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A one hour course on
Nonlinear Modeling of Structures

Filip C. Filippou
Professor of Structural Engineering

University of California, Berkeley

Computational framework for earthquake simulation

• OpenSees (OPEN Software for Earthquake Engineering Simulation)
http://opensees.berkeley.edu (last release 2.2.0, August 2010)

• FEDEASMatLab for teaching and concept development
http://fedeaslab.berkeley.edu (last release 3.1 July 2010)

at Berkeley
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Element Selection in EQ Engineering Practice

• Criteria
– Economy in model development and result interpretation considering parameter 

sensitivity and multiple ground motions
– Knowledge and experience of analysis team
– Detail of response (global, regional or local) and accuracy

• Selection (in decreasing popularity and increasing cost and expectations)
– Linear elastic elements of any type (1d, 2d, 3d)
– Nonlinear beam and column elements with “plastic hinges”
– Nonlinear beam and column elements with material response integration

(fiber, fiber-hinge, inelastic beam-column finite elements)
– 2d and 3d finite elements (few robust constitutive models, few advanced 

features when compared with expectations: e.g. bond-slip, buckling of 
reinforcement, large discrete cracks, shear sliding, local buckling, fatigue, 
tearing of steel, etc) 

Beam-Column Models

• Concentrated plasticity models = one rotational spring at each end + elastic 
element
– Advantages: relatively simple, good for interface effects (e.g. bar pull-out) 
– Disadvantages: force-deformation of rotational spring depends on geometry and 

moment distribution; relation to strains requires “plastic hinge length”; interaction 
of axial force, moment good for “metallic” elements; more complex interaction 
questionable; numerical robustness difficult

• Distributed inelasticity models (FE model) = consistent integration of section 
response at specific “control” or monitoring points
– Advantages: versatile and consistent; material response can be incorporated in 

section response; interaction of axial force and moment (and shear and torsion) 
can be rationally developed, thus numerical robustness is possible

– Disadvantages: can be expensive (not clear), require good understanding of 
integration to determine validity of strains and local response 
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Structural Beam-Column Models

M

N

Distributed inelasticity models

• 2 monitoring points usually at element ends = inelastic zone model
- Good for columns and girders with low gravity loads
- Consistent location of integration point?
- Value of fixed length of inelastic zone?
- Good for softening response (Fenves/Scott, ASCE 2006)
- Variable inelastic zone element (CLLee/FCF, ASCE 2009); good for hardening 

response
- >2 monitoring points

- Good for girders with significant gravity loads
- 4-5 integration points are advisable (“good plastic hinge length value with 

corresponding integration weights)
- One element per girder -> avoid very high local deformation values
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Beam-Column Models: Concentrated Inelasticity

• Concentrated plasticity models =
one or more rotational springs at each end + 
elastic element
– Advantages:

relatively simple, good(?) for interface effects
(e.g. shear sliding, rotation due to bar pull-out) 

– Disadvantages:
properties of rotational spring depend on geometry 
and moment distribution; relation to strains 
requires “plastic hinge length”;
interaction of axial force, moment and shear ????;
generality??? numerical robustness???M

N

Beam-Column Models: Distributed Inelasticity

• Distributed inelasticity models (1d FE model) = 
consistent integration of section response at specific 
“control” or monitoring points
– Advantages:

versatile and consistent;
section response from integration of material response 
thus N-My-Mz interaction (Bernoulli)
(shear and torsion?? Timoshenko, …)
thus numerical robustness is possible

– Disadvantages:
can be expensive (what is the price $$$$) with “wasted 
sections” for localized inelasticity
inaccuracy of local response (localization)
thus better understanding of theory for interpretation of 
local response and damage  is necessary

x

y

z



5

“Economic” Distributed(?) inelasticity models for Columns

• 2 monitoring points at element ends =
inelastic zone model
- Good for columns and girders with low gravity loads
- N-My-Mz interaction straightforward
- shear and torsion ???
- Consistent location of integration point?
- Value of fixed length of inelastic zone?
- Good for softening response

(Fenves/Scott, ASCE 2006)
- Hardening response Spreading inelastic zone 

element SIZE (CL Lee/FCF, ASCE 2009 to appear)
without N-M interaction; is generalization possible??

x

y

z

Good Distributed inelasticity models for Girders

- For girders with significant gravity loads
- 4-5 integration points are advisable (“good plastic hinge length value with 

corresponding integration weights)
- One element per girder -> avoid very high local deformation values
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Section Response for Distributed Inelasticity Models

• Section resultant formulation based on plasticity theory, damage, etc, etc
– Relatively economical, effects can be “lumped” in a composite section response
– Generalization and extension to other than the calibrated cases may not be 

straightforward; hardening is very difficult to incorporate let alone softening
– Section geometry must always be accounted for (are limit capacities sufficient?)

• Integration of 1d, 1 ½ d,  2d, and 3d material response
– For midpoint integration the name fiber model is used; but other integration 

methods are possible
– For many fibers it can be expensive; how many fibers should be used? 

Section Response for “Distributed” Inelasticity Models

• Section resultant formulation based on 
plasticity theory, damage, etc, etc
– Relatively economical, effects can be 

“lumped” in a composite section 
response

– Generalization and extension to other 
than the calibrated cases may not be 
straightforward; hardening is difficult to 
incorporate, let alone softening

– Section geometry must always be 
accounted for (are limit capacities 
sufficient?)

– Hardening ???
– RC section, softening ???
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Section Response for “Distributed” Inelasticity Models

• Integration of 1d, 1 ½ d,  2d, and 3d 
material response
– For midpoint integration the name 

fiber model is used; are other 
integration methods better??

– how many fibers should be used and 
for what purpose? 
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Two key ideas for beam-column elements

• How to incorporate nonlinear geometry under large displacements?
– Formulate the element in the basic reference system without rigid body modes
– Use corotational formulation to transform basic variables to global system
– Keep element force-deformation relation in basic system simple: use linear 

geometry under small deformations
– Use one element per structural member (see point below)
– If second-order effects within structural member are significant, break structural 

member into 2 elements by inserting middle node
• How to formulate a robust frame element?

– Use Hu-Washizu functional with independent interpolation of forces (exact under 
certain conditions), displacements and section deformations
(Taylor/Filippou/Saritas Comp Mech, 2003)

– No need for mesh refinement; keep integration points to 4, or 2 with variable 
integration weight (5 respectively 3 points for girders under large element loads)

Advantages of Mixed Formulation in Corotational Framework

• Nonlinear geometry is uncoupled from basic element response; thus, 
geometric transformation classes (e.g. large displacements, P-Δ, linear) can 
be implemented once for all user frame elements (OpenSees, FEDEASLab)

• Force interpolation functions are exact under certain conditions

• Element deformations arise in weak form and represent well the inelastic 
strain distribution (see next point)

• Without need for mesh and integration point refinement there is no danger 
of localization; local strains are relatively accurate as long as the “plastic 
hinge length” is accurate ( = integration weight of end points) – fiber hinge is 
a good choice for columns under plastic or softening response

• The effect of distributed element loads can be accounted for exactly with the 
force interpolation functions
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Nonlinear geometry with large displacements
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Lee Frame (Lee et al. 1968)
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Brace buckling (Black and Popov 1980)
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P. Uriz and S. Mahin
UC Berkeley

PEER 2004 Annual Meeting

Lateral Buckling: CST and Quad element in 3d space



General multi-step analysis Analysis with scripts Script files NR and its Variants Results

Newton-Raphson algorithm and its variants

The Newton-Raphson algorithm requires that a new tangent stiffness matrix
be assembled at every iteration of every load step. This means that the linear
system of equations for the displacement correction needs to be solved from
scratch at every iteration of every load step. For very large structural models
this is a very expensive proposition.

In the modified Newton-Raphson method the tangent matrix is not updated
at every iteration, but only once at the beginning of each load step. In the
initial stiffness method, the initial stiffness is used throughout the incremen-
tal analysis. Alternative strategies that update the stiffness matrix every so
often are also possible. If the stiffness matrix is not updated, the last de-
composition of the stiffness matrix is used for the solution of the linearized
equilibrium equations and only the load changes at each iteration.

Finally, quasi-Newton methods do not use the tangent stiffness matrix of
the structure but obtain secant stiffness approximations of the inverse of
the stiffness matrix from the displacement vectors of previous iterations.
Among the best known quasi-Newton methods is the BFGS method, which
was originally developed for nonlinear optimization problems. For a brief
description of the method consult Bathe’s 1982 book pp. 759-761.
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General multi-step analysis Analysis with scripts Script files NR and its Variants Results

Response of 2-dof truss under 2 load increments with Δλ = 0.5
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Figure: Newton-Raphson method
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General multi-step analysis Analysis with scripts Script files NR and its Variants Results

Response of 2-dof truss under 2 load increments with Δλ = 0.5
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Figure: Modified Newton-Raphson method
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General multi-step analysis Analysis with scripts Script files NR and its Variants Results

Response of 2-dof truss under 2 load increments with Δλ = 0.5
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Figure: Initial stiffness method
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General multi-step analysis Analysis with scripts Script files NR and its Variants Results

Response of 2-dof truss under 2 load increments with Δλ = 0.5
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Figure: Incrementation without correction
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General multi-step analysis Analysis with scripts Script files NR and its Variants Results

Response of 2-dof truss under 5 load increments with Δλ = 0.2
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General multi-step analysis Analysis with scripts Script files NR and its Variants Results

Response of 2-dof truss under 10 load increments with Δλ = 0.1
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LF control in incrementation Stiffness parameter Algorithm with LF Control LF control in iteration Examples

Response of 2-dof truss under 22 load increments with Δλ = 0.1
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LF control in incrementation Stiffness parameter Algorithm with LF Control LF control in iteration Examples

Response of 2-dof truss under 120 load increments with Δλ = 0.1
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Correlation studies of analysis with experiment: important but …

• Many tests have been conducted and more are under way
– Before understanding the behavior of assemblies one should understand the 

behavior of the constituent parts; not always possible or available
– Reduced scale models require attention to scaling laws (e.g. weld fractures, 

bond-slip)
– “Older” tests are not complete either for lack of enough channels of 

measurement or for lack of reporting (lost data); it is hard to obtain funding to 
“repeat” old tests

– Tests may have experimental errors (these are not reported always)
– Success or failure can be decided by looking at all experimental data, not a 

suitable subset of them
– We can learn from failure as much as we learn from success, even though this 

is not accepted practice in research publications; better paradigm is necessary

A simple start …

RC columns with biaxial bending and variable axial force



14

Low-Moehle Specimen 5: Load-Displacement Response in y
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Low-Moehle Specimen 5: Load-Displacement Response in z
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Low-Moehle Specimen 5: Reinforcing Steel Strain History
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Low-Moehle Specimen 5: Reinforcing Steel Strain History
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Shear Link

Eccentrically braced steel frames

Eccentrically Braced Frame
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Shear Link Experiment (Hjelmstad/Popov 1983)
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Vecchio/Shim (2004) Beams A1 and A2 (shear-compresion)
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Vecchio/Shim (2004) Beam A1 (shear-compresion failure)
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Vecchio/Shim (2004) Beam A3 (compression failure)
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Thomsen-Wallace (2004) Slender Shear Walls
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Lefas-Kotsovos-Ambraseys (1990) Shear Walls

•Shear walls SW21 and SW22 have aspect ratio L/h=2.0
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Paolo Martinelii, Politecnico di Milano, Italy
FCF, University of California, Berkeley

Analytical Model of 

Reinforced Concrete Walls

Height ≈ 20 m

Weight ≈ 226 tons

Web Wall

Flange Wall

Table motion direction

Gravity Column Precast 
Column

Full scale 7 story wall building (Panagiotou, Restrepo, Conte, UCSD)

Paolo Martinelii, Politecnico di Milano, Italy
FCF, University of California, Berkeley

Analytical Model of 

Reinforced Concrete Walls

Confined and unconfined zones in the web wall
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Paolo Martinelii, Politecnico di Milano, Italy
FCF, University of California, Berkeley

Analytical Model of 

Reinforced Concrete Walls

Interstory drift and displacement envelopes

• Excellent agreement in terms of interstory drift and displacement

• Increasing damage due to increasing intensity motions is visible

Paolo Martinelii, Politecnico di Milano, Italy
FCF, University of California, Berkeley

Analytical Model of 

Reinforced Concrete Walls

• Good agreement in terms of residual displacement

• Satisfactory results in terms of floor acceleration

Residual displacement and floor acceleration envelopes
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Paolo Martinelii, Politecnico di Milano, Italy
FCF, University of California, Berkeley

Analytical Model of 

Reinforced Concrete Walls

• Good agreement also in terms of internal forces

• Maximum discrepancy during last motion at shear wall base

Story shear and overturning moment envelopes

Paolo Martinelii, Politecnico di Milano, Italy
FCF, University of California, Berkeley

Analytical Model of 

Reinforced Concrete Walls

• Significant lengthening of fundamental period of specimen (> than 2.5 x)

• Damage evolution tracked with remarkable accuracy

f1 = 1.83 Hz (0.55 s)
Beginning of EQ1

f1 = 0.67 Hz (1.43 s)
End of EQ4

Experimental and analytical frequency spectrum
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Paolo Martinelii, Politecnico di Milano, Italy
FCF, University of California, Berkeley

Analytical Model of 

Reinforced Concrete Walls

Top displacement time history

Conclusions

• Nonlinear Analysis is gradually going to become a designer’s tool for the 
evaluation of existing structures and the design of new important structures

• It can offer significant insights into the global, but particularly into the local 
response of structures and, thus serve for the identification of local failure 
mechanisms

• The current state of the art permits the simulation of the hysteretic behavior 
of structural elements with limited success; deeper understanding of 
material behavior under cyclic loading is, however, indispensable in order to 
arrive at failure mode prediction

• Thorough correlations between numerical models and specimens of 
increasing complexity are indispensable; limited progress has been made to 
date, particularly regarding 3d response 
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Continuing Challenges

• Effect for shear, torsion and interaction with axial force and bending 
moment (3d and not just 2d analysis for shear)

• Effect of bond-slip, pull-out of reinforcing steel

• 3d beam-column joint model that is robust and efficient

• 3d constitutive model for concrete under large inelastic strains (damage, 
dilatation, …)

• Buckling of reinforcing steel (global and not local)

• Low cycle fatigue of structural steel; fracture

• Simulation of structural subassemblies and full-scale structures

• Many more: partitions, slab-wall-column interactions, cladding, infills …

Future outlook

• Much work needs to be done before nonlinear analysis can have 
widespread use, because of the complexity of nonlinear solution algorithms 
and the lack of training of modern engineers; thus researchers and 
educators need to redouble their efforts in clarifying the concepts 

• I hope that with the contributions of all those present in an open forum 
(open platform) we will be able to experience significant progress in the 
nonlinear simulation of concrete structures in the future


