Name_____

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

1)	The conjugate base of H	ISO4 [–] is						
	A) H ₂ SO ₄	B) SO4 ²⁻	C) H ₃ SO ₄ +	D) HSO4 ⁺	E) OH-			
2)	2) The conjugate acid of HSO4 ⁻ is							
	A) H ⁺	B) H ₂ SO ₄	C) HSO4 ⁺	D) SO4 ²⁻	E) HSO ₃ +			
3)	The molar concentration	n of hydronium ion in j	oure water at 25°C is	·				
	A) 7.00	B) 1.0 × 10−7	C) 1.00	D) 1.0 × 10-14	E) 0.00			
4)	The molar concentration	n of hydroxide ion in p	ure water at 25°C is	·				
	A) 1.00	B) 1.0 ×10-14	C) 1.0 × 10−7	D) 0.00	E) 7.00			
5)	What is the pH of an aq	ueous solution at 25°C	in which [OH ⁻] is 0.002	25 M?				
	A) +2.60	B) -2.60	C) +11.40	D) -11.40	E) -2.25			
6)	What is the pH of an aq	ueous solution at 25° th	nat contains 3.98×10^{-9}	M hydronium ion?				
	A) 7.000	B) 9.000	C) 8.400	D) 5.600	E) 3.980			
7)	What is the concentration	on (in M) of hydronium	ions in a solution at 25	5° C with pH = 4.282?				
	A) 4.28	B) 1.92 × 10-10	C) 1.66 × 10 ⁴	D) 9.71	E) 5.22 × 10 ^{−5}			
8)	Which solution below h	as the highest concentr	ration of hydroxide ions	5?				
	A) pH = 3.21	B) pH = 9.82	C) pH = 7.93	D) pH = 12.59	E) pH = 7.00			
9)	What is the pH of a 0.01	5-M aqueous solution	of barium hydroxide?					
	A) 12.18	B) 1.52	C) 12.48	D) 1.82	E) 10.35			
10)	Sodium hydroxide is a s	strong base. This mean	is that					
	A) aqueous solutions	of NaOH contain equal	concentrations of H+ (aq) and OH- (aq)				
	B) NaOH does not dis	ssociate at all when it is	dissolved in water					
	C) NaOH dissociates completely to Na ⁺ (aq) and OH ⁻ (aq) when it dissolves in water							
	D) NaOH cannot be neutralized by a weak acid							
	E) NaOH cannot be n	eutralized by ordinary	means					
11)	Of the following acids,	is <u>not</u> a stro	ong acid.					
	A) HNO ₃	B) HCl	C) HNO ₂	D) HClO ₄	E) H ₂ SO ₄			
12)	Of the following,	is a weak acid.						
	A) HBr	B) HF	C) HClO ₄	D) HCl	E) HNO3			

13) Which one of the following is the weakest acid?

A) HF ($K_a = 6.8 \times 10^{-4}$) B) Acetic acid ($K_a = 1.8 \times 10^{-5}$) C) HNO₂ ($K_a = 4.5 \times 10^{-4}$) D) HClO ($K_a = 3.0 \times 10^{-8}$)

- E) HCN ($K_a = 4.9 \times 10^{-10}$)
- 14) HZ is a weak acid. An aqueous solution of HZ is prepared by dissolving 0.020 mol of HZ in sufficient water to yield 1.00 L of solution. The pH of the solution was 4.93 at 25°C. The K_a of HZ is _____.

	A) 6.9 × 10 ⁻⁹	B) 1.4 × 10 ⁻¹⁰	C) 1.2 × 10 ^{−5}	D) 2.8 × 10 ⁻¹²	E) 9.9 × 10 ⁻²
--	---------------------------	----------------------------	---------------------------	----------------------------	---------------------------

- 15) The K_a of hypochlorous acid (HClO) is 3.0 × 10⁻⁸ at 25°C. What is the % ionization of hypochlorous acid in a 0.015–M aqueous solution of HClO at 25°C?
 A) 1.4 × 10⁻³
 B) 14
 C) 2.1 × 10⁻⁵
 D) 4.5 × 10⁻⁸
 E) 0.14
- 16) The pH of a 0.55–M aqueous solution of hypobromous acid, HBrO, at 25°C is 4.48. What is the value of K_a for HBrO?
 - A) 3.3×10^{-5} B) 2.0×10^{-9} C) 6.0×10^{-5} D) 1.1×10^{-9} E) 3.0×10^{4}
- 17) The K_a of hypochlorous acid (HClO) is 3.0 × 10⁻⁸. What is the pH at 25°C of an aqueous solution that is 0.020 M in HClO?
 A) +2.45
 B) -2.45
 C) -9.22
 D) +9.22
 E) +4.61
- 18) The acid-dissociation constants of phosphoric acid (H₃PO₄) are $K_{a1} = 7.5 \times 10^{-3}$, $K_{a2} = 6.2 \times 10^{-8}$, and $K_{a3} = 4.2 \times 10^{-13}$ at 25°C. What is the pH of a 2.5-M aqueous solution of phosphoric acid?
 - A) 0.13 B) 1.8 C) 2.5 D) 0.40 E) 0.87
- 19) B is a weak base. Which equilibrium corresponds to the equilibrium constant K_a for HB⁺?
 - A) $HB^+(aq) + H_3O^+(aq) \rightleftharpoons H_2B^{2+}(aq) + H_2O(l)$ B) $B(aq) + H_2O(l) \rightleftharpoons HB^+(aq) + OH^-(aq)$ C) $HB^+(aq) + OH^-(aq) \rightleftharpoons B(aq) + H_2O(l)$ D) $B(aq) + H_3O^+(aq) \rightleftharpoons HB^+(aq) + H_2O(l)$ E) $HB^+(aq) + H_2O(l) \rightleftharpoons B(aq) + H_3O^+(aq)$
- 20) The acid-dissociation constant for chlorous acid, HClO₂, at 25°C is 1.0 × 10⁻². Calculate the concentration of H⁺ if the initial concentration of acid is 0.100 M..
 A) 1.0 × 10⁻³
 B) 1.0 × 10⁻²
 C) 2.7 × 10⁻²
 D) 3.7 × 10⁻²
 E) 3.2 × 10⁻²
- 21) Ammonia is a _____.A) weak baseB) strong acidC) saltD) strong baseE) weak acid
- 22) The pH of a 0.10-M solution of a weak base is 9.82. What is the Kb for this base?A) 4.3×10^{-8} B) 2.0×10^{-5} C) 6.6×10^{-4} D) 2.1×10^{-4} E) 8.8×10^{-8}

23) Using the data in the table, which of the conjugate bases below is the strongest base?

Acid	Ka
HOAc	1.8×10^{-5}
HCHO ₂	1.8×10^{-4}
HClO	3.0×10^{-8}
HF	6.8×10^{-4}
A) F-	
B) ClO-	
C) CHO2-	
D) OAc-	
E) OAc- and	I CHO2-

24) The base-dissociation constant, K_b, for pyridine, C₅H₅N, is 1.4 × 10⁻⁹. THe acid-dissociation constant, K_a, for the pyridinium ion, C₅H₅NH⁺, is _____.

A) 7.1 × 10 ^{−6}	B) 1.4 $\times 10^{-5}$	C) 1.0 × 10 ⁻⁷	D) 1.4 × 10 ⁻²³	E) 7.1 × 10 ⁻⁴

25) Which of the following ions will act as a weak base in water?

A)	ClO-
B)	Cl-

- C) NO3⁻
- D) OH-

E) None of the above will act as a weak base in water.

26) Determine the pH of a 0.15–M aqueous solution of KF. For hydrofluoric acid, $K_a = 7.0 \times 10^{-4}$.

A) 5.83	B) 6.59	C) 8.16	D) 2.33	E) 12.01		
(7) A 0.0035–M aqueous solution of a particular compound has $pH = 2.46$. The compound is						
A) a strong base	B) a weak acid	C) a weak base	D) a strong acid	E) a salt		

28) The K_a for formic acid (HCHO₂) is 1.8×10^{-4} . What is the pH of a 0.35–M aqueous solution of sodium formate (NaCHO₂)?

A) 5.36 B) 8.64 C) 10.71 D) 4.20 E) 3.29

29) A 0.1-M aqueous solution of _____ will have a pH of 7.0 at 25.0°C.

NaOCl KCl NH4Cl Ca(OAc)2 A) NaOCl B) KCl C) NH₄Cl D) $Ca(OAc)_2$ E) KCl and NH₄Cl 30) An aqueous solution of ______ will produce a basic solution. A) NaCl B) NaHSO₄ C) KBr D) NH4ClO4 E) Na₂SO₄ 31) Of the following, the acid strength of ______ is the greatest. B) CH₃COOH A) Cl₃CCOOH C) BrCH₂COOH D) ClCH₂COOH E) Cl₂CHCOOH 32) A 0.10-M solution of the sodium salt of which of the following anions will have the highest pH? B) IO3-C) IO-D) ClO-A) ClO2⁻ E) IO2-33) Which one of the following cannot act as a Lewis base? B) BF3 C) Cl-D) CN-A) NH3 E) H_2O 34) Metal oxides are typically ______ while nonmetal oxides are typically ______. A) acidic, basic B) basic, amphoteric C) basic, acidic D) amphoteric, basic E) amphoteric, acidic 35) Which equation correctly represents the reaction between carbon dioxide and water? A) CO₂ (aq) + H₂O (l) \rightarrow H₂CO (aq) + O₂ (g) B) CO₂ (aq) + H₂O (l) \rightarrow H₂ (g) + CO (g) + O₂ (g) C) CO₂ (aq) + H₂O (l) \rightarrow H₂O₂ (aq) + CO (g) D) CO₂ (aq) + 2H₂O (l) \rightarrow CH₄ (g) + 2O₂ (aq) E) CO₂ (aq) + H₂O (l) \rightarrow H₂CO₃ (aq) 36) Which of the following substances will dissolve in water to produce an acidic solution? A) NH₃ B) Na₂O C) $NaC_2H_3O_2$ D) $C_6H_{12}O_6$ E) FeCl₃

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

1) B ID: chem9b 16.1-6 2) B ID: chem9b 16.1-7 3) B ID: chem9b 16.1-9 4) C ID: chem9b 16.1-10 5) C ID: chem9b 16.1-15 6) C ID: chem9b 16.1-16 7) E ID: chem9b 16.1-18 8) D ID: chem9b 16.1-22 9) C ID: chem9b 16.1-25 10) C ID: chem9b 16.1-28 11) C ID: chem9b 16.1–31 12) B ID: chem9b 16.1-32 13) E ID: chem9b 16.1-33 14) A ID: chem9b 16.1-34 15) E ID: chem9b 16.1-36 16) B ID: chem9b 16.1-37 17) E ID: chem9b 16.1-40 18) E ID: chem9b 16.1-47 19) E ID: chem9b 16.1-49 20) C ID: chem9b 16.1-52 21) A ID: chem9b 16.1-53

Answer Key Testname: CH_14_PRAC_TEST_ACIDS_BASES.TST

- 22) A ID: chem9b 16.1–54
- 23) B ID: chem9b 16.1-60
- 24) A ID: chem9b 16.1-62
- 25) A ID: chem9b 16.1-65
- 26) C ID: chem9b 16.1-68
- 27) D ID: chem9b 16.1-69
- 28) B ID: chem9b 16.1-72
- 29) B ID: chem9b 16.1-74
- 30) E ID: chem9b 16.1-77
- 31) A ID: chem9b 16.1-82
- 32) C ID: chem9b 16.1-85
- 33) B ID: chem9b 16.1-90
- 34) C ID: chem9b 22.1-70
- 35) E ID: chem9b 22.1–127
- 36) E ID: chem9b 16.2-11

Advanced Placement Chemistry: 1997 Free Response (and Answers)

- Question 1 is question 4 in previous years, question 2 is question 1 in previous years and questions 3&4 are questions 2&3 in previous years.
- students are now allowed 10 minutes to answer question 1, after which they must seal that portion of the test.
- [square root] applies to the numbers enclosed in parenthesis immediately following
- All simplifying assumptions are justified within 5%.
- One point deduction for a significant figure or math error, applied only once per problem.
- No credit earned for numerical answer without justification.

[...]

(2) The overall dissociation of oxalic acid, $H_2C_2O_4$ is represented below. The overall dissociation constant is also indicated.

$$H_2C_2O_4 <==> 2 H^+ + C_2O_4^{-2-} K = 3.78 \times 10^{-6}$$

a) What volume of 0.400-molar NaOH is required to neutralize completely a 5.00×10^{-3} -mole sample of pure oxalic acid?

b) Give the equations representing the first and second dissociations of oxalic acid. Calculate the value of the first dissociation constant, K_1 , for oxalic acid if the value of the second dissociation constant, K_2 , is 6.40 x 10⁻⁵

c) To a 0.015-molar solution of oxalic acid, a strong acid is added until the pH is 0.5. Calculate the $[C_2O_4^{2-}]$ in the resulting solution. (Assume the change in volume is negligible.)

d) Calculate the value of the equilibrium constant, K_b , for the reaction that occurs when solid $Na_2C_2O_4$ is dissolved in water.

(2)

(a) $5.00 \ge 10^{-3} \mod H_2C_2O_4 = 1.00 \ge 10^{-2} \mod H^+ = 1.00 \ge 10^{-2} \mod OH^ 1.00 \ge 10^{-2} \mod OH^- / 0.400 \ M = 0.0250 \ L (25.0 \ mL).$

Calculation from moles to volume; use of incorrect moles still earns point.

(b) There are two successive dissociations:

 $H_2C_2O_4 \ll H^+ + HC_2O_4^-$ (equilibrium constant = K₁)

 $HC_2O_4^- \ll H^+ + C_2O_4^{2-}$ (equilibrium constant = K₂)

Acceptable alternatives are the use of H_2O as reactant and H_3O^+ as product or writing of correct equilibrium constant expressions. Consistent errors (such as missing atoms or charges) are only penalized once.

$$K_{12} = K_1$$
 times K_2 , thus

 $K_1 = K_{12} / K_2 = 3.78 \times 10^{-4} / 6.40 \times 10^{-5} = 5.91 \times 10^{-2}$; one point c)

pH = 0.5 therefore $H^+ = 0.32M$ (pH controls 1 sig. fig. in answer)

(This point also earned if conversion of K to pK is correct.)

K small therefore amount of dissociation small therefore assume $[H_2C_2O_4] = 0.015$

 $K_{12} = ([H^+]^2 [C_2 O_4^{2-}]) / [H_2 C_2 O_4],$

then $[C_2O_4^{2^-}] = [(3.78 \times 10^{-6}) (0.015)] / (0.32)^2 = 6 \times 10^{-7}$.

(Here 1, 2, or 3 sig. fig.'s accepted) Two points for correct set-up with substitution and final calculation (-1 point for each error).

Alternative methods, included proper use of Henderson-Hasselbalch equation, can earn credit.

 $C_2O_4^{2-} + H_2O \ll HC_2O_4^{-} + OH^{-}$ is the only significant reaction,

so $K_b = K_w / K_2 = 1.00 \text{ x } 10^{-14} / 6.40 \text{ x } 10^{-5} = 1.56 \text{ x } 10^{-10}$

No credit earned if K_1 or K_{12} used; 1, 2, or 3 sig. fig.'s accepted since number of significant figures for value of K_w not indicated in table on examination.

AP chemistry, Ch. 14, Acids & Bases Practice Test (1) This question implies that HSCY is an acid, HSCY is a protondonor, therefore SCN2 is the ron; base, Or, react it with a base to see what is produced. $|+SO_{4}^{-} + |+O|| \implies SO_{4}^{2} \stackrel{-}{-} + |+O||$ conjugate A-B pair proton acceptor acid (2) HSOLF is a base here. Let's find its conjugate acid. HSONE + HOH (?) H2SOU + OH-protonger protonget base conjugate Jose pair acid (B (not likey to occur in water!) (B)(3) We monize this, or solve for [H30+]; (3) We monize this, or solve for [H30+]; (3) We monize this, or solve for [H30+]; (4) Where [H30+]=[01+]=1.00×10⁻¹⁴ where [H30+]=[01+] (f) same as #3(5) p0H = -log [0H = -log [0.0025] = 2.60 pH = 14 - 2.60 = 11.406 pH = - lug [H30+] = - lug [3.98 × 10-9] = 8.400 C (8) most basic = highest pHD (7) $pH = -log [H_30]$ $4.282 = -100, [H_{30}]$ -4.282= log, TH3071 $10^{-4.282} = [H_{30}^{+}] = 5.22 \times 10^{-5} (E)$

0.015 pH=14-pOHpOH=-log[0.030]=1.523L> pH=14-1,523=12,48 (C) (13) smallest Ka = weakes facid E HCN M= - - - - - - - - - - - - M - - M $\hat{\mathbf{n}}$ pH=4.93 = -10g[H+] $[H+]=10^{-4.93} = 1.175 \times 10^{-5}M = X$ $K_{q} = \frac{[H+][Z]}{[H+Z]} = \frac{(1.175 \times 10^{-5})^{2}}{0.02 - (1.175 \times 10^{-5})} = 6.9 \times 10^{-9} (A)$) $H(lo \ge H^+ + (lo^- 3.0 \times 10^{-8} K_q = \frac{[H+][c_{lor}]}{[H(ac]]}$ I 0.015 c = 0C -x = +x + xE .015-x x = x $K_q = \frac{x^2}{0.015 - x}$ $3.0 \times 10^{-8} = \frac{\times^2}{0.015 - \times} \approx \frac{\times^2}{0.015}$ 4.5 × 10- = × Z 2.12 ×10-5=× 100x 7.12×10-5 = [H+] og ×100 0.015 [Head]0 $\sqrt{Check!} \frac{217 \times 10^5}{1015} \times 100 = 0.14\%$ Assumption of 0.14% = 10 inization (E)

PAGE HBro = H++Bro I 0.55 pH= 4.48=-log [H+] +K +4 -X -4.18= /0910 LH+1 X 0.55-× 10^{-4.48} = ∑H+7 >3, 31×10⁻⁵ = [H+7] $K_q = \frac{[H+][Br0]}{[HBr0]} = \frac{\times^2}{0.55 \times 10^{-3}}$ $=\frac{(3.31 \times 10^{-5})^2}{(0.55 - 3.31 \times 10^{-5})} = 2.0 \times 10^{-9}$ $K_{g} = 3.0 \times 10^{-8}$ $|HOCl = H^+ + OCl^-$ 17, C) Ø I 0.070 $K_{a} = \underline{IH^{\dagger}} \underbrace{[OCe^{-}]}_{[I^{\dagger}OCe^{-}]} = \frac{\chi^{2}}{0.020 - \chi}$ +× ナス C -× 0.020-2 X X E .020-X 3,0×100 2 22 $\Im Check: -F = 0.128 \text{ OK } = 0.128 \text{ parses 5% fest}$ x2= 6×10-10 =x = 2.45×10-5 $\mathbf{PH} = -\log[\mathbf{H}^{+}] = -\log[\mathbf{Z}^{+}\mathbf{y}_{\mathbf{X}}]$ pH = 4.61(E)Three acids mixed together. The 1stis 100,000 x stronger than the 2nd, which is 100,000 x stronger than the third. Assume that strongest acid dominates pt, $H_2 R_{04} = H^{\dagger} + H_2 R_4^{-} K_4 = 7.5 \times 10^{-3}$ I = 2.5 + 1 + 1 + 1 + 1 = 12.5-X

.

20

22) $B + H_{20} \implies Hg^{+} + 0H^{-}$ $k_{g} = ?= [0H^{-}][Hg^{+}]$ I 0.1 C -x +x +x - -(6.6|x|0^{-5})^{2} E 0.1-x x x - -(6.6|x|0^{-5})^{2} $0.1 - 6.6|x|0^{-5}$ $0.1 - 6.6|x|0^{-5}$ 0.1 - 6.

23) weakest acid = HCOO { (You can ... strongest base = COO { verify this using Ku=Ka:Kb} SIX (24) $K_W = K_a K_b$ $K_q = \frac{K_W}{K_b} = \frac{1.0 \times 10^{-14}}{1.4 \times 10^{-9}} = 7.1 \times 10^{-6}$ (A) (25) A = yes / b and C will not accept protons because they are the conjugate based of strong acids. They will not react D is a strong base > will not affect pH 26) KF - HO> K+ + F-> conj. base of neck acid $K_b = \frac{K_w}{K_q} = \frac{1 \times 10^{-14}}{7 \times 10^{-4}} = 1.4 \times 10^{-11}$ F+HOH > HF+OH I.15 · ++ ++ C -X $\frac{1.5 \times 10^{-6} \times 100 = .001\%}{.15 5\% assumption}$ XX E.15-X 1.4×10-"= 2 & 2 x=2.14×10-12 $x = 1.5 \times 10^{-10} = 0.17^{-7}$ pott=-log[at]=-log[1.5×10-6]=5.83 pH=14-5.83=8.17 (c) $HX \longrightarrow H^+ + X^-$ 100% I,0035 c _.0035 E O +.0035 +.0035 .0035 .0035 (27) pH= 2.46: This thing is an acid d issociation 15 implied $[H_{p}^{+}] = 10^{-2.46} = 3.5 \times 10^{-3} = 0.0035 M$ because this compound's equilibrium concentration of [H307] is equal to the compound's nominal (initial) cone, I guess it's a strong acid, I'm iffy on this question. (D)

-> Nat + CHQ-28) NaCHUZ PAGE SEVEN Conjugate base of weak acid vill not affect pH $\begin{array}{c} \text{CHO}_{2} + \text{HoH} = +\text{CHO}_{2} + \text{OH} - \frac{10 \times 10^{-14}}{K_{3}} = \frac{10 \times 10^{-14}}{1.8 \times 10^{-4}} \\ \text{O} & \text{O} \\ - \times & + \times & \frac{1}{2} \\ \frac{35 - \times}{K_{3}} = \frac{10 \times 10^{-14}}{K_{3}} = \frac{10 \times 10^{-14}}{1.8 \times 10^{-4}} \\ \text{K}_{5} = \frac{10 \times 10$ 工 0.35 x- J 5 E .35-X Check: 4.4×10-6 135 × 100=.0013 8 Vassumption CK $k_{1} = \frac{\chi^{2}}{35 \times 2} = 5.56 \times 10^{-11} \approx \frac{\chi^{2}}{35}$ $\times^2 = 1.946 \times 10^{-11}$ $\chi = 4.41 \times 10^{-6} = [01+7]$ pot=-log[0+] = -log[4.41×10-6]= 5.36 pH=14-pOH = 8,64 B B, KCl, has neither the conj. base of a weak acid nor the conj. acid of a weak base. This it is not a hydrolyzing soult. SOy is the conjugate base of a work acid Soy2+ HOH = HSAy+ OH Sug² thus produces hydroxide icms when dissolved in H2O, Cl o electrons H-C-C-0H strongly, e-c- 2-0H away from A) de 0-H bond H acetic acid wakening the trichloroacetic acid band, making it easier for H+ to escape,

32) highest plt will come from strongest base. EIGHT Kw=KgKy, SO strongest base will come from weakest conjugate acid HCOO7 HIO HCRO HIOZ HEOZ > HEO 1+702 H703>H702>HIO HCOO is a stronger acid that HIO because ce is more electronegative esting pull than I . Cl-O-H, weaker O-H bond, Htensily removed I-O-It stronger 0-H band, Ht harder to release electrons, weakly pulled toward I $strongestbase = IO^{-}(C)$ Fig.F. _ p great Lewis acid, but can + BFz donate an e-pair su it's a lovsy Lewis base. no unshared pairs on B, and B"likes" to accept e- pr to complete its actet. 36) Fe³⁺ = highly charged in metal ion = good Lewis acid 34) C. Proton Pulled towar

PAGE NINE 1997 FreeResponse #2 $H_2GU_4 \rightleftharpoons 2H^+ + C_2U_4^2 = 3.78 \times 10^3$ (9) There are a couple of works to do this. Here is one ? 2Nholt + HzCzQy -> 2Holt + NazCzQ4 > 1.00 × 10-2 N 5.00 × 10-3 moles 5.00×10-3 motes Az(24) 2moles NAOH = 1.00×10-2 NAOH I male Hz(24) $M = \frac{n}{V} \implies V = \frac{n}{M} = \frac{0.0100 \text{ mol} Na014}{0.400 \text{ mol} Na04} = \frac{0.0250 \text{ L}}{\text{E25.0m} 0}$ Ka, (b) $H_3C_2U_4 \Longrightarrow H^+ + HC_2U_4$ $HG_{2} = H^{\dagger} + C_{2} G_{2}^{2}$ Kaz H2 C204 == 2H++ (204 - Koverall (Ka,)(Kaz) = Kaoversell $(K_{a_1})(G. 40 \times 10^5) = 3.78 \times 10^{-6}$ $K_{q_1} = 5.91 \times 10^{-2}$ You don't know how to do this yet. Sonry. Oops. We haven't worked one like this yet. Staytoned for buffers, C_{204}^{2} + HOH = HC_{204} + OH - K_{5} - K_{a} $SK_{b} = \frac{1.0 \times NCH}{6.40 \times NCS} = 1.56 \times 10^{-10}$