
COMPUTERS IN EDUCATION JOURNAL, VOLUME 11, ISSUE 1, Jan-Mar 2020 1

Abstract— Embedded systems often implement behavior

for common application domains, such as the control
systems domain or the signal processing domain. An
increasingly common domain is pattern recognition, such as
determining which kind of fruit is passing on a conveyor
belt. Embedded system students and designers typically are
not experts in such domains and could benefit from simpler
platforms to help them gain insight into the problem of
pattern recognition and help them develop such algorithms
rapidly. Generic frameworks, such as PID (proportional-
integral-derivative) for control, or FIR (finite impulse
response) for signal filtering, empower non-expert
embedded system designers to quickly build robust systems
in those domains. We introduce a generic pattern
recognition framework, useful for education as well as for
various real systems. The framework divides the task into
three phases: feature extraction, classification, and
actuation (FCA). We provide template code (in C) that a
student or designer can modify for their own specific
application. We show that the FCA pattern recognition
framework can readily be adapted for various pattern
recognition applications, like recognizing box sizes, fruit
type, mug type, or detecting vending machine vandalism,
requiring only 2-3 hours to create each new application. We
report results of a randomized controlled study with 66
students in an intermediate embedded systems class,
showing that the framework could be learned in tens of
minutes and yielding applications with higher recognition
accuracy of 71% for pattern recognition vs. 57% without
the framework (p-value=0.03).

Index Terms—Embedded Systems, Pattern Recognition,
Teaching framework, Computer Science Education

I. INTRODUCTION
HILE many embedded system

applications are unique, others implement
behavior of well-known domains, illustrated in

This work was supported in part by the National Science Foundation

(NSF) grant number “1563652”.

Frank Vahid (vahid@ucr.edu) is a Professor of Computer Science

and Engineering at the University of California, Riverside. Tony
Givargis (givargis@uci.edu) is a Professor of Computer Science at the

Figure 1. For example, heating an oven to a
target temperature, or propelling a small robotic
car at a target speed, both represent instances of
control systems. A control system [1] strives to
control a physical system to match an actual
physical feature (temperature, speed) to a target
value. A rich discipline of control theory exists,
with various mathematical techniques for
modeling and controlling physical systems
aiming to best match the target (minimizing
overshoot, oscillations, and steady-state error)
and ensuring stability. However, such theory
requires extensive knowledge and training,
which many embedded systems students lack
early in their careers. Thus, a generic
framework for control has been developed,
known as PID (proportional-integral-
derivative) control [2] to empower non-experts
and students to build good quality control
systems. The simple concept of PID, plus

University of California, Irvine. Roman Lysecky
(rlysecky@ece.arizona.edu), is a Professor of Electrical and Computer
Engineering at the University of Arizona.

A Pattern Recognition Framework for
Embedded Systems

Frank Vahid, Tony Givargis, and Roman Lysecky

W

mailto:vahid@ucr.edu
mailto:givargis@uci.edu
mailto:rlysecky@ece.arizona.edu

2 COMPUTERS IN EDUCATION JOURNAL, VOLUME 11, ISSUE 1, Jan-Mar 2020

template code, and techniques for tuning P, I,
and D variables in such code, quickly yield
systems of sufficient quality for various
applications. Without domain experts or
knowledge, embedded system students and
designers might otherwise develop low-quality
control solutions; PID enables such designers to
build quality solutions, in the same or even less
time as they would otherwise.

Similarly, removing noise from a digital
signal, or letting only a certain frequency band
pass, both represent instances of digital signal
filtering. An FIR (finite impulse response) filter
[3] is an easy-to-understand generic framework
for filtering in software, allowing non-experts
and students to modify variables in template
code to implement specific filtering
applications.

PID and FIR frameworks each build on
existing domain theory to provide simple but
powerful methods for embedded system
designers and students.

Meanwhile, embedded systems are
increasingly used to recognize specific patterns.
In general, a pattern recognition system takes as
input data for an object, and outputs a category
for that object. For example, a common such
system takes a face photograph as input, and
outputs a known person’s name. Most work on
pattern recognition systems have a desktop
computing model, where input and output are
via a file or database. In contrast, a pattern
recognizing embedded system, illustrated in
Figure 2, gets input from sensors, like weight or
color sensors, and generates output by
controlling actuators, like changing a
directional gate on a conveyor belt, all in real-
time. For example, a warehouse may use a
pattern recognition system to recognize
whether a box on a conveyor belt is one of three
sizes, keeping count for inventory purposes. A
grocery system may recognize the kind of fruit
on a scale (apple, pear, banana) as in Figure 2
and output a total price based on kind and

weight. A front-door camera system may detect
whether a person is a known person from a
database and generate a different doorbell ring
for known persons. A wrist-worn device may
recognize that an elderly person has fallen and
alert caregivers [4]. An embedded camera may
be used to detect a red peach [5] on a tree for
harvesting. A package express center may use
an embedded magnetic matrix and outside
sensors to monitor conveyor belt parameters
such as tension, load, and position of objects
[6]. A system may detect the surface defects on
fruits to separate bad fruit from good fruit [7].
A system may be used for detecting the size and
grading a fruit to determine its quality [8] for
pricing purposes. Governmental organizations
may predict floods using pressure and
ultrasound flow sensors attached to embedded
computer nodes to reduce damages caused by
flooding [9]. A traffic system may choose the
proper light at intersections to tackle the traffic
congestion problem using controllers in traffic
lights and sensors on the road [10]. As can be
seen, pattern recognition is becoming another
common application domain in embedded
systems.

Like control systems and signal filtering,
pattern recognition is an established domain
with extensive theory and techniques.
However, many (if not most) embedded
systems students and designers do not have that
domain knowledge. The pattern recognition
domain has dozens of techniques that can
overwhelm a student or an embedded system
designer who tries to quickly learn about the

VAHID, GIVARGIS, LYSECKY: A Pattern Recognition Framework for Embedded Systems 3

domain to improve their embedded application.
Without access to domain experts, designers
may build low-quality pattern recognition
systems.

This paper introduces the FCA (feature
extraction, classification, actuation) framework
for pattern recognition in embedded systems,
describes the template code, and summarizes
results of using the FCA framework in a
classroom setting.

II. FCA FRAMEWORK
Years of engaging with commercial

embedded systems applications through
various consulting and other arrangements has
led to our observation that many embedded
applications handle pattern recognition poorly.
Some other researchers similarly state the issue
[26], with some pointing to issues like limited
resources making the pattern recognition
problem harder [24], and to the lack of good
embedded systems curriculum [25]. In some
cases, the developers are not aware of the
pattern recognition field or do not realize that
their application is performing pattern
recognition, and thus the developers do not
attempt to draw upon established pattern
recognition techniques. Instead, their software
may simply use a series of conditions
implemented via if-else statements, or a finite
state machine, to categorize data coming from
sensors. Or, developers may choose a pattern
recognition technique but use it poorly.
Furthermore, developers may attempt such
categorization on raw sensor data. Such
software may be making decisions based on
too-detailed highly varying input data and may
also have actuation distributed throughout the
code. The result is a complex piece of software
that is hard to update (such as if new sensors are
introduced) and that may have low accuracy.

Thus, our first step was to define a modular
process specifically for pattern recognition in
embedded systems. The process divides pattern

recognition into three phases – feature
extraction, classification, and actuation, or FCA
– shown in Figure 3, whose parts are
summarized below.

Sensors: The input consists of a combination
of various sensors, differing depending on the
application. One application may have weight
and color sensors. Another application may
have color and infrared (IR) break beam
sensors. Another may have accelerometers. A
designer determines which sensors to use to
help with pattern recognition tasks.

Feature extraction: The first phase in pattern
recognition is to convert raw sensor data into
features that will guide classification. For
example, 3-dimensional accelerometer data
may be converted into a velocity vector or an
acceleration magnitude. Data from several IR
sensors may be combined to estimate length,
width, and height features, or converted into a
volume feature. This phase prevents the
common situation of embedded systems
designers trying to use raw sensor data directly
to make classification decisions. Feature
extraction simplifies classification by pre-
shaping the data to represent information most
useful to classification. For example, in
package sorting, box height is more directly
useful than data on how many of four vertical
IR sensors currently have broken beams
(assume multiple IR sensors are stacked at
increasing height and a moving box will break
a number of the beams depending on its height).

4 COMPUTERS IN EDUCATION JOURNAL, VOLUME 11, ISSUE 1, Jan-Mar 2020

The output of feature extraction consists of
values for a set of features, such as “height =
3.5 in” and “red = 200” (indicating the amount
of red on a scale of 0-255).

Classification: Given values for a set of
features of an object, classification determines
to which category the object most likely
belongs. The output is a single category, such
as “apple”, or “small box”.

Actuation: Given a category, actuation takes
an appropriate action by setting values of an
actuator. If a “small box” is detected in a
warehouse system, a stepper motor (a kind of
actuator) may be set to guide the box on a
conveyor belt to a particular bin. If “apple” is
detected in a grocery system, a variable may be
set to an appropriate price based on the fruit’s
weight.

While seemingly simple, this division into
three phases enforces a modularity that
developers otherwise might bypass. The
division disallows using any raw sensor data in
classification, requiring instead that such data
be pre-shaped into well-defined features. The
division also disallows setting actuators
throughout the code; instead, all actuator setting
is done after classification is completed. An
analog might be made with programming,
wherein a function should only read/write its
parameters and not global variables – a concept
that was not well-understood in the early days
of programming, whereas today the importance
of modularity with respect to functions is well
understood. Using raw sensor data or setting an
actuator in the classification code is analogous
to reading or writing a global variable in a
function, both of which can have unintended
side effects and may result in complex hard-to-
maintain code. Establishing such modularity is
one goal of the FCA framework.

III. CLASSIFICATION
Pattern recognition is a widely studied

domain, stemming from the fields of computer

science and electrical engineering. The domain
goes by various names, including pattern
recognition, machine learning, data mining, and
knowledge discovery, with papers dating back
to the 1960s. As a result, a multitude of
techniques exist.

The techniques of most interest to embedded
system designers are those known as supervised
learning [11], in particular classification. In
classification, a set of training objects is
provided, with each object labeled as being in a
certain category. Then, given a new object, a
classification technique, based on the training
set, strives to determine in which category the
new object most likely belongs, such as: apple,
pear, or banana.

For an embedded system designer, trying to
determine which classification technique to
apply can be overwhelming. For example, the
Wikipedia [12][23] entry on supervised
learning states that no technique is best and lists
many, each technique having extensive
literature:

• Support vector machines
• Linear regression
• Logistic regression
• Naive Bayes
• Linear discriminant analysis
• Decision trees
• K-nearest neighbors
• Neural networks

An embedded system designer can be quickly

overwhelmed by all the options. Thus, we
strove to determine if one technique could serve
as a good basis for a generic framework in
embedded systems. Our criteria included:

• Simple to learn by embedded system
designers

• Good classification accuracy across
various common embedded system
applications

• Efficiently implemented on resource-
constrained embedded platforms

VAHID, GIVARGIS, LYSECKY: A Pattern Recognition Framework for Embedded Systems 5

Below, we review K-nearest neighbors, logistic
regression, naive Bayes, decision trees, support
vector machines, and neural networks along
with their advantages and disadvantages based
on our criteria.

K-nearest neighbor (KNN) [13] is a simple,
easily understandable classification algorithm.
KNN places known objects in an N-
dimensional space, where each dimension is a
feature (weight, height, color, etc.). Then, to
classify a new object, KNN determines the K
closest neighbors in the space; the most
common category among those K neighbors
wins. Figure 4 illustrates. KNN is powerful and
can handle non-linearity and multiclass
classification. Moreover, by having a large
enough training set, the error rate of KNN
would be less than twice the minimum
achievable error rate [14]. But, in case of having
a large training set, this algorithm can be
inefficient in terms of processing time/memory
due to the need for storing and searching the
training set.

Logistic regression [15] is a linear binary
classification algorithm that statistically
predicts the odds of an object being in a class
based on the features. Logistic regression is fast
and efficient in production. However, in this
algorithm, objects of different classes should be
linearly separable. Therefore, to make the
algorithm work well in various embedded
systems applications, an additional complex
feature representation step is required before
classification.

Naive Bayes [16] is a classification algorithm
designed based on Bayes' theorem, and learns
the distribution of the input data to predict the
probability that an input object belongs to a
particular class. Naive Bayes is simple both in
concept and implementation and is efficient in
production. However, it makes a strong
assumption of independence between features
of the input data and it suffers in performance
when data is sparse in some classes or features,
which makes it incompatible with many real-
world embedded system applications.

Decision trees [17] are a nonlinear
classification technique, which learns simple
decision rules from the training set to classify a
new input object. Decision trees are easy to
interpret and understand. However, decision
trees are prone to overfitting (matching
particular data too closely, thus being not
general) and lack robustness due to high
variance in classification accuracy. To increase
robustness, one can use an ensemble of decision
trees, but that makes the technique more
complex for embedded system development.

Support vector machines [18] are a binary
classification algorithm, which classifies
objects by finding the hyperplane that
represents the largest separation between two
classes and maximizing their margin. The
technique is robust and demonstrated good
quality in various embedded systems
applications [19, 20, 21]. Moreover, the
technique is efficient in production in terms of
memory and processing speed. However, the
technique’s performance heavily relies on a
kernel function, which is not easy to choose
especially for non-expert embedded systems
developers. Given that support vector machines
are mainly binary classifiers and their extension
to ternary and higher classification is not very
effective, they have limited applicability in the
embedded applications.

Neural networks [22] are inspired by the
human brain and nervous system. The
technique is powerful and has achieved much of
the state of the art in the image processing and

6 COMPUTERS IN EDUCATION JOURNAL, VOLUME 11, ISSUE 1, Jan-Mar 2020

natural language processing fields. However,
the technique is complicated to understand and
implement. Moreover, training requires a large
amount of data, which often is not available in
embedded systems applications.

After some investigation, discussions, and
many recommendations from various
classification researchers, we chose KNN as the
most appropriate general classification
technique for embedded systems developers.
KNN is highly intuitive: most people can
understand the algorithm just by looking at
Figure 4. The algorithm is straightforward to
code and has small code size and is efficient for
moderately-sized training sets as is common in
embedded systems. For larger training sets,
techniques exist to improve efficiency, such as
aggregating objects, caching previous results,
etc. The algorithm has demonstrated high
accuracy. These features make it a popular
choice in general pattern recognition as well but
are especially useful in embedded systems due
to limitations on code resources (speed, size)
and due to ease of understanding and
modification by embedded developers.

IV. TEMPLATE CODE
A simple but powerful software productivity

improvement techniques is to provide working
template code (called “reference code” in many
domains) that a developer can modify for
his/her particular application. We thus
developed template code in C to support the
FCA framework. A designer can adjust the code
to carry out their own pattern recognition
application. Highlights of the code are shown
below (the appendix has more complete code);
various helper functions and other items have
been omitted. A key aspect to notice is the
code’s simple organization, enabling a non-
expert embedded developer to readily
understand, navigate, and modify the code.

The template code shown in Figure 5 begins
by defining a categories array. It then defines a
structure for an object (either in the training set,
or the new object to be classified), with fields

being the object’s category and the various
features of the object. It next defines a training
set, with functions for populating the set.

Next, the FeatureExtraction function samples
input sensor values and converts those values
into desired features. The FeatureExtraction
function performs a simple unit conversion.
Often, the conversion may involve combining
values from multiple sensors, such as
converting three x, y, and z accelerometer
sensor values into the two features of
acceleration direction and acceleration
magnitude. FeatureExtraction ends by calling
the RescaleObject function to scale all features
to values between 0 and 1, so that “distances”
make sense in the subsequent KNN algorithm.
The RescaleObject function is omitted.

Next, the ComputeDistanceOfObjects
function computes the Euclidean distance of
any two objects, based on their N (scaled)
features in an N-dimensional space. That
function is used by the subsequent
Classification function, which computes the
distance between a new object and every object
in the training set, to determine the K nearest
training objects, and then returning the most
frequent category for those K objects.

Next, the Actuation function sets outputs
(actuators) in response to a given category.

Finally, the main function populates the
training set, sets up a sampling rate, and then
repeatedly calls FeatureExtraction,
Classification, and Actuation at that rate (using
a microcontroller’s built-in timer or whatever
timing services are provided).

V. ADAPTING THE TEMPLATE FOR VARIOUS
APPLICATIONS

We carried out various adaptations of the
applications, to gauge the effort required and

VAHID, GIVARGIS, LYSECKY: A Pattern Recognition Framework for Embedded Systems 7

template code to specific embedded systems

// Categories
#define NUM_OF_CATEGORIES 3
char* ObjectCategories[NUM_OF_CATEGORIES] = {"Apple", "Orange", "Mandarin"};

// Object with features
typedef struct {
 char* category; // Object's category
 float weight; // A feature – weight
 float r; // A feature -- red color
 // Other features omitted
} Object;

// Create training set
#define K_Parameter 3 // The K in KNN
#define TRAINING_SET_SIZE 9
Object knownObjects[TRAINING_SET_SIZE];
void PopulateKnownObjects() {
 AddToKnownObjects(0, "Apple", 74, 159, 14, 13);
 AddToKnownObjects(1, "Apple", 87, 236, 57, 2);
 // …
}

Object FeatureExtraction() { // PHASE 1: FEATURE EXTRACTION
 Object inputObject;
 inputObject.weight = A * 0.0022; // Convert weight sensor A to desired weight in pounds
 // …
 return RescaleObject(inputObject);
}

float ComputeDistanceofObjects(Object object1, Object object2) { // PHASE 2: CLASSIFICATION
 float weight = (object1.weight - object2.weight);
 float r = (object1.r - object2.r);
 // …
 float dist = sqrt(weight*weight + r*r + g*g + b*b);
 return dist;
}

char* Classification(Object inputObject, Object knownObjects[]) {
 // Core KNN algorithm
 return most_frequent_category;
}

void Actuation(char* category) { // PHASE 3: ACTUATION
 for (int i=0; i<NUM_OF_CATEGORIES; ++i) {
 if(category == ObjectCategories[i]){
 O = 0x01 << i;
 }
 }
}

int main() {
 PopulateKnownObjects();
 TimerSet(1000); TimerOn(); // 1 sec interrupt, ISR sets TimerFlag
 while(1) {
 /* Phase 1 */ inputObj = FeatureExtraction();
 /* Phase 2 */ category = Classification(inputObj, knownObjects);
 /* Phase 3 */ Actuation(category);
 while(!TimerFlag); TimerFlag = 0; // Waits 1 sec
 }
 return 0;
}

Fig. 5. Template code.

8 COMPUTERS IN EDUCATION JOURNAL, VOLUME 11, ISSUE 1, Jan-Mar 2020

effectiveness of the resulting system.
The first was an application from a factory

warehouse. The system was required to detect
which of three sized boxes were on a conveyor
belt and direct each box to a different bin for
each size. We initially considered a video-based
system but decided a simpler approach would
be preferable. We used a break beam sensor to
detect a box’s presence, and five distance
sensors: one to measure height, one to measure
width, and two to measure length. The feature
extractor included a simple state machine:
When the beam was broken, a new box was
arriving. When that beam was no longer
broken, we considered all the distance sensor
values before that moment. With those values,
we computed height, width, and length features
of the box. For training, we ran the three-sized
boxes past the sensors in various orientations
and recorded the height, width and length
values, yielding 9 training data values. We
entered those values into the array of known
objects in the template. The entire process of
modifying the template code and populating the
known objects array with training data required
3 hours. We tested the system with 9 new boxes
and obtained accuracy of 100% (9/9 correct
classifications).

The second was a grocery store application to
detect which types of fruits were passing
through on a conveyor belt. The fruits were
apples, oranges, lemons, and pears. We used a
break beam sensor to detect a fruit’s presence,
plus a weight sensor and color sensor. For
training, we ran 4 of each fruit through the
system to record the fruits' weights and colors,
giving us 16 training values. These values were
then entered into the array of known objects in
the template. This process took 2.5 hours: one
hour to modify the template and the rest spent
running and entering the training values. We
tested the system with 20 fruits and obtained
19/20 or 95% accuracy – one pear was marked
as an apple when its bruised side faced the color
sensor.

The third application involved putting a mug
on a scale to detect if the cup was an 11 oz mug,
a 16 oz mug, or a travel mug. A break beam
sensor started the system. We used three
distance sensors, two to measure the width of
the mug and one to measure the height, and a
weight sensor. We trained by sending nine
mugs through the system, three of each type.
These values were entered into the array of
known objects in the template. The process of
modifying this code took just under two hours
due to us already having the code for the
distance sensors and the weight sensor. We
tested the system with 6 new mugs and obtained
6/6 or 100% accuracy.

Another application was detecting whether or
not a vending machine was being tampered
with. In contrast to the above applications that
used a break beam sensor to start the pattern
recognition process, this application ran the
feature extraction part every one second. We
used an accelerometer as the only sensor. The
sensor provided three values: change in the x
axis, change in the y axis, and change in the z
axis. Every second, one hundred values were
measured with a delay of 10 milliseconds
between each measurement. We used a formula
to measure the largest change in each axis and
these changes were added to the training data,
ending with 8 training sets in all, categorized as
"normal shaking" or "abnormal shaking". This
application took 4 hours to modify due to the
feature extraction portion being different from
the other applications. We then gave the device
different shakes and obtained 17/20 or 85%
accuracy. Here, “accuracy” is less well defined,
because humans are the ones defining and
judging normal and abnormal shaking, both
during training and testing.

It should be noted that, ultimately, the quality
of a recognizer’s robustness and accuracy relies
on having robust training datasets.

VI. RANDOMIZED CONTROLLED STUDY
To further evaluate the framework’s

usability, we conducted an experiment with all

VAHID, GIVARGIS, LYSECKY: A Pattern Recognition Framework for Embedded Systems 9

66 students in the Intermediate Embedded and
Real-Time Systems class at the (university
name withheld for blind review). We randomly
divided participants into two groups, A and B.

Both groups started at an “Instructions” web
page indicating that they would be participating
in an embedded systems coding experiment,
and that they were required to work
independently and not refer to any outside
resources; teaching assistants were present to
ensure those rules were met. The instructions
indicated that they had 45 minutes, that they
were afterwards be given a survey, and that
their submissions were anonymized (i.e., no
impact on their course grade). Group A had one
additional instruction, asking students to
complete the tutorial available on the next page,
before attempting to code.

Upon clicking “Start experiment”, all
students were taken to an “Experiment” page.
At the top was a problem description asking to
solve a problem of classifying a person to a
man, woman, or child category based on the
height and weight of the person using training

data for 18 people. Beneath the problem
statement was an embedded systems simulator
where students could write C code to read from
microcontroller inputs and write to outputs;
students had been using this simulator
throughout the quarter already. The simulator
showed its standard code for both groups,
consisting of required includes at the top, and a
main function consisting of a timer
initialization followed by an infinite while(1)
loop.

The only difference between the groups here
was that Group A saw a button at the top
labeled “Tutorial”, while that button was not
present for Group B. The button for Group A
led to a brief discussion on pattern recognition
along with FCA template code and an example.
Note that the instructions did not tell Group A
students that they were required to use the
template code.

Upon reaching that experiments page, a timer
at the top of the page immediately started
counting up from 0 minutes. The teaching
assistants ensured all students stopped before
reaching 45 minutes.

We evaluated the submitted models on one
hundred test cases. As we assumed (and hoped),
all Group A students chose to use the FCA
template code in their solutions. Table 1 shows
the average accuracy and average time spent to
solve the problem for each group. The
comparison verifies that access to the
classification resources in group A led to the
development of significantly more accurate
models (p=0.03 using an independent t-test),
and that the provided template was quickly
learnable.

Figure 6 provides a detailed view of the

accuracies obtained by each group; Group A

10 COMPUTERS IN EDUCATION JOURNAL, VOLUME 11, ISSUE 1, Jan-Mar 2020

had many more applications with 80-100%
accuracy, and none with 0-20% accuracy that
occurred for some in Group B.

Analysis of the submission time information
shows that participants in group A spent
slightly higher time to solve the problem
compared to group B. This is mostly due to
group A needing to take extra time to read the
tutorial and review and understand the
reference code, which is a one-time overhead
that would be reduced if the individual used the
framework again.

 Also, a more detailed study of submitted
models shows that similar to the sample model
displayed in Figure 7, all participants in group
B used a series of branch statements to solve the
problem (as we had observed in various
commercial applications, mentioned in Section
2). In contrast, all participants in group A copy-
pasted and modified the template code, as in
Figure 8, even though the default code provided
to group A was only a basic main() function
with a timer and infinite loop, identical to group
B.

Discussion: Some might say that Group A of
course would do better because they received a
tutorial and template code. However, such
better performance was not a forgone
conclusion. If FCA was not easy to understand,
and if the code template was large or confusing,

Group A students might have chosen to
ignore the FCA code and write their own code,
as Group B did. Or, Group A students might
have tried to use the FCA template code but
failed to complete the task or created inferior
solutions. Indeed, many of the pattern
recognition techniques would have been almost
impossible to teach and gain success in such a
short period of time. We intended to show that
FCA is quickly learnable and effective, and the
results seem to support that hypothesis.

After submitting the code, participants took a
survey with seven questions regarding solving
the problem and the tool. Each question in the
survey had six options representing the level of
agreement with the question statement. We
converted those options into numbers from 1 to
6, where 1 corresponds to the strongly disagree
option, and 6 corresponds to the strongly agree
option. Table 2 shows the weighted average
responses of each group. The results show a
slight improvement across 4 of the 5 questions,
though not statistically significant except for
the last question. The conclusion here is that the
extra work of the FCA tutorial in the short
available time did not create any extra stress or
confusion.

VAHID, GIVARGIS, LYSECKY: A Pattern Recognition Framework for Embedded Systems 11

VII. CONCLUSION
Pattern recognition applications continue to

grow in embedded systems. We developed a
framework to enable embedded systems
students and designers to readily build robust
pattern recognition applications, without
having pattern recognition domain expertise.
The framework divides pattern recognition into

three phases: feature extraction, classification,
and actuation (FCA). We chose K-nearest
neighbors for classification due to simplicity
and robustness. We developed template code in
C for the FCA framework with great emphasis
on simplicity.

We found that we could adapt the template
code to four different applications in just a few
hours for each, with highly accurate
classification. We conducted an experiment
showing students could readily understand the
code and adapt it for a given application,
yielding significantly improved recognition
accuracy.

Embedded system students typically are not
experts in such domains and could benefit from
simpler platforms to help them gain insight into
the problem of pattern recognition and help
them develop such algorithms rapidly. This
work contributes to this educational mission.
Furthermore, many embedded systems
engineers are non-experts as well. This work
enables engineers to build robust pattern
recognition systems without being an expert in
the pattern recognition field, akin to how PID
control and FIR filters enable engineers to build
robust control or filtering systems without
being experts in those fields.

APPENDIX
This appendix provides a nearly complete

listing of the template code, as shown in Figure
9. Much attention was paid to keeping the code
as short and simple as possible, to enable rapid
understanding by embedded developers.

ACKNOWLEDGMENT
 This work was supported in part by the
National Science Foundation (NSF grant
number 1563652). We thank Shayan Salehian
and Bailey Herms, whose masters projects
contributed to this work.

12 COMPUTERS IN EDUCATION JOURNAL, VOLUME 11, ISSUE 1, Jan-Mar 2020

REFERENCES
[1] Dorf, R. C. and Bishop, R. H. (2011). Modern control
systems. Pearson.
[2] Wescott, T. (2000). PID without a PhD. Embedded
Systems Programming, 13(11), 1-7.
[3] Wagner, B. and Barr, M. (2002). Introduction to digital
filters. Embedded Systems Programming, 47.
 [4] Bourke, A. K., O’brien, J. V., and Lyons, G. M. (2007).
Evaluation of a threshold-based tri-axial accelerometer fall
detection algorithm. Gait & posture, 26(2), 194-199.
[5] Teixidó, M., Font, D., Pallejà, T., Tresanchez, M., Nogués,
M., and Palacín, J. (2012). An embedded real-time red peach
detection system based on an OV7670 camera, arm Cortex-
M4 processor and 3D look-up tables. Sensors, 12(10),
14129-14143.
[6] Pang, Y. and Lodewijks, G. (2006, June). A novel
embedded conductive detection system for intelligent
conveyor belt monitoring. In International Conference on
Service Operations and Logistics, and Informatics, pp. 803-
808). IEEE.
[7] Davenel, A., Guizard, C. H., Labarre, T., and Sevila, F.
(1988). Automatic detection of surface defects on fruit by
using a vision system. Journal of Agricultural Engineering
Research, 41(1), 1-9.
[8] Dang, H., Song, J., and Guo, Q. (2010, August). A fruit size
detecting and grading system based on image processing. In
Intelligent Human-Machine Systems and Cybernetics
(IHMSC), 2010 2nd International Conference on (Vol. 2, pp.
83-86). IEEE.
[9] Hughes, D., Greenwood, P., Coulson, G., and Blair, G.
(2006). Gridstix: Supporting flood prediction using
embedded hardware and next generation grid middleware.
In World of Wireless, Mobile and Multimedia Networks, 2006.
WoWMoM 2006. International Symposium on a (pp. 6-pp).
IEEE.
[10] Thakare, V. S., Jadhav, S. R., Sayyed, S. G., and Pawar, P.
V. (2013). Design of smart traffic light controller using
embedded system. IOSR Journal of Computer Engineering
(IOSR-JCE), 10(1), 30-33.
[11] Russell, S. J., Norvig, P., Canny, J. F., Malik, J. M., &
Edwards, D. D. (2003). Artificial intelligence: a modern
approach (Vol. 2, No. 9). Upper Saddle River: Prentice hall.
[12] Supervised learning. (2018, February 28). Retrieved
March 08, 2018, from
https://en.wikipedia.org/wiki/Supervised_learning
[13] Cover, T. and Hart, P. (1967). Nearest neighbor pattern
classification. IEEE transactions on information theory,
13(1), 21-27.
[14] Elkan, C. (2011, January). Nearest neighbor
classification. elkan@cs.ucsd.edu.
[15] Hosmer Jr, D. W., Lemeshow, S., and Sturdivant, R. X.
(2013). Applied logistic regression (Vol. 398). John Wiley &
Sons.
[16] Theodoridis, S. and Koutroumbas, K. (2008). Pattern
Recognition. Elsevier Science.

[17] Duda, R. O., Hart, P. E., and Stork, D. G. (2012). Pattern
classification. John Wiley & Sons.
[18] Cristianini, N. and Shawe-Taylor, J. (2000). An
introduction to support vector machines and other kernel-
based learning methods. Cambridge university press.
[19] Shi, G., Chan, C. S., Li, W. J., Leung, K. S., Zou, Y., and Jin,
Y. (2009). Mobile human airbag system for fall protection
using MEMS sensors and embedded SVM classifier. IEEE
Sensors Journal, 9(5).
[20] Meng, H., Pears, N., & Bailey, C. (2007, June). A human
action recognition system for embedded computer vision
application. In Computer Vision and Pattern Recognition,
2007. CVPR'07. IEEE Conference on (pp. 1-6). IEEE.
[21] He, Z. Y. & Jin, L. W. (2008, July). Activity recognition
from acceleration data using AR model representation and
SVM. In Machine Learning and Cybernetics, 2008
International Conference on (Vol. 4, pp. 2245-2250). IEEE.
[22] Hagan, M. T., Demuth, H. B., and Beale, M. H. (1996).
Neural network design (Vol. 20). Boston: Pws Pub.
[23] Wolpert, D. H., Macready, W. G., No Free Lunch
Theorems for Search, Technical Report SFI-TR-95-02-010,
1995.
[24] Ring, Matthias, et al. "Software-based performance and
complexity analysis for the design of embedded
classification systems." Proceedings of the 21st
International Conference on Pattern Recognition
(ICPR2012). IEEE, 2012.
[25] Ricks, K., D. Jackson, and W. Stapleton. Incorporating
embedded programming skills into an ECE curriculum. ACM
SIGBED Review, January 2007.
[26] Perez-Cortes, JC, JL Guardiola, and AJ Perez-Jimenez.
Pattern Recognition with Embedded Systems Technology:
A Survey. 20th Int. Workshop on Database and Expert
Systems Application, 2009.

VAHID, GIVARGIS, LYSECKY: A Pattern Recognition Framework for Embedded Systems 13

// Category definitions
#define NUM_OF_CATEGORIES 3
char* ObjectCategories[NUM_OF_CATEGORIES] = {"Apple", "Orange", "Mandarin"};
typedef struct {// Feature definitions
 char* category; // Object's category
 float weight; // A feature -- weight
 float r; // A feature -- red color
 float g; // A feature -- green color
 float b; // A feature -- blue color
} Object;
// Max and min feature values, needed for normalization
const float WEIGHT_MAX = 150;
const float WEIGHT_MIN = 0;
const float COLOR_MAX = 255;
const float COLOR_MIN = 0;
// Classification definitions
#define K_Parameter 3 // Used in KNN algorithm
#define TRAINING_SET_SIZE 9
Object knownObjects[TRAINING_SET_SIZE];
float RescaleValue(float value, const float min, const float max) { // Rescale a value to 0-1 range
 return (value-min) / (max-min);
}
Object RescaleObject(Object object) {// Rescale object features to 0-1 range
 Object rescaledObject;
 rescaledObject.category = object.category;
 rescaledObject.weight = RescaleValue(object.weight, WEIGHT_MIN, WEIGHT_MAX);
 rescaledObject.r = RescaleValue(object.r, COLOR_MIN, COLOR_MAX);
 rescaledObject.g = RescaleValue(object.g, COLOR_MIN, COLOR_MAX);
 rescaledObject.b = RescaleValue(object.b, COLOR_MIN, COLOR_MAX);
 return rescaledObject;
}
void AddToKnownObjects(int i, char* category, float weight, float r, float g, float b) { // Add new object to the known objects array
 knownObjects[i].category = category;
 knownObjects[i].weight = weight;
 knownObjects[i].r = r;
 knownObjects[i].g = g;
 knownObjects[i].b = b;
 knownObjects[i] = RescaleObject(knownObjects[i]);
}
void PopulateKnownObjects() { // Insert all known objects into the known objects array ("training data")
 AddToKnownObjects(0, "Apple", 74, 159, 14, 13);
 AddToKnownObjects(1, "Apple", 87, 236, 57, 2);
 AddToKnownObjects(2, "Apple", 95, 175, 10, 34);
 AddToKnownObjects(3, "Orange", 135, 248, 118, 3);
 AddToKnownObjects(4, "Orange", 122, 241, 131, 21);
 AddToKnownObjects(5, "Orange", 131, 238, 128, 16);
 AddToKnownObjects(6, "Mandarin", 80, 244, 118, 11);
 AddToKnownObjects(7, "Mandarin", 75, 204, 90, 0);
 AddToKnownObjects(8, "Mandarin", 84, 228, 93, 28);
}
/* PHASE 1: FEATURE EXTRACTION */
// Extract features from sensors and create a new object with those features, default example below uses sensor values as features
Object FeatureExtraction() {
 Object inputObject;
 inputObject.weight = A; // input "A" is weight
 inputObject.r = B; // input "B" is r
 inputObject.g = C; // input "C" is g
 inputObject.b = D; // input "D" is b
 return RescaleObject(inputObject);
}
/* PHASE 2: CLASSIFICATION */
float ComputeDistanceofObjects(Object object1, Object object2) { // Computes Euclidean distance between two objects for any # of dimensions.
 float weight = (object1.weight - object2.weight);
 float r = (object1.r - object2.r);
 float g = (object1.g - object2.g);
 float b = (object1.b - object2.b);
 float dist = sqrt(weight*weight + r*r + g*g + b*b);
 return dist;
}
void Sort(float *distances, char** categories) { // Sorts the provided distances from small to large
 // (standard sorting; details omitted)
}
char* Classification(Object inputObject, Object knownObjects[]) { // KNN classification: Predicts the input object's category given known objects
 int count = 0, max_count = 0;
 char* most_frequent_category;
 Object kNearestObjects[K_Parameter]; // Maintains K nearest knownObjects
 float distances[NUM_OF_KNOWN_OBJECTS];
 char* categories[NUM_OF_KNOWN_OBJECTS];
 for(int i=0; i<NUM_OF_KNOWN_OBJECTS; ++i) { // Compute the distance of each known object to the input object
 distances[i] = ComputeDistanceofObjects(inputObject, knownObjects[i]);
 categories[i] = knownObjects[i].category;
 }
 Sort(distances, categories); // Sort distances in ascending order
 // For each category, determine if it’s the most frequent among the K closest known objects
 for(int i=0; i<NUM_OF_CATEGORIES; ++i) {
 count = 0;
 for (int j=0; j<K_Parameter; ++j) { // Count frequency of this category in K closest objects
 if (categories[j] == ObjectCategories[i])
 count++;
 }
 if (count > max_count) { // Most frequent category so far
 max_count = count;
 most_frequent_category = ObjectCategories[i];
 }
 }
 return most_frequent_category;
}
/* PHASE 3: ACTUATION */
void Actuation(char* category) { // Turns on corresponding output bit to show category of the input object.
 if(category != "") {
 for (int i=0; i<NUM_OF_CATEGORIES; ++i) {
 if (category == ObjectCategories[i]) {
 O = 0x01 << i;
 }
 }
 }
}
volatile int TimerFlag = 0; void TimerISR() { TimerFlag = 1; }
int main() {
 char *closest_object_category;
 Object inputObject;
 PopulateKnownObjects();
 TimerSet(1000);
 TimerOn();
 while(1) {
 /* Phase 1 */ inputObject = FeatureExtraction();
 /* Phase 2 */ closest_object_category = Classification(inputObject, knownObjects);
 /* Phase 3 */ Actuation(closest_object_category);
 while(!TimerFlag);
 TimerFlag = 0;
 }
 return 0;
}

Fig. 9. Nearly complete code listing.

	I. INTRODUCTION
	II. FCA Framework
	III. Classification
	IV. Template Code
	V. Adapting The Template For Various Applications
	VI. Randomized Controlled Study
	VII. Conclusion
	Pattern recognition applications continue to grow in embedded systems. We developed a framework to enable embedded systems students and designers to readily build robust pattern recognition applications, without having pattern recognition domain exper...
	We found that we could adapt the template code to four different applications in just a few hours for each, with highly accurate classification. We conducted an experiment showing students could readily understand the code and adapt it for a given app...
	Embedded system students typically are not experts in such domains and could benefit from simpler platforms to help them gain insight into the problem of pattern recognition and help them develop such algorithms rapidly. This work contributes to this ...

	Appendix
	Acknowledgment
	References

