into equilibrium. 
Each relaxation process can be 
characterized by a relaxation time 
τ. The simplest theoretical description 
of relaxation as function of time t is 
an exponential law exp(-t/τ). 
 

Dielectric relaxation time 
 
 In DIELECTRIC materials, the 

dielectric  polarization P depends on 
the electric field E. If E changes, P(t) 
reacts: the polarization relaxes 
towards a new equilibrium.  
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Dielectric 
Constant 

 
 Dielectric mechanisms 

 Dipolar polarization  
 Atomic polarization 
 Electronic polarization 

  
 Dipolar Polarization 

 Unequal electron sharing  
 Friction accompanying 

orientation 

 
 Resonance Effect 

 
 Relaxation Effect 
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Debye Relations for the 
Parameters of Interest 
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Dielectric Variation with 
temperature 

Dielectric Variation with 
relaxation times 
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Dielectric Variation with conductivity 
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In the recent literature REF 9, 
the conductivity equation is 
given as,  

( ) (0) nAσ ω σ ω= +

In this σ(0) and A are assumed to be empirical constants however the below 
given curves clearly reflect that they both need to be a function of 
temperature. I am presently working to find this relation which I will 
incorporate in the below mentioned equations. 
 

AC Conductivity of doped zirconia at diff. Temp. 



Dielectric mixture formulae 

For a mixture of dielectric material we can use the Wiener 
relation which is given as, 
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‘εm’ is the dielectric constant of the mixture,  
‘ε1’ and ‘ε2’ are the dielectric constants of two materials, 
‘ρ’  is the proportion of the total volume occupied by medium ‘1’, 
u is the Formzahl number  
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Electrostatics (Used Phyics) 
Why Electrostatics measurements can be done on ice?  
 Electrostatics include high-voltage apparatus, electronic devices, and 

capacitors.  

 

 The term “statics” is not to be interpreted literally but rather that the 
observation time or time scale at which the applied excitation changes is 
short compared to the charge relaxation time and that the electromagnetic 
wavelength and skin depth are very large compared to the size of the 
domain of interest.  
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Comsol Model 
L1 = 4[cm]  
W1 = 4[cm] 
ε0 = 8.85e-12 [F/m]  
ε0_ice_freq = 97.5 
ε∞_ice_freq = 3.5 
τ0_ice = 5.3e-16[s] 
ω = 0:0.1:100000 [Hz] 
λ = 1 
Activation Energy, H = 0.57[eV] 
k = 1.38e-23 [J/K] 
ρd = 0.095, 0.132, 0.254  
u = 40 
temp = 272, 268, 258 [K] 
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Dielectric constant of pure ice  
(Experimental results)  
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Comsol Results For Pure Ice 
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Dielectric constant of soft snow  
(Experimental Results) 
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Comsol Results For Snow 
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Ongoing research activities, 

1. Finding a conductivity equation as a function of temperature 
and frequency, 
 

2. Measuring the dielectric properties of wet snow using Comsol, 
 

3. Using conductivity function in ice, dry snow and wet snow 
permittivity functions, 
 

4. Tabulating the capacitance data with respect to the  thickness 
of ice, dry snow and wet snow, 
 

5. Tabulating the rate of change of capacitance with respect to 
rate of change of atmospheric ice thickness. 
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Conclusion 
 Debye equations forms a basis for the dielectric based sensing technique 

for atmospheric icing at different conditions.  
 

 2D Experimental results closely matches with the numerical results for 
pure ice and dry snow at different temperatures and at different density 
ratios respectively.  
 

 Modelling snow is little tricky and dielectric mixing relation needs 
modification 
 

 More materials as like pure ice, dry snow and wet snow need to be added 
in Comsol Cold Climate Research Technologies. Also there are many 
mathematical relations (I am already working on some) for these 
materials which can be utilized effectively. 
 

 We are working on dielectric measurement technique to develop a sensor 
to effectively measure the icing rate, ice thickness, icing type and ice load 
and theses results forms a basis for our sensor. 
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