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Abstract— Embedded systems often implement behavior 

for common application domains, such as the control 
systems domain or the signal processing domain. An 
increasingly common domain is pattern recognition, such as 
determining which kind of fruit is passing on a conveyor 
belt. Embedded system students and designers typically are 
not experts in such domains and could benefit from simpler 
platforms to help them gain insight into the problem of 
pattern recognition and help them develop such algorithms 
rapidly. Generic frameworks, such as PID (proportional-
integral-derivative) for control, or FIR (finite impulse 
response) for signal filtering, empower non-expert 
embedded system designers to quickly build robust systems 
in those domains. We introduce a generic pattern 
recognition framework, useful for education as well as for 
various real systems. The framework divides the task into 
three phases: feature extraction, classification, and 
actuation (FCA). We provide template code (in C) that a 
student or designer can modify for their own specific 
application. We show that the FCA pattern recognition 
framework can readily be adapted for various pattern 
recognition applications, like recognizing box sizes, fruit 
type, mug type, or detecting vending machine vandalism, 
requiring only 2-3 hours to create each new application. We 
report results of a randomized controlled study with 66 
students in an intermediate embedded systems class, 
showing that the framework could be learned in tens of 
minutes and yielding applications with higher recognition 
accuracy of 71% for pattern recognition vs. 57% without 
the framework (p-value=0.03). 
 

Index Terms—Embedded Systems, Pattern Recognition, 
Teaching framework, Computer Science Education 
 

I. INTRODUCTION 
HILE many embedded system 

applications are unique, others implement 
behavior of well-known domains, illustrated in 
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Figure 1. For example, heating an oven to a 
target temperature, or propelling a small robotic 
car at a target speed, both represent instances of 
control systems. A control system [1] strives to 
control a physical system to match an actual 
physical feature (temperature, speed) to a target 
value. A rich discipline of control theory exists, 
with various mathematical techniques for 
modeling and controlling physical systems 
aiming to best match the target (minimizing 
overshoot, oscillations, and steady-state error) 
and ensuring stability. However, such theory 
requires extensive knowledge and training, 
which many embedded systems students lack 
early in their careers. Thus, a generic 
framework for control has been developed, 
known as PID (proportional-integral-
derivative) control [2] to empower non-experts 
and students to build good quality control 
systems. The simple concept of PID, plus  
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template code, and techniques for tuning P, I, 
and D variables in such code, quickly yield 
systems of sufficient quality for various 
applications. Without domain experts or 
knowledge, embedded system students and 
designers might otherwise develop low-quality 
control solutions; PID enables such designers to 
build quality solutions, in the same or even less 
time as they would otherwise. 

Similarly, removing noise from a digital 
signal, or letting only a certain frequency band 
pass, both represent instances of digital signal 
filtering. An FIR (finite impulse response) filter 
[3] is an easy-to-understand generic framework 
for filtering in software, allowing non-experts 
and students to modify variables in template 
code to implement specific filtering 
applications.  

PID and FIR frameworks each build on 
existing domain theory to provide simple but 
powerful methods for embedded system 
designers and students. 

Meanwhile, embedded systems are 
increasingly used to recognize specific patterns. 
In general, a pattern recognition system takes as 
input data for an object, and outputs a category 
for that object. For example, a common such 
system takes a face photograph as input, and 
outputs a known person’s name. Most work on 
pattern recognition systems have a desktop 
computing model, where input and output are 
via a file or database. In contrast, a pattern 
recognizing embedded system, illustrated in 
Figure 2, gets input from sensors, like weight or 
color sensors, and generates output by 
controlling actuators, like changing a 
directional gate on a conveyor belt, all in real-
time. For example, a warehouse may use a 
pattern recognition system to recognize 
whether a box on a conveyor belt is one of three 
sizes, keeping count for inventory purposes. A 
grocery system may recognize the kind of fruit 
on a scale (apple, pear, banana) as in Figure 2 
and output a total price based on kind and 

 
weight. A front-door camera system may detect 
whether a person is a known person from a 
database and generate a different doorbell ring 
for known persons. A wrist-worn device may 
recognize that an elderly person has fallen and 
alert caregivers [4]. An embedded camera may 
be used to detect a red peach [5] on a tree for 
harvesting. A package express center may use 
an embedded magnetic matrix and outside 
sensors to monitor conveyor belt parameters 
such as tension, load, and position of objects 
[6]. A system may detect the surface defects on 
fruits to separate bad fruit from good fruit [7]. 
A system may be used for detecting the size and 
grading a fruit to determine its quality [8] for 
pricing purposes. Governmental organizations 
may predict floods using pressure and 
ultrasound flow sensors attached to embedded 
computer nodes to reduce damages caused by 
flooding [9]. A traffic system may choose the 
proper light at intersections to tackle the traffic 
congestion problem using controllers in traffic 
lights and sensors on the road [10]. As can be 
seen, pattern recognition is becoming another 
common application domain in embedded 
systems. 

Like control systems and signal filtering, 
pattern recognition is an established domain 
with extensive theory and techniques. 
However, many (if not most) embedded 
systems students and designers do not have that 
domain knowledge. The pattern recognition 
domain has dozens of techniques that can 
overwhelm a student or an embedded system  
designer who tries to quickly learn about the 
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domain to improve their embedded application. 
Without access to domain experts, designers 
may build low-quality pattern recognition 
systems. 

This paper introduces the FCA (feature 
extraction, classification, actuation) framework 
for pattern recognition in embedded systems, 
describes the template code, and summarizes 
results of using the FCA framework in a 
classroom setting. 

II. FCA FRAMEWORK 
Years of engaging with commercial 

embedded systems applications through 
various consulting and other arrangements has 
led to our observation that many embedded 
applications handle pattern recognition poorly. 
Some other researchers similarly state the issue 
[26], with some pointing to issues like limited 
resources making the pattern recognition 
problem harder [24], and to the lack of good 
embedded systems curriculum [25]. In some 
cases, the developers are not aware of the 
pattern recognition field or do not realize that 
their application is performing pattern 
recognition, and thus the developers do not 
attempt to draw upon established pattern 
recognition techniques. Instead, their software 
may simply use a series of conditions 
implemented via if-else statements, or a finite 
state machine, to categorize data coming from 
sensors. Or, developers may choose a pattern 
recognition technique but use it poorly. 
Furthermore, developers may attempt such 
categorization on raw sensor data. Such 
software may be making decisions based on 
too-detailed highly varying input data and may 
also have actuation distributed throughout the 
code. The result is a complex piece of software 
that is hard to update (such as if new sensors are 
introduced) and that may have low accuracy. 

Thus, our first step was to define a modular 
process specifically for pattern recognition in 
embedded systems. The process divides pattern 

 
recognition into three phases – feature 
extraction, classification, and actuation, or FCA 
– shown in Figure 3, whose parts are 
summarized below.    

Sensors: The input consists of a combination 
of various sensors, differing depending on the 
application. One application may have weight 
and color sensors. Another application may 
have color and infrared (IR) break beam 
sensors. Another may have accelerometers. A 
designer determines which sensors to use to 
help with pattern recognition tasks. 

Feature extraction: The first phase in pattern 
recognition is to convert raw sensor data into 
features that will guide classification. For 
example, 3-dimensional accelerometer data 
may be converted into a velocity vector or an 
acceleration magnitude. Data from several IR 
sensors may be combined to estimate length, 
width, and height features, or converted into a 
volume feature. This phase prevents the 
common situation of embedded systems 
designers trying to use raw sensor data directly 
to make classification decisions. Feature 
extraction simplifies classification by pre-
shaping the data to represent information most 
useful to classification. For example, in 
package sorting, box height is more directly 
useful than data on how many of four vertical 
IR sensors currently have broken beams 
(assume multiple IR sensors are stacked at 
increasing height and a moving box will break 
a number of the beams depending on its height). 
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The output of feature extraction consists of 
values for a set of features, such as “height = 
3.5 in” and “red = 200” (indicating the amount 
of red on a scale of 0-255). 

Classification: Given values for a set of 
features of an object, classification determines 
to which category the object most likely 
belongs. The output is a single category, such 
as “apple”, or “small box”. 

Actuation: Given a category, actuation takes 
an appropriate action by setting values of an 
actuator. If a “small box” is detected in a 
warehouse system, a stepper motor (a kind of 
actuator) may be set to guide the box on a 
conveyor belt to a particular bin. If “apple” is 
detected in a grocery system, a variable may be 
set to an appropriate price based on the fruit’s 
weight. 

While seemingly simple, this division into 
three phases enforces a modularity that 
developers otherwise might bypass. The 
division disallows using any raw sensor data in 
classification, requiring instead that such data 
be pre-shaped into well-defined features. The 
division also disallows setting actuators 
throughout the code; instead, all actuator setting 
is done after classification is completed. An 
analog might be made with programming, 
wherein a function should only read/write its 
parameters and not global variables – a concept 
that was not well-understood in the early days 
of programming, whereas today the importance 
of modularity with respect to functions is well 
understood. Using raw sensor data or setting an 
actuator in the classification code is analogous 
to reading or writing a global variable in a 
function, both of which can have unintended 
side effects and may result in complex hard-to-
maintain code. Establishing such modularity is 
one goal of the FCA framework. 

III. CLASSIFICATION 
Pattern recognition is a widely studied 

domain, stemming from the fields of computer 

science and electrical engineering. The domain 
goes by various names, including pattern 
recognition, machine learning, data mining, and 
knowledge discovery, with papers dating back 
to the 1960s. As a result, a multitude of 
techniques exist. 

The techniques of most interest to embedded 
system designers are those known as supervised 
learning [11], in particular classification. In 
classification, a set of training objects is 
provided, with each object labeled as being in a 
certain category. Then, given a new object, a 
classification technique, based on the training 
set, strives to determine in which category the 
new object most likely belongs, such as: apple, 
pear, or banana. 

For an embedded system designer, trying to 
determine which classification technique to 
apply can be overwhelming. For example, the 
Wikipedia [12][23] entry on supervised 
learning states that no technique is best and lists 
many, each technique having extensive 
literature: 
 

• Support vector machines 
• Linear regression 
• Logistic regression 
• Naive Bayes 
• Linear discriminant analysis 
• Decision trees 
• K-nearest neighbors 
• Neural networks 
 
An embedded system designer can be quickly 

overwhelmed by all the options. Thus, we 
strove to determine if one technique could serve 
as a good basis for a generic framework in 
embedded systems. Our criteria included: 
 

• Simple to learn by embedded system 
designers 

• Good classification accuracy across 
various common embedded system 
applications 

• Efficiently implemented on resource-
constrained embedded platforms 
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Below, we review K-nearest neighbors, logistic 
regression, naive Bayes, decision trees, support 
vector machines, and neural networks along 
with their advantages and disadvantages based 
on our criteria. 

K-nearest neighbor (KNN) [13] is a simple, 
easily understandable classification algorithm. 
KNN places known objects in an N-
dimensional space, where each dimension is a 
feature (weight, height, color, etc.). Then, to 
classify a new object, KNN determines the K 
closest neighbors in the space; the most 
common category among those K neighbors 
wins. Figure 4 illustrates. KNN is powerful and 
can handle non-linearity and multiclass 
classification. Moreover, by having a large 
enough training set, the error rate of KNN 
would be less than twice the minimum 
achievable error rate [14]. But, in case of having 
a large training set, this algorithm can be 
inefficient in terms of processing time/memory 
due to the need for storing and searching the 
training set. 

Logistic regression [15] is a linear binary 
classification algorithm that statistically 
predicts the odds of an object being in a class 
based on the features. Logistic regression is fast 
and efficient in production. However, in this 
algorithm, objects of different classes should be 
linearly separable. Therefore, to make the 
algorithm work well in various embedded 
systems applications, an additional complex 
feature representation step is required before 
classification. 

Naive Bayes [16] is a classification algorithm 
designed based on Bayes' theorem, and learns 
the distribution of the input data to predict the 
probability that an input object belongs to a 
particular class. Naive Bayes is simple both in 
concept and implementation and is efficient in  
production. However, it makes a strong 
assumption of independence between features 
of the input data and it suffers in performance 
when data is sparse in some classes or features, 
which makes it incompatible with many real-
world embedded system applications. 

Decision trees [17] are a nonlinear 
classification technique, which learns simple 
decision rules from the training set to classify a 
new input object. Decision trees are easy to 
interpret and understand. However, decision 
trees are prone to overfitting (matching 
particular data too closely, thus being not 
general) and lack robustness due to high 
variance in classification accuracy. To increase 
robustness, one can use an ensemble of decision 
trees, but that makes the technique more 
complex for embedded system development. 

Support vector machines [18] are a binary 
classification algorithm, which classifies 
objects by finding the hyperplane that 
represents the largest separation between two 
classes and maximizing their margin. The 
technique is robust and demonstrated good 
quality in various embedded systems 
applications [19, 20, 21]. Moreover, the 
technique is efficient in production in terms of 
memory and processing speed. However, the 
technique’s performance heavily relies on a 
kernel function, which is not easy to choose 
especially for non-expert embedded systems 
developers. Given that support vector machines 
are mainly binary classifiers and their extension 
to ternary and higher classification is not very 
effective, they have limited applicability in the 
embedded applications. 

Neural networks [22] are inspired by the 
human brain and nervous system. The 
technique is powerful and has achieved much of 
the state of the art in the image processing and 



6 COMPUTERS IN EDUCATION JOURNAL, VOLUME 11, ISSUE 1, Jan-Mar 2020 

natural language processing fields. However, 
the technique is complicated to understand and 
implement. Moreover, training requires a large 
amount of data, which often is not available in 
embedded systems applications. 

After some investigation, discussions, and 
many  recommendations from various 
classification researchers, we chose KNN as the 
most appropriate general classification 
technique for embedded systems developers. 
KNN is highly intuitive: most people can 
understand the algorithm just by looking at 
Figure 4. The algorithm is straightforward to 
code and has small code size and is efficient for 
moderately-sized training sets as is common in 
embedded systems. For larger training sets, 
techniques exist to improve efficiency, such as 
aggregating objects, caching previous results, 
etc. The algorithm has demonstrated high 
accuracy. These features make it a popular 
choice in general pattern recognition as well but 
are especially useful in embedded systems due 
to limitations on code resources (speed, size) 
and due to ease of understanding and 
modification by embedded developers. 

IV. TEMPLATE CODE 
A simple but powerful software productivity 

improvement techniques is to provide working 
template code (called “reference code” in many 
domains) that a developer can modify for 
his/her particular application. We thus 
developed template code in C to support the 
FCA framework. A designer can adjust the code 
to carry out their own pattern recognition 
application. Highlights of the code are shown 
below (the appendix has more complete code); 
various helper functions and other items have 
been omitted. A key aspect to notice is the 
code’s simple organization, enabling a non-
expert embedded developer to readily 
understand, navigate, and modify the code. 

The template code shown in Figure 5 begins 
by defining a categories array. It then defines a 
structure for an object (either in the training set, 
or the new object to be classified), with fields 

being the object’s category and the various 
features of the object.  It next defines a training 
set, with functions for populating the set.  

Next, the FeatureExtraction function samples 
input sensor values and converts those values 
into desired features. The FeatureExtraction 
function performs a simple unit conversion. 
Often, the conversion may involve combining 
values from multiple sensors, such as 
converting three x, y, and z accelerometer 
sensor values into the two features of 
acceleration direction and acceleration 
magnitude. FeatureExtraction ends by calling 
the RescaleObject function to scale all features 
to values between 0 and 1, so that “distances” 
make sense in the subsequent KNN algorithm.  
The RescaleObject function is omitted.  

Next, the ComputeDistanceOfObjects 
function computes the Euclidean distance of 
any two objects, based on their N (scaled) 
features in an N-dimensional space. That 
function is used by the subsequent 
Classification function, which computes the 
distance between a new object and every object 
in the training set, to determine the K nearest 
training objects, and then returning the most 
frequent category for those K objects.  

Next, the Actuation function sets outputs 
(actuators) in response to a given category.  

Finally, the main function populates the 
training set, sets up a sampling rate, and then 
repeatedly calls FeatureExtraction, 
Classification, and Actuation at that rate (using 
a microcontroller’s built-in timer or whatever 
timing services are provided). 

V. ADAPTING THE TEMPLATE FOR VARIOUS 
APPLICATIONS 

We carried out various adaptations of the 
applications, to gauge the effort required and 
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template code to specific embedded systems 

// Categories                                                                    
#define NUM_OF_CATEGORIES 3 
char* ObjectCategories[NUM_OF_CATEGORIES] = {"Apple", "Orange", "Mandarin"}; 
 
// Object with features  
typedef struct { 
        char* category; // Object's category                                  
        float weight;   // A feature – weight                                    
        float r;  // A feature -- red color                                      
        // Other features omitted                                                
} Object; 
 
// Create training set                                                           
#define K_Parameter 3 // The K in KNN                                            
#define TRAINING_SET_SIZE 9 
Object knownObjects[TRAINING_SET_SIZE]; 
void PopulateKnownObjects() { 
        AddToKnownObjects(0, "Apple", 74, 159, 14, 13); 
        AddToKnownObjects(1, "Apple", 87, 236, 57, 2); 
        // … 
} 
 
Object FeatureExtraction() { // PHASE 1: FEATURE EXTRACTION                      
        Object inputObject;                           
        inputObject.weight = A * 0.0022; // Convert weight sensor A to desired weight in pounds 
        // … 
        return RescaleObject(inputObject); 
} 
 
float ComputeDistanceofObjects(Object object1, Object object2) { // PHASE 2: CLASSIFICATION      
        float weight = (object1.weight - object2.weight); 
        float r = (object1.r - object2.r); 
        // … 
        float dist = sqrt(weight*weight + r*r + g*g + b*b); 
        return dist; 
} 
 
char* Classification(Object inputObject, Object knownObjects[]) { 
        // Core KNN algorithm                                                    
        return most_frequent_category; 
} 
 
void Actuation(char* category) { // PHASE 3: ACTUATION                           
        for (int i=0; i<NUM_OF_CATEGORIES; ++i) { 
                if( category == ObjectCategories[i] ){ 
                        O = 0x01 << i; 
                } 
        } 
} 
 
int main() { 
        PopulateKnownObjects();                                           
        TimerSet(1000); TimerOn(); // 1 sec interrupt, ISR sets TimerFlag 
        while(1) { 
                /* Phase 1 */ inputObj = FeatureExtraction(); 
                /* Phase 2 */ category = Classification(inputObj, knownObjects); 
                /* Phase 3 */ Actuation(category); 
                while(!TimerFlag); TimerFlag = 0; // Waits 1 sec                 
        } 
        return 0; 
} 

 
 
 
 
 
 
 
 
 
 
Fig. 5.  Template code. 
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effectiveness of the resulting system.  
The first was an application from a factory 

warehouse. The system was required to detect 
which of three sized boxes were on a conveyor 
belt and direct each box to a different bin for 
each size. We initially considered a video-based 
system but decided a simpler approach would 
be preferable. We used a break beam sensor to 
detect a box’s presence, and five distance 
sensors: one to measure height, one to measure 
width, and two to measure length. The feature 
extractor included a simple state machine: 
When the beam was broken, a new box was 
arriving. When that beam was no longer 
broken, we considered all the distance sensor 
values before that moment. With those values, 
we computed height, width, and length features 
of the box. For training, we ran the three-sized 
boxes past the sensors in various orientations 
and recorded the height, width and length 
values, yielding 9 training data values. We 
entered those values into the array of known 
objects in the template. The entire process of 
modifying the template code and populating the 
known objects array with training data required 
3 hours. We tested the system with 9 new boxes 
and obtained accuracy of 100% (9/9 correct 
classifications).  

The second was a grocery store application to 
detect which types of fruits were passing 
through on a conveyor belt. The fruits were 
apples, oranges, lemons, and pears. We used a 
break beam sensor to detect a fruit’s presence, 
plus a weight sensor and color sensor. For 
training, we ran 4 of each fruit through the 
system to record the fruits' weights and colors, 
giving us 16 training values. These values were 
then entered into the array of known objects in 
the template. This process took 2.5 hours: one 
hour to modify the template and the rest spent 
running and entering the training values. We 
tested the system with 20 fruits and obtained 
19/20 or 95% accuracy – one pear was marked 
as an apple when its bruised side faced the color 
sensor. 

The third application involved putting a mug 
on a scale to detect if the cup was an 11 oz mug, 
a 16 oz mug, or a travel mug. A break beam 
sensor started the system. We used three 
distance sensors, two to measure the width of 
the mug and one to measure the height, and a 
weight sensor. We trained by sending nine 
mugs through the system, three of each type. 
These values were entered into the array of 
known objects in the template. The process of 
modifying this code took just under two hours 
due to us already having the code for the 
distance sensors and the weight sensor. We 
tested the system with 6 new mugs and obtained 
6/6 or 100% accuracy. 

Another application was detecting whether or 
not a vending machine was being tampered 
with. In contrast to the above applications that 
used a break beam sensor to start the pattern 
recognition process, this application ran the 
feature extraction part every one second. We 
used an accelerometer as the only sensor. The 
sensor provided three values: change in the x 
axis, change in the y axis, and change in the z 
axis. Every second, one hundred values were 
measured with a delay of 10 milliseconds 
between each measurement. We used a formula 
to measure the largest change in each axis and 
these changes were added to the training data, 
ending with 8 training sets in all, categorized as 
"normal shaking" or "abnormal shaking". This 
application took 4 hours to modify due to the 
feature extraction portion being different from 
the other applications. We then gave the device 
different shakes and obtained 17/20 or 85% 
accuracy. Here, “accuracy” is less well defined, 
because humans are the ones defining and 
judging normal and abnormal shaking, both 
during training and testing.  

It should be noted that, ultimately, the quality 
of a recognizer’s robustness and accuracy relies 
on having robust training datasets. 

VI. RANDOMIZED CONTROLLED STUDY 
To further evaluate the framework’s 

usability, we conducted an experiment with all 
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66 students in the Intermediate Embedded and 
Real-Time Systems class at the (university 
name withheld for blind review). We randomly 
divided participants into two groups, A and B.  

Both groups started at an “Instructions” web 
page indicating that they would be participating 
in an embedded systems coding experiment, 
and that they were required to work 
independently and not refer to any outside 
resources; teaching assistants were present to 
ensure those rules were met. The instructions 
indicated that they had 45 minutes, that they 
were afterwards be given a survey, and that 
their submissions were anonymized (i.e., no 
impact on their course grade). Group A had one 
additional instruction, asking students to 
complete the tutorial available on the next page, 
before attempting to code.  

Upon clicking “Start experiment”, all 
students were taken to an “Experiment” page. 
At the top was a problem description asking to 
solve a problem of classifying a person to a 
man, woman, or child category based on the 
height and weight of the person using training 

data for 18 people. Beneath the problem 
statement was an embedded systems simulator 
where students could write C code to read from 
microcontroller inputs and write to outputs; 
students had been using this simulator 
throughout the quarter already. The simulator 
showed its standard code for both groups, 
consisting of required includes at the top, and a 
main function consisting of a timer 
initialization followed by an infinite while(1) 
loop.   

The only difference between the groups here 
was that Group A saw a button at the top 
labeled “Tutorial”, while that button was not 
present for Group B. The button for Group A 
led to a brief discussion on pattern recognition 
along with FCA template code and an example. 
Note that the instructions did not tell Group A 
students that they were required to use the 
template code.  

Upon reaching that experiments page, a timer 
at the top of the page immediately started 
counting up from 0 minutes. The teaching 
assistants ensured all students stopped before 
reaching 45 minutes.  

We evaluated the submitted models on one 
hundred test cases. As we assumed (and hoped), 
all Group A students chose to use the FCA 
template code in their solutions. Table 1 shows 
the average accuracy and average time spent to 
solve the problem for each group. The 
comparison verifies that access to the 
classification resources in group A led to the 
development of significantly more accurate 
models (p=0.03 using an independent t-test), 
and that the provided template was quickly 
learnable.  

 
Figure 6 provides a detailed view of the 

accuracies obtained by each group; Group A 
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had many more applications with 80-100% 
accuracy, and none with 0-20% accuracy that 
occurred for some in Group B. 

Analysis of the submission time information 
shows that participants in group A spent 
slightly higher time to solve the problem 
compared to group B. This is mostly due to 
group A needing to take extra time to read the 
tutorial and review and understand the 
reference code, which is a one-time overhead 
that would be reduced if the individual used the 
framework again.  

 Also, a more detailed study of submitted 
models shows that similar to the sample model 
displayed in Figure 7, all participants in group 
B used a series of branch statements to solve the 
problem (as we had observed in various 
commercial applications, mentioned in Section 
2). In contrast, all participants in group A copy-
pasted and modified the template code, as in 
Figure 8, even though the default code provided 
to group A was only a basic main() function 
with a timer and infinite loop, identical to group 
B. 

Discussion: Some might say that Group A of 
course would do better because they received a 
tutorial and template code. However, such 
better performance was not a forgone 
conclusion. If FCA was not easy to understand, 
and if the code template was large or confusing, 

  
 

Group A students might have chosen to 
ignore the FCA code and write their own code, 
as Group B did. Or, Group A students might 
have tried to use the FCA template code but 
failed to complete the task or created inferior 
solutions. Indeed, many of the pattern 
recognition techniques would have been almost 
impossible to teach and gain success in such a 
short period of time. We intended to show that 
FCA is quickly learnable and effective, and the 
results seem to support that hypothesis.   

After submitting the code, participants took a 
survey with seven questions regarding solving 
the problem and the tool. Each question in the 
survey had six options representing the level of 
agreement with the question statement. We 
converted those options into numbers from 1 to 
6, where 1 corresponds to the strongly disagree 
option, and 6 corresponds to the strongly agree 
option. Table 2 shows the weighted average 
responses of each group. The results show a 
slight improvement across 4 of the 5 questions, 
though not statistically significant except for 
the last question. The conclusion here is that the 
extra work of the FCA tutorial in the short 
available time did not create any extra stress or 
confusion. 
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VII. CONCLUSION 
Pattern recognition applications continue to 

grow in embedded systems. We developed a 
framework to enable embedded systems 
students and designers to readily build robust 
pattern recognition applications, without 
having pattern recognition domain expertise. 
The framework divides pattern recognition into 

three phases: feature extraction, classification, 
and actuation (FCA). We chose K-nearest 
neighbors for classification due to simplicity 
and robustness. We developed template code in 
C for the FCA framework with great emphasis 
on simplicity.  

We found that we could adapt the template 
code to four different applications in just a few 
hours for each, with highly accurate 
classification. We conducted an experiment 
showing students could readily understand the 
code and adapt it for a given application, 
yielding significantly improved recognition 
accuracy.  

Embedded system students typically are not 
experts in such domains and could benefit from 
simpler platforms to help them gain insight into 
the problem of pattern recognition and help 
them develop such algorithms rapidly. This 
work contributes to this educational mission. 
Furthermore, many embedded systems 
engineers are non-experts as well. This work 
enables engineers to build robust pattern 
recognition systems without being an expert in 
the pattern recognition field, akin to how PID 
control and FIR filters enable engineers to build 
robust control or filtering systems without 
being experts in those fields.  

APPENDIX 
This appendix provides a nearly complete 

listing of the template code, as shown in Figure 
9. Much attention was paid to keeping the code 
as short and simple as possible, to enable rapid 
understanding by embedded developers. 
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// Category definitions                                                                                                                    
#define NUM_OF_CATEGORIES 3 
char* ObjectCategories[NUM_OF_CATEGORIES] = {"Apple", "Orange", "Mandarin"}; 
typedef struct {// Feature definitions                                                                                                     
        char* category; // Object's category                                                                                               
        float weight;   // A feature -- weight                                                                                             
        float r;  // A feature -- red color                                                                                                
        float g;  // A feature -- green color                                                                                              
        float b;  // A feature -- blue color                                                                                               
} Object; 
// Max and min feature values, needed for normalization                                                                                    
const float WEIGHT_MAX = 150; 
const float WEIGHT_MIN = 0; 
const float COLOR_MAX = 255; 
const float COLOR_MIN = 0; 
// Classification definitions                                                                                                              
#define K_Parameter 3 // Used in KNN algorithm                                                                                             
#define TRAINING_SET_SIZE 9 
Object knownObjects[TRAINING_SET_SIZE]; 
float RescaleValue(float value, const float min, const float max) { // Rescale a value to 0-1 range                                        
        return (value-min) / (max-min); 
} 
Object RescaleObject(Object object) {// Rescale object features to 0-1 range                                                               
        Object rescaledObject; 
        rescaledObject.category = object.category; 
        rescaledObject.weight = RescaleValue(object.weight, WEIGHT_MIN, WEIGHT_MAX); 
        rescaledObject.r = RescaleValue(object.r, COLOR_MIN, COLOR_MAX); 
        rescaledObject.g = RescaleValue(object.g, COLOR_MIN, COLOR_MAX); 
        rescaledObject.b = RescaleValue(object.b, COLOR_MIN, COLOR_MAX); 
        return rescaledObject; 
} 
void AddToKnownObjects(int i, char* category, float weight, float r, float g, float b) { // Add new object to the known objects array      
        knownObjects[i].category = category; 
        knownObjects[i].weight = weight; 
        knownObjects[i].r = r; 
        knownObjects[i].g = g; 
        knownObjects[i].b = b; 
        knownObjects[i] = RescaleObject(knownObjects[i]); 
} 
void PopulateKnownObjects() { // Insert all known objects into the known objects array ("training data")                                   
        AddToKnownObjects(0, "Apple", 74, 159, 14, 13); 
        AddToKnownObjects(1, "Apple", 87, 236, 57, 2); 
        AddToKnownObjects(2, "Apple", 95, 175, 10, 34); 
        AddToKnownObjects(3, "Orange", 135, 248, 118, 3); 
        AddToKnownObjects(4, "Orange", 122, 241, 131, 21); 
        AddToKnownObjects(5, "Orange", 131, 238, 128, 16); 
        AddToKnownObjects(6, "Mandarin", 80, 244, 118, 11); 
        AddToKnownObjects(7, "Mandarin", 75, 204, 90, 0); 
        AddToKnownObjects(8, "Mandarin", 84, 228, 93, 28); 
} 
/* PHASE 1: FEATURE EXTRACTION */ 
// Extract features from sensors and create a new object with those features, default example below uses sensor values as features   
Object FeatureExtraction() { 
        Object inputObject; 
        inputObject.weight = A; // input "A" is weight                                                                                     
        inputObject.r = B; // input "B" is r                                                                                               
        inputObject.g = C; // input "C" is g                                                                                               
        inputObject.b = D; // input "D" is b                                                                                               
        return RescaleObject(inputObject); 
} 
/* PHASE 2: CLASSIFICATION */ 
float ComputeDistanceofObjects(Object object1, Object object2) { // Computes Euclidean distance between two objects for any # of dimensions.                                                                                                                                        
        float weight = (object1.weight - object2.weight); 
        float r = (object1.r - object2.r); 
        float g = (object1.g - object2.g); 
        float b = (object1.b - object2.b); 
        float dist = sqrt(weight*weight + r*r + g*g + b*b); 
        return dist; 
} 
void Sort(float *distances, char** categories) { // Sorts the provided distances from small to large                                       
        // (standard sorting; details omitted)                                                                                             
} 
char* Classification(Object inputObject, Object knownObjects[]) { // KNN classification: Predicts the input object's category given known objects                                                                                                                                   
        int count = 0, max_count = 0; 
        char* most_frequent_category; 
        Object kNearestObjects[K_Parameter]; // Maintains K nearest knownObjects                                                           
        float distances[NUM_OF_KNOWN_OBJECTS]; 
        char* categories[NUM_OF_KNOWN_OBJECTS]; 
        for(int i=0; i<NUM_OF_KNOWN_OBJECTS; ++i) { // Compute the distance of each known object to the input object                       
                distances[i] = ComputeDistanceofObjects(inputObject, knownObjects[i]); 
                categories[i] = knownObjects[i].category; 
        } 
        Sort(distances, categories); // Sort distances in ascending order                                                                  
        // For each category, determine if it’s the most frequent among the K closest known objects                                        
        for(int i=0; i<NUM_OF_CATEGORIES; ++i) { 
                count = 0; 
                for (int j=0; j<K_Parameter; ++j) { // Count frequency of this category in K closest objects                               
                        if (categories[j] == ObjectCategories[i]) 
                                count++; 
                } 
                if (count > max_count) { // Most frequent category so far                                                                  
                        max_count = count; 
                        most_frequent_category = ObjectCategories[i]; 
                } 
        } 
        return most_frequent_category; 
} 
/* PHASE 3: ACTUATION */ 
void Actuation(char* category) { // Turns on corresponding output bit to show category of the input object.                                
        if(category != "") { 
                for (int i=0; i<NUM_OF_CATEGORIES; ++i) { 
                        if (category == ObjectCategories[i]) { 
                                O = 0x01 << i; 
                        } 
                } 
        } 
} 
volatile int TimerFlag = 0; void TimerISR() { TimerFlag = 1; } 
int main() { 
        char *closest_object_category; 
        Object inputObject; 
        PopulateKnownObjects(); 
        TimerSet(1000); 
        TimerOn(); 
        while(1) { 
                /* Phase 1 */ inputObject = FeatureExtraction(); 
                /* Phase 2 */ closest_object_category = Classification(inputObject, knownObjects); 
                /* Phase 3 */ Actuation(closest_object_category); 
                while(!TimerFlag); 
                TimerFlag = 0; 
        } 
        return 0; 
} 

 

Fig. 9.  Nearly complete code listing. 
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