Name \qquad

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

1) The conjugate base of HSO_{4}^{-}is
A) $\mathrm{H}_{2} \mathrm{SO}_{4}$
B) $\mathrm{SO}_{4}{ }^{2-}$
C) $\mathrm{H}_{3} \mathrm{SO}_{4}^{+}$
D) $\mathrm{HSO}_{4}{ }^{+}$
E) OH^{-}
2) The conjugate acid of HSO_{4}^{-}is
A) H^{+}
B) $\mathrm{H}_{2} \mathrm{SO}_{4}$
C) $\mathrm{HSO}_{4}{ }^{+}$
D) $\mathrm{SO}_{4}{ }^{2-}$
E) $\mathrm{HSO}_{3}{ }^{+}$
3) The molar concentration of hydronium ion in pure water at $25^{\circ} \mathrm{C}$ is \qquad .
A) 7.00
B) 1.0×10^{-7}
C) 1.00
D) 1.0×10^{-14}
E) 0.00
4) The molar concentration of hydroxide ion in pure water at $25^{\circ} \mathrm{C}$ is \qquad -
A) 1.00
B) 1.0×10^{-14}
C) 1.0×10^{-7}
D) 0.00
E) 7.00
5) What is the pH of an aqueous solution at $25^{\circ} \mathrm{C}$ in which $\left[\mathrm{OH}^{-}\right]$is 0.0025 M ?
A) +2.60
B) -2.60
C) +11.40
D) -11.40
E) -2.25
6) What is the pH of an aqueous solution at 25° that contains $3.98 \times 10^{-9} \mathrm{M}$ hydronium ion?
A) 7.000
B) 9.000
C) 8.400
D) 5.600
E) 3.980
7) What is the concentration (in M) of hydronium ions in a solution at $25^{\circ} \mathrm{C}$ with $\mathrm{pH}=4.282$?
A) 4.28
B) 1.92×10^{-10}
C) 1.66×10^{4}
D) 9.71
E) 5.22×10^{-5}
8) Which solution below has the highest concentration of hydroxide ions?
A) $\mathrm{pH}=3.21$
B) $\mathrm{pH}=9.82$
C) $\mathrm{pH}=7.93$
D) $\mathrm{pH}=12.59$
E) $\mathrm{pH}=7.00$
9) What is the pH of a $0.015-\mathrm{M}$ aqueous solution of barium hydroxide?
A) 12.18
B) 1.52
C) 12.48
D) 1.82
E) 10.35
10) Sodium hydroxide is a strong base. This means that \qquad .
A) aqueous solutions of NaOH contain equal concentrations of $\mathrm{H}^{+}(\mathrm{aq})$ and $\mathrm{OH}^{-}(\mathrm{aq})$
B) NaOH does not dissociate at all when it is dissolved in water
C) NaOH dissociates completely to $\mathrm{Na}^{+}(\mathrm{aq})$ and OH^{-}(aq) when it dissolves in water
D) NaOH cannot be neutralized by a weak acid
E) NaOH cannot be neutralized by ordinary means
11) Of the following acids, \qquad is not a strong acid.
A) HNO_{3}
B) HCl
C) HNO_{2}
D) HClO_{4}
E) $\mathrm{H}_{2} \mathrm{SO}_{4}$
12) Of the following, \qquad is a weak acid.
A) HBr
B) HF
C) HClO_{4}
D) HCl
E) HNO_{3}
13) Which one of the following is the weakest acid?
A) $\mathrm{HF}\left(\mathrm{K}_{\mathrm{a}}=6.8 \times 10^{-4}\right)$
B) Acetic acid $\left(\mathrm{K}_{\mathrm{a}}=1.8 \times 10^{-5}\right)$
C) $\mathrm{HNO}_{2}\left(\mathrm{~K}_{\mathrm{a}}=4.5 \times 10^{-4}\right)$
D) $\mathrm{HClO}\left(\mathrm{K}_{\mathrm{a}}=3.0 \times 10^{-8}\right)$
E) $\mathrm{HCN}\left(\mathrm{K}_{\mathrm{a}}=4.9 \times 10^{-10}\right)$
14) HZ is a weak acid. An aqueous solution of HZ is prepared by dissolving 0.020 mol of HZ in sufficient water to yield 1.00 L of solution. The pH of the solution was 4.93 at $25^{\circ} \mathrm{C}$. The K_{a} of HZ is \qquad -.
A) 6.9×10^{-9}
B) 1.4×10^{-10}
C) 1.2×10^{-5}
D) 2.8×10^{-12}
E) 9.9×10^{-2}
15) The K_{a} of hypochlorous acid (HClO) is 3.0×10^{-8} at $25^{\circ} \mathrm{C}$. What is the $\%$ ionization of hypochlorous acid in a $0.015-\mathrm{M}$ aqueous solution of HClO at $25^{\circ} \mathrm{C}$?
A) 1.4×10^{-3}
B) 14
C) 2.1×10^{-5}
D) 4.5×10^{-8}
E) 0.14
16) The pH of a $0.55-\mathrm{M}$ aqueous solution of hypobromous acid, HBrO , at $25^{\circ} \mathrm{C}$ is 4.48 . What is the value of K_{a} for HBrO ?
A) 3.3×10^{-5}
B) 2.0×10^{-9}
C) 6.0×10^{-5}
D) 1.1×10^{-9}
E) 3.0×10^{4}
17) The K_{a} of hypochlorous acid (HClO) is 3.0×10^{-8}. What is the pH at $25^{\circ} \mathrm{C}$ of an aqueous solution that is 0.020 M in HClO ?
A) +2.45
B) -2.45
C) -9.22
D) +9.22
E) +4.61
18) The acid-dissociation constants of phosphoric acid $\left(\mathrm{H}_{3} \mathrm{PO}_{4}\right)$ are $\mathrm{K}_{\mathrm{a} 1}=7.5 \times 10^{-3}, \mathrm{~K}_{\mathrm{a} 2}=6.2 \times 10^{-8}$, and $\mathrm{K}_{\mathrm{a}} 3=4.2 \times 10^{-13}$ at $25^{\circ} \mathrm{C}$. What is the pH of a $2.5-\mathrm{M}$ aqueous solution of phosphoric acid?
A) 0.13
B) 1.8
C) 2.5
D) 0.40
E) 0.87
19) B is a weak base. Which equilibrium corresponds to the equilibrium constant K_{a} for HB^{+}?
A) $\mathrm{HB}^{+}(\mathrm{aq})+\mathrm{H}_{3} \mathrm{O}^{+}(\mathrm{aq}) \rightleftharpoons \mathrm{H}_{2} \mathrm{~B}^{2+}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l})$
B) $\mathrm{B}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \rightleftharpoons \mathrm{HB}^{+}(\mathrm{aq})+\mathrm{OH}^{-}(\mathrm{aq})$
C) $\mathrm{HB}^{+}(\mathrm{aq})+\mathrm{OH}^{-}(\mathrm{aq}) \rightleftharpoons \mathrm{B}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l})$
D) $\mathrm{B}(\mathrm{aq})+\mathrm{H}_{3} \mathrm{O}^{+}(\mathrm{aq}) \rightleftharpoons \mathrm{HB}^{+}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l})$
E) $\mathrm{HB}^{+}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \rightleftharpoons \mathrm{B}(\mathrm{aq})+\mathrm{H}_{3} \mathrm{O}^{+}(\mathrm{aq})$
20) The acid-dissociation constant for chlorous acid, HClO_{2}, at $25^{\circ} \mathrm{C}$ is 1.0×10^{-2}. Calculate the concentration of H^{+}if the initial concentration of acid is 0.100 M ..
A) 1.0×10^{-3}
B) 1.0×10^{-2}
C) 2.7×10^{-2}
D) 3.7×10^{-2}
E) 3.2×10^{-2}
21) Ammonia is a \qquad .
A) weak base
B) strong acid
C) salt
D) strong base
E) weak acid
22) The pH of a $0.10-\mathrm{M}$ solution of a weak base is 9.82 . What is the K_{b} for this base?
A) 4.3×10^{-8}
B) 2.0×10^{-5}
C) 6.6×10^{-4}
D) 2.1×10^{-4}
E) 8.8×10^{-8}
23) Using the data in the table, which of the conjugate bases below is the strongest base?

Acid	K_{a}
HOAc^{2}	1.8×10^{-5}
HCHO_{2}	1.8×10^{-4}
HClO	3.0×10^{-8}
HF	6.8×10^{-4}

A) F^{-}
B) ClO^{-}
C) CHO_{2}^{-}
D) OAc^{-}
E) OAc^{-}and CHO_{2}^{-}
24) The base-dissociation constant, K_{b}, for pyridine, $\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{~N}$, is 1.4×10^{-9}. THe acid-dissociation constant, K_{a}, for the pyridinium ion, $\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{NH}^{+}$, is \qquad -
A) 7.1×10^{-6}
B) 1.4×10^{-5}
C) 1.0×10^{-7}
D) 1.4×10^{-23}
E) 7.1×10^{-4}
25) Which of the following ions will act as a weak base in water?
A) ClO^{-}
B) Cl^{-}
C) $\mathrm{NO}_{3}-$
D) OH^{-}
E) None of the above will act as a weak base in water.
26) Determine the pH of a $0.15-\mathrm{M}$ aqueous solution of KF . For hydrofluoric acid, $\mathrm{K}_{\mathrm{a}}=7.0 \times 10^{-4}$.
A) 5.83
B) 6.59
C) 8.16
D) 2.33
E) 12.01
27) A $0.0035-\mathrm{M}$ aqueous solution of a particular compound has $\mathrm{pH}=2.46$. The compound is \qquad .
A) a strong base
B) a weak acid
C) a weak base
D) a strong acid
E) a salt
28) The K_{a} for formic acid $\left(\mathrm{HCHO}_{2}\right)$ is 1.8×10^{-4}. What is the pH of a $0.35-\mathrm{M}$ aqueous solution of sodium formate (NaCHO_{2})?
A) 5.36
B) 8.64
C) 10.71
D) 4.20
E) 3.29
29) A $0.1-\mathrm{M}$ aqueous solution of \qquad will have a pH of 7.0 at $25.0^{\circ} \mathrm{C}$.

$\mathrm{NaOCl} \quad \mathrm{KCl} \quad \mathrm{NH}_{4} \mathrm{Cl} \quad \mathrm{Ca}(\mathrm{OAc})_{2}$

A) NaOCl
B) KCl
C) $\mathrm{NH}_{4} \mathrm{Cl}$
D) $\mathrm{Ca}(\mathrm{OAc})_{2}$
E) KCl and $\mathrm{NH}_{4} \mathrm{Cl}$
30) An aqueous solution of \qquad will produce a basic solution.
A) NaCl
B) NaHSO_{4}
C) KBr
D) $\mathrm{NH}_{4} \mathrm{ClO}_{4}$
E) $\mathrm{Na}_{2} \mathrm{SO}_{4}$
31) Of the following, the acid strength of \qquad is the greatest.
A) $\mathrm{Cl}_{3} \mathrm{CCOOH}$
B) $\mathrm{CH}_{3} \mathrm{COOH}$
C) $\mathrm{BrCH}_{2} \mathrm{COOH}$
D) $\mathrm{ClCH}_{2} \mathrm{COOH}$
E) $\mathrm{Cl}_{2} \mathrm{CHCOOH}$
32) A $0.10-\mathrm{M}$ solution of the sodium salt of which of the following anions will have the highest pH ?
A) $\mathrm{ClO}_{2}{ }^{-}$
B) $\mathrm{IO}_{3}-$
C) IO^{-}
D) ClO^{-}
E) IO_{2}^{-}
33) Which one of the following cannot act as a Lewis base?
A) NH_{3}
B) BF_{3}
C) Cl^{-}
D) CN^{-}
E) $\mathrm{H}_{2} \mathrm{O}$
34) Metal oxides are typically \qquad while nonmetal oxides are typically \qquad .
A) acidic, basic
B) basic, amphoteric
C) basic, acidic
D) amphoteric, basic
E) amphoteric, acidic
35) Which equation correctly represents the reaction between carbon dioxide and water?
A) $\mathrm{CO}_{2}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \rightarrow \mathrm{H}_{2} \mathrm{CO}(\mathrm{aq})+\mathrm{O}_{2}(\mathrm{~g})$
B) $\mathrm{CO}_{2}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \rightarrow \mathrm{H}_{2}(\mathrm{~g})+\mathrm{CO}(\mathrm{g})+\mathrm{O}_{2}(\mathrm{~g})$
C) $\mathrm{CO}_{2}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \rightarrow \mathrm{H}_{2} \mathrm{O}_{2}(\mathrm{aq})+\mathrm{CO}(\mathrm{g})$
D) $\mathrm{CO}_{2}(\mathrm{aq})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \rightarrow \mathrm{CH}_{4}(\mathrm{~g})+2 \mathrm{O}_{2}(\mathrm{aq})$
E) $\mathrm{CO}_{2}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \rightarrow \mathrm{H}_{2} \mathrm{CO}_{3}(\mathrm{aq})$
36) Which of the following substances will dissolve in water to produce an acidic solution?
A) NH_{3}
B) $\mathrm{Na}_{2} \mathrm{O}$
C) $\mathrm{NaC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}$
D) $\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}$
E) FeCl_{3}

Answer Key

Testname: CH_14_PRAC_TEST_ACIDS_BASES.TST

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

1) B

ID: chem9b 16.1-6
2) B

ID: chem9b 16.1-7
3) B

ID: chem9b 16.1-9
4) C

ID: chem9b 16.1-10
5) C

ID: chem9b 16.1-15
6) C

ID: chem9b 16.1-16
7) E

ID: chem9b 16.1-18
8) D

ID: chem9b 16.1-22
9) C

ID: chem9b 16.1-25
10) C

ID: chem9b 16.1-28
11) C

ID: chem9b 16.1-31
12) B

ID: chem9b 16.1-32
13) E

ID: chem9b 16.1-33
14) A

ID: chem9b 16.1-34
15) E

ID: chem9b 16.1-36
16) B

ID: chem9b 16.1-37
17) E

ID: chem9b 16.1-40
18) E

ID: chem9b 16.1-47
19) E

ID: chem9b 16.1-49
20) C

ID: chem9b 16.1-52
21) A

ID: chem9b 16.1-53

Testname: CH_14_PRAC_TEST_ACIDS_BASES.TST
22) A

ID: chem9b 16.1-54
23) B

ID: chem9b 16.1-60
24) A

ID: chem9b 16.1-62
25) A

ID: chem9b 16.1-65
26) C

ID: chem9b 16.1-68
27) D

ID: chem9b 16.1-69
28) B

ID: chem9b 16.1-72
29) B

ID: chem9b 16.1-74
30) E

ID: chem9b 16.1-77
31) A

ID: chem9b 16.1-82
32) C

ID: chem9b 16.1-85
33) B

ID: chem9b 16.1-90
34) C

ID: chem9b 22.1-70
35) E

ID: chem9b 22.1-127
36) E

ID: chem9b 16.2-11

Advanced Placement Chemistry: 1997 Free Response (and Answers)

- Question 1 is question 4 in previous years, question 2 is question 1 in previous years and questions $3 \& 4$ are questions $2 \& 3$ in previous years.
- students are now allowed 10 minutes to answer question 1 , after which they must seal that portion of the test.
- [square root] applies to the numbers enclosed in parenthesis immediately following
- All simplifying assumptions are justified within 5\%.
- One point deduction for a significant figure or math error, applied only once per problem.
- No credit earned for numerical answer without justification.
[...]
(2) The overall dissociation of oxalic acid, $\mathrm{H}_{2} \mathrm{C}_{2} \mathrm{O}_{4}$ is represented below. The overall dissociation constant is also indicated.

$$
\mathrm{H}_{2} \mathrm{C}_{2} \mathrm{O}_{4}<===>2 \mathrm{H}^{+}+\mathrm{C}_{2} \mathrm{O}_{4}{ }^{2-} \mathrm{K}=3.78 \times 10^{-6}
$$

a) What volume of 0.400 -molar NaOH is required to neutralize completely a 5.00×10^{-3}-mole sample of pure oxalic acid?
b) Give the equations representing the first and second dissociations of oxalic acid. Calculate the value of the first dissociation constant, K_{1}, for oxalic acid if the value of the second dissociation constant, K_{2}, is 6.40×10^{-5}
c) To a 0.015-molar solution of oxalic acid, a strong acid is added until the pH is 0.5 . Calculate the $\left[\mathrm{C}_{2} \mathrm{O}_{4}{ }^{2-}\right.$] in the resulting solution. (Assume the change in volume is negligible.)
d) Calculate the value of the equilibrium constant, K_{b}, for the reaction that occurs when solid $\mathrm{Na}_{2} \mathrm{C}_{2} \mathrm{O}_{4}$ is dissolved in water.
(2)
(a) $5.00 \times 10^{-3} \mathrm{~mol} \mathrm{H}_{2} \mathrm{C}_{2} \mathrm{O}_{4}=1.00 \times 10^{-2} \mathrm{~mol} \mathrm{H}^{+}=1.00 \times 10^{-2} \mathrm{~mol} \mathrm{OH}^{-}$
$1.00 \times 10^{-2} \mathrm{~mol} \mathrm{OH}^{-} / 0.400 \mathrm{M}=0.0250 \mathrm{~L}(25.0 \mathrm{~mL})$.
Calculation from moles to volume; use of incorrect moles still earns point.
(b) There are two successive dissociations:
$\mathrm{H}_{2} \mathrm{C}_{2} \mathrm{O}_{4}<===>\mathrm{H}^{+}+\mathrm{HC}_{2} \mathrm{O}_{4}^{-}$(equilibrium constant $=\mathrm{K}_{1}$)
$\mathrm{HC}_{2} \mathrm{O}_{4}{ }^{-}<===>\mathrm{H}^{+}+\mathrm{C}_{2} \mathrm{O}_{4}{ }^{2-}$ (equilibrium constant $=\mathrm{K}_{2}$)
Acceptable alternatives are the use of $\mathrm{H}_{2} \mathrm{O}$ as reactant and $\mathrm{H}_{3} \mathrm{O}^{+}$as product or writing of correct equilibrium constant expressions. Consistent errors (such as missing atoms or charges) are only penalized once.
$\mathrm{K}_{12}=\mathrm{K}_{1}$ times K_{2}, thus
$\mathrm{K}_{1}=\mathrm{K}_{12} / \mathrm{K}_{2}=3.78 \times 10^{-4} / 6.40 \times 10^{-5}=5.91 \times 10^{-2}$; one point
c)
$\mathrm{pH}=0.5$ therefore $\mathrm{H}^{+}=0.32 \mathrm{M}$ (pH controls 1 sig. fig. in answer)
(This point also earned if conversion of K to pK is correct.)
K small therefore amount of dissociation small therefore assume $\left[\mathrm{H}_{2} \mathrm{C}_{2} \mathrm{O}_{4}\right]=0.015$
$\mathrm{K}_{12}=\left(\left[\mathrm{H}^{+}\right]^{2}\left[\mathrm{C}_{2} \mathrm{O}_{4}{ }^{2-}\right]\right) /\left[\mathrm{H}_{2} \mathrm{C}_{2} \mathrm{O}_{4}\right]$,
then $\left[\mathrm{C}_{2} \mathrm{O}_{4}{ }^{2-}\right]=\left[\left(3.78 \times 10^{-6}\right)(0.015)\right] /(0.32)^{2}=6 \times 10^{-7}$.
(Here 1, 2 , or 3 sig. fig.'s accepted) Two points for correct set-up with substitution and final calculation (-1 point for each error).
Alternative methods, included proper use of Henderson-Hasselbalch equation, can earn credit.
(d)
$\mathrm{C}_{2} \mathrm{O}_{4}{ }^{2-}+\mathrm{H}_{2} \mathrm{O}<===>\mathrm{HC}_{2} \mathrm{O}_{4}^{-}+\mathrm{OH}^{-}$is the only significant reaction,
so $\mathrm{K}_{\mathrm{b}}=\mathrm{K}_{\mathrm{w}} / \mathrm{K}_{2}=1.00 \times 10^{-14} / 6.40 \times 10^{-5}=1.56 \times 10^{-10}$
No credit earned if K_{1} or K_{12} used; 1 , 2 , or 3 sig. fig.'s accepted since number of significant figures for value of K_{w} not indicated in table on examination.

AP chemistry, Ch. 14, Acids r Bases
Practice Test
(1) This question implies that $1+\mathrm{SCO}_{4}^{-}$is an a cid. HSO_{4}^{-}is a proton donor, therefore $\mathrm{SO}_{1} 2^{-}$, is the conj; base. Or, react it with a base to see what is produced.
(2) HSO_{4}^{-}is a base here. Let's find its conjugate acid.
(not notikey to not
occur in mater!!
(3) Wemonize this, or solve for $\left[4 \not 力^{+}\right]$:
(B)

$$
\begin{aligned}
& \text { this, or solve for }\left[\mathrm{Hp}^{\circ}\right] \\
& K_{w}=\left[\mathrm{H}_{3} 0+7\right][\mathrm{OH}]=1.00 \times 10^{-14} \text { where }\left[H_{3}, 07\right]=[01+]
\end{aligned}
$$

(4) same as $\# 3$
(c)
(5) $\mathrm{POH}=-\log [\mathrm{OH}]=-\log [0.0025]=2.60 \quad \mathrm{pH}=14-2.60=11.40$
(6) P
(7)

$$
\begin{equation*}
\text { (8) most basic }=\text { highest } \mathrm{P} \text { H } \tag{c}
\end{equation*}
$$

$$
\begin{aligned}
& \mathrm{PH}=-\log \left[\mathrm{H}_{3} \mathrm{O}^{+}\right] \\
& 4.282=-\log _{2}\left[H_{3} 0^{+}\right] \\
& -4.282=\log _{10}\left[1430^{\circ}\right] \\
& 10^{-4.282}=\left[\mathrm{H}_{3} 0^{+}\right]=5.22 \times 10^{-5}(\bar{E})
\end{aligned}
$$

(a)

$$
\begin{aligned}
& \text { I } 0.015 \\
& \begin{array}{rr}
0 & 0 \\
+0.015 & +0.030
\end{array} \\
& 0.015 \quad 0.030 \\
& \mathrm{pH}=14-\mathrm{pOH} \\
& P O H=-\log [0.030]=1,523 \\
& \mathrm{PH}=14-1.523=12.48 \text { (c) }
\end{aligned}
$$

(10) C
(11) C
(13) smalles $+k_{a}=$ weakes tacid (E) $H C N$
(12) B

$$
\begin{align*}
& {\left[H+10^{-4.93}=1.175 \times 10^{-5} \mathrm{M}=\dot{x}\right.} \\
& K_{a}=\frac{[H+[] z]}{[1 t]}=\frac{\left(1.175 \times 10^{-5}\right)^{2}}{0.02-\left(1.175 \times 10^{-3}\right)}=6.9 \times 10^{-9} \tag{A}
\end{align*}
$$

$$
\begin{aligned}
& \begin{array}{llll}
I & 0.015 & 0 & 0 \\
c & -x & +x & +x \\
E & x
\end{array} \\
& \begin{array}{l}
3.0 \times 10^{-8}=\frac{x^{2}}{0.015-x} \approx \frac{x^{2}}{0.015} \\
4.5 \times 10^{-4}=x^{2}
\end{array} \\
& \begin{array}{l}
3.0 \times 10^{-8}=\frac{x^{2}}{0.015-x} \approx \frac{x^{2}}{0.015} \\
4.5 \times 10^{-4}=x^{2}
\end{array} \\
& 100 \times \frac{2.12 \times 10^{-5}}{0.015}=\frac{\left[\mathrm{H}^{+}\right]_{09}}{[1+C 0]_{0}} \times 100 \\
& 0.14 \%=\% \text { ionization (E) } \\
& 2.12 \times 10^{-5}=x \\
& \begin{aligned}
& 2.12 \times 10^{-5}=x \\
& \text { Check: } \frac{2.12 \times 11^{5}}{1015} \times 100=0.14 \% \\
& \text { Ascumption }
\end{aligned} \\
& \text { Assumptin CK }
\end{aligned}
$$

(16)

$$
\begin{array}{ccc}
& H B r O & H_{0}^{+} \\
\pm & 0.55 & \operatorname{BrO}_{0}^{-} \\
C & -x & +x \\
E & 0.55-x & x
\end{array}+x
$$

$$
K_{q}=\frac{[H+[B r O-]}{[+B r o]}=\frac{x^{2}}{0,55-x}
$$

$$
\begin{gathered}
\mathrm{pH}=4,48=-\log \left[\mathrm{H}^{+}\right] \\
-4.48=\log \left[10 \mathrm{H}^{+}\right] \\
10^{-4.48}=\left[\mathrm{HI}^{+}\right]
\end{gathered}
$$

$$
=\frac{\left(3.31 \times 10^{-5}\right)^{2}}{\left(0.55-3.3\left(\times 10^{-5}\right)\right.}=2.0 \times 10^{-9}
$$

(17)

$$
\begin{array}{lccc}
\\
H O C l & H^{+} & +0 C l^{-} & K_{a}=3.0 \times 10^{-8} \\
I \quad 0.020 & O & 0 & \\
C \quad-x & +x & +x & K_{a}=\frac{\left[1+^{+}\right][O C l]}{[1+0 C l]}=\frac{x^{2}}{0.020-x} \\
E \quad .020-x & x & x &
\end{array}
$$

\rightarrow check!

$$
\begin{aligned}
& \frac{\text { Check! }}{\frac{245 \times 10^{-r}}{0.020} \times 100=0.12 \% \text { ok } \text { pares } 5 \% \text { test }} \begin{array}{l}
\text { pH }=-\log [H+]=-\log \left[2.45 \times 10^{-5}\right] \\
p H=4.61
\end{array} \quad\left\{\begin{array}{l}
3.0 \times 10^{-8} \approx \frac{x^{2}}{.020} \\
x^{2}=6 \times 10^{-10} \\
x=2.45 \times 10^{-5}
\end{array}\right.
\end{aligned}
$$

(18) Three acids mixed together. The $1^{s T}$ is $100,000 \times$ stronger than the $2^{\text {nd }}$, which is 100, OOC X stronger tran the third. Assume that strongest acid dominates pt,
(18) $\left(\mathrm{ccnt}^{\prime} d.\right)$

$$
\begin{aligned}
& \frac{x^{2}}{2.5-x}=\frac{\left[\mathrm{H}^{2}\right]\left[\mathrm{H}_{2} \mathrm{PCl}_{5}\right]}{\left[\mathrm{H}_{3} \mathrm{PC}_{4}\right]} \approx \frac{x^{2}}{2.5}=7.5 \times 10^{-3} \\
& x^{2}=\left(7.5 \times 10^{-3}\right)(2.5)^{\rightarrow \text { check: } \frac{0.137}{2.5} \times 100=5.48 \%} \\
& \text { Assumption not ok } \\
& x=0.137 \\
& \frac{x^{2}}{2.5-x}=7.5 \times 10-3 \\
& \begin{array}{l}
\frac{x}{2.5-x}=\left(7.5 \times 10^{-3}\right)(2.5)-\left(7.5 \times 10^{-3}\right)(x) \\
x^{2}=7.01875=0
\end{array} \\
& x^{2}+0.0075 x-0.01875=0 \\
& \begin{aligned}
x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a} & =\frac{-0.0075 \pm \sqrt{(0.0075)^{2}-(4)(1)(-0.01875)}}{2} \\
& =\frac{-0.0075 \pm \sqrt{5.625 \times 10^{-5}+0.075}}{2}
\end{aligned} \\
& =\frac{-0.0075+.274}{Z} \\
& x=0,133=[1+] \\
& \begin{aligned}
p H=-\log [A+] & =-\log [0.133] \\
& =0.88
\end{aligned} \\
& \begin{aligned}
p H=-\log [A+] & =-\log [0.133] \\
& =0.88
\end{aligned} \\
& a=1 \\
& b=0.0075 \\
& c=-0.01875 \\
& \text {]. } 133=[y]
\end{aligned}
$$

(19)

$$
\begin{equation*}
\mathrm{HB}^{+}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{~B}+\mathrm{H}_{3} \mathrm{O}^{+} \tag{E}
\end{equation*}
$$

"Ka" stands for the K for dissociation of an acid in $\mathrm{H}_{2} \mathrm{O}$.

20
(20)
check:

$$
\begin{aligned}
& x^{2}=1 \times 10^{-3} \\
& x=0.0316
\end{aligned} \int \begin{aligned}
& \frac{\text { check: }}{0.0316} \times 100=31.6 \% \\
& \text { Assumption not 0K. }
\end{aligned}
$$

(21) NH_{3} is a wookbore (A)
(22)

$$
\begin{array}{cccc}
I & 0.1 \\
C & -x & -15 & 0 \\
0 & +x & +x
\end{array}
$$

$$
\text { E } 0.1-x
$$

$$
x \quad x
$$

$$
\mathrm{PH}=9.82
$$

$$
\begin{aligned}
& 1-6.61 \times 10^{-5} \\
& =4.37 \times 10^{-8}
\end{aligned}
$$

$$
\begin{aligned}
& H O H=14-9.82=4.18 \\
& \text { PaIt }-\log \text { [OH }-7=4.18
\end{aligned}
$$

$$
\Rightarrow\left[O H=10^{-4.18}\right.
$$

$$
\left.\begin{align*}
& \text { POH }=14-9.82=4.18 \tag{A}\\
& \text { pOH }=-\log [0 \mathrm{HH}]=4.18 \\
& \log _{10}[0 \mathrm{HH}]=-4.18
\end{aligned} \right\rvert\, \begin{aligned}
& {[\mathrm{OH}]=6.607 \times 10^{-5}=x} \\
& {[\mathrm{OH}]=10} \\
& \hline
\end{align*}
$$

$$
=4.4 \times 10^{-8}
$$

$$
\begin{aligned}
& a=1 \\
& b=.01 \\
& c=-.001 \\
& x=\frac{-b \pm \sqrt{b^{2}-19 a c}}{2 a} \\
& =\frac{-0.01 \pm \sqrt{(.01)^{2}-(4)(1)(-0.001)}}{2} \\
& =\frac{-0.01+\sqrt{0.0041}}{2} \\
& x=0.027
\end{aligned}
$$

$$
\begin{aligned}
& \begin{array}{ccc}
I & 0.100 & 0 \\
C & -x & +x
\end{array}+x \\
& x \quad x \\
& \left.\begin{array}{c}
\begin{array}{c}
\frac{x^{2}}{1-x}=1 \times 10^{-2} \approx \frac{x^{2}}{.1} \rightarrow \\
\frac{x^{2}}{.1-x}=0.01 \\
x^{2}=(0.01)(.1)-(.01)(x) \\
x^{2}=.001-.01 x
\end{array} \\
x^{2}+.01 x-.001=0
\end{array}\right\}
\end{aligned}
$$

23) weakest acid $=$ HCOO
\therefore strongest base $=C Q O^{-}$$\left\{\begin{array}{l}\left(y_{o u} \text { can }\right. \\ \text { verify this using } k_{w}=k_{a} \cdot k_{b}\end{array} \quad \begin{array}{l}\text { PAGE } \\ \text { six }\end{array}\right.$
(24) $K_{w}=K_{a} K_{b} K_{q}=\frac{K_{w}}{K_{b}}=\frac{1.0 \times 10^{-14}}{1.4 \times 10^{-9}}=7.1 \times 10^{-6} \mathrm{~A}$
(25) $A=$ yes/ b and C will not accept protons because
they are the conjugate bases of strong they are the conjugate bases of strung acids. They will nut react
D is a strong base
(26) $\mathrm{KF} \xrightarrow{\mathrm{HO}} \mathrm{K}^{+}+\mathrm{F}^{-} \longrightarrow$ will not affect pt

$$
\begin{aligned}
& x^{2}=2.14 \times 10^{-12} \\
& x=1.5 \times 10^{-6}=\left[\text { alt }^{-}\right] \\
& \text {PH }=-\log \left[\left[A H=-\log \left[1.5 \times 1^{-6}\right]=5.83\right.\right. \\
& p H=14-5.83=8.17 \text { (c) }
\end{aligned}
$$

$$
\left[\mathrm{HP}^{+}\right]=10^{-2.46}=3,5 \times 10^{-3}=0.0035 \mathrm{~m}
$$

because this compound's equilisnium concentration
of $\left[H_{3} \mathrm{O}^{\circ}\right]$ is equal to the compound's nominal (initiate) conc, I guess it's a strong acid. I'm iffy on thisquestion.
(D)
(28) $\mathrm{NaCHH}_{2} \rightarrow \mathrm{Na}^{+}+\mathrm{CHO}_{\downarrow}^{-}$ $\underset{\substack{\text { infract } \\ \text { affect } \\ \text { pit }}}{\substack{\text { Conjugate }}}$

$$
p^{O H}=-\log [0 H]=-\log \left[4.41 \times \mathrm{N}^{-6}\right]=5.36
$$

$$
p H=14-p \text { OH }=8.64 \text { B }
$$

(29) (B), $K C l$, has neither the conj. base of a weak acid nor the conj. acid of a weak base. Thus it is not a hydrolyzing salt.
(30) (E) SO_{4}^{2-} is the conjugate basest a wake acid

$$
\mathrm{SO}_{4}^{2-}+\mathrm{HOH}^{2} \rightleftharpoons \mathrm{HSO}_{4}^{-}+\mathrm{OH}^{-}
$$

San^{2-} thus produces hydroxide ions when dissolved in $\mathrm{H}_{2} \mathrm{O}$.
(31)

acetic
acid

$$
\begin{aligned}
& \begin{aligned}
k_{b}=\frac{x^{2}}{135-x} & =5.56 \times 10^{-11} \approx \frac{x^{2}}{.35} \quad \text { check: } \frac{4.4 \times 10^{-6}}{.35} \times 100=.0013 \% \\
x^{2} & =1.946 \times 10^{-11} \\
x & =4.41 \times 10^{-6}=\left[01 t^{-6}\right]
\end{aligned} \\
& x=4.41 \times 10^{-6}=\left[\mathrm{OH}^{-}\right]
\end{aligned}
$$

(32) highest pit will come from strongest base.
$K_{w}=K_{a} K_{y}$, so strongest base will come
from weakest conjugate acid

$$
\mathrm{HCCO}>\mathrm{HClO}
$$

$$
\mathrm{HHO}_{3}>\mathrm{HIO}_{2}>\mathrm{HIO}
$$

$$
\begin{array}{ll}
\mathrm{HClO}_{2} & \mathrm{HIO} \\
\mathrm{HClO} & \mathrm{HIO} \\
\mathrm{HIO}_{3} &
\end{array}
$$

HClO is a stronger acid then
HIO because $C l$ is more electronegative than I

$$
\mathrm{Cl}-\mathrm{O}-\mathrm{H}
$$

\rightarrow weaker O-H bond, H^{+}easily removed
I- OT
stranger $0-1$ bond, H^{+}harder to $\begin{gathered}\text { release }\end{gathered}$ release

$$
\begin{equation*}
\text { strongest base }=I 0^{-} \tag{C}
\end{equation*}
$$

1997 Free Response \#2

$$
\mathrm{H}_{2} \mathrm{CO}_{4} \rightleftarrows 2 \mathrm{H}^{+}+\mathrm{C}_{2} \mathrm{C}_{4}^{2-} \mathrm{K}=3.78 \times 10^{-60}
$$

(a) There are a coupe
of ways to do this. Here is one:

$$
\begin{aligned}
& \text { re are a do this. Here is one: } \\
& \text { wa ls } \mathrm{Na}_{2} \mathrm{C}_{2} \mathrm{NaOlt}_{4}+\mathrm{H}_{2} \mathrm{C}_{2} \mathrm{C}_{4} \rightarrow 2 \mathrm{HOHt} \\
& 0.400 \mathrm{~m} / \mathrm{M}
\end{aligned}
$$

$$
5.00 \times 10^{-3} \text { males } \mathrm{H}_{2} \mathrm{C}_{2} \mathrm{C}_{4}^{100 \times 10^{2} \mathrm{~V}} \times \frac{2 \mathrm{mols} \mathrm{NaOH}}{1 \mathrm{mel} \mathrm{H}_{2} \mathrm{C}_{2} \mathrm{Cl}}=\frac{1.00 \times 10^{-2} \mathrm{~mol} \mathrm{NaOH}}{\mathrm{NaOH}}
$$

$$
M=\frac{n}{V} \Rightarrow V=\frac{n}{M}=\frac{0.0100 \mathrm{meNaOL}}{0.400 \frac{\mathrm{mal}}{L} \mathrm{NaHH}}=\frac{0.0250 \mathrm{~L}}{-25.0 \mathrm{ml}}
$$

(b)

$$
\begin{aligned}
& \mathrm{H}_{2} \mathrm{C}_{2} \mathrm{O}_{4} \rightleftharpoons \mathrm{H}^{+}+\mathrm{HC}_{2} \mathrm{O}_{4}^{-} \quad \mathrm{Ka}_{1} \\
& \mathrm{H} \mathrm{C}_{2} \mathrm{O}_{4}^{-} \rightleftharpoons \mathrm{H}^{+}+\mathrm{C}_{2} \mathrm{C}^{2-} \quad \mathrm{Ka}_{2} \\
& \mathrm{H}_{2} \mathrm{C}_{2} \mathrm{O}_{4} \rightleftharpoons 2 \mathrm{H}^{+}+\mathrm{C}_{2} \mathrm{O}_{4}^{2-} \mathrm{K}_{\text {overall }} \\
& \left(\mathrm{Ka}_{a_{1}}\right)\left(\mathrm{Ka}_{a_{2}}\right)=\mathrm{Ka}_{a_{\text {overall }}} \\
& \left(\mathrm{Ka}_{a_{1}}\right)\left(6.40 \times 10^{-5}\right)=3.78 \times 10^{-6} \\
& K_{a_{1}}=5.91 \times 10^{-2}
\end{aligned}
$$

(c) You nd know sow jury. oops, we haven't worked che like this yet, staytuned for buffers,
(d)

$$
\begin{aligned}
& \mathrm{C}_{2} \mathrm{O}_{4}^{2-}+\mathrm{HOH}=\mathrm{HC}_{2} \mathrm{O}_{4}^{-}+\mathrm{OH}^{-}-\mathrm{K}_{b}=\frac{\mathrm{Kw}}{\mathrm{Ka}} \\
& S \mathrm{~K}_{b}=\frac{1.4 w^{2}}{6.10 \times \times 0^{-5}}=\frac{1.56 \times 10^{-10}}{}
\end{aligned}
$$

