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Abstract

This paper presents a computational algorithm to predict highly-transient ame behav-

ior in counterow situations. The �rst objective of the paper is to extend the transient

counterow problem to incorporate some gasdynamic compressibility e�ects, yet retain the

desirable similarity structure. By relaxing assumptions in earlier formulations, the computa-

tional algorithms can deliver high accuracy even in periods of extremely rapid transients, like

combustion ignition. The algorithms are demonstrated on two combustion-ignition problems

for methane-air, counterow, nonpremixed ames. The �rst concerns the ignition transient

in a steady strain �eld. The second concerns the e�ects of a high-frequency oscillatory strain

�eld on the ignition process. The results reveal that, when the mean strain rate is near the

steady ignition limit, the ignition process is highly sensitive to the details of the strain-rate

uctuations.

�Submitted to Combustion Science and Technology (1999).



1. INTRODUCTION

The study of ame structure in counterow con�gurations continues to provide important

contributions to the understanding of turbulent combustion. This is owing to the well-

characterized uid-mechanical strain �eld in such ows, allowing e�cient computational

solution. Thus far, the majority of such investigations are carried out in a steady-state

setting. In recent years, however, there has been increasing research interest in the high-

frequency transient behaviors associated with ignition and extinction as well as the e�ects

of rapidly varying strain �elds on ame structure.

One class of transient combustion problems concerns the autoignition of hydrocarbon

fuels, for example in diesel engines or in knocking of spark-ignition engines. Such processes

involve complex chemical e�ects, known as \cool ame" phenomena, as well as uid dynamic

e�ects including turbulent mixing and dissipation. To assist understanding of ame struc-

ture, one-dimensional opposed-ow con�guration has been used to study the uid-dynamic

e�ects, which are often characterized by the strain rate. Such studies (Darabiha and Candel,

1992; Balakrishnan et al., 1995; Kreutz and Law, 1996), however, deal with characterizing

ignition limits in a steady context, thereby lacking information of transient ignition history.

Relatively few studies have considered unsteady ignition problems in strained ows. Ni-

ioka (1981) analyzed a thermal-ignition problem with global chemistry, demonstrating that

ignition delay is more sensitive to strain-rate variation as the system becomes closer to the

steady ignition limit. Analogous behavior was observed in a study considering a hydrogen-

air system at high temperatures (Mellado et al., 1999), in which the formal analysis showed

that the e�ect of strain rate is of higher order when the system Damk�ohler number is suf-

�ciently higher than the critical limit, while more sensitive response was observed near the
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ignition limit. It is of interest to examine whether the same behavior can be observed in

more complex hydrocarbon systems.

A number of previous investigators have considered counterow ame structure in time-

varying strain �elds (Egolfopoulos and Campbell, 1996; Sung and Law, 1997; Im et al., 1999).

They have all used a system of equations that is the time-dependent extension of the steady-

state counterow problem. Most of these studies have also used numerical algorithms for

time stepping that lack adaptivity in chosing step sizes and therefore incapable of controlling

solution error during transient simulations.

Broadly speaking, there are two formulations for the counterow problems; one involving

a single strain-rate parameter that was �rst discovered by Hiemenz (1911) in the context

of a non-reacting stagnation ow past a wall. More recent developments (Dixon-Lewis et

al., 1984) have extended the formulation to reacting ows, which have been used to model

the counterow di�usion ame near the stagnation point of a porous cylinder (Tsuji and

Yamaoka, 1971). The other formulation, which is adopted in this paper, accounts for a �nite

separation between the two opposing ow inlets (Kee et al., 1988; Lutz et al., 1996). In

the former formulation, the pressure �eld in the stagnation region is represented as a simple

function of an outer potential ow, and therefore depends simply on the strain-rate. In the

latter, the pressure �eld is represented through a pressure-curvature eigenvalue. In both

formulations, there is an assumption that the ow is characterized by low Mach numbers

and furthermore is gasdynamically incompressible, i.e. acoustically �ltered (see Paolucci,

1982; Majda and Sethian, 1985).

The incompressible formulations work well for relatively mild transients where the time

scales of the imposed transients are large in comparison to the acoustic time scales. The

calculated pressure �eld is assumed to respond instantaneously to disturbances in the ow
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and details of the acoustic relaxation phenomena are ignored. However, the formulation

can be very di�cult to solve numerically for very fast transients where the time scales of

the imposed ow disturbances are comparable to those for relaxation of the pressure �eld.

Moreover, to accurately capture fast transients like ignition, the computational algorithm

must be capable of rigorous error control through automatic and adaptive time-step selection.

The discrete form of the equations are represented as di�erential-algebraic equations (DAE).

The assumption of gasdynamic incompressibility manifests itself in the high-index nature

of the corresponding discrete equations (DAEs) and numerical di�culty is caused by the

inability of the solution algorithms to control local truncation error through automatic time-

step selection (Brenan et al., 1996; Ascher and Petzold, 1998).

In this study, we revise the counterow formulation to reduce the DAE index and thus

facilitate high-accuracy numerical solution. The revised formulation was �rst developed by

Raja et al. (1998) and successfully applied to the study of catalytic ignition which involve

fast transients in wall-bounded stagnation ows. The reformulation has two components

{ one physical and one algorithmic. By relaxing assumptions of the incompressible-ow

formulation to include the acoustic-like pressure adjustments driven by rapid changes in the

ow �eld, the DAE system takes a special form called Hessenberg index-two. Such a system

can be further reduced to an index-one system by a simple variable substitution (Ascher and

Petzold, 1998). Once in an index-one form, the system is solved accuately and e�ciently

with the Daspk software, which implements a backward-di�erence formula (BDF) method

with adaptive time-step and order control (Li and Petzold, 1999).

As a physical application of the numericalmethod, we study transient ignition problems in

a methane-air mixing layer. The simulations discussed herein consider ignition in a methane-

air mixing layer under two di�erent strain-rate conditions. First, ignition under various
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steady strain rate conditions are considered as a baseline study. This is followed by the

ignition under oscillatory strain rate with various frequencies in order to understand the e�ect

of ow unsteadiness on ignition behavior. We incorporate detailed C2 chemistry (Frenklach et

al., 1995), thus demonstrating the versatility of the numerical method in a complex chemical

system.

In the next two sections, we present the mathematical formulation of the problem. The

discussion reviews the compressible stagnation-ow formulation presented in Raja et al.

(1998) and expands on it within the context of transient counterow problems.

2. INCOMPRESSIBLE-FLOW FORMULATION: HIGH-INDEX

DAE'S

Figure 1 shows a schematic of the system con�guration. Two opposing axisymmetric nozzles

are separated by a distance of L. The governing equations for the unsteady opposed-ow

geometry follows the formulation by Kee et al. (1988) derived for the �nite-distance opposing

nozzles.

We �rst begin with the low-Mach-number form of the Navier-Stokes equations. In the low-

Mach-number limit, the total static pressure, P , can be decomposed into the thermodynamic

(p0) and hydrodynamic (p) components, such that

P = p0 + p; p=p0 � 1: (1)

Furthermore, the ow work and viscous dissipation terms are neglected in the energy equa-

tion. We also neglect the possibility of buoyancy-driven recirculations in the ow between

the two opposing nozzles and assume that the axial velocity, scaled radial velocity, temper-

ature, and species mass fractions are, respectively, given as a function of time and the axial
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coordinate only:

u = u(t; x); v=r = V (t; x); T = T (t; x); Yk = Yk(t; x): (2)

In order to be consistent with the above assumed functional forms, the boundary conditions

on u, V , T ,and Yk that are imposed at the nozzle exits need to be independent of radius and

therefore �xed constants or functions of time. Substituting these functional forms into the

low-Mach-number Navier-Stokes equations, we obtain the following reduced equations

Mass continuity:

@�

@t
+

@

@x
(�u) + 2�V = 0; (3)

Radial momentum:

�
@V

@t
+ �u

@V

@x
+ �V 2

�
@

@x

 
�
@V

@x

!
+ � = 0; (4)

Energy conservation:

�cp
@T

@t
+ �cpu

@T

@x
�

@

@x

 
�
@T

@x

!
�
@p0

@t
+ �(

X
k

cpYkVk)
@T

@x
+
X
k

hkWk!k = 0; (5)

Species conservation:

�
@Yk

@t
+ �u

@Yk

@x
+

@

@x
(�YkVk)�Wk!k = 0; k = 1; � � � ;K; (6)

where the radial pressure-curvature eigenvalue,

�(t) �
1

r

@p

@r
; (7)

is a time-dependent variable that is determined as part of the solution. In these equations,

Yk is the mass fraction of species k, cp is the speci�c heat of the mixture, � is the thermal

conductivity of the mixture, hk is the enthalpy of species k, and Wk is the molecular weight

of species k.
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Note that the above equations are completely independent of r and hence the original

assumption on the functional form of the dependent variables, Eq. (2), is valid. The above

equations are therefore in a similarity form. Consistent with the low-Mach-number approx-

imation, the uid density is determined from the approximate form of the equation of state:

� = p0W=RT; (8)

where W is the mixture-averaged molecular weight, and the pressure is approximated by

the uniform thermodynamic pressure p0(t). The density therefore depends only on the the

axial coordinate and time, i.e. � = �(x; t), which in turn facilitates derivation of the above

similarity equations. It is also noted that the axial momentum equation is left out from

the above governing equations. In fact, the axial momentum equation can be included to

determine the axial dependence of the pressure. However, the axial momentum equation is

decoupled form the rest of the system since it does not a�ect the rest of the solution �eld.

As a numerical convenience to maintain the banded structure of the iteration matrix, a

trivial equation

@�

@x
= 0 (9)

is added, simply requiring that � is independent of x.

Other constitutive relations include the di�usion velocity, Vk, given by either the multi-

component formulation

Vk =
1

XkW

KX
j=1

WjDkj

dXj

dx
�

DT
k

�Yk

1

T

dT

dx
; (10)

or the mixture-averaged formulation

Vk = �
1

Xk

Dkm

dXk

dx
�
DT
k

�Yk

1

T

dT

dx
where Dkm =

1� YkPK
j 6=kXj=Djk

; (11)
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where Dkj ;Dkm, Djk and DT
k are the multicomponent, binary and mixture-averaged and

thermal-di�usion coe�cients, respectively, and Xk is the mole fraction of species k.

The above system of equations is subject to boundary conditions

x = 0 : u = uF (t); V = VF (t); T = TF (t); Yk = (Yk)F (t);

x = L : u = uO(t); V = VO(t); T = TO(t); Yk = (Yk)O(t);
(12)

where subscripts F and O denote the fuel and oxidizer streams, respectively. In the present

formulation of �nite nozzle spacing, both axial and radial velocity can be independently pre-

scribed at the boundary, although V = 0 is the most common choice for practical cases. Note

that the mass continuity equation is �rst-order and hence takes only one of the axial velocity

boundary conditions (say uF (t)). The other axial velocity boundary condition (say uO(t))

is associated with the trivial equation, Eq. (9), which otherwise has no explicit boundary

condition. Also, in specifying boundary conditions on the species mass fractions care must

be exercised to ensure that
P
Yk = 1.

From a mathematical standpoint, Eqs. (3) - (6) and (9) after spatial discretization

are viewed as a system of di�erential-algebraic equations with a dependent-variable vec-

tor [uj; Vj; Tj; (Yk)j;�]
T , where the subscript j denotes grid points that range from 1 to J .

Note that, in the analysis of the DAE's, all discrete �j's can be expressed in terms of one

� without loss of generality. In this case, uj and � constitute the algebraic variables, i.e.

variables that are not expressed in terms of their time derivatives in the governing equations.

The vector of dependent variables is thus divided into two groups as

x = [V1; T1; (Yk)1; � � � ; VJ ; TJ ; (Yk)J ]
T

z = [u1; � � � ; uJ ;�]
T (13)

where x is the vector of all di�erential variables and z is the vector of all algebraic variables.

Note that the boundary condition on V , T and Yk speci�ed in Eq. (12) can be represented

in terms of their time derivatives and hence these boundary variables can be considered
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as di�erential variables. For example, specifying TJ = constant is equivalent to specifying

dTJ=dt = 0 with a proper initial condition, i.e. TJ(t = 0) = constant. The DAE system for

the discretized counterow equations can then be written as:

dx

dt
= f(x; z)

0 = g(x; z);
(14)

where f represents the right hand sides of all the di�erential equations (i.e. equations for the

radial momentum, energy conservation, and species conservation at the interior nodes and

equivalent di�erential equations for boundaries conditions on V , T and Yk) and g represents

the algebraic equations (i.e. the mass continuity at all interior and boundary nodes).

For the DAE system to be at least index-2, the product of the Jacobian matrices g
x
fz

must be nonsingular (Brenan et al., 1996; Ascher and Petzold, 1998). This is not the case for

the above DAE system. The algebraic equation corresponding to the discretized continuity

at the boundaries do not have any term belonging to x and therefore at least one row

of the Jacobian matrix g
x
is zero. Consequently, the requisite product of the matrices is

singular and the DAE system is of index greater than 2 { the cause of numerical di�culties

in fast-transient problems.

3. COMPRESSIBLE-FLOW FORMULATION WITH INDEX

REDUCTION

The index of the DAE system can be reduced by reformulating the problem to include the

appropriate physical phenomena that are valid in the regime of interest. Under fast transient

conditions, a local ow disturbance (as occuring in the ignition event) is �rst communicated

to the surrounding ow through acoustic pressure waves. On longer time scales, information

is communicated through convective and di�usive transport. The incompressible formu-

lation (acoustically-�ltered equations) assumes that the pressure waves are in�nitely fast,
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communicating information instantly throughout the ow, which is the root cause of the

high-index behavior. To reduce the index, some compliance must be introduced into the

system, allowing a slower, and more physical, response to a disturbance. That is, the axial

pressure distribution must be coupled back into the dynamics of the ow, in addition to the

radial pressure e�ect represented by the eigenvalue, �.

Once recognized, this is easily done by reintroducing pressure as a dependent variable

and coupling back the axial momentum equation in the set of governing equations. The

excess pressure,

p = P � p0; (15)

is now included in the set of dependent variables to obtain the following set of counterow

similarity equations:

Mass continuity:

�

P

@p

@t
�

�

T

@T

@t
� �W

X
k

1

Wk

@Yk

@t
+

@

@x
(�u) + 2�V = 0; (16)

Axial momentum:

�
@u

@t
+ �u

@u

@x
+
@p

@x
� 2�

@V

@x
�

4

3

@

@x

 
�
@u

@x

!
+
4

3

@

@x
(�V ) = 0; (17)

Radial momentum:

�
@V

@t
+ �u

@V

@x
+ �V 2

�
@

@x

 
�
@V

@x

!
+ � = 0; (18)

Energy conservation:

�cp
@T

@t
+ �cpu

@T

@x
�

@

@x

 
�
@T

@x

!
�
@P

@t
+ �(

X
k

cpYkVk)
@T

@x
+
X
k

hkWk!k = 0; (19)

Species conservation:

�
@Yk

@t
+ �u

@Yk

@x
+

@

@x
(�YkVk)�Wk!k = 0; k = 1; � � � ;K: (20)
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The equation of state is also modi�ed as

� = (p + p0)W=RT; (21)

where the pressure term now includes the excess pressure p. The mass continuity equation

now includes the time derivative of p that is derived by di�erentiation of the new equation

of state. It is also noted that the magnitude of the viscous terms in the axial momentum

equation is very small for problems of interest and can be neglected without loss of solution

accuracy.

In addition to the boundary conditions, Eq. (12), a new boundary condition must be

speci�ed for pressure. For ow situations without any imposed nozzle exit velocity pertur-

bations, it is convenient to specify p = 0 at one of the boundaries, e.g. at x = L. For ows

with exit velocity perturbations, we adopt the Bernoulli's equation

pJ +
1

2
�Ju

2

J = constant: (22)

For the compressible equations, the u = uO(t) boundary condition is associated with the

axial momentum equation and the pressure boundary condition is associated with the trivial

equation for �, Eq. (9). See Figure 2 for details on speci�cation of the boundary conditions.

The set of dependent variables in the discretized compressible equation can be divided

into two groups as follows

x = [p1; u1; V2; T2; (Yk)2; � � � ; pJ ; uJ ; VJ ; TJ ; (Yk)J ]
T

z = [�]:
(23)

The DAE system for the compressible equation can now be expressed as

dx

dt
= f(x; z)

0 = g(x):
(24)
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The vector f represents the right hand sides of all the di�erential equations for axial mo-

mentum, radial momentum, energy conservation, and species conservation at the interior

nodes and equivalent di�erential equations for boundaries conditions on u, V , T and Yk.

The vector f also includes the di�erential equations for the mass continuity equations at all

interior nodes and the bottom boundary x = 0. The vector g represents the single algebraic

equation, Eq. (22), which is used as the equation for �.

Through an analysis of the DAE system, Eq. (24), it can be shown that the product of

Jacobian matrices g
x
fz is nonsingular and hence the equations are in a special Hessenberg

index-2 form (Brenan et al., 1996; Ascher and Petzold, 1998). Theory also suggests that, once

in this form, the DAE index can be further reduced to index-1 using the simple substitution

d�

dt
= �(t): (25)

The variable � replaces � as the dependent variable and any arbitrary initial condition can

be speci�ed for �, since only d�=dt appears in the system of equations (Ascher and Petzold,

1998). The discretized index-1 compressible counterow equations are numerically stable in

fast-transient regimes and can be solved e�ciently using adaptive time-stepping algorithms

capable of solution error control.

4. NUMERICAL METHODS

The DAE system, Eqs. (16) - (20), can be solved numerically using Daspk. Since Daspk

requires that the initial condition must satisfy all the equations in the DAE system, a fully

converged steady solution �eld is used as the initial condition. Due to the modi�ed grid

structure as described in the following, a modi�ed version of Oppdif is used to obtain the

initial condition.
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To �t the modi�ed formulation, a staggered grid system is used as shown in Figure 2.

The grid stencil and boundary conditions for individual dependent variables are shown in

separate columns. All dependent variables are represented at the control-volume center

nodes, except the axial velocity which is represented at the control-volume faces. The grid

indices are shown on the left and the face indices on the right. The right-facing protuberance

on the stencils indicates where the time derivative is evaluated. For the pressure-eigenvalue

equation there is no time derivative, as indicated by an un�lled protuberance.

Spatial discretization uses �nite-volume di�erencing for the non-uniform grid system. For

the species, energy, and radial momentum equations, a second-order central di�erencing is

used for di�usive terms, and either �rst-order upwind or second-order central di�erencing is

used for the convective terms. The continuity equation is spatially �rst order, using a central

di�erence formulation with u at the cell surfaces. Although the axial momentum equation

is second order in velocity through the viscous term, the important convective term is �rst

order. The equation is therefore treated as a �rst-order equation by either neglecting the

viscous terms entirely or by interpreting them as source terms.

Because the central di�erencing on the continuity equation is only neutrally stable, an

arti�cial damping term is introduced to maintain numerical stability. A �rst-order damping

term of the form �(�x)(@2p=@x2) is added in the continuity equation, where a su�ciently

small value for � is used to ensure that the solution is not a�ected. From our experience,

� � 10�3 appears to be acceptable without noticeably a�ecting the �nal solution.

The unsteady calculation requires a fully converged steady solution as an initial condition.

To accommodate the transient response of the reaction zone, an a priori grid re�nement is

needed, as described in the following (Lutz et al., 1996).

First, a grid redistribution by a weighting function is made. Temperature is typically used
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as the gauge variable and the grid redistribution uses a transformation from the physical

coordinate x to a new coordinate �,

dx

d�
W (x; T ) = C (26)

with the weighting function

W (x; T ) = 1 + b1

�����dTdx
�����+ b2

�����d
2T

dx2

����� : (27)

The constant C is de�ned by the integration over the entire domain:

C =
1

N � 1

Z L

0

W (x; T )dx; (28)

where N is the total number of grid points. Integrating over a portion of the domain gives

an expression for the locations in the �-coordinate space:

� = 1 +
1

C

Z x

0

W (x; T )dx: (29)

The new grid locations, x, are obtained by interpolation between the computed values of �

de�ned using the old mesh, onto a uniform mesh in the �-space. Since d� is constant on this

uniform mesh, the solution to Eq. (26) states that W (x; T ) � x is constant, so that the new

values of x are concentrated where the weighting function is large. The parameters, b1, b2

and C are adjusted to produce a desired grid system.

5. RESULTS AND DISCUSSION

Ignition under Constant Strain Rate

We �rst consider the ignition of a pure methane stream owing against a hot air stream. The

nozzle separation is �xed at L = 1 cm and the nominal pressure is p = 1 atm. The fuel-side

inlet temperature is held at 300K and the hot-air inlet temperature is at 1400K, which is the
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ignition heat source. The simulation begins by determining the steady-state non-reacting

ow �eld. For this initial ow �eld, the chemical reaction rates are simply turned o� in the

simulation. Then, to initiate the ignition problem, the chemical reaction rates are suddenly

turned on. The problem is contrived in the sense that there is no equivalent experiment

that can be done. Nevertheless, the results reveal some limiting-case behavior for an ignition

transient.

In this paper, the characteristic ow time is represented by the scalar dissipation rate,

�st = 2�(@�=@x)2
st

(30)

where � is the thermal conductivity, � is the mixture-fraction variable based on the formula

by Bilger (1988), and subscript \st" denotes the stoichiometric condition. It could be argued

that the scalar dissipation rate evaluated at the actual ignition location might be a more

appropriate measure of the ow time for ignition problems. However, in practice it is di�cult

to establish unambiguously the \point" of ignition since such a point moves during the course

of the ignition. Moreover, it has been shown that �st better represents the ow time scale

than the strain rate measured far upstream for highly transient ow conditions (Im et al.,

1999).

Figure 3 shows the maximum steady-state H-atom mole fraction within the ow as a

function the characteristic ow time, represented as the stoichiometric scalar dissipation

rate. There are two solution branches { the ame branch where intense di�usion ame is es-

tablished and the frozen branch where the chemical reaction is suppressed due to insu�cient

ow residence time. The asymptotically vertical shape of the frozen branch indicates an

ignition turning point. Under the conditions used in the present study, this steady ignition

limit is found to be at �st = 17:2 sec�1, which occurs at uF = uO = 2.17 m/s.
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Based on the steady response shown in Figure 3, we �rst investigate the transient ignition

response under various values of constant pre-ignition scalar dissipation rates. For a system

to be ignitable, �st must be lower than the steady ignition limit of 17.2 s�1. The procedure

is as follows. Initially a steady, non-reacting ow �eld is established by arti�cially supressing

all the reaction rates. Then, to initiate the ignition event, the reaction rates are restored. A

series of such simulations are done for di�erent pre-ignition scalar dissipation rates.

Figure 4 illustrates the results of an ignition transient for �st = 7:06 s�1. Spatial pro�les

of temperature and H-atommole fraction are shown for several times during the ignition. For

these conditions, the ignition develops over a time span of around 0:4 milliseconds (curves

B through E). The ignition kernel develops and propagates into the location at which the

steady di�usion ame is established. To further illustrate the ignition transient, the temporal

evolution of the spatial maximum values for temperature and a two intermediate species (H

and HCO) are shown in Figure 5. Again, the transient takes a few tenths of a millisecond

to proceed from a non-burning situation to a steady ame structure. The H and the HCO

have fundamentally di�erent behaviors during the transient, with the HCO having a sharp,

short-lived peak.

From a numerical or algorithmic point of view, it is clear the di�erential-equation solver

must be able to accommodate periods of very rapid transients during the ignition, yet rel-

atively slow response before and after the ignition itself. Such behavior is characteristic of

sti� problems. To be e�cient, the solver must choose large time steps during periods or

slow change but quickly adjust to smaller timesteps as the solution changes rapidly. The

time-step selection must be governed to control the local truncation error in the solution and

thus return accurate solutions throughout the course of the ignition. The Daspk software

is speci�cally designed to meet these challenges.
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It is convenient to characterize the ignition in terms of an ignition-delay time. In this

study, the ignition delay is de�ned as the time at which the rate of temperature rise becomes

maximum. Figure 6 shows the variation of the ignition delay for a range of scalar dissipation

rates. Clearly, as the characteristic ow time is reduced to approach the steady ignition limit,

the ignition delay becomes increasingly sensitive to the variations in the scalar dissipation

rate.

Therefore, the transient ignition exhibits behaviors that cannot be easily described in the

steady-state ignition concepts, like the turning point illustrated in Figure 3. For example,

many ignition models in turbulent reacting ows are based on the notion that ignition occurs

instantaneously when the local scalar dissipation rate at the ignition kernel falls below the

steady ignition limit. However, Figure 6 suggests that this assumption may lead to an

incorrect prediction, since ignition delay is a strong function of the ow strain especially

near the onset of ignition. It is expected that both the absolute value of strain rate and

the characteristic time scale of the ow unsteadiness may signi�cantly a�ect the ignition

response. This issue is investigated further in the next section.

Ignition under Oscillatory Strain Rates

To study the e�ect of time-varying strain rates, which may better represent the action of

turbulent eddies, we now investigate the ignition behavior when the system is subjected to

an oscillatory ow �eld of the form

uF (t) = uO(t) = u0f1 +A[1� cos(2�ft)]g (31)

such that the velocity varies sinusoidally from u0 to u0(1 + 2A) at a frequency of f Hz. In

these simulations, both inlet velocities oscillate in phase and with the same function. Based

on the results with constant scalar dissipation rates shown in Figure 6, we choose two cases
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of the initial non-reacting solution �eld: (A) u0 = 1:0 m/sec, A = 0:15, and (B) u0 = 2

m/sec, A = 0:075, such that the former is far from the steady ignition limit and the latter

near the ignition limit. The respective range of velocity oscillation is drawn as the arrows

bounded by dotted lines in Figure 6. Each case was run for several frequencies ranging from

10 to 1000 Hz.

Figures 7 and 8 show the temporal evolution of the maximum temperature and scalar

dissipation rate at the stoichiometric point, respectively, for case A. The results in Figure 8,

showing the scalar dissipation rate, clearly demonstrate the need for adaptive time steps in

the solution algorithm. Just at the ignition time, the solutions are characterized by very fast

transients ane periods of very high curvature (sharp peaks). A less sophisticated algorithm

would have very great di�culty following these features, and possibly deliver incorrect or

misleading solutions.

The temperature response in Figure 7 shows a monotonic increase in the ignition delay as

the oscillation frequency increases, although it appears to level o� to an asymptotic limit for

higher frequencies. Figure 8 shows the e�ect of transient strain rate more clearly. In the low-

frequency case (f = 10 Hz), ignition occurs even before any substantial increase in the strain

rate is achieved. As the frequency increases, however, the strain-rate oscillation goes through

a number of cycles before the ignition point, hence resulting in a net strain rate higher than

that for the low-frequency case. Considering the steady-state results shown in Figure 6

that the ignition delay increases monotonically with the strain rate, it is expected that the

higher frequency case would produce longer ignition delays, since the system is subjected

to higher net strain rates. Nevertheless, for situations where the oscillatory strain rates are

far from the steady ignition limit, as illustrated in Figure 7, the strain-rate uctuation has

a relatively small net e�ect on the ignition delay, notwithstanding the very di�erent scalar
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dissipation rate histories as illustrated in Figure 8. This behavior can be understood from

the steady response shown in Figure 6. In the low strain-rate range, the characteristic ow

residence time is su�ciently large such that the chemical reactions are little a�ected by the

convective/di�usive transport variation.

When the uctuating strain rate is near the steady ignition limit, however, the ignition

becomes quite sensitive to ow-�eld uctuations. Figures 9 and 10 show the temporal evo-

lution of the maximum temperature and scalar dissipation rate, respectively, for case B. At

f = 10 Hz, the ignition occurs before any signi�cant e�ect of the strain rate oscillation, hence

the ignition delay is close to that for the steady case at u0 = 2:0 m/sec at approximately 15

milliseconds. At f = 100 Hz, the scalar dissipation rate oscillates a number of cycles before

the ignition, thereby inuencing the history of scalar dissipation rate throughout the course

of the ignition event. In this case, the maximum temperature exhibits a gradual increase

throughout a number of cycles and eventually ignition occurs, albeit at much later time (81

milliseconds). At frequencies f = 200 Hz and higher, however, the peak temperature reaches

a limit cycle at a mean value about 1410 K and ignition is not achieved.

Note that the dramatic di�erence between the situation at f = 100 Hz and 200 Hz is

not due to an increase in the mean scalar dissipation rate for higher frequencies; for all

frequencies between 100 and 300 Hz, the mean scalar dissipation rate is approximately 7.0

sec�1, which is slightly lower than the steady ignition limit. Therefore, in terms of the mean

values, all higher frequency cases (f = 200 Hz and higher) may be expected to ignite. The

principal distinction between the ignited and unignited cases is the duration for which the

scalar dissipation rate is less than the steady ignition limit. This implies that, for f = 100 Hz,

the duration is long enough to build up the radical pool throughout a number of oscillations,

while it is not so for higher frequencies. This result is consistent with an earlier study by
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Sung and Law (1997), in which they found that ignition occurs when such a duration (called

the \excursion time" in their paper) is longer than the characteristic runaway time. Our

study di�ers from that of Sung and Law's in that our initial condition is in an ignitable state

(�st < 17:2 sec�1). As a result, it is di�cult to de�ne a characteristic runaway time.

The results shown throughout Figures 7 to 10 may suggest the following implications

in application to ignition in turbulent ows. When the mean e�ective strain rate induced

by turbulence is su�ciently lower than the steady ignition limit, the ignition delay is little

a�ected by turbulence. This may explain some earlier observations in direct numerical simu-

lations (Mastorakos et al., 1997; Im et al., 1998), where the turbulence intensity was limited

to weak to moderate range. To have a signi�cant e�ect on ignition delay, the turbulence

intensity must be su�ciently large so that the mean value is near the steady ignition limit.

Under these circumstances, it is expected that ignition delay is substantially modi�ed by

the strain-rate uctuation, both in amplitude as well as frequency. In an extreme case, it is

conceivable to have non-igniting situation even if the mean strain rate is less than the steady

ignition limit, demonstrating the importance of unsteady ow e�ects.

6. CONCLUSIONS

Numerical simulation of one-dimensional unsteady opposed-ow is accomplished using an al-

gorithm and software that is designed for di�erential-algebraic systems. The commonly-used,

acoustically-�ltered, counterow formulation leads to numerical di�culties during periods of

very rapid transients in the solution, such as during an ignition event. In this paper, we

reformulate the counterow problem to incorporate some weakly compressible e�ects, yet

retain the desirable one-dimensional similarity structure. As a result, the index of the DAE

system is reduced to one, which alleviates numerical di�culties associated with a high-index
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system. The numerical method is implemented using the Daspk software. The Chemkin

software (Kee et al., 1991) provides the means for dealing with complex chemicalmechanisms

and transport properties.

The paper illustrates the numerical algorithms by simulating two ignition problems, both

in a counterow con�guration forming a nonpremixed methane-air ame. In the �rst case,

ignition is simulated in an initially steady ow �eld. In the second case, the ow velocity

for both inlet streams is forced to follow an in-phase oscillation of varying amplitudes and

frequencies.

The results for constant strain rate show that the functional dependence of the ignition

delay on the strain rate becomes more sensitive as the ow condition approaches the steady

ignition limit. The calculations for ignition under oscillatory strain rates further reveal that,

while the ignition delay is insensitive to the strain rate uctuation when it is far from the

steady ignition limit, the e�ect can be greatly ampli�ed as mean strain rate approaches the

limit. In some extreme cases, it is shown that high-frequency oscillation can lead to a non-

igniting system whose mean strain rate is less than the steady ignition limit. Further study

is needed to understand the e�ect of such parameters in a more realistic multi-dimensional

turbulent ow �eld at elevated turbulence intensities.
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