

Liv Haselbach

Fulbright-ALCOA Distinguished Chair in the Environmental Sciences and Engineering in Brazil

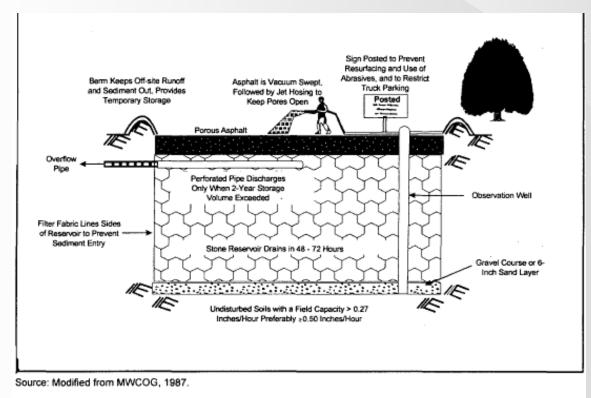
Civil & Environmental Engineering

Washington State University

haselbach@wsu.edu

Vanessa Pasa Dutra Paulete Schwetz Luiz Carlos Pinto da Silva Laboratório de Ensaios de Modelos Estruturais -LEME/UFRGS

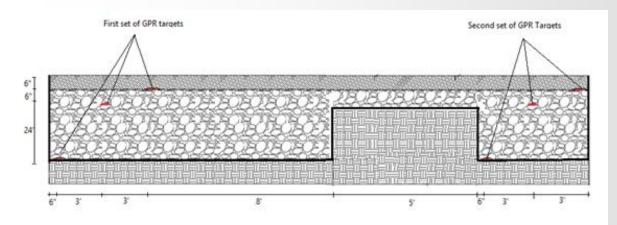
WASHINGTON STATE

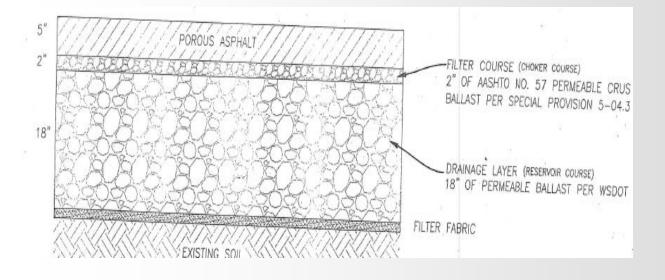

Boa tarde!

Part I: What are Permeable Pavements and Pervious Concrete? (concreto permeável)

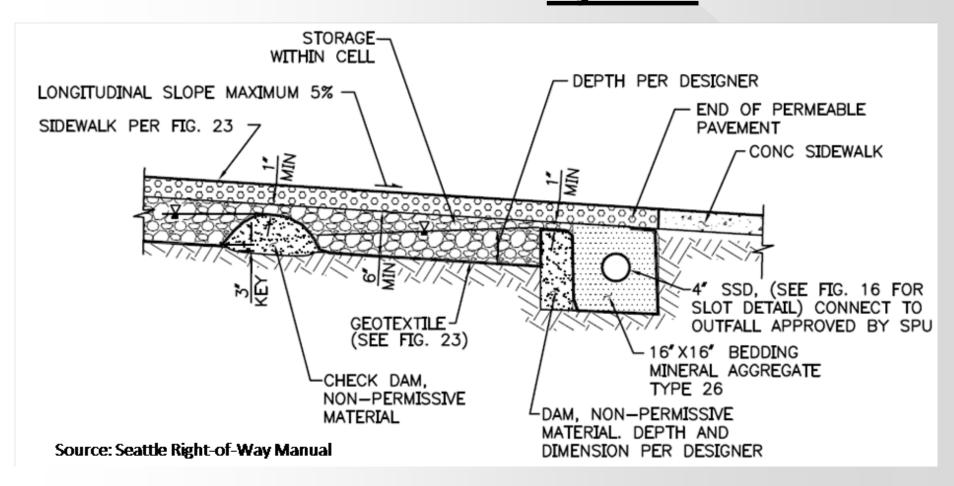
Part II: Pedrisco Part III: Clogging Part IV: Sweeping Part V: Additional Work

Permeable Pavement Systems!




STRUCTURED SURFACE PLUS: Surface Infiltration Underground Storage Pollutant Removal: - on top - in ground - in reservoir - to air?

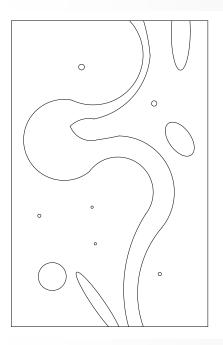
Permeable Pavement Systems!

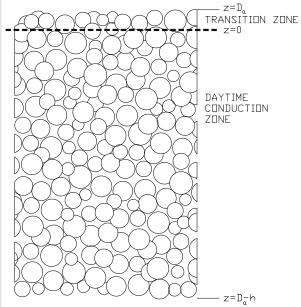


What depth should the aggregate bed be? -For structure (loads) -For water storage (runon and storms) - For frost depth

Permeable pavements on slopes? Remember it is a <u>System</u>

Be careful that the water from surrounding areas (runon) does not flow too fast and overshoot!_


What is Pervious Concrete?


Mixture of :

- Coarse aggregate,
- Cementitious material,
- Admixtures, and
- Water.
- Carefully controlled amounts of water & cementitious materials are used to create a paste that forms a thick coating around aggregate particles without flowing off during mixing & placing.

Unique Structure of Pervious Concrete

Vertical Porosity Distribution

- Top Transition Zone
- Micro/Macro Pores
- Connected/Disconnected Pores

Porosity of Pervious Concrete

- Total Porosity Ranges: ~13%-40%
- Recommended: ~20-25%
- Tortuousity (vertical and <u>horizontal flow</u>)
- Compressive Strength(not used for specifying):

Typically 1000-3000 psi. (7-20 Mpa)

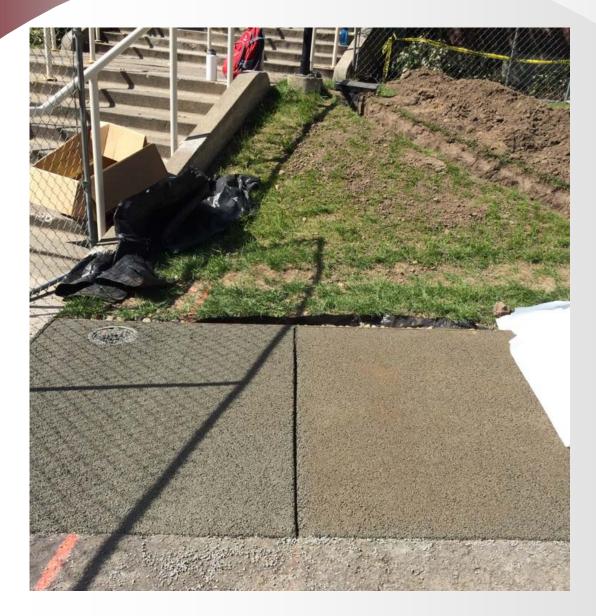
How is pervious concrete placed?

Concrete	Traditional	PC
Cement	1	1
Aggregate	3	4+
Water	1/2	~1/3
Fines	2	~0

Mixed

Cured 7 days

Compacted & Covered



Remember Preventive Maintenance

• **Prevention**: During <u>design locate</u> in areas less subject to clogging....limit runon from certain applications (asphalt, landscape beds, etc....)

Remember Preventive Maintenance

- Prevention:
 During
 <u>construction</u>
 <u>protect</u> from
 construction
 sediments
- Prevention: During <u>use</u>, <u>protect</u> from other activities such as construction nearby and soil or snow stockpiling, leaf litter, etc.

Maintenance

- Blowing.....not usually
- Street sweepers/cleaners
- Powerwashing
- Special equipment

The Laboratory

Federal University of Rio Grande do Sul (UFRGS) Porto Alegre, Brazil

o Face.

WASHINGTON STATE

- Very flat basalt aggregate with lots of fines!!!!
- Sieved (screened)
 - No screening (Mix I)
 - Retained on 6.3 mm (Mix II)
 - Retained on 4.8 mm (Mix III)

Pedrisco

Local aggregate passing the 4.8 mm screen

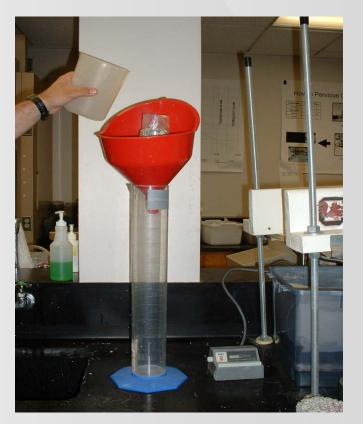
Local aggregate retained on the 4.8 mm screen

Pedrisco

Sieve Size (mm)	Mass Retained (%)	Cumulative Mass Retained (%)	
19	0.0%	0%	
12.5	0.4%	0%	
9.5	10.4%	11%	
6.3	38.9%	50%	
4.8	19.5%	69%	
2.4	19.3%	88%	
1.2	5.3%	94%	
0.6	2.5%	96%	
0.3	2.0%	98%	
0.15	1.7%	100%	
0.075	0.1%	100%	
Bottom	0.0%	100%	

- Made cylinders (100mm x 180mm)
- Made flats (blocos) and cored (100 mm diameter)
- 4:1 mass aggregate to mass cement

Specimens


Mix	Number of Cylinders	Number of Cores
I (no Sieving)	6	9
II (Retained on 6.3)	6	10
III (Retained on 4.8)	8	10

Mix I would be most economical. Mix II would be least economical.

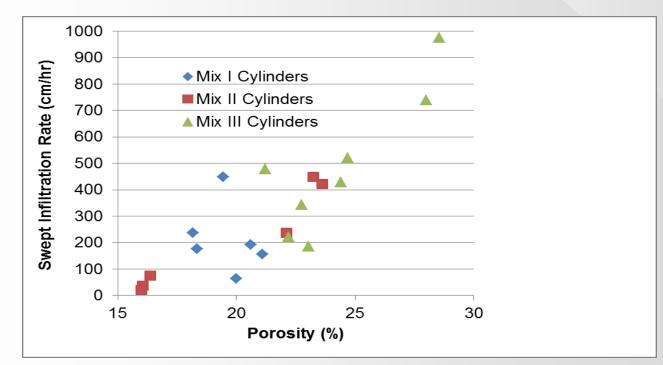
ISO 17785-1

- Testing methods for pervious concrete infiltration rate...
- under development

ASTMc1754

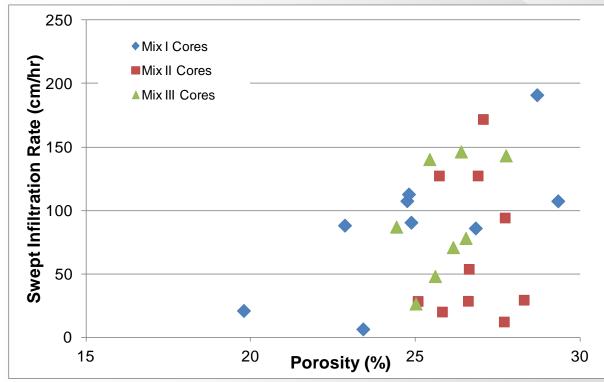
- Standard Test Method for Density and Void Content of Hardened Pervious Concrete
- Montes, Felipe, Srinivas Valavala, Liv M. Haselbach: A New Test Method for Porosity Measurements of Portland Cement Pervious Concrete, Journal of ASTM International, January 2005, Vol. 2, No. 1
- Take Mass dry,
- submerge for >30 minutes
- and take mass submerged......
- Usually want 20-25% with closer to 20 best
- Variability vertically and horizontally

Clogging and Sweeping


- 150 grams of local soil placed on top
- 300 grams of water poured almost each workday (13 times)
- Some specimens totally clogged, others not
- Then 'broke' hardened clay and swept top with brush

Initial versus Swept Infiltration

Cylinders	Mix	Cylinder ID	Porosity (%)	Initial Rate (cm/hr)	Swept Rate (cm/hr)	Ratio Swept/ Initial
	I	Average I	19.6	1040	212	0.20
	П	Average II	19.6	1200	207	0.17
	Ш	Average III	24.4	2160	487	0.23
Cores	Mix	Core ID	Porosity (%)	Initial Rate (cm/hr)	Swept Rate (cm/hr)	Ratio Swept/ Initial
	I	Average I	25.0	1840	90	0.049
	П	Average II	26.8	1570	69	0.044
	Ш	Average III	25.9	1820	93	0.051



Porosity versus Swept Infiltration Rate for the Cylinders

- Haselbach, L., Dutra, V. P., Schwetz, P., Silva Filho, L. C. P., *A Pervious Concrete Mix Design Based on Clogging Performance in Rio Grande do Sul*, Proceedings, 3rd International Conference on Best Practices for Concrete Pavements, "Challenges for the future of sustainable concrete pavement construction", Bonito, Brazil Oct. 28-30 2015, IBRACON – ISSN 2175-8182.

Porosity versus Swept Infiltration Rate for the Cores

- Haselbach, L., Dutra, V. P., Schwetz, P., Silva Filho, L. C. P., *A Pervious Concrete Mix Design Based on Clogging Performance in Rio Grande do Sul*, Proceedings, 3rd International Conference on Best Practices for Concrete Pavements, "Challenges for the future of sustainable concrete pavement construction", Bonito, Brazil Oct. 28-30 2015, IBRACON – ISSN 2175-8182.

- Seems like the local rock is fine, even if very flat and with a substantial amount of fines...
- Noticed that when coring, need to relieve pressure on the bottom of the block.. Used palettes
- Coring tends to clog the specimens some so initial infiltration rates are lower for similar porosities than in-situ
- Porosities under 25% tend to regain more of initial rate.. Speculate that the smaller pores keep the larger sediments from going deeper
- Previous testing shows that aggregate to cement up to 5.3 might be fine, but 7 is way too high
- Note that no admixtures were used.

Additional Work

- Powerwashing simulations
- Strength testing
- Other mix designs

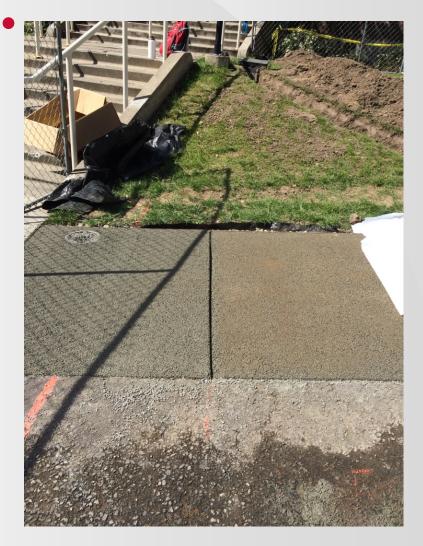
(more aggregate less cement: 5:1) (admixtures)

Obrigada!

Testing Methods

- ASTM c1688-14a Standard Test Method for Density and Void Content of Freshly Mixed Pervious Concrete
- ASTM c1701-09 Standard Test Method for Infiltration Rate of In Place Pervious Concrete: ASTM c1747-13 Standard Test Method for Determining Potential Resistance to Degradation of Pervious Concrete by Impact and Abrasion
- ASTM c1754-12 Standard Test Method for Density and Void Content of Hardened Pervious Concrete
- ASTM c1747- Standard Test Method for Determining Potential Resistance to Degradation of Pervious Concrete by Impact and Abrasion
- ISO 17785-1 Testing methods for pervious concrete laboratory specimens and infiltration rate.....under development




• Wet the rock before you place the concrete.

Done in seven days