

A Pattern-Based Approach to Protocol Mediation
for Web Services Composition

Xitong Li
 Yushun Fan

Stuart Madnick
Quan Z. Sheng

Working Paper CISL# 2008-10

September 2008

Composite Information Systems Laboratory (CISL)
Sloan School of Management, Room E53-320

Massachusetts Institute of Technology
Cambridge, MA 02142

A Pattern-Based Approach to Protocol Mediation for Web Services
Composition

Xitong Li a,*, Yushun Fan a, Stuart Madnick b, Quan Z. Sheng c
a Department of Automation, Tsinghua University, Beijing 100084, P.R. China

b MIT Sloan School of Management, 50 Memorial Drive, Cambridge, MA 02142, USA
c School of Computer Science, University of Adelaide, Adelaide, SA 5005, Australia

* Corresponding author

E-mail address: lxt04@mails.tsinghua.edu.cn

Abstract

With the increasing popularity of Service Oriented Architecture (SOA), service composition is
gaining momentum as the potential silver bullet for application integration. However, services are not
always perfectly compatible and therefore can not be directly composed. Service mediation, roughly
classified into signature and protocol ones, thus becomes one key working area in SOA. As a
challenging problem, protocol mediation is still open and existing approaches only provide partial
solutions. In this paper, a systematic approach based on mediator patterns is proposed to generate
executable mediators and glue partially compatible services together. The mediation process and its
main steps are introduced. By utilizing message mapping, a heuristic technique for identifying protocol
mismatches and selecting appropriate mediator patterns is presented. The corresponding BPEL
templates of these patterns are also developed. Moreover, a prototype system, namely Service
Mediation Toolkit (SMT), is implemented to validate the feasibility and effectiveness of our approach.

Keywords: Service oriented architecture; Web service; Service composition; Protocol mediation;
Mediator

1. Introduction

Service Oriented Architecture (SOA) is a newly-emerging software architecture consisting of
loosely-coupled services that communicate with each other through open-standard interfaces [1, 2].
With the increasing popularity of SOA, service composition is gaining momentum as the potential
silver bullet for the seamless integration of heterogeneous computing resources, rapid deployment of
new business applications, and increasing reuse possibilities to a variety of legacy systems [3-5].

Based on our observation, however, there exist various challenges that result in the
incompatibilities/mismatches of services composition. Firstly, Web services are usually developed
separately and independently. Secondly, services are not unalterable and need evolution. With the
variation of business requirements, service evolution and upgrading have to be addressed. Besides that,
services must be interacted with client applications. It is impossible to make these services consistent
with the large number of client applications. Last but not least, software developers can not always
predict the deployment and runtime contexts when they develop Web services. As a result, few Web
services are exactly compatible and additional efforts are needed to compose these partially compatible
services together. By partial compatibility, we mean the situation that two (or more) services provide
complementary functionalities and could be composed together in principal; however, their interfaces

and interaction protocols do not fit each other exactly.
An effective solution to these challenges is service mediation, which enables a service requester to

connect to a relevant service provider regardless of the heterogeneities between them and works in a
transparent way – neither of them needs to be aware of its existence [6]. First proposed in the
Enterprise Service Bus (ESB) industry community [7], service mediation is referred to as the act of
retrofitting existing services by intercepting, storing, transforming, and (re-)routing messages going
into and out of these services [8]. Nowadays, service mediation has become a key working area in the
field of SOA and Component-Based Software Engineering (CBSE) [9-11].

Service mediation can be roughly classified into signature and protocol. Signature mediation
which focuses on message types has received considerable attention [12-14] and many commercial
tools have been developed, such as Microsoft BizTalk Mapper1, Stylus Studio XML Mapping Tools2
and SAP XI Mapping Editor3. In comparison, the problem of protocol mediation (also known as
process mediation), which aims at reconciling mismatches of message exchanging sequences, is still
open. A frequently-used approach to this issue is to develop a mediator/adapter which is a piece of code
that sits between the interacting services and reconciles the mismatches [15-17]. However, the
mediators developed by existing approaches have no control logics and can not compensate
complicated mismatches. Few of these approaches can be used to automatically generate executable
codes of the mediators. Additionally, no existing approach provides a comprehensive solution to
protocol mediation for Web services composition. Last but not least, to the best of our knowledge, there
exists no software tool which assists developers to ease their efforts on mediation tasks, such as
identifying protocol mismatches or generating mediation codes. This paper presents the approaches to
resolving these problems.

1.1. Motivating Example

We present a motivating example that will be used to demonstrate our research idea and approach
throughout the paper, as shown in Fig. 1.

 (a) BPEL of search engine service (b) BPEL of search client service

 Fig. 1. A motivating example of service composition with protocol mismatches
The example consists of a search client (SC) and a search engine (SE). SC invokes SE by sending its

login information and the search request respectively. After that, SC waits for the acknowledgement and

1 http://msdn.microsoft.com/en-us/library/ms943073.aspx
2 http://www.stylusstudio.com/
3 http://www.wsw-software.de/en-sap_services-mapping_sap_xi.mapping-sap-xi.html

the results from SE. On the other hand, after receiving search request, SE starts to search several
distributed databases one by one (by performing its internal searching action). Once SE finishes a
database and obtains some searched items, it sends these items to SC immediately. When all databases
have been searched, SE sends a completing notification to SC and the search work is finished.

Among various specification languages of service composition (e.g., BPEL, WS-CDL, WSCI),
BPEL obtains the dominance and has been proposed by OASIS as an industry standard which is
supported by major software vendors such as IBM, Oracle and SAP. In this paper, we take BPEL as the
specification language for describing the protocol of Web services. Fig. 1 shows the BPEL of the search
engine and the search client services, i.e., SE and SC. It is easy to see that SE and SC are partially
compatible. They provide complementary functionalities but do not fit each other exactly. Apparently,
without reconciling the protocol mismatches between them, SE and SC can not interact with each other
successfully.

1.2. Contributions

The rationale of our work has been presented in the conference papers [18, 19]. As an extension of
our previous work, we aim at developing a systematic approach to (semi-)automatically generating
mediators for reconciling all possible protocol mismatches. The main contributions are as follows:

1) We present several basic mediator patterns which are derived from basic protocol mismatches
identified in our previous work [20]. With the knowledge of protocol mismatches, the well-defined
basic mediator patterns can be configured and composed by service developers. These basic mediator
patterns are referred to as a sufficient set of building blocks which can be used to construct advanced
mediators and reconcile all possible protocol mismatches.

2) We propose a technique to semi-automatically identify protocol mismatches when two partially
compatible services need to be composed together. The technique is based on message mappings which
are specified by service developers. By using the technique, basic mediator patterns are
semi-automatically selected according to the identified protocol mismatches.

3) We develop BPEL templates for the mediator patterns which can be used to generate
executable mediation codes. Each mediator pattern has a corresponding BPEL template and a
composite mediator corresponds to a combined BPEL-based mediation code.

4) We propose a systematic engineering approach for service developers to reconcile all possible
protocol mismatches. The approach combines our work on identification of protocol mismatches,
selection of mediator patterns and code generation of BPEL-based mediation codes. All these
mediation tasks can be performed (semi-)automatically.

5) We develop a prototype system, namely Service Mediation Toolkit (SMT), which provides a
user-friendly workbench and can assist service developers to ease their efforts on the mediation tasks.
As an implementation work, SMT is integrated with IBM WebSphere Integration Developer (IBM
WID)4 and validates the feasibility and effectiveness of our approach.

The rest of the paper is structured as follows. In Section 2, several basic mediator patterns are
proposed. The configurability and composability of the mediator patterns are presented in this section
as well. The proposed approach to protocol mediation is presented in Section 3. The technique for
selecting mediator patterns based on message mapping is also introduced and BPEL templates of the
mediator patterns are developed for code generation of executable mediators. And then, the prototype

4 http://www-306.ibm.com/software/integration/wid/

system, i.e., Service Mediation Toolkit (SMT), is presented in Section 4. In Section 5, related work and
the comparisons with ours are given. Finally, the conclusion and future work are drawn up in Section 6.

2. Protocol Mediator Patterns

2.1. Basic Mediator Patterns

An effective solution to reconciling protocol mismatches is to develop a mediator. By protocol
mismatches, we mean the mismatches that occur in the message exchanging sequences between two
partially compatible services. In our previous work, we have proposed several basic mismatches that
can be referred to as basic constructs of all protocol mismatches [20]. And we have developed six basic
mediators for reconciling the basic mismatches. It has been pointed out that these basic mediators can
be referred to as basic patterns which assist service developers to modularly construct more powerful
mediators and reconcile all possible protocol mismatches [18]. Hence, the set of basic mediator
patterns is considered to be sufficient. To make this paper self-contained, we present the six basic
mediator patterns and corresponding using scenarios in this section. Detailed illustrations of the
mediator patterns are presented in [18].

Note that the protocols of both Web services and mediators are depicted based on Colored Petri
Nets (CPN) [21]. The benefit of adopting CPN models as an underlying formalism lies in that they
provide rich analysis capability to support formal verification of protocol mediation and solid
approaches to the transformation between BPEL and CPN models have been developed [22, 23].
Details of CPN models are given in [21]. In the following figures, the round places (i.e., circles) depict
the states of control flows of Web services; the gray ellipse places depict the messages of Web services
communicated with outside partners. The black transitions (i.e., filled rectangles) depict the operations
of Web services that send/receive messages; the white transitions (i.e., empty rectangles) depict those
actions without sending/receiving any message. The symbol “MT” stands for a specific message type.

(1) Simple Storer pattern: the mediator with the capability of simply receiving and storing
messages. It is used for reconciling mismatches of extra sending messages and missing receiving
messages, as shown in Fig. 2.

(a) Extra sending message scenario

(b) Missing receiving message scenario

Fig. 2. Scenarios of using Simple Storer pattern

(2) Simple Constructor pattern: the mediator with the capability of simply constructing and
sending messages. It is used for reconciling mismatches of extra receiving messages and missing
sending messages, as shown in Fig. 3.

(a) Extra receiving message scenario

(b) Missing sending message scenario

Fig. 3. Scenarios of using Simple Constructor pattern
(3) Splitter pattern: the mediator with the capability of receiving a single message and splitting it

into two or more partial messages. It is used for reconciling mismatches of splitting sending messages
and merging receiving messages, as shown in Fig. 4.

(a) Splitting sending message scenario

(b) Merging receiving message scenario
Fig. 4. Scenarios of using Splitter pattern

(4) Merger pattern: the mediator with the capability of receiving two or more partial messages and
merging them into a single one. It is used for reconciling mismatches of splitting receiving messages

and merging sending messages, as shown in Fig. 5.

(a) Splitting receiving message scenario

(b) Merging sending message scenario

Fig. 5. Scenarios of using Merger pattern
(5) Storing Controller pattern: the mediator with the capability of storing and conditionally

sending some messages in terms of specific logic. It is used for reconciling mismatches of extra
condition of receiving messages and missing condition of sending messages, as shown in Fig. 6.

(a) Extra condition of receiving message scenario

(b) Missing condition of sending message scenario
Fig. 6. Scenarios of using Storing Controller pattern

(6) Constructing Controller pattern: the mediator with the capability of conditionally constructing
and sending some messages in terms of specific logic. It is used for reconciling mismatches of extra

condition of sending messages and missing condition of receiving messages, as shown in Fig. 7.

(a) Extra condition of sending message scenario

(b) Missing condition of receiving message scenario

Fig. 7. Scenarios of using Constructing Controller pattern
It should be pointed out that both basic and composite mediators presented in [18] are conceptual

patterns rather than executable codes. As a further step of our work, the intended benefit of the paper
lies in semi-automatic selection of mediator patterns and automatic generation of pseudo-code (i.e.,
BPEL codes) for protocol mediation.

2.2. Configurability and Composability of Mediator Patterns

As mentioned above, a composite mediator can be constructed by basic mediator patterns and
referred to as a new pattern for further use. To facilitate the construction of composite mediators, we
investigate the configurability and composability of the mediator patterns.

The specific structures of the Splitter/Merger pattern are variable according to the sequences of
the partial messages which may be sequential, parallel or mixed structure. Before generating
pseudo-code of the Splitter/Merger pattern, service developers should specify how many partial
messages involved and the sequence of these messages. For example, service developers may specify a
splitter with three partial messages. After receiving a single message MT0, the splitter may send
message MT1 and message MT2 in parallel. And it may send the third partial message MT3 after
message MT1 is sent out, as shown in Fig. 8. Once service developers configure the sequence of partial
messages, the specific structure of the splitter pattern is identified and automatically concretized by the
Service Mediation Toolkit (SMT) (see Section 4).

When reconciling extra or missing condition mismatches, service developers should specify the
condition constraints of the Storing Controller and Constructing Controller patterns according to the
condition of the provided or required interfaces of services to be composed. The condition constraints
are eventually transformed to BPEL elements, such as <switch>, <pick>, <while> or <repeatUntil>.
For example, there exists a seller service that sends the invoice message after receiving payment from
its buyer. However, the buyer service only expects to receive the invoice under the condition that the
total payment is greater than 1000 USD. In this case, the Storing Controller pattern can be used to
reconcile such mismatch, as shown in Fig. 9. For compatible reconciliation, service developers should
specify the internal condition of the Storing Controller pattern. The condition x should be specified as

“Total payment > 1000 USD”.

Fig. 8. Splitter pattern with three partial messages

Fig. 9. Storing Controller pattern with specified condition

In real-world situations, protocol mismatches are complicated and should be addressed by
advanced mediators with control logics that are composed by the basic mediators. Each mediator
presented in this paper has two special places, i.e., the initial place and the end place, as shown in Fig.
8 and Fig. 9. Informally, the composition of two mediators is performed by merging the common parts
of the two mediators, and then merging the end place of one mediator with the initial place of the other.
To illustrate the composition of mediators, take a mediator with iterative structure, namely Merging
Repeater, for example, as shown in Fig. 10. It’s easy to see that Merging Repeater can iteratively
receive messages of the type MT1 until the completing condition x occurs. Merging Repeater can be
used as a mediator pattern to reconcile protocol mismatches with iterative structure. More details about
the configurability and composability of the mediator patterns are given in [18].

Fig. 10. Merging Repeater pattern composed by two Storing Controller patterns

3. Proposed Approach to Protocol Mediation

3.1. Overview of Mediation Process

As BPEL has become the de facto standard for specifying protocols of Web services, we focus on
the mediation of BPEL-based services. We take the BPEL files of two partially compatible services as
the input. And then, we produce executable mediators as the output for reconciling protocol
mismatches and compatibly gluing the two services together if the correct mediator exists. Fig. 11
shows the mediation approach consisting of five steps.

Fig. 11. Overview of the proposed approach

(1) Service model transformation
As the first step, BPEL-based services are transformed to formal models for the purpose of

generating and verifying mediators. As mentioned above, the formulism of CPN models can not only
depict the internal logic and message exchanging sequences, but also provide rich analysis capability to
support solid verification of correctness of protocol mediation. We adopt CPN models to depict the
protocols of services and mediators. Techniques for transforming BPEL-based service models to CPN
models have been recently proposed in [22, 23].

(2) Selection of mediator patterns
It is very challenging to automatically identify protocol mismatches and select mediator patterns.

To this end, we propose a heuristic technique based on message mapping that assists service developers
to select appropriate mediator patterns for gluing partially compatible services. The role of message
mapping is to define mapping relations for syntactically/semantically equivalent elements of the
exchanging messages so that mismatches can be identified. In the WSDL /BPEL specification, message
exchanged between Web services are specified as an aggregation of parts and/or elements. In this paper,
we assume that the low-level structures (i.e., data types) of the exchanged messages are consistent.
Thus the message mappings are specified at the message and part/element level. By performing a
selection rule, appropriate mediator patterns are selected automatically. More details about the
technique will be presented in Section 3.2.

 (3) Mediator configuration and composition
As mentioned in Section 2.2, the structures and control logics of the mediator patterns need to be

configured as parameters by service developers according to the identified mismatches. After
configuration, the mediator patterns are composed to construct a composite mediator that reconciles all
identified protocol mismatches. It is noted that a composite mediator can also be referred to as a
complex pattern for further use. Both mediator patterns and composite mediators are depicted as
underlying CPN models for the following formal verification.

(4) Mediation verification
The mediator produced in the above steps is only a conceptual model and should be put between

the interacting services. The composition model of the two services and the mediator need to be
formally verified. Generally, we consider that the mediation fails if any deadlock exists. Otherwise, the
mediation is successful. The rationale of the verifying method relies on searching reachable states.
Many approaches to formal verification of service composition and mediation are presented in both our
previous work [17] and literatures of other researchers [24]. Details of mediation verification are
beyond the scope of this paper.

(5) Code generation of mediators
Only successful mediator will be performed in this step. It is the converse of the first procedure,

i.e., transforming CPN models to BPEL-based mediators. To facilitate code generation of executable
mediators, BPEL templates for the corresponding mediator patterns are developed. With these BPEL
templates, the pseudo-code for protocol mediation can be produced automatically.

3.2. Selection of Mediator Patterns

 Mediator pattern selection is a very challenging issue in the sense that mismatches between two
partially compatible services should be identified first. The appropriate patterns can be selected once
the mismatches are identified. To the best of our knowledge, few of the existing approaches are
developed for (semi-)automatically identifying protocol mismatches and selecting appropriate patterns.
As the first step towards this challenge, we propose a heuristic technique based on message mapping
for semi-automatic selection of mediator patterns. By semi-automation, we mean that service
developers should specify the message mappings and adjust the selected patterns. It is noted that
automatic specification of message mappings is also a challenging problem in the areas of data
integration, schema mapping and semantic-related researches [25-27], which is a separate research
thread and beyond the scope of this paper.
 Message mapping M between two partial compatible services is a finite set of mapping relations,
i.e., M = {mri}. Each mapping relation mri is expressed in the form of <source, cnst_s, target, cnst_t>,
where source is a part/element of the sending message and target is the corresponding part/element of
the receiving message. source/target is expressed in the form of Service.Message.Part. cnst_s is the
constraint of the operation that sends source and cnst_t is the constraint of the operation that receives
target. cnst_s/cnst_t can be NULL if there is no constraint with the sending/receiving message. In the
motivating example (see Section 1.1), the receiving message SearchRequest of SE has two parts: login
and request. Thus the part login is a target and expressed as SE.sreq.login, where sreq stands for the
message SearchRequest. For the sake of simplicity, the part name is omitted if the message consists of
only one part. For example, the sending message Login of SC has only one part login. Thus it is a
source and expressed as SC.login. source/target can be NULL if the sending/receiving message doesn’t

exist. The prefix of source/target is the message name of source/target, denoted by
prefix(source/target), e.g., prefix(SE.sreq.login) = SE.sreq and prefix(SC.login) = SC.login.

Every mapping relation of M should relate to a certain message. It is not allowed that both the
source and the target of a mapping relation are NULL. For every mapping relation, e.g., mri, we thus
have the following two formulas:

(i) source(mri) ≠ NULL, if target(mri) =NULL;
(ii) target(mri) ≠ NULL, if source(mri) =NULL.
For every two message mappings, e.g., mri and mrj, the constraints imposed on their

sources/targets should be the same if their sources/targets belong to the same message. Thus we have
the following two formulas:

(iii) cnst_s(mri) = cnst_s(mrj), if prefix(source(mri)) = prefix(source(mrj));
(iv) cnst_t(mri) = cnst_t(mrj), if prefix(target(mri)) = prefix(target(mrj)).
In terms of the above notation, service developers can specify the message mapping relations, as

shown in Table 1.
Table 1 Message Mapping Relations

mapping source cnst_s target cnst_t
mr1 SC.login NULL SE.sreq.login NULL
mr2 SC.sreq NULL SE.sreq.request NULL
mr3 NULL NULL SC.ack NULL
mr4 SE.partialResult <while> condition(x) SC.totalResult NULL
mr5 SE.ntf condition(x) NULL NULL

 The first mapping relation (i.e., mr1) indicates that SC sends a message login and SE receives the
message as the part login of its message sreq. There is no constraint with the two operations. We denote
that source(mr1) = SC.login and target(mr1) = SE.sreq.login. In the fourth mapping relation (i.e., mr4),
“<while> condition(x)” indicates that the message “SE.partialResult” is sent iteratively under the
condition x. In the fifth mapping relation (i.e., mr5), “condition(x)” indicates that the message “SE.ntf”
is sent when the condition x doesn’t hold. We also denote that cnst_s(mr5) = condition(x) and
cnst_t(mr5) = NULL.

Herein, we introduce a heuristic rule for identifying which mediator pattern should be selected, by
using the mapping relations. For two mapping relations, i.e., mri and mrj, the selection rule is as
follows:
 Selection Rule of Mediator Patterns
 (1) if (cnst_s(mri) = cnst_t(mri)) ∧ (prefix(source(mri)) = prefix(source(mrj))) ∧ (prefix(target(mri))
= prefix(target(mrj)))

then there is no need of mediator patterns;
 (2) else if (cnst_s(mri) = cnst_t(mri)) ∧ (target(mri) =NULL)
 then a Simple Storer pattern is selected;

(3) else if (cnst_s(mri) = cnst_t(mri)) ∧ (source(mri) =NULL)
 then a Simple Constructor pattern is selected;
 (4) else if (cnst_s(mri) = cnst_t(mri)) ∧ (prefix(source(mri)) = prefix(source(mrj))) ∧
(prefix(target(mri)) ≠ prefix(target(mrj)))
 then a Splitter pattern is selected;
 (5) else if (cnst_s(mri) = cnst_t(mri)) ∧ (prefix(source(mri)) ≠ prefix(source(mrj))) ∧
(prefix(target(mri)) = prefix(target(mrj)))

 then a Merger pattern is selected;
 (6) else if (cnst_s(mri) ≠ cnst_t(mri)) ∧ ((cnst_s(mri) = NULL ∧ source(mri) = target(mri)) ∨
(cnst_s(mri) ≠ NULL ∧ target(mri) =NULL))
 then a Storing Controller pattern is selected;
 (7) else if (cnst_s(mri) ≠ cnst_t(mri)) ∧ ((cnst_t(mri) = NULL ∧ source(mri) = target(mri)) ∨
(cnst_t(mri) ≠ NULL∧ source(mri) =NULL)
 then a Constructing Controller pattern is selected;
 (8) else more complicated mismatches and developers’ intervention is needed.
 The first part of the selection rule, i.e., sub-rule (1), shows that for two mapping relations, i.e., mri
and mrj, their sources belong to the same message, i.e., prefix(source(mri)) = prefix(source(mrj)), and
their targets belong to the same message, i.e., prefix(target(mri)) = prefix(target(mrj)), and the
constraints imposed on the source and the target of mri are the same, i.e., cnst_s(mri) = cnst_t(mri), then
we have the constraints imposed on mri and mrj are all the same, according to Formula (iii) and
Formula (iv). Hence, the source message of mri and mrj can be directly related to the target message of
mri and mrj without need of mediation.
 The second part of the selection rule, i.e., sub-rule (2), shows that a message is sent out by one
service but the other service doesn’t receive it. In this case, a Simple Storer pattern should be selected.
Similarly, the third part of the selection rule, i.e., sub-rule (3), shows that a message is expected to be
received by one service but the other service doesn’t send it. In this case, a Simple Constructor pattern
should be selected.
 The fourth part of the selection rule, i.e., sub-rule (4), shows that the sources of two mapping rules,
i.e., mri and mrj, belong to the same message, but their targets belong to two different messages. In this
case, a Splitter pattern should be selected. Similarly, the fifth part of the selection rule, i.e., sub-rule (5),
shows that the sources of two mapping relations belong to different messages, but their targets belong
to the same message. In this case, a Merger pattern should be selected.
 The sixth part of the selection rule, i.e., sub-rule (6), shows that the Storing Controller pattern
should be selected in two cases. In the one case, a message is sent without any constraint but it is
received with some constraint imposed on it. In the other case, a message is sent with some constraint
imposed on it, but it isn’t received by any service.

The seventh part of the selection rule, i.e., sub-rule (7), shows that the Constructing Controller
pattern should be selected in two cases. In the one case, a message is sent with some constraint
imposed on it but it is received without any constraint. In the other case, a message needs to be
received under some constraint, but it isn’t sent by any service.
 The eighth part of the selection rule, i.e., sub-rule (8), shows that there exist more complicated
mismatches between the two service. Usually, developers’ intervention is needed to compose some
mediator patterns for reconciling complicated mismatches.

Let us consider the motivating example, four mediator patterns can be selected to address the
mismatches after performing the selection rule. The selected mediator patterns are given as follows:

i) A Merger pattern is used to receive SC.login and SC.sreq from SC, and then it sends SE.sreq to SE,
where SE.sreq = SE.sreq.(login, request). This pattern is selected according to mr1 and mr2.

ii) A Simple Constructor pattern is used to construct SC.ack and send it to SC. This pattern is
selected according to mr3.

iii) A Merging Repeater pattern is used to iteratively receive SE.partialResult from SE until all
partial databases are finished according to mr4. The Merging Repeater merges all partial results

together and sends SC.totalResult to SC. Since mr4 corresponds to a complicated mismatch with iterative
structure, the Merging Repeater pattern can be selected by service developers. It is composed by two
storing Controller patterns and compensates the mismatch (see Section 2.2).

iv) A Storing Controller pattern is used to conditionally store SE.ntf that is sent by SE. This pattern
is selected according to mr5.

Fig. 12. A composite mediator for the composition of SE and SC

As mentioned in Section 2.2 and 3.1, service developers should configure the structures and
control logics of the selected mediator patterns and compose them together. In the motivating example,
the Merging Repeater pattern can successfully compensate the mismatch with iterative structure and
there is no need for another Storing Controller pattern. Thus three mediator patterns are eventually
selected for mediation, that is, a merger, a simple constructor and a merging repeater. As shown in Fig.
12, a composite mediator composed by the above three mediator patterns sits between the two
interacting services (i.e., SE and SC) and reconciles their mismatches. The three mediator patterns are
circled with dashed ellipses. Since the protocols of SE, SC and mediators are modeled by the CPN
formalism, it is easy to verify that SE and SC can successfully interact through the composite mediator.

3.3. BPEL Templates of Mediator Patterns

Both basic and composite mediators developed in the above steps are conceptual patterns depicted
by the CPN formalism, rather than executable codes. As a further step towards generating executable
codes of mediators, corresponding BPEL templates are provided for the mediator patterns. With these
BPEL templates, the pseudo-code (i.e., BPEL codes) for protocol mediation can be generated
automatically. Each mediator pattern has its corresponding BPEL template. In the following, we will
present the BPEL templates of Simple Constructor pattern, Splitter pattern and Storing Controller
pattern. Others can be found in the Appendix.

(1) BPEL template of Simple Constructor pattern
Simple Constructor pattern constructs and sends a message. It is used for reconciling mismatches

of extra receiving messages and missing sending messages. When creating a message, Simple
Constructor pattern invokes a creator service for constructing the message. It should be pointed out that
how to construct a message of certain type is a non-trivial task and some evidences can be used to
address the issue [28].

(2) BPEL template of Splitter pattern
Splitter pattern receives a single message and splits it into two or more partial messages. It is used

for reconciling mismatches of splitting sending messages and merging receiving messages. The
specific structure of Splitter pattern is adjustable according to the sequence of partial messages which
may be sequential, parallel or mixed structure (see Section 2.2). Herein, the BPEL template of the
Splitter pattern with two sequential partial messages is given. It is similar to develop more complex
Splitter pattern.

(3) BPEL template of Storing Controller pattern
Storing Controller pattern receives and stores a message and then conditionally sends the message

in terms of specific logic. It is used for reconciling mismatches of extra condition of receiving
messages and missing condition of sending messages.

<sequence>
 <invoke name="creating" partnerLink="creator" portType="..."
 operation="creatMsg" inputVariable="creatingMsg"
 outputVariable="createdMsg">
 </invoke>
 <reply variable=" createdMsg" name="..." partnerLink="..."

portType="..." operation="...">
 </reply>
</sequence>

<sequence>
 <receive variable="splitter_receiver" name="..."
 partnerLink="..." portType="..." operation="...">
 </receive>
 <assign>
 <copy>
 <from part="part1" variable="splitter_receiver" />
 <to part="part" variable="splitter_partialMsg1" />
 </copy>
 <copy>
 <from part="part2" variable="splitter_receiver" />
 <to part="part" variable="splitter_partialMsg2" />
 </copy>
 </assign>
 <reply variable="splitter_partialMsg1" name="..."

partnerLink="..." portType="..." operation="...">
 </reply>
 <reply variable="splitter_partialMsg2" name="..."

partnerLink="..." portType="..." operation="...">
 </reply>
</sequence>

 It should be pointed out that the BPEL templates developed above are pseudo-codes for protocol
mediation. To get executable BPEL codes for deployment, service developers needs to do further
refinement on the pseudo-codes. For example, service developers should specify the definitions of
appropriate variables, operations, partnerLinks, portTypes, etc.

4. Prototype Implementation

4.1. Architecture of Prototype System

The systematic approach presented in this paper has been implemented in the Service Mediation
Tookit (SMT), as shown in Fig. 13. SMT has been implemented on top of IBM Websphere Integration
Developer which is an eclipse-based IDE for development of composite applications based on Service
Component Architecture (SCA). Main components of the toolkit are introduced in the following.

Fig. 13. Architecture of Service Mediation Toolkit (SMT)

<sequence>
 <receive variable="msgName" name="..."

partnerLink="..." portType-"..." operation="...">
 </receive>
 <switch>
 <case codition="getVariableData(...)">
 <reply variable="msgName" name="..."

partnerLink="..." portType="..." operation="...">
 </reply>
 </case>
 </switch>
 <otherwise>
 ...
 </otherwise>
</sequence>

(1) BPEL2CPN Transformer
Web services to be composed together are specified in BPEL files and wrapped as SCA

components. BPEL-based services are transformed to CPN-based service models through a separate
tool, namely BPEL2CPN Transformer. Recently, existing tools have provided similar functionalities,
e.g., BPEL2PNML5.

(2) Mediation Workspace
The Mediation Workspace is the core component of our mediation toolkit and provides a

user-friendly workbench for developers to manipulate services and mediators. Although mediator
patterns are depicted by using CPN models as an underlying formalism, the protocols of services and
mediators are graphically represented by means of an intuitional notation, like Business Process
Modeling Notation (BPMN). The Mediation Workspace provides a GUI to illustrate the protocols of
the two services to be composed. Service developers specify the message mapping relations between
the two partially compatible services and provide the mapping relations to Mediation Workspace as the
input. We have pre-established several basic mediator patterns that are stored in a certain repository, i.e.,
Mediator Pattern Repository (MPR). The basic mediator patterns are well-defined and can be used as
building blocks to construct complex mediators. Composite mediators can also be stored as patterns in
MPR for further use. MPR provides the functionality of flexible extension for mediator patterns. By
means of the selection rule (see Section 3.2), appropriate mediator patterns are identified and selected
from MPR. Service developers configure the selected patterns if needed. After that, the selected
mediator patterns are composed to produce a composite mediator. The composite mediator is also
depicted as the intuitional notation with underlying CPN models, which is automatically constructed in
the Mediation Workspace.

(3) Mediation Verifier
The service mediator produced in the above steps may not successfully compensate all protocol

mismatches and deadlocks may exist. To make sure the mediation successful, services and the
produced mediator are composed together to be a composite CPN model. Mediation Verifier checks
whether any deadlock may occur. Formal approaches/algorithms for protocol mediation developed in
our previous work [17] are implemented by Mediation Verifier.

(4) CPN2BPEL Transformer
Only successful mediator will be performed on the CPN2BPEL. BPEL templates of mediator

patterns (see Section 3.3) are utilized for generating mediation codes. Note that the BPEL-based
mediator obtained as the output of CPN2BPEL is only pseudo-code of BPEL files. Service developers
should refine the pseudo-code and generate executable codes.

4.2. Implementation of Mediation Workspace

As a core component of SMT, Mediation Workspace is a separate tool and provides a GUI
workbench for service developers to manipulate services and mediators. We have implemented
Mediation Workspace based on an open-source project, i.e., jBPM jPDL Process Designer6. jPDL is a
process language that is built on top of a flexible and extensible framework for process languages.
jPDL Process Designer is an eclipse plugin application. Thus Mediation Workspace is also developed
as an eclipse plugin that is easy to be integrated with other eclipse-based applications.

5 http://www.bpm.fit.qut.edu.au/projects/babel/tools/
6 http://docs.jboss.org/jbpm/v3/userguide/index.html

Fig. 14 shows a screenshot of Mediation Workspace for the motivating example. Basic mediator
patterns and the Merging Repeater pattern have been developed and placed on the left toolbar. To glue
SE and SC together, a mediation project (i.e., Search Service Mediation) is created. By using the
message mapping relations as specified in Table 1 (see Section 3.2), a composite mediator, consisting
of a merger pattern, a simple constructor pattern and a merging repeater pattern, is constructed and put
between the two services. The composite mediator reconciles the protocol mismatches between them.
The BPEL file of the composite mediator is generated in the mediation project.

Fig. 14. Screenshot of the Mediation Workspace

5. Related Work

A large number of research works have been developed for service mediation with the purpose of

addressing various kinds of composition mismatches [10]. Signature mediation has received
considerable attention [12, 13] and many commercial tools have been developed, e.g., Microsoft
BizTalk Mapper, Stylus Studio XML Mapping Tools and SAP XI Mapping Editor. However, protocol
mediation is still a challenging issue and needs further research [15, 28].

Several formal approaches have been developed to conquer this challenge, such as Automata [15],
Process Algebra [29] and Petri nets [17, 24], etc. A methodology is developed in [30] for the automated
generation of adapters (i.e., mediators) that is capable to solve protocol mismatches among BPEL
processes. The work presented in [28] identifies a few ordering mismatches and provides a
semi-automated support to reconcile these mismatches. A technique based on schema matchmaking is
used to handle the issue of message mapping. The existing approaches, however, provide only partial
solutions and few of them can sufficiently address all possible protocol mismatches. Particularly,

mediators developed by these approaches have no control logics and therefore can not reconcile
complicated protocol mismatches, such as mismatches of extra condition, missing condition, or
iterative structure [20].

It has been recognized that patterns can be used to reconcile composition mismatches and address
protocol mediation [10, 16, 31]. In [16], Benatallah et al. identify five mismatch patterns and provide
templates of BPEL code for service developers to build appropriate mediators, but these patterns are
not sufficient. Although two more protocol mismatches derived from repetition structures, namely
Collapse and Burst, are introduced in [8], no approach is proposed to address the two types of
mismatches. Similarly, Pokraev and Reichert summarize several typical protocol mismatches and
propose appropriate mediation patterns to compensate them [31]. These patterns are still insufficient
and not delicately designed for further manipulation, such as composition, verification or code
generation. The taxonomy of composition mismatches is proposed in [10] and a selection of patterns is
presented to eliminate these mismatches. The taxonomy, however, does not sufficiently address
protocol mismatches. Moreover, the problem of generating mediation codes is not discussed.

Another significant work is presented in [32]. The authors discuss the possible mismatches of
service composition and propose a general approach that aims to assist service developers for resolving
these mismatches. The focus of their work is on identifying mismatches at the syntactic and/or
semantic level, e.g., signatures and data types, rather than protocol mismatches. And the approach can
not be used to generate executable mediation codes automatically.

Inspired by [16, 32], our approach is significantly different from the existing works in the
following aspects. Firstly, the mediator patterns presented in this paper are derived from our
comprehensive identification of protocol mismatches and can be used to sufficiently address those
mismatches [20]. The configurability and composability of mediators are first investigated. Secondly, a
formal modeling method (i.e., CPN models) is adopted as an underlying formalism for depicting the
protocols of both services and mediators. The CPN-based formalism can not only depict the internal
logics and message exchanging sequences, but also support solid verification of protocol mediation.
Thirdly, the approach presented herein can be used to automatically generate executable codes of the
mediators. Lastly, to the best of our knowledge, there exists neither comprehensive solution nor
appropriate software tool to support protocol mediation. Our approach can be referred to as a
systematic solution and the implemented prototype system, i.e., Service Mediation Toolkit (SMT), can
assist service developers to ease their efforts on mediation tasks, such as selecting mediator patterns
and generating mediation codes.

6. Conclusion

Service mediation is one of the most essential components of Enterprise Service Bus (ESB) and
thus becomes one key working area in SOA. In this paper, we have proposed a systematic approach to
protocol mediation for Web services composition. The approach involves several basic mediator
patterns and their composition as well. The major advantage of the pattern-based approach lies in that it
can be used to successfully reconcile all possible protocol mismatches in an engineering way,
especially such mismatches with complicated control logics. A technique based on message mapping is
developed for identifying protocol mismatches and selecting appropriate mediator patterns. We have
developed BPEL templates of the mediator patterns which are used to generate executable codes of
mediators. Furthermore, a prototype system, namely Service Mediation Toolkit (SMT), has been

implemented to validate the feasibility and effectiveness of our approach.
Our future work will focus on the following two aspects. On the one hand, message mapping

relations are specified by service developers in the current approach. In some complicated situations,
service developers’ intervention is needed to select the mediator patterns. The challenge is that current
Web services standards (e.g. WSDL, BPEL, etc.) lack of semantic specifications. The next step is to
utilize existing techniques developed by semantic Web initiatives for promoting the automation of
specifying message mappings and selecting mediator patterns. On the other hand, we plan to improve
our prototype system (i.e., SMT) for addressing more general and real-world cases.

Acknowledgement

This work was supported by National Natural Science Foundation of China (No. 60674080 and
No. 60704027), National High-Tech R&D (863) Plan of China (No. 2006AA04Z151 and No.
2007AA04Z150) and National Basic Research Development (973) Program of China (No.
2006CB705407).

References
[1] M. P. Papazoglou, and W. J. van den Heuvel, “Service oriented architectures: approaches,

technologies and research issues,” The International Journal on Very Large Data Bases, vol.
16, no. 3, pp. 389-415, 2007.

[2] M. P. Papazoglou, P. Traverso, S. Dustdar et al., “Service-Oriented Computing: State of the
Art and Research Challenges,” IEEE Computer, vol. 40, no. 11, pp. 38-45, 2007.

[3] Q. Yu, X. Liu, A. Bouguettaya et al., “Deploying and managing Web services: issues,
solutions, and directions,” The International Journal on Very Large Data Bases, vol. 17, no. 3,
pp. 537-572, 2008.

[4] S.-M. Huang, Y.-T. Chu, S.-H. Li et al., “Enhancing conflict detecting mechanism for Web
Services composition: A business process flow model transformation approach,” Information
and Software Technology, vol. 50, no. 11, pp. 1069-1087, 2008.

[5] Z. Maamar, “On coordinating personalized composite web services,” Information and
Software Technology, vol. 48, no. 7, pp. 540-548, 2006.

[6] C. Wu, and E. Chang, “An Analysis of Web Services Mediation Architecture and Pattern in
Synapse,” Proceedings of the 21st International Conference on Advanced Information
Networking and Applications Workshops-Volume 01, pp. 1001-1006, 2007.

[7] M. T. Schmidt, B. Hutchison, P. Lambros et al., “The Enterprise Service Bus: Making
service-oriented architecture real,” IBM Systems Journal, vol. 44, no. 4, pp. 781-797, 2005.

[8] M. Dumas, M. Spork, and K. Wang, “Adapt or Perish: Algebra and Visual Notation for
Service Interface Adaptation,” Proc. of the 4th Intl. Conf. on Business Process Management
(BPM 2006), pp. 65-80, 2006.

[9] C. Canal, P. Poizat, and G. Salaun, "Adaptation of Component Behaviour using Synchronous
Vectors," Technical Report ITI-05-10, 2005.

[10] S. Becker, A. Brogi, I. Gorton et al., “Towards an Engineering Approach to Component
Adaptation,” Architecting Systems with Trustworthy Components, vol. 3938, pp. 193–215,
2006.

[11] I. G. Kim, D. H. Bae, and J. E. Hong, “A component composition model providing dynamic,

flexible, and hierarchical composition of components for supporting software evolution,”
Journal of Systems and Software, vol. 80, no. 11, pp. 1797-1816, 2007.

[12] A. M. Zaremski, and J. M. Wing, “Signature matching: a tool for using software libraries,”
ACM Transactions on Software Engineering and Methodology (TOSEM), vol. 4, no. 2, pp.
146-170, 1995.

[13] S. R. Ponnekanti, and A. Fox, “Interoperability among independently evolving web services,”
Proceedings of the 5th ACM/IFIP/USENIX international conference on Middleware, pp.
331-351, 2004.

[14] M. Szomszor, T. R. Payne, and L. Moreau, “Automated Syntactic Medation for Web Service
Integration,” Proceedings of the International Conference on Web Services, Chicago, IL, 2006.

[15] D. M. Yellin, and R. E. Strom, “Protocol specifications and component adaptors,” ACM
Transactions on Programming Languages and Systems (TOPLAS), vol. 19, no. 2, pp. 292-333,
1997.

[16] B. Benatallah, F. Casati, D. Grigori et al., “Developing Adapters for Web Services
Integration,” Proceedings of the International Conference on Advanced Information Systems
Engineering (CAiSE), 2005.

[17] W. Tan, Y. S. Fan, and M. C. Zhou, “A petri net-based method for compatibility analysis and
composition of Web services in business process execution language,” IEEE Transactions on
Automation Science and Engineering (in Press), 2008.

[18] X. Li, Y. Fan, J. Wang et al., “A Pattern-Based Approach to Development of Service
Mediators for Protocol Mediation,” Proceedings of the Seventh Working IEEE/IFIP
Conference on Software Architecture (WICSA 2008)-Volume 00, pp. 137-146, 2008.

[19] F. Jiang, Y. Fan, and X. Zhang, “Rule-Based Automatic Generation of Mediator Patterns for
Service Composition Mismatches,” Grid and Pervasive Computing Workshops, 2008. GPC
Workshops' 08. The 3rd International Conference on, pp. 3-8, 2008.

[20] X. Li, Y. Fan, and F. Jiang, “A Classification of Service Composition Mismatches to Support
Service Mediation,” Proc. of the 6th Intl. Conf. on Grid and Cooperative Computing (GCC
2007), pp. 315-321, 2007.

[21] K. Jensen, “Coloured Petri Nets: Basic Concepts, Analysis Methods and Practical Use. Vol. 1,
Basic Concepts,” Monographs in Theoretical Computer Science. Springer-Verlag, 1997.

[22] C. Ouyang, E. Verbeek, W. M. P. van der Aalst et al., “Formal semantics and analysis of
control flow in WS-BPEL,” Science of Computer Programming, vol. 67, no. 2-3, pp. 162-198,
2007.

[23] W. M. P. van der Aalst, and K. Bisgaard Lassen, “Translating unstructured workflow processes
to readable BPEL: Theory and implementation,” Information and Software Technology, vol.
50, no. 3, pp. 131-159, 2008.

[24] A. Martens, S. Moser, A. Gerhardt et al., “Analyzing Compatibility of BPEL Processes,”
Telecommunications, 2006. AICT-ICIW'06. International Conference on Internet and Web
Applications and Services/Advanced International Conference on, pp. 147-147, 2006.

[25] E. Rahm, and P. A. Bernstein, “A survey of approaches to automatic schema matching,” The
International Journal on Very Large Data Bases, vol. 10, no. 4, pp. 334-350, 2001.

[26] P. Shvaiko, and J. Euzenat, “A survey of schema-based matching approaches,” Journal on
Data Semantics, vol. 4, pp. 146-171, 2005.

[27] B. Spencer, and S. Liu, “Inferring Data Transformation Rules to Integrate Semantic Web

Services,” International Semantic Web Conference, pp. 456–470, 2004.
[28] H. R. M. Nezhad, B. Benatallah, A. Martens et al., “Semi-automated adaptation of service

interactions,” Proceedings of the 16th international conference on World Wide Web, pp.
993-1002, 2007.

[29] A. Bracciali, A. Brogi, and C. Canal, “A formal approach to component adaptation,” The
Journal of Systems & Software, vol. 74, no. 1, pp. 45-54, 2005.

[30] A. Brogi, and R. Popescu, “Automated Generation of BPEL Adapters,” Service-Oriented
Computing-ICSOC 2006, 4th International Conference, Chicago, IL, USA, December 4-7,
2006, Proceedings, vol. 4294, pp. 27–39, 2006.

[31] S. Pokraev, and M. Reichert, “Mediation Patterns for Message Exchange Protocols ” Open
INTEROP-Workshop on Enterprise Modeling and Ontologies for Interoperability (EMOI06)
in Proc. CAiSE, vol. 6, pp. 659-663, 2006.

[32] M. Younas, K. M. Chao, and C. Laing, “Composition of mismatched web services in
distributed service oriented design activities,” Advanced Engineering Informatics, vol. 19, no.
2, pp. 143-153, 2005.

Appendix

The BPEL templates of Simple Storer pattern, Merger pattern, Constructing Controller pattern and

Merging Repeater pattern are presented in the appendix as follows.
(1) BPEL template of Simple Storer pattern
Simple Storer pattern receives and stores a message. It is used for reconciling mismatches of extra

sending messages and missing receiving messages.

(2) BPEL template of Merger pattern
Merger pattern receives two or more partial messages and merges them into a single one. It is

used for reconciling mismatches of splitting receiving messages and merging sending messages.
Similar to Splitter pattern, the specific structure of Merger pattern is adjustable according to the
sequence of merged messages which may be sequential, parallel or mixed structure. Herein, the BPEL
template of the Merger pattern with two sequential partial messages is given. It is similar to develop
more complex Merger pattern.

<sequence>
 <receive variable="msgName" name="..."

partnerLink="..." portType="..." operation="...">
 </receive>
</sequence>

(3) BPEL template of Constructing Controller pattern
Constructing Controller pattern conditionally constructs and sends a message in terms of specific

logic. It is used for reconciling mismatches of extra condition of sending messages and missing
condition of receiving messages.

(4) BPEL template of Merging Repeater pattern
 Merging Repeater pattern receives messages iteratively and merges the received messages

<sequence>
 <switch>
 <case codition="getVariableData(...)">
 <receive variable="msgName" name="..."

partnerLink="..." portType-"..." operation="...">
 </receive>
 <reply variable="msgName" name="..."

partnerLink="..." portType-"..." operation="...">
 </reply>
 </case>
 <case condition="getVariableData(...)">
 <invoke name="creating" partnerLink="creator"

portType="..." operation="creatMsg"
inputVariable="creatingMsg" outputVariable="createdMsg">

 </invoke>
 <reply variable="createdMsg" name="..."

partnerLink="..." portType="..." operation="...">
 </reply>
 </case>
 </switch>
 <otherwise>
 ...
 </otherwise>
</sequence>

<sequence>
 <receive variable="merger_receiver1" name="..."

 partnerLink="..." portType="..." operation="...">
 </receive>
 <receive variable="merger_receiver2" name="..."
 partnerLink="..." portType="..." operation="...">
 </receive>
 <assign>
 <copy>
 <from part="part" variable="merger_receiver1" />
 <to part="part1" variable="merger_sender" />
 </copy>
 <copy>
 <from part="part" variable="merger_receiver2" />
 <to part="part2" variable="merger_sender" />
 </copy>
 </assign>
 <reply variable="merger_sender" name="..."

partnerLink="..." portType="..." operation="...">
 </reply>
</sequence>

together under certain condition. When the condition doesn’t hold, it sends the whole merged message
to its partner. Merging Repeater pattern can be used for reconciling protocol mismatches with iterative
structure.

<sequence>
 <while name="…">
 <condition expressionLanguage="...">
 conditionExpression
 </condition>
 <receive variable="message1" name="..."

partnerLink="..." portType="..." operation="...">
 </receive>
 <assign>
 <copy>
 <from part="part" variable="message1" />
 <to part="part{$count}" variable="message2" />
 </copy>
 <copy>
 <from>($count + 1)</from>
 <to variable="count"/>
 </copy>
 </assign>
 </while>
 <reply variable="message2" name="..."

partnerLink="..." portType="..." operation="...">
 </reply>
</sequence>

	CISL WP 2008-10 cover
	2008-09-06 A Pattern-Based Approach to Protocol Mediation for Web Service Composition - submitted

