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A bstract

A Photoabsorption Study of La3+ and Au in 

the Giant R esonance Energy R egion

The Dual Laser Plasm a technique has been employed in order to investigate the 

tim e and space resolved photoabsorption behaviour of laser generated Ba, La, 

Ce, Eu and Au plasmas in the giant resonance energy region. For the first time, 

photoelectric based photoabsorption cross sections of Ba+ , Ba2+, La3+ and Au 

have been measured The study of the 4d photoabsorption behaviour of the Xe- 

lsoelectronic sequence has been extended beyond Ba2+ to La3+ and atomic Au has 

been investigated m the 5p excitation region following previous results for the 5d 

transition metals W and P t Selected results for Ba2+, La3+ and Au have been 

discussed w ith use of L S -term  dependent Hartree-Fock, (R)TDLDA/(R)LDA, 

R PA E /M B PT many body theories
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Introduction

Giant resonances have been the subject of many theoretical and experimental in­

vestigations m atomic, molecular and solid state  physics (Connerade et al 1987) 

Their appearance as strong, broad and asymm etric resonance profiles arises from 

their m ultiparticle nature, which is of general interest m the study of many body 

effects Very recently a giant plasmon resonance in fullerene Ceo has been mea­

sured (Hertel et al 1992), where many body calculations utilizing the random 

phase approxim ation (RPA) predicted a resonance with tremendous oscillator 

strength (Bertsch et al 1991)

Atoms are particularly well suited for studying many body theories because 

of their relatively simple structure and because the electromagnetic interaction 

between the constituents of the many particle system is well known A prominent 

example is the 4d giant dipole resonance in Ba, La and the lanthanides which has 

been extensively discussed within different many body theories (Wendm 1973, 

Wendin 1984, Amusia h  Sheftel 1976, Zangwill & Soven 1980, Pan et al 1987, 

Zangwill 1987, Amusia et al 1989b) Recent experimental studies of the de­

cay channels of atom ic Ba (Baier et al 1994) m the 4d giant resonance energy 

region using a new developed technique, the so called photoelectron-ion coinci­

dence spectroscopy, perm itted the measurement of the decay probabilities from 

different Ba+ inner hole states to higher charged Ba2+, Ba3+ and Ba4+ ions and 

provided a direct link between photoelectron and photoion spectroscopy The 

partial photoion yields of atomic La in the 4d excitation region has been mea­

sured by Dzionk et al (1989), which complement the measured photoelectron
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data  of atom ic La in the same energy region by Richter et al (1988) Sairanen et 

al (1991) m easured the resonant Auger and autoionization processes m solid La 

after 4c? —► 4 /  excitation using electron spectroscopy and a very recent study of 

resonant electron emission of atomic Eu and Sm around the 4d giant resonance 

by Kukk et al (1994) displays the continuing interest m this topic Theorists have 

also focused on the 4d mner-shell photoexcitation of neutral, singly or multiply 

ionized atom s along the Ba (Nuroh et al 1982) and La isonuclear (Amusia et al 

1989a) sequence and the Xe isoelectronic (Cheng h  Froese Fischer 1983, Cheng h  

Johnson 1983) sequence m order to gam further insight into fundam ental aspects 

such as electron-correlation effects, centrifugal barrier effects and orbital collapse 

m term  dependent Hartree-Fock potentials

However, very little  is known experimentally on photoexcitation processes for 

ionic species due to the severe experimental difficulties inherent m production of 

a sufficiently dense ion column Only very few cross section measurements for 

ions are available to date for comparison with theory Absolute cross sections for 

K+ , Ca+ , Sr+ and Ba+ ions were measured by Lyon et al (1986,1987), the Cr, 

Cr+ , Mn and Mn+ sequences were studied by Cooper et al (1989) and Costello 

et al (1991) The classic experimental results for Ba, Ba+ and Ba2+ by Lucatorto 

et al (1981) rem ain the only existing data for an extended isonuclear sequence 

m the giant resonance energy region A dram atic change m the photoabsorption 

behaviour m moving along the isonuclear sequence between Ba+ and Ba2+ was 

observed This led to considerable discussion m the literature (see Connerade 

et al 1987 and contributions therein) Further calculations for ions m the Xe 

isoelectronic sequence (Cheng h  Froese Fischer 1983, Cheng & Johnson 1983) 

predicted th a t m moving from Ba2+ to its isoelectronic partner La3+ the gradual 

orbital collapse m the 1P channel should lead to  the 4c?94 / ( 1P ) resonance be­

coming the dom inant photoabsorption feature In order to test their prediction 

the Xe isoelectronic sequence was extended beyond Ba2+ to La3+ with use of the 

Dual Laser Plasm a (DLP) technique (Hansen et al 1989) W hile the photograph­
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ically recorded photoabsorption spectrum  showed absorption lines successfully 

assigned to La3+ the 4c?94 / ( 1.P) resonance was not observed Further insight into 

the orbital collapse phenomenon was provided, m th a t calculations (Hansen et al 

1989) showed th a t the increase of oscillator strength occurs concomitantly with 

a strong broadening of the resonance line, this makes it difficult to observe its 

feature in a photographic based experiment A very recent calculation for the 

4c? —> 4 /  transition for Ce4+ by Ivanov (1992) supports this contention

In this work, the Dual Laser Plasm a technique has been employed m order 

to study the time and space resolved photoabsorption behaviour of laser gen­

erated Ba, La, Ce, Eu and Au plasmas For the first tim e photoelectric based 

photoabsorption cross section data  for Ba+ , Ba2+ and La3+ are provided, which 

enables a critical comparison between experimental results and predictions based 

on LS-term dependent Hartree-Fock and (R)TDLDA, R PA E/M B PT many-body 

theories

Remarkably the 4p and 5p excitation spectra of the 4d and 5d transition m et­

als m atomic form have been the subject of only a few investigations when com­

pared with the abundance of experim ental and theoretical work on the 3p giant 

resonance in the 3d transition metals (Sonntag h  Zimmermann 1992) Therefore 

a detailed photoabsorption study of atomic gold (Z  =  79) in the corresponding 

mner-shell excitation region was undertaken in this work Gold is the last mem­

ber of the 5d transition m etal series and together with copper (Z  =  29) and silver 

(Z  =  47) are often term ed the noble metals The simple term  structure of atomic 

gold in the ground (5c?106s1) and valence excited states (5cP6.s2), with only one 

vacancy in the electron configuration m the 5p —> 5d and 4 /  —> 5d excitation 

energy region, makes gold an ideal representative of the heavier elements for the 

study of electron correlations effects within (R)HF and RTDLDA theories
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C hapter 1

T im e and Space R esolved X U V  

P hotoabsorption  E xperim ent on  

Laser Produced  Plasm as

The purpose of this chapter is to provide an overview of the experimental ap­

proach which was taken m this work and to show how the tim e and space re­

solved XUV photoabsorption spectra of the Ba, La, Ce, Eu and Au plasmas were 

obtained In subsequent chapters selected experimental results for La3+ and Au 

are discussed m detail and additional experimental information is provided when 

applicable

1.1 Exp er im ent

The photoabsorption data  were recorded with use of the Dual Laser Plasm a 

(DLP) technique which is illustrated schematically m Figure 1 1 The backlight­

ing XUV source was a plasm a produced by a flashlamp pum ped Nd YAG laser 

(Spectron Laser Systems) with an output of 1J and 10ns pulse w idth focussed 

onto a tungsten target It has been shown m a previous study by Carroll et al

(1980), th a t with use of appropriate targets, such laser produced plasmas pro­
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vide essentially line free contmua which have the tem poral characteristics of the 

exciting laser pulse, suitable for time resolved photoabsorption spectroscopy on 

dynamic systems in the XUV energy region The continuum radiation passed 

through the absorbing medium produced by a second flashlamp pum ped ruby 

laser (System 2000 J K Lasers) with an output of 1J m 30ns, or alternatively by 

a flashlamp pum ped dye laser (SLL-500 Candela Laser Corp ) with an output 

of about 2J and 0 8/xs pulse width focussed onto suitable targets for creating the 

absorption column The radiation transm itted  through the absorption medium 

was collected by a toroidal mirror and imaged on the entrance slit (20/xm) of a 2 2 

grazing incidence spectrom eter (McPherson 247) conformed to a Rowland circle 

mounting for concave gratings The spectrom eter was equipped with a 1200g/mm 

gold coated Bausch and Lomb ruled grating with a blaze angle of 1°47’, which 

diffracted the light off all wavelengths and focussed it horizontally on the circum­

ferences of a circle with a diam eter R  (Rowland circle) equal to the radius of the 

grating Spectral detection was via a MgF2 coated MCP (Galileo Electro Optics 

Corp ) m ounted on the Rowland circle and which was coupled via a fiber optic 

reducer to a self scanning photodiode array (Reticon 1024S) The MCP as the 

photosensitive element was operated with a positive voltage of about 800V which 

amplified the photoelectrons by a  factor of ~  104 The electrons ejected from the 

MCP were accelerated by a potential difference of +4 2kV onto a (P-20) phosphor 

screen coated onto a fiber optic bundle which converted the electrical signal into 

visible photons and transferred them  onto the photodiode array (PDA) which 

had 1024 pixels with a spatial resolution of 25^m The use of the fiber optic bun­

dle m atched the MCP length to tha t of the PDA allowing a larger simultanous 

spectral coverage with only a small reduction in the spatial resolution The PDA 

was controlled by an optical multichannel analyser (OMA) supplied by EG&G 

Princeton Applied Research Corp which digitized and stored the video output 

from the PDA after each laser shot

The combination MCP, fiber optic reducer and PDA resulted in a detection

12



experimental setup

Figure 1 1 Experimental setup o f the DLP- facility

system with high resolution and sensitivity (single shot sensitivity), with linear 

response and good dynamic range for XUV observations Similar systems are 

described in detail by Cromer et al (1985) and Schwob et al (1987)

The energy range which could be covered per MCP setting vanes along the 

Rowland circle from about 3eV at 30eV to 40eV at 120eV Therefore the res­

olution of the system depends on the position of the MCP along the Rowland 

circle.

The instrum ent was operated w ith a pressure < 4 * 10-7 m bar m the MCP 

chamber, <  2 * 10~6 m bar m the toroidal m irror chamber and between 10-4 —10-5 

m bar in the target chamber

The two lasers were synchronized electronically and allowed a variable inter 

laser tim e delay The absorption target was movable with respect to the optical 

axis and the focus of the laser pulse onto the target could be varied via an 

appropriate lens which allowed the core of the plasma to be moved in and out of 

the optical axis By varying the irradiance conditions on the absorber target, its 

position relative to the optical axis and the inter laser time delay, time and space

13



resolved photoabsorption spectroscopy of the absorbing m edium was achieved A 

schematic diagram of the experimental param eters is given in Figure 1 2 Since m 

an expanding plasm a plume, the ions with higher charge move faster away from 

the target than  those with lower charge, the separation of the different ion stages 

in space and tim e can be achieved with use of the DLP technique

The instrum ent used m this work enabled the m easurement of relative pho- 

toabsorption cross sections of a wide range of atoms and ions The absorption 

coefficient k is given as a function of the photon energy by the well known relation

1(E) = Io{E)e~kW  (1 i)

where /  is the transm itted  intensity and I q the incident intensity In practice 

Iq is observed w ithout, while I  with the absorbing m edium which yields to an 

absorption coefficient which can be determined through

^ = H m )  ( 1 2)

Usually I0 and I  should be corrected for contributions due to stray light I s0and 

I s respectively and the emission I e from the absorption plasm a which results in 

a more complicated relation between absorption coefficient k and the measured 

intensities (Jann itti et al 1987), but a detailed study of the perfomance and 

capability of the system by Kiernan (1994) showed th a t these contributions are 

negligible and the relative cross sections can be obtained through eqn (1 2 )

The absorption coefficient is proportional to the photoionization cross section 

cr(E) which is the characteristic quantity for the specific absorption medium with

k(E ) = cr(E) J n (E ,y )d y  (1 3)
I

n (E , y ) is the density of atom s/ions along the optical axis which are able to absorb 

photons of the energy E . Since the density was unknown in the DLP experiments, 

the information which could be obtained was restricted to the relative magnitude 

of the photoabsorption behaviour
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Figure 1 2 Schematic illustration o f the DLP technique, with various experimen­

tal parameters A x and A t  used to perform tim e and space resolved spectroscopy 

o f the absorption plasma The X U V  source used here was a plasma produced 

by N d YAG  laser pulse foccused on a W-target The continuum radiation passed 

through the absorbing plasma which was produced by a second synchronized ruby 

or dye laser pulse focussed onto a suitable absorption target The absorbing ion 

stage could be chosen by varying the irradiance conditions on the absorption tar­

get, its relative position to the optical axis Ax and the inter laser tim e delay A t 

between the two laser pulses
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Figure 1 3 shows three typical PDA spectra recorded at the MCP setting of 

16 5mch which were used m order to obtain the absorption coefficient k(E )  of 

La3+ The upper two spectra present the W emission spectrum  without (I0) 

and with ( /)  the absorbing La plasm a The natural logarithm of the ratio I0/ I  

yielded to the photoabsorption data  of Figure 1 6 (lowest spectrum) after energy 

calibration was achieved by recording emission lines of an aluminium plasma 

(Figure 1 3 lowest spectrum ) as a reference spectrum  (Kelly 1987) Although 

the instrum ent is sensitive enough to measure single laser shot photoabsorption 

spectra, 15-25 shots were typically accum ulated for each spectral range in order 

to improve the signal to noise ratio The shot to shot reproducibility was assessed 

by recording simultanously the laser pulses and the single shot photoabsorption 

spectrum  on high speed HP-54502A oscilloscopes m order to check the jitte r 

m the inter laser tim e delay, the laser pulse signals and the consistency m the 

photoabsorption signal using the same experim ental param eters W hen operating 

the laser system under extrem e conditions (very short tim e delay between the 

laser pulses and using high voltages for the Pockels cell of the ruby laser), every 

single shot event was assessed before accumulated to the previous spectra After 

about 20 laser shots, the alignment of the backlighting plasma along the optical 

axis was checked and if necessary optimized m order to obtain maximum photon 

intensity on the detector

The m ajor difficulty of the experiments was to find the right experimental pa­

ram eters to obtain cross section data  of the absorbing medium in a pure atomic 

or ionic state  Therefore a detailed experimental investigation of the absorption 

behaviour under various experimental conditions had to be carried out Pho- 

toabsorption cross section da ta  which were already known could be very easily 

reproduced and the optimization of the experimental param eters were usually 

straight forward as shown later for the Ba, Ba+ and Ba2+ isonuclear sequence 

or the Ba, La, Ce, Sm and Eu sequence In order to obtain new cross section 

data, an extensive theoretical study was carried out in conjunction with the ex-
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Figure 1 3 PDA spectra at 16 5inch o f a W  emission spectrum without ( I q)  and 

with (I )  an absorbing La plasma For energy calibration purposes an aluminium  

emission spectrum was recorded at the same M CP setting

perim ental work The theoretical and experimental investigations complemented 

one another in an iterative way in order to produce the new data particularly of 

La3+ and gold presented in this work

1.2 Tim e and Space R esolved Photoabsorption  

Spectra of Laser Produced Plasm as

The following paragraphs describe briefly the experimental investigations of the 

laser produced Ba, La, Ce, Eu and Au plasmas

Isolation o f Ba, B a+ and B a2+: Com parison w ith  previous 

results

The capability of the DLP-system was assessed by recording the Ba, Ba+ and 

Ba2+ isonuclear sequence which was measured previously by Lucatorto et al

(1981) using a heat pipe and the Resonant Laser Driven Ionization (RLDI) tech-
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mque with photographic detection (see Figure 1 4)

In the RLDI technique, the Ba+ ions were produced by tuning a dye laser pulse 

into the 652(15') —► 6s16p1(1P) resonance line of Ba vapour atoms Ionisation 

of the laser excited Ba atoms occured mainly via m ultiphoton absorption or 

collisional processes with other excited Ba atoms, until the electron tem perature 

was hot enough, so th a t the Ba atoms in ground and excited state  were ionized 

via electron im pact (Lucatorto & M cllrath 1980) The Ba2+ ions were produced 

by tuning a second pulsed dye laser into the 6s1(25) —> 6p1(2P ) resonance of 

Ba+ The XUV source m the RLDI experiment was an uranium  anode spark, 

which was synchronized with the laser pulses The DLP results are presented 

in Figure 1 5 Good agreement in general with the RLDI data  is obtained for 

Ba2+, whereas the shape of our Ba+ appears slightly different and resembles more 

tha t of neutral Ba Recent measurements of the to tal photoion yield of Ba+ ions 

(Kravis et al 1993) showed excellent agreement w ith the DLP photoabsorption 

data

All three spectra were recorded using the ruby laser for the production of the 

Ba absorption plasm a In the case of the Ba spectrum , a lens with a point focus 

was used, the laser pulse was strongly defocussed onto the Ba-target in order to 

create as many as possible free Ba atoms through ablation instead of through 

recombination processes of ions The distance of the Ba-target to the optical axis 

was 0 5mm and a 3/xs tim e delay was chosen The Ba+ spectrum  was obtained by 

using a cylindrical lense tightly focussed onto the Ba-target m order to produce 

many Ba ions W ith a distance Ax of 0 2mm and a tim e delay A£ =  500ns, 

the higher charged ions were already expelled far away from the target and the 

slower Ba+ ions just passed the optical axis The Ba2+ spectrum  was recorded by 

increasing the distance to  the optical axis Ax to 3mm and shortening the time 

delay A t  at the same time down to 250ns
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Figure 1 4 Photoabsorption o f the Ba, Ba+ and Ba2+ isonuclear sequence using 

the RLD I technique (Lucatorto et a] 1981)
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Figure 1 5. Photoabsorption o f the Ba, Ba+ and Ba2+ isonuclear sequence using 

the DLP technique
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T im e and space resolved m easurem ents for La ions

Since the DLP technique successfully reproduced the Ba isonuclear sequence, 

much effort was made in this work to extend the Xe-isoelectronic sequence be­

yond Ba2+ to La3+. Figure 1.6 shows the photoabsorption study of a lanthanum  

plasm a in tim e and space. At first, the experimental param eters were optimized 

in order to obtain the well known 4d —> e f  giant resonance of neutral lanthanum. 

Similar to the experience gained in the barium  experiment, the photoabsorption 

spectrum  of Lai could be recorded by choosing A x  =  0.5mm, close to the ta r­

get surface and a relatively long tim e delay A t  =  720ns. A successive study of 

the photoabsorption behaviour by shortening the time delay to 60ns gave rise to 

discrete line structure with a reduction in the continuum background. A very 

nice La3+ spectrum  was obtained by increasing A x  to 1mm. A more complete 

treatm ent is reserved for Chapter 3.

T im e and space resolved m easurem ents for Ce ions

Figure 1.7 shows a sequence of photoabsorption data  of a cerium plasma under 

different experim ental conditions. The spectrum  on the top shows the 4d gi­

ant resonance of neutral cerium. By shortening the tim e delay, the spectra are 

dom inated by two strong and broad peaks at 122eV and 126eV which are also 

observable in the CeF3 photoabsorption spectrum  by Olsen et al (1982). This 

may lead to the conclusion, tha t its origin is triple ionized cerium. W ith further 

decrease in the tim e delay down to 70ns, the spectrum  shows one very strong 

resonance line at 127eV which may be a ttribu ted  to the Ad —► 4 / ( aP ) transition 

of Ce4+. However a successful study of the Ce4+ photoabsorption spectrum was 

not possible due to the limited capability of the laser system operated with a 

very high Pockels cell voltage and extremely short tim e delays. The jitte r of the 

ruby laser pulse and its shot to shot instability prevented the production of a 

substantial am ount of Ce4+ ions separated from the other ion stages in space and
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Figure 1.6: Photoabsorption spectra o f a lanthanum plasma under different ex­

perimental conditions A x  and A t. The absorption spectrum for neutral lan­

thanum was obtained by passing the continuum radiation near the La-target 

surface through the absorbing plasma (A x  =  0.5m m ) in combination with a long 

inter laser tim e delay (A t = 720ns). The La3+ spectrum was obtained by increas­

ing the distance between La-target and optical axis (A x  — 1 m m ) and shortening 

the time delay between the two laser pulses (A t = 60n.s).
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Figure 1 7 Photoabsorption spectra o f a cerium plasma under different experi­

mental conditions A x  and A t

time

T im e and space resolved m easurem ents for Eu ions

The Ad —► 4 /  giant resonance in europium has been studied with great interest 

over the last recent years (Amusia et al 1989b, Pan et al 1987, Zangwill 1987, 

Becker et al 1986, Nagata et al 1990) Europium is special among the lanthanides 

because of its half filled 4 /  subshell, which makes it more accessable for theoretical 

calculations since the 4 /  subshell can be considered as a closed subshell with all 4 /  

electrons having the same spin projection forming a ground state  with the highest 

possible absolute spin value (8S i/2) Therefore all seven 4 /  electrons behave 

like spectators in the Ad —*■ 4 /  excitation process, which drastically reduces the 

coupling possibilities among the 4/ 8 electrons

The photoabsorption behaviour of the europium plasm a was studied in detail 

in this work It was of particular interest to investigate the change in the cross 

section da ta  by opening the 65 and the (half filled) 4 /  subshell Figure 1 8
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Figure 1 8 Tim e resolved photoabsorption study o f a europium plasma with 

different target positions A x
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shows two tim e resolved photoabsorption sequences at different target positions 

In both cases, the photoabsorption spectra were optimized on neutral europium 

which is well known (Mansfield & Connerade 1976) Then, the tim e delay was 

successively shortened m order to catch the ion species All three sequences 

show consistently a broadening in the absorption feature towards higher photon 

energy and a second peak at 153eV when decreasing the time delay This may 

be understood in comparison with the lanthanum  results, where with increasing 

ionization degree additional rydberg lines appeared on the high energy side of 

the spectrum  In europium, where the term  structure is much more complex, the 

resonances overlap and appear as a single broad feature

Figure 1 9 shows the spectra of Eul produced with the ruby laser and m a 

second experiment with use of the dye laser Both spectra are virtually identical 

Additionally the to tal photoion yield of Eu is shown (Koble 1991) for comparison 

with the D LP-data The disagreement on the high energy side may be explained 

due to a system atic error m detecting the photoions with use of the TO F spec­

trom eter

T im e and space resolved m easurem ents for gold

Figure 2 0 shows the photoabsorption spectra of a gold plasm a for three different 

experim ental conditions In order to cover the energy range from 40 to llOeV 

seventeen separate MCP positions were necessary The spectra of each MCP 

setting, which overlapped with the successive one, were m atched together m order 

to obtain the overall cross sections shown in Figure 1 10 By moving the detector 

along the Rowland circle, several cross checks were carried out in the 4 /  excitation 

region in order to insure, tha t the plasma conditions rem ained the same over the 

whole energy range

The first spectrum  on top with A x  =  1mm and A t  =  600ns represents pho- 

toabsorption from Aul which is discussed in detail m C hapter 4 By shortening
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Figure 1 9 Photoabsorption s tudy  o f a E ul w  comparison with the total photoion 

yield

the tim e delay to 100ns, absorption from ionized gold was obtained, since the 

pronounced sharp peak at 80eV has almost disappeared The structure between 

80 and 90eV resembles very much tha t of P t (Costello et al 1991) in the 4 /  —► 5d 

excitation region which indicates, th a t the spectrum  shows absorption predomi­

nantly of Au+

A further decrease in the tim e delay shows photoabsorption of higher ionized 

Au with a complex rydberg line structure in the energy region between 50 and 

65eV
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Figure 1 10 Photoabsorption study o f a gold plasma m  the 40-1 lOeV energy 

region under different experimental conditions
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C hapter 2 

T he ab initio T heory o f A tom ic  

Structure

The following chapter introduces the basic theoretical models and their approaches, 

which are required for the description of the experimental photoabsorption spec­

tra  presented in this work. The discussion is based mainly on the lectures Rechen- 

methoden in der Atomphysik by Peter Zimmermann (Zimmermann 1976) which 

he gave at the Technical University of Berlin in the year 1989. Secondly I have 

to mention here explicitly the classic book The Theory of  Atomic Structure and 

Spectra by R. D. Cowan (Cowan 1981) which gives the complete theory behind 

the atom ic structure calculation codes TZCAf 1'RCJ^f‘l/TZCQ which were used exten­

sively in this work in order to analyse and model the measured photoabsorption 

spectra.

Most of the calculational steps are illustrated by some selected interm ediate 

key results, mainly for the La3+ spectrum , since the complete representation of 

all atomic param eters would be too voluminous and of no great use for physical 

insight of the atomic absorption data.

The first section deals with the independent particle model in atom ic physics 

which is the starting point for further more sopisticated many body theories. 

In the second section, the independent particle approximation is improved by
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considering the neglected Coulomb- and the spin orbit interactions between the 

electrons, which lead to fine structure energy levels within a configuration and 

which therefore cause deviations from the simple single particle picture Section 

2 3 describes the electron- photon interaction as far as it is of relevance for atomic 

photoabsorption spectroscopy and the last part of C hapter 2 gives an introduction 

to the various many body theories which have been applied m this work A very 

good review of these theories can be found m the articles by Wendm (1976, 1984) 

and on a more advanced level in the book Atomic Photoeffect w ritten by Amusia 

(1990) It is convenient to present all equations in the CGS system, where (47t )-1 

is defined to be equal the perm ittivity constant t 0 and the electron charge e is set 

to be one

2.1 The Independent Particle Approxim ation  

of a M ultielectron System

An atom  is usually considered as a many electron system, where the constituents 

interact w ith each other and with the point like nucleus (the nucleus is considered 

to have an infinite mass) via electromagnetic forces A theoretical treatm ent 

of an a tom /ion  with the atomic num ber Z and N electrons requires first the 

knowledge of a suitable Hamiltonian H which is used to solve the time independent 

Schrodmger equation

Hi>k =  E k^ k (2 1)

In most cases it is sufficient enough in a first approximation to take only the 

electrostatic Coulomb interactions between the electrons and the electron-nucleus 

into account w ith a Hamiltonian

* = £ < & -->  + E  i  (22)
*—1 J,&(«</;)

The sum of the electron-electron interactions is of the same magnitude as the 

attractive electron-nucleus Coulomb force and therefore not negligible It also

29



prevents a separation of the variables m the Schrodmger equation which makes 

a solution of eqn (2 1) unequivocally more difficult A useful approximation is 

therefore to average the influence of all (N -l) electrons on the i th electron together 

with the attractive  Coulomb force Z / r t and to replace it by an effective spherically 

symmetrical one electron central field potential V*(r) The Hamiltonian may then 

be w ritten as a sum of single particle Hamiltonians

+ V', M ) <2 3)
t=N

with a product ansatz for the total eigenstate ip (l,2 , ,N )  = <f>(l)(j)(2) <f>(N)

The extremely complicated Schrodmger equation (2 1) in which the motions of 

all electrons are coupled via the Coulomb interaction is reduced to a set of N 

decoupled one particle Schrodmger equations

<f>'(r) = E'<j>'(r) (2 4)

with the to ta l energy of the atom  E 0 =  Yl, E ' The physical meaning of the 

central field model is, th a t any given electron i moves independently of the others 

in an electrostatic field of the nucleus and the other (N -l) electrons, this field 

is assumed to be averaged m time over the motions of all electrons and to be 

spherically symmetric The approximation is therefore called the independent 

particle approximation (IPA) The solution of the one electron Schrodmger equa­

tion is well known to be <f>(r) = r~x Pni{r)Yimi(d , y)Xm s and the parity of the 

multielectron function is therefore (—l ) s *’

It is convenient here to introduce the definition electron configuration, which 

determines the set of quantum  numbers characterizing the to tal wavefunction m 

the IPA

{ n ^ r i n ^ r  ( n ,Z , r  (2 5)

with wt the occupation number of the subshell i, q the subshell number m the 

atom  and X^=i w* = N  The problem with the product ansatz is, tha t it does
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not take the Pauli-prmciple into account which is of fundam ental importance for 

a Fermion system The Pauli-principle reflects the physical indistinguishability 

of the electrons, which requires an antisymmetrisized wavefunction for the N 

electron system It is well known, th a t the Pauli-prmciple can be satisfied m form 

of a determ m antal function

1 ^ ( 1) M 2) M N )

fa ( l)  </>2(2) U N )
0 (1 ,2 , ,N )  =

1
(2 6)

<I>n( 1) </>n(2 ) 4>n(N)

which is referred to as a so called Slater determinant Since the central poten­

tial V '( r ) is unknown, the radial wavefunctions Pni(r) = rR ni cannot easily be 

obtained

One commonly used approach here is the Hartree-Fock m ethod, which is based 

on a variational principle The philosophy behind this m ethod is to find the 

best Slater determ inant of single particle radial wavefunctions obtained from a 

central field potential which minimizes the energy functional

< Tl>\H\il> >
£[</>] = (2 7)

< ■010 >

The m ethod is frequently called the restricted Hartree-Fock m ethod since the 

single electron orbitals for different quantum  numbers m; and m s are assumed to 

have the same radial wavefunction Pni (Froese Fischer 1977)

The performance of the variational principle of the energy functional under 

conditions, m which the radial wavefunctions Pni are orthonorm al, leads to the 

Hartree-Fock equations [m Cowan 1981, eqn (7 11)]

/,(/, + 1 )h2 z
2m dr2 2m r2 r

q °r
+  ”  ^ j)  I ~ - Pn3b ^ dr' ~  -  1)A*(r )

J 1 n
PnAr)

(2 8)
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for a spherically symmetric atom /ion  with

2 U +  1 ^  /  ^ k U
2 oo

2U +  1 v [ U k li \ r r< 2 , ,
Ai(r) = z t t t  2 -  / i r r p«.'.(r )rfr

4/t + 1 v o o o l J r>

2 oo
1 ^ 2/,' -(-1 /  h k /,■  ̂ y f^

r \ o  o o

and e,-, e,j the Lagrange multipliers which insure the required orthonorm ality be­

tween the radialfunctions Pni(r).

For an N electron system, we obtain N equations for the Pn,i,, but only q 

equations are different in the restricted Hartree-Fock method.

If the variational principle is applied to the energy of a term  with a specific LS  

symmetry rather than to Eav, then the HF equations are the same as in eqn.(2.8) 

but with additional terms which are different for the specific terms of interest.

The first three terms in the HF equation correspond to the radial part of 

the Schrodinger equation for the i th electron in an effective potential Vef j  which 

is composed of the attractive Coulomb- and the repulsive centrifugal potential. 

The third term  describes the repulsive Coulomb interaction between the electron 

i with all the others united in a potential Vcou, and the terms containing A{ 

and Bij come from the exchange part with its nonequivalent counterparts as Vexc 

which appears as a pure quantum  mechanical effect and has no classical analogy. 

The sum of all terms can be approxim ated in a local potential

V \ r )  = VeJf(r) +  Vcouir) +  Vexc(r) (2.9)

in which the itk electron moves independently.

The HF equation is solved within the self consistent field m ethod (SCF) which 

resembles an iterative process. An initial guess of the N single electron wavefunc- 

tions is used to calculate the Coulomb- and exchange potentials in eqn.(2.8), 

which are used for their part to calculate the new set of single particle radial­

functions Pni. The procedure is repeated until selfconsistency is achieved, which
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means th a t the potential V '(r) created through the charge distribution of all elec­

trons produces wavefunctions. which for their part reproduce the local potential 

V '(r)

As a result, the energy eigenvalues of the electrons are functions of the mam 

quantum  num ber n and the angular quantum  number 1, which is in contrast to 

the case of the hydrogen atom

The atom ic structure calculation codes RCN /RCG  (Cowan 1984a,b) for ex­

ample take a general Herman and Skillman potential (Herman & Skillman 1963) 

as a suitable starting atomic potential for the first configuration, the succeeding 

configurations are calculated with a starting potential from the previous one 

Calculations, which use the same orbitals for an atom  m its ground state  

and excited state  characterized by a different electron configuration is usually 

referred to as a frozen core approximation Here the negative of the eigenvalue 

e, corresponds to the configuration average ionization energy for an electron m 

subshell n ,/t , which is called Koopmans’ theorem  This approximation certainly 

does not quite reflect the reality since an innershell hole causes a new balance 

between all the electrostatic interactions through relaxation effects However the 

HF theory in its frozen core approximation gives, for many species over a wide 

energy range, satisfactory predictions

In some cases, relaxation effects can play a crucial role m describing photoab­

sorption processes, as for example m the so called giant resonance energy region 

of the lanthanides (Wendm 1975, Amusia 1977), where the atom  responds to the 

removal of an innershell electron in the form of some minor redistributions of the 

remaining electron charge,- not quantum  number changes, but just readjustm ents 

m the form of slightly different radial wavefunctions Pni This is dem onstrated 

for the 4 / ( 1P ) wavefunction in La3+, which is calculated first m the fully relaxed- 

and then m the frozen core approximation as shown m Figure 2 1

In summary, the independent particle picture of the many electron atom  is 

an approximation m which the overall m otion of the electrons are averaged to
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Figure 2 1 4f { l P) orbital o f La3+ m  a frozen core and fully relaxed calculation 

In the relaxed model, the orbital is pulled away from the core due the fact, that 

the inner shell 4d hole is more completely screened by the other electrons and 

therefore reduces the attractive 4d~*4f interaction It follows, that the energy 

position o f the 4 / ( 1P ) giant resonance line m  the relaxed calculation is 2 5eV  

closer to the observed one than m  the frozen core approximation

orbitals obtained in a central field potential The HF theory (in the frozen core 

approximation) reduces the many body problem to what appears to be a one 

electron description, th a t each of the nonequivalent electrons 'sees' a different 

effective spherically symmetric potential However, relaxation effects go beyond 

the IPA, which can be taken into account directly in a HF self consistent field 

procedure or in a subsequent many body calculation as shown for La3+ in a 

following chapter Relaxation effects are not the only collective phenomena, which 

have to be taken into account in order to describe the giant dipole resonance in 

La3+ The L S -term  dependence for the states of the 4cP4/  configuration which 

can be optically excited from the ground state  give evidence for strong many 

body polarization effects for the *P\ term  I would like to close this section with 

a brief historical review of how many body theories became established in atomic 

physics

Collective models in atoms were already discussed as early as m the 1930s
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when Bloch (1933) and Jensen (1937) described the electron distribution as a 

liquid capable of performing plasm a oscillations in order to describe inelastic 

scattering of electrons by atoms in solids A subsequent development of many 

body theories took place mamly m nuclear physics leading to concepts like shell 

models and collective giant resonances (Brown 1971) However many body m eth­

ods came back to atom ic physics in the 1960s mainly due to the work by Brand &: 

Lundqvist (Brand Sz Lundqvist 1963, Brand et al 1967) and Amusia h  coworkers 

(Amusia 1965, Amusia 1967, Amusia et al 1971) who treated  the dynamics of 

the atom  charge density via response functions and infinite diagram m atic pertu r­

bation theory focussing on collective effects in excitation and ionisation spectra 

D iagram m atic perturbation theory in the spirit of Brueckner (1955a,b) and Gold- 

stone (1957) was carried out by Kelly (1963, 1964) m calculating first ground state 

correlation energies in atoms and later photoionisation cross sections

There was no clear evidence for the need of many body descriptions in atomic 

spectra until probably around 1960 In fact it was not even really clear what the 

shapes of photoionization cross section m a straightforward one electron picture 

would be Such calculations then showed, that there can be a strong discrepancy 

between the experim ental data  and the independent particle model A spectacular 

example is the well known Ad —> e f  photoabsorption spectrum  of Xe, where the 

one electron model completely failed (Cooper 1964)

At the beginning of the 1960s, there was another im portant theoretical and ex­

perim ental development concerning effects of many electron interactions in atoms 

There was the classic experiment which provided data of the 2s2p and higher dou­

ble excitation m  He (M adden & Codling 1963) following the theory of autoiomzmg 

resonances by Fano (1961) which concerns the aspect of correlated motion of two 

electrons in excited states These problems subsequently became an ideal test 

ground for testing many body theories (Wendin 1970a,b and Wendm 1971).
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2.2 Intra and Inter Configuration Interactions

W ith the radial wavefunctions Pni(r) determ ined by solving the HF equations, 

their determ m antal function i/’ can be w ritten as

=  (N \)~xl2d e t{R nl}Yi i m i  X«1 Xs2 YlNm,N 'XsN (2 10)

The total wavefunction i/> contains all information about the system ’s dynamical 

properties If the wavefunction is known, all observables can be deduced from 

the m atrix  element of the Hamiltonian of interest Therefore the evaluation of 

the total averaged energy of an atom  is

a (2 11)

with H the Hamiltonian of eqn (2 2) and the average is taken over all mag­

netic quantum  numbers m/t and m Si The configuration average energy E av = 

+  E xnuc) +  Y! E tJ 1S composed as a sum of three different types of energies,
t 1 < J

the kinetic energy of the i th electron

e :km

oo

=  I  Pn,l,(r)
21

2m dr2
Pn,l,{r)ir (2 12)

the electron-nuclear energy

E l

CO

=  / - f  I P«A< 12dr (2 13)

and the electron-electron Coulomb energy between the Ith and the j th electron

E %3 =

u k ‘‘  \ G‘(y), x ± }
k  \  0  o  o  7

F°(«) -  E ( '■ ] '■ I f » ,  . =;
y fc>o \ 0 0 0

(2 14)
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The term s F k( t j ) and Gk(ij)  represent the Slater integrals between electron i 

and electron j

OO OO

F kM  = j  f  j ^ \ P n , d n ) \ 2\P n , l , ( r ^ i r ,d r 2 (2 15)
0  0  >

OO OO

Gh(ij) = //; >+i> o o

In the discussion so far, the structure of the multielectron system is described 

through a set of radial wavefunctions Pni which constitute the configuration of the 

atom  and which reflect the independent particle model For a better description 

of the term  structure, additional interactions between the electrons, which do 

not belong to closed subshells have to be taken into account In most cases it 

is sufficient to consider the Coulomb- and the spin-orbit interaction among these 

electrons The perturbation operator, which leads to the fine structure splitting 

among the terms of a configurations is then given by

1 dV'
r dr

< U  >  (2 17)

with a  the fine structure constant and the summation has to be taken over all 

electrons belonging to open subshells The energy corrections m the Hamiltonian 

H 1 are small m comparison with the configuration average energy E av, but can 

lead to a significant redistribution of the term  structure

The corrections are considered m a first order approximation

< > = <  </>|H'couli’ >  +  < V’l^solV’ >  (2 18)

with the Coulomb- and the spin-orbit operator introduced on the right hand side 

of eqn (2 17) which lead to a mixing between the states described m eqn (2 10) 

The diagonalisation of the Coulomb energy m atrix leads to the L S  coupling 

scheme, whereas the spm-orbit operator is diagonal in j j  coupling Both terms 

together couple wavefunctions, which have the same to tal angular momentum J
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Therefore we can replace the basis set of uncoupled wavefunctions in eqn (2 10) 

by a new set of wavefunctions which give only diagonal contributions for one of 

the pertubation operators Hqou and H \0 Since the transform ation is a unitary 

one, it is ju st a m atter of convenience and not of physical significance, which 

coupling scheme is used In the subsequent discussion, the LS coupling scheme 

with the basis functions

=  (An ) - xl2de t{Rnl} \Lk(lk)L, M s k ) S  J M  > (2 19)

is used

2.2.1 Coulom b Interaction

Since the Coulomb operator is a two particle operator, the m atrix  element 

<  iI)\Hqou1\xI) >  can be reduced to m atrix elements between two particle states 

InJ tU j l jLSJM  > which are diagonal in L, S , J  and M  The decoupling procedure 

is ra ther complicated and lengthy (see Cowan 1981 chapter 12), so I will confine 

myself to the two particle problem, since it is sufficient for the analyses of the 

experim ental spectra presented in this work

The m atrix  element <  n t/tn_7/:?L 5 J M |( r{J)_1|n ,/tn:,/JLS’J M  >  can be evalu­

ated as a sum of the Slater integrals F k and Gh weighted with their appropriate 

angular coefficients f k and gk

E'Sm, = £  + £ « ‘(*j)G‘(y) <2 2°)
k> 0 k

The angular coefficients are defined through products of 3j  and 6j  symbols

(2 21)
I T  | Jc I*

f  =  ( 1) (2/, +  l ) (2(j +  1)
0 0 0

sT = (—1) (2/, + 1)(2Z, + 1) .
0 0 0 I, Ij k

(2 22)

If the properties of the 3j  and 6j  symbols are taken under consideration, we 

obtain values for the angular coefficients, which are different from zero for f k ^
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Table 2 1 Configuration average energies E av and Slater integrals F k and Gk m  

units o f [eV] calculated for the m ost important configurations m La3+

Eav F 2 F 4 Gl G3 G5

4<294 / 103 39 13 06 8 32 15 51 9 66 6 81

4 ^ 5 / 125 57 0 83 0 39 0 61 0 41 0 30

4 ^ 6 / 130 56 0 43 0 21 0 32 0 21 0 16

4 ^ 7  / 133 21 0 24 0 12 0 18 0 12 0 09

4 (^ 8 / 134 81 0 15 0 08 0 11 0 08 0 06

4 (^ 9 / 135 84 0 10 0 05 0 08 0 05 0 04

4 ^ 1 0 / 136 55 0 07 0 04 0 05 0 04 0 03

4c?96 p 118 34 0 95 0 20 0 21

4c^7p 127 36 0 39 0 08 0 09

0 A; =  0 ,2 ,4 , , m m (2 lt, 2l3) and gk ^  0 k =  |/, — / j | , |/, — /3| +  2, , /, +  l3 The

Slater integral F k determines the m agnitude of the direct Coulomb interaction 

between terms with a certain angular momentum L, the fk  give the splitting 

of the configuration into components with different L, the s determine the 

splitting into the different multiplets 25+1L  and the Gk,s give the magnitude of 

the exchange interaction The calculated values of the Slater integrals with the 

averaged configuration energy E av for the 4d?n/ ,  m p  configurations of La3+ with 

n — 4, 10 and m =  6, 7 are listed m Table [2 1]

Table [2 2] presents the values of the angular coefficients f k and gk for the 

states of the 4 (^ 4 / configuration with J  =  1 which are observable m a pho- 

toabsorption experiment from an initial state with J  =  0 Note, tha t the 1P  

and 3P  levels differ only m the angular coefficient g1 of the exchange interaction 

which leads to  an extremely large splitting m energy between the 4(^4/ ( 1P) and 

4(PAf(3P) states m La3+ since its appropriate Slater integral G1(Ad, i f )  is very 

large due to the strong overlap between the 4d and 4 /  wavefunctions Moving
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Table 2 2 Angular coefficients f k and gk o f the d-f and d-p direct and exchange 

contributions o f the energies E qou for the terms 1 Pi, 3Pi and 3D i, which are ob- 

serable m  a photoabsorption experiment o f La3+ from the ground-state 4 J10(15'o) 

The monopole coefficient fo is common to all terms and i t ’s contribution is usually 

included m  the configuration average energy Eav

P / 4 91 93 95

3D -0 05714 014286 -0 04286 -0 01905 -0 02165
3 p -0 22857 -0 09524 -0 04286 -0 01905 -0 02165

1P -0 22857 -0 09524 1 9571 -0 01905 -0 02165

3D 0 20 -0 0667 -0 04286

3P -0 2 -0 0667 -0 04286

l P -0 2 1 2667 -0 04286

to the higher Rydberg states, the G 1 value gets much smaller due to the lower 

spatial overlap between P u  and Pnj  The result is, tha t the energy difference 

between 1P  and 3P  term s is small, although their angular coefficient g1 differs by 

a factor of about 46 This is dem onstrated by a striking example in La3+, where 

the Coulomb energies (direct and direct+exchange) are listed m Table [2 3] for 

the 4 (^ 4 / and 4c?9 8/  configurations

2.2.2 Spin-O rbit Interaction

The spin-orbit interaction leads to a splitting of the levels, which are degen­

erate m J  The appropriate operator is a single particle operator which has 

already the form of an irreducable tensor operator, so th a t the m atrix  element 

<  n J tr ijl jL S J M |£ ,£ ,(r) < lts t > \n J tn jljL 'S 'J 'M ' > can be evaluated straight­

forwardly for the spm-orbit energy

40



Table 2 3 Calculated Coulomb energies E q o u 1  for the terms 1 P1, 3 Pi and 3Di o f - 

the 4d?4f and 4cP8f  configurations m  La3+

E qoui direct £ ^ ou/ direct-(-exchange

4 ^ 4 /  l P
3 p

3D

-3 78eV 30 02eV 

-3 78eV -1 OeV 

+0 44eV -1 OeV

4 ^ 8 /  l P
3 p

3D

-0 003eV 0 15eV 

-0 003eV -0 008eV 

+0 042eV -0 008eV

E'io = Sjj" I  L S 1 ■
\  S ’ V  1 J

x £  < >< ^511411— 5' > C».i» (2 23)
k=i,]

with £t (r) =  the radial factor of the spm-orbit operator and the radial
OO

integral (Utix = f  ^ i(r)|P nt;,(r) |2cZr, which is commonly referred as the spin-orbtt 
o

parameter

The selection rules, which can be derived from the 6 j  symbols are A L = 0, ±1,

A S  = 0, ± 1 , w ith L = L' = 0 and S  = S ' = 0 forbidden, this means th a t L  and S

lose their function as ’’good quantum  num bers” For the diagonal elements, the 

expression (2 23) can be simplified after evaluation of the 6 j  symbol to 1 /2 [J (J  +  

1) — L (L  +  1) — S (S  + 1 with the new spm-orbit param eter as a

linear combination of (nj t and (n]i3 The advantage of this description is, th a t it 

is sometimes very easy to see w ithout carrying explicit calculations, which terms 

have no spm-orbit contribution. For example the prominent 4d94 / ( 1/ ?i) term  has 

no energy contribution due to the spin orbit interaction, since J  is equal L and 

to tal spin S  is zero
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However, it is usually easier to calculate the spin orbit m atrix  elements m 

the j j  coupling scheme < ntllj ln :llj j jJ M \T lt( l (r)(its t)\ntl%j ,tn:)ljj'1 J ,M l > with a 

subsequent unitary transform ation into the L S  basis We obtain the spm-orbit 

energy within the j j  basis

E'so = ^  +  *) ~  +  1) -  3 / 4 ( 2  24)
k=t,j

W ith the use of the transform ation m atrix

li s t h

<  ( / j 5 j ) j j , (/j 5j ) j j t / | (/j/j ) Z / ( S j S j  ) » ? < / >  J 3 ■> L ,  5 ]   ̂ < I3 S3 J 3
> (2 25)

L S J

the eigenvectors m j j -coupling can be relatively easy transform ed into the LS- 

couplmg scheme after the evaluation of the 9j symbol

The spm-orbit integrals (nj t are calculated for the 4cP n f,m p  configurations 

of La3+ and listed m Table [2 4] The spm-orbit energies can then be very easily 

evaluated from eqn (2 24) when the jj-couplm g scheme is used As an example, 

the spm-orbit energies for the AcPif states with J  =  1 in La3+ are calculated 

withm the j j  basis and listed m Table [2 5] In order to obtain the spin-orbit 

energies withm  the L S  basis, the appropriate transform ation m atrix j j  —► L S  is 

required from eqn (2 25)

(ID (1!) (II)
3D -0 37796 -0 67612 0 63246
3 p -0 53452 0 71714 0 44721

0 75593 0 16903 0 63246

W ith the help of the transform ation m atrix, the spm-orbit energy m atrix  m the 

L S  coupling scheme can be very easily obtained from the j j - energy (diagonal) 

m atrix via a unitary m atrix  transform ation Results are listed in Table [2 6] again 

for the 4 (^ 4 / and 4cP8/ configurations as representative examples

In the case of gold, where we explain the resonant photoabsorption part due 

to the 5p —> bd and 4 /  —► 5d transitions between the initial configuration 5d?6s2
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Table 2 A Calculated spm-orbit radial integrals ( 4 4  and ( nj / ( mp for the A(Pn/ ,  mp  

configurations o f La3+

C4 d Cnf /  Cmp

Ad?A f 1 12 0 08

4 ^ 5 / 1 14 0 00

4d96 / 1 14 0 00

Ad? 7 f 1 14 0 00

AcPSf 1 14 0 00

Ad?9f 1 14 0 00

Ad?lOf 1 14 0 00

AcPQp 1 14 0 29

Ad?lp 1 14 0 13

and the final configurations bp5 bd1 0 Qs2  and 4 / 135eZ106s2, the term  structure within 

these configurations is solely determined by the spin-orbit interaction of the sin­

gle particle hole state  Therefore the j j -coupling scheme is appropriate for the 

description of the fine structure components The spm-orbit interaction of the 

5d~l hole, which has a calculated spm-orbit param eter (5d = 0 64eV, splits the 

5d?6 s 2  configuration into two states 2 D 5 / 2  and 2 D 3 / 2  separated m energy by about 

1 28eV following eqn (2 24) Electrons from both states can be optically excited

Table 2 5 Spm-orbit energies for the Ad9i f  states with J  =  1 o f La3+ calculated 

m  the j j  coupling scheme The energy difference between the 2nd and 3rd row 

gives approxim ately the spm-orbit splitting o f the 4d subshell as 2 8 eV

< Ad5 / 2 Af7 / 2 \£(r)(ls)\Ad5 / 2 Af7 / 2  > =  -1 OOeV

< 4G?5/24/5/2|£(f')(^5)|4e?5/24/5/2 28eV

<  4c?3/24/5/2|^(j')(/-s)|4c?3/24/5/2 > =  1 52eV
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Table 2 6 Spm-orbit energies for the 4(P 4f and 4d?8f states with J  — 1 o f La3+

calculated m the LS coupling scheme

4 (^ 4 / 4d?8f

<! P \t{r){U )\'P  >  = OOOeV OOOeV

C 1 P |£ ( r ) ( / i ) |3P  > = 0 68eV 0 81eV

< 1 P \t( r ) (h ) \3D >= 1 04eV 1 14eV

< 3  P \£(r)(ls)\3P  >= -0 64eV -0 57eV

< 3  D \t(r ) (h ) \ 3 D >  = -0 12eV OOOeV

< 3  D \a r )( ls ) \3P  >= 0 85eV 0 81eV

into states with a 5p_1 or 4 / -1 hole The large (5p — 10 7eV  value is responsible 

for the big energy gap between the 2P3/2 and 2 P \ / 2  states of the 5p~15d106s2 con­

figuration which is calculated to be 16 leV  Considering the case of the 4/ -1 hole 

configuration, the 2 F5 / 2  lies 3 7eV below the 2 F7 / 2  w ith the calculated spm-orbit 

param eter £4/  =  1 05eV The calculations so far describe the Coulomb and spm- 

orbit interaction within a configuration in which one or two particles (electrons 

or holes) are involved like the the 4d~x — 4 / 1 Coulomb interaction m La3+ or the 

5d ' 1 spm-orbit interaction m the case of gold However, m the general case of 

an atom  with more than two open subshells, the application of the theory can be 

generalized (see Cowan 1981, chapter 12) and we obtain a fine structure energy 

splitting withm  a configuration

1=1
7 -1

.fc>0
9

+ E E
t=i ]=%+\ L f c > o

(2 26)

with f k,gk and the angular coefficient calculated m the same coupling scheme
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2.2.3 R elativ istic  C orrections

For heavier elements, a proper treatm ent for a quantitative description of the 

many-electron term  structure would be within a relativistic Dirac-Hartree-Fock 

(DHF) theory (G rant 1970, Desclaux 1975) However the equations which have 

to be solved in the relativistic theory, are considerably more complex which makes 

the calculations of the energy-level structure much more difficult In the nonrela- 

tivistic HF approach discussed in this work, the m ajor relativistic effects like the 

Darwin- and mass velocity terms are taken into account as first order perturbation 

corrections The influence of these corrections is restricted to the configuration 

average energy and therefore do not affect the fine structure splitting The cor­

rections are

F* -  - f i  ^  T  P  ( r ^ ^ l r ±  ( 9  9 7 ^
D ~  4 j0 n,/,( } dr d r {  r )  (2 2?)

a 2  f°°
E L  = —  I  Pn,i,(r )(£* ~  V \ r ) f P nilt{r)dr (2 28)

with e, the eigenvalue of the ith electron For the 4d}° —► 4<^4/ transitions m 

La3+, these relativistic corrections were calculated to be of the order of 0 8eV

2.2.4 Interm ediate C oupling

In many cases, when neither the spm-orbit nor the Coulomb interaction is small 

when compared with the other, the eigenvalues of the Hamiltonian operator are 

not even approxim ately similar to diagonal elements of the energy m atrix  The 

procedure then is to diagonalize the energy m atrix  for the states with a certain J  

m order to obtain the eigenvalues, which is usually achieved through a numerical 

procedure

Although, by use of the interm ediate coupling scheme, the quantum  numbers 

L and S  lose their physical meaning as a preservational quantity of the to tal 

system, nevertheless, the levels are often still labeled m the Russell Saunders 

notation 25+1 L j ,  where the appropriate wavefunctions are presented as a linear
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Table 2 7 Mixing coefficients for the 4 (^ 4 / and 4cP8/  states of La3+ in the

intermediate coupling scheme

4 ^ 4  f ( ' P ) 4d94 / ( 3P ) 4 ^ 4  f ( 3 D)

4d94 / ( 1P ) ’ 0 999 0 023 0 039

4d94 / ( 3P ) ’ -0 016 0 994 -0 167

4<294 / ( 3D )’ -0 043 0 166 0 985

4d98 / ( 1P ) 4 ^ 8  f ( 3 P) 4(^8 f ( 3 D)

4 d?8 f ( l P y 0 633 0 447 0 632

4<f,8 / ( 1P ) ’ 0 756 -0 535 -0 378

4 ^ 8  f { 3p y 0 169 0 717 -0 676

combination of the ’pure’ eigenstates m the L S  coupling scheme The coefficients 

are obtained by diagonalization of the energy m atrix  and taking the orthonormal- 

lty conditions for the eigenstates into account The mixing coefficients are given 

for the 4cP4/  and 4c?98 /  configurations m Table [2 7] The new eigenstates are 

marked with ( ’), in order to distinguish the interm ediate eigenstates from the pure 

LS coupled ones It is clearly recognizable from these tables, tha t the states of the 

4 (^ 4 / configuration are nearly pure LS coupled because the Coulomb interaction 

for the 4f electron with its appropriate 4d-1 hole is extremely strong However, 

for the higher Rydberg states, where the electron-hole orbitals are largely sepa­

rated m space, the spin-orbit interaction comes to its best advantage, which leads 

to an enormous mixing between the L S  eigenstates

2.2.5 Inter configuration Interactions

The perturbation operator H l of eqn (2 17) does not only lead to a fine structure 

splitting withm  a configuration, it can also mix states belonging to different 

configurations The adm ixture between states (j)i and </>2 belonging to different 

configurations can be expressed m a second order perturbation expansion a = <
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Figure 2 2 Schematic drawing o f the development o f an energy-level structure 

o f the 4<PAf and AcPSf configuration o f La3+ using the LS coupling notation 

Starting with the spencally averaged centra] field energy (configuration average 

energy) and then taking sucessively the Coulomb interaction energies (first the 

direct and then additionally the exchange interaction) into account followed by 

the spm-orbit energy and then finally all Coulomb and spm-orbit contributions m  

an intermediate coupling scheme using the LS notation It is illustrated, that m  

the 4<f94/  configuration, the exchange interaction determines the term structure, 

whereas m  the 4d°8f configuration it is the spm-orbit interaction, especially the 

non diagonal elements that are large (see Table [2 6 ]) and lead to a deviation of 

the LS term structure which resembles more an energy-level structure one would 

obtain under pure jj  coupling conditions
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M H '\< h  > / (E i  — E 2 ) with an appropriate energy shift AJ5 =

\2/ (E i  — E2) which can be significant, if the Cl m atrix element <  <f>i\H1] ^  > 

is of the same m agnitude as the difference in energy (Ei  — E 2). The selection 

rules, which determine what states can be mixed by the operator, are the same as 

for in tra  configuration interactions, H 1 connects only states which have the same 

total angular m omentum J.  In most cases it is sufficient to consider only the 

Coulomb operator as a perturbation which mixes states with the same quantum  

numbers L, S,  J  and M.

Instead of carrying out extended perturbation calculations, the states which 

contribute to a mixing can be directly included in a Cl energy m atrix which is 

then diagonalized in order to obtain the mixing coefficients and the eigenvalues.

The Cl m atrix  elements of the Coulomb operator can be evaluated in analogy 

to eqn.(2.20) as weighted Slater integrals

< < / , , ! £ %  > = 5 > ‘ i i ‘ +  r ‘ fiJ) (2.29)
k

with
OO OO

f l ‘ (i<'>jl'»t<2»;«2») = J I  ^ P i ' l ( r , )P i ‘l(r2)P^l(n)P^l(r2)dr,dr2
0 0 >

Rk(i(1)j (1)k(2)l(2)) =  i^ (*(1)j (1)/(2)fc(2)) (2 .30)

where index (1) and (2) represent the configuration number. The angular coeffi­

cients rk and dke can be obtained in analogy to the single configuration direct gk 

and exchange f k coefficients from eqn.(2.21) and (2.22).

Interconfiguration interactions play an im portant role in calculating the La3+ 

spectrum . Large mixing among the 4cP(4, e ) f  configurations in the l P  channel 

is observed. The a ttem pt to identify the dominant resonance line in the ex- 

perim antal spectrum  as the 4f i } P )  fails completely in the single configuration 

approximation. Instead, an extended 4c?9(n ,e ) /  intrachannel CI-HF calculation
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shifts the predicted 4 / ( I P) from 129 7eV down to 120 9eV (experimental value 

118 9eV) with an oscillator strength and autoiomzing width, which are compa­

rable with the experimental data The energy integrals R k and R ke for these 

configurations are given in Table [2 8], which shows tha t the 4d?4f — 4cP nf in­

teractions are extremely large among all possible interconfiguration interactions 

The angular coefficients r^ and rk have the same values as the / * ’s and gk,s in 

Table [2 2]

The interaction energies can be calculated with use of eqn (2 29) from the energy 

integrals and their appropriate angular coefficients The 4d?4f(1 P ) — 4d?n f( 1 P) 

interaction energies are listed in Table [2 9] and are of considerable size, about 

l-5eV A more detailed investigation of these effects which is a key point in the 

understanding of the giant resonance phenomenon will be provided in Chapter 3

2.3 Electrom agnetic D ipole Transitions

The theory of atomic photoabsorption is based on first order time dependent per­

turbation theory, in which the probability per unit time for a transition taking 

place between two states |z > and | /  > due to a weak time dependent electro­

magnetic interaction can be expressed by Ferm i’s golden rule

27T
P ~ f  = T \ \2 p(E)\Ej (2 31)

with p(E)  the density of final states, which is to be replaced by the Dirac delta 

function S(E — Ef )  for a discrete transition and by unity for continuum transitions 

if the continuum functions are normalized in energy In almost all photoabsorp- 

tion experiments, the light intensity is low enough to provide calculational results 

with sufficient accuracy in this approximation.

In the so called dipole approximation m length form , the m atrix element
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Table 2 8 Energy integrals m [1000cm l] for the 4cP nf — 4d ? m f mterconfigura-

tion Coulomb interactions m La3+

*5 R 4d R\ R l R t

4 d ? 4 f- 4oP5 / 19 41 13 23 24 48 15 73 11 23

4 d ? 4 f- 4 d?6 f 13 72 9 46 17 47 11 31 8 09

4 d ? 4 f- 4 ^ 7 / 10 27 7 12 13 15 8 54 6 12

4d?4f— 4d?8f 8 05 5 61 10 34 6 74 4 83

4d?4 f— 4d?9f 6 54 4 56 8 41 5 49 3 94

4<P4 f - 4 d? l0 f 5 45 3 81 7 02 4 58 3 29

4 d ? 5 f- 4<296 / 4 37 2 26 3 55 2 38 1 73

4 d ? 5 f- 4 ^ 7 / 3 20 1 71 2 68 1 81 1 31

4 ^ 5 / - 4d?8f 2 48 1 36 2 11 1 43 1 04

4d?5f— 4d?9f 2 00 1 11 1 72 1 17 0 84

4d?5f— 4d? l0 f 1 67 0 93 1 44 0 97 0 71

4d?6 f — 4d?7 f 2 50 1 30 1 93 1 31 0 96

4<f96 / — 4d?8 / 1 94 1 02 1 52 1 04 0 76

4d?%f— 4d?9f 1 57 0 82 1 24 0 85 0 61

4d96 / — 4d ? l0 f 1 30 0 64 1 03 0 71 0 52

4 ^ 7 / - 4d?8f 1 52 0 77 1 15 0 79 0 58

4d?7f— 4d?9f 1 23 0 63 0 93 0 64 0 47

4 ^ 7 / - 4 (^10 / 1 02 0 53 0 78 0 53 0 39

4d?8f— 4cP9f 0 99 0 50 0 74 0 51 0 37

4d?8f— 4d?10f 0 82 0 42 0 62 0 43 0 31

4d?9f— 4(^10 / 0 68 0 34 0 50 0 34 0 26
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Table 2 9 Calculated energy values for the 4<̂ 94 / ( 1P ) — 4<Pmf(l P) mterconfig-

uration Coulomb interactions m La3+

< 4d94 / ( 1P ) | i ^ j 4 < / 95 / ( 1P ) > =  5 2eV

< 4<f94 / ( 1P ) | / % j 4 d 96 / ( 1P ) > =  3 7eV

< 4d94 / ( 1P ) | i ^ j 4 d 97 / ( 1P ) >  =  2 8eV

< 4d94 / ( 1P ) | / / £ j 4 d 98 / ( 1P ) > =  2 2eV

< 4d94 / ( 1P ) | t f £ j 4 d 99 / ( 1P) > =  1 8eV

< 4 ^ 4 / ( 1P ) | t f £ j 4 d 91 0 /(1P ) > =  1 5eV

< ipt \H em\ipf > can be evaluated by use of the Wigner-Eckart theorem

< > = ( £ / - £ . ) i  ( J ‘ 1 J' ) < i . J . >
3 7  \ - M ,  q M, J

(2 32)

where 0, is represented by the quantum  numbers 7,, J, andM, and through 

the quantum  numbers 7/ ,  J /  and M / The 3j symbol provides immediately the 

dipole selection rules with A J  = 0, ±1, A M  =  0, ±1 and J, =  J /  ^  0

For a monochromatic non polarized photon beam, the absorption cross section 

craf,s is defined as the averaged transition probability of eqn (2 32) over all sublevels 

M t of the initial state  I7, J ,M t > to all sublevels I7j J f M f  > of the final continuum 

states, normalized to the number of incident photons per unit time and per unit 

area
47T2/v 1 0

< W M  =  ~ Y ~ huj2 j " + 1 \D t f \ 33^

with a  the fine structure constant and \D, f \ 2  =  | < 7, | (r^1̂  117/«// >  |2 the square

product of the absolute value of the reduced dipole m atrix  element normalized 

per unit energy

Discrete transitions are usually characterized by the oscillator strength f ab3 

for an absorption process or f emt for an emission process, which are related to the 

reduced dipole m atrix element D ,j with / , /  =  3 2T+T The oscillator
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strength is dimensionless and has the physical significance of the effective number 

of classical electron harmonic oscillators, which would absorb radiation of the 

energy A E  as strongly does the atom  For strong spectral lines, f is of the order 

of one In order to characterize a transition between two states with a symmetrical 

quantity, the gf value is frequently used, g is the statistical weight of the initial 

state  and we obtain g f  =  (2J, +  1 ) / Finally a very useful oscillator strength 

sum rule defines its distribution withm a transition array

/ ( | C 7 J M  > ->  E ^ y j . I C - V z y j '  > ) =  wt (2 34)

Provided th a t relativistic effects are negligible, the total oscillator strength which 

includes all possible discrete and continuum transitions from subshell (n,/,) is 

equal to its occupation number wt

The characteristic quantity for calculating the oscillator strength or the pho- 

toabsorption cross section is the reduced dipole m atrix element Dtf  between the 

initial state  |7,J , >  and final state  \ j f J j  > These states are usually expanded 

m terms of a suitable set of basis functions |/3 J  >  with

hJ >= E > <2 35>
P

The basis expansion m the atom ic structure calculation codes RCN /RCG  (Cowan 

1981, Cowan 1984a,b) are obtained by diagonalizmg the energy m atrix  for the 

states with a certain parity and quantum  number J  In theory, a complete set 

of basis functions is required m order to obtain the correct result, although m 

practice a judiciously selected num ber of basis functions are very often sufficient 

in order to obtain satisfactory results I would like to point out here again, tha t 

a multiconfiguration basis takes electron correlations into account which goes 

beyond the independent particle description The dipole m atrix  may then be 

w ritten as

D' i = E E  *  <  >  v i j .  (2 36)
P P1
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which can be generalized to a unitary m atrix transformation

D j j ,  =  Y D m 'Y '  (2 37)

where the trace of the m atrix is invariant Thus the D j j > m atrix for the actual 

atom  is just the Dpp  m atrix for pure L S  coupling representation transformed 

into the actual interm ediate coupling representation in a configuration interaction 

expansion

The dipole m atrix element in L S  coupling Dls = <  .L5'J||r(1)|| L 'S 'J ' >

can be evaluated by (Cowan 1981, chapter 14 11)

L S  J
D l s  = S s s i - l ) L+s+r+ '[ J ,J 'Y 1 2

' J ' I L'
(2 38)

The various Dm subfactors encountered in different steps of the calculations m 

order to reduce the multielectron transition rate to the dipole m atrix  element of 

the jumping electron dtf  =< n tlt \ \ r ^ \ \n f l f  > (Cowan 1981) which m tu rn  can be 

reduced to a radial integral with

4 /  =  ( - ! ) '• [ ( . . i j 1/2 ' J ) f  Pn.,.(r)rP«,h (r)dr (2 39)
\ o  0 0 ) {

There are several selection rules which can be deduced from the 3j  and 6j  symbols 

of eqn (2 38) and eqn (2 39) in addition to the selection rule for the to tal angular 

mom entum  J  (eqn (2 32) with A S  =  0, A L  =  0, ±1, L = L' ^  0 and lt — lf = ±  1 

The electric dipole transition involves a change of parity A l  =  ±1 Furtherm ore 

under pure L S  coupling conditions, transitions can only occur between states 

w ith the same multiplicity (A S  =  0)

In the application to the La3+ problem, we consider the transitions from 

the ground state  4c?10(15'0) to all states of the 4c^4/ configuration m the single 

configuration approximation The Coulomb and the spin-orbit interaction split 

the icPA f configuration into 20 fine structure components of singlet and triplet 

terms with different J  values as shown in Table [2 10] The selection rules reduce
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Table 2.10: Fine structure components of  the 4cP4/ configuration in the LS 

coupling notation.

j

0 3Po

1 3Pi 3Di 'P i

2 3p 2 3d 2 3p 2 1d 2

3 3g 3 3f 3 3d 3 CO

4 3h 4 3g 4 3f 4

5 3h 5 3g 5 1h 5

6 3He

the num ber of terms to the three 3 Pi, 3Di and 1P1 states, which are observable 

in a photoabsorption spectrum  described in the dipole approximation. However, 

these states are closely LS coupled as shown in Table [2.7], which means, tha t 

only the 4d10(15o) —► 4c/94 / ( 1Pi) transition line is expected to be observable 

in the photoabsorption spectrum. Since the 1P1 is mixed with the other two 

J  — I states via the spin-orbit operator, weak intercombination lines to these 

states are observed. W ith increasing main quantum  number n, the spin-orbit 

interaction becomes more dominant. This results in a redistribution of oscillator 

strength to spin-orbit split transitions with intensities which depart greatly from 

the L S  coupled states. Under pure j j  coupling conditions, the oscillator strength 

distribution between the spin-orbit split subshells is proportional to the ratio of 

their statistical weights (2J+1).

A redistribution of oscillator strength does not occur only within a single 

configuration. The Coulomb part of the perturbation operator H 1 in eqn.(2.18) 

causes a strong mixing between the 1 Pi states of the 4d?nf intrachannel configu­

rations, which has a significant influence on the intensity distribution among the 

Rydberg transition lines. The predicted f value for the 4d10(15'o) —> 4cZ94 / ( 1Pi) in
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pho ton  energy (eV)

Figure 2 3 Photoabsorption cross section o f Ba 4d —► t f ( l P) with use o f relaxed 

and frozen core orbitals

a single configuration calculation is 11 6 Intrachannel CI-HF calculations reduce 

the f value to less than  half of its m agnitude in favour of the transitions into 

the higher Rydberg states which gam m strength Therefore not only the energy 

positions of transition lines, but also the transition strengths provide valuable 

information about electron correlations m atoms and ions

As already discussed, the consideration of relaxation effects can bring a sub­

stantial improvement for the description of photoabsorption spectra These ef­

fects do not only improve the prediction of transition energies or the threshold 

behaviour, they also determ ine the shape of photoionization cross sections as 

dem onstrated with a simple 4d —► e / ( 1P ) cross section calculation for atomic Ba 

using eqn (2 33) The calculations were carried out once with the use of relaxed 

orbitals and ones within the frozen core approximation Relaxation effects do not 

only shift the 4d threshold, the photoabsorption maximum is pushed beyond the 

threshold as shown m Figure 2 3
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2.3.1 R esonant Photoabsorption

In the photoabsorption energy region well above the ionization energy of the 

atom /ion, several excitation channels are usually open which may lead to pro­

nounced interference effects in the absorption strength due to mterconfiguration 

mixing via the perturbation Hamiltonian H 1 of eqn (2 18) which is disregarded 

in the independent particle model Interference effects provide information about 

electron correlations m a many electron system and are therefore of great interest 

m the investigation m any body behaviour

As an example, we consider the simplest case described by Fano (Fano 1961), 

m which transitions are considered from the ground state  to both, a discrete 

state  ip and a continuum  ij>(E) The configuration mixing of these two excited 

states, which are assumed to coincide m energy, gives rise to the so called au- 

toiomzing phenomenon The discrete state mixes with the continuum via the 

perturbation operator H 1 which requires an ansatz for the solution of the total 

wavefunction 'I'(.E) as a linear combination of the unperturbed discrete state  ip 

and continuum functions ip(E)

q ( E )  =  a(E)ip +  J b(E , E')rP{E')dE' (2 40)

The exact coincidence of the energies <  ip\H\(p >= Eq and <  tp(E)\H\rp(E) >= E  

makes ordinary perturbation theory inadequate, so tha t the proper treatm ent re­

quired here to describe the autoiomzing process is to diagonalize the energy m a­

trix  <  V ( E ) \ H \ q ( E )  >  in order to obtain the coefficents a(E)  and b(E) and the 

new energy eigenvalue of the to tal wavefunction 'P as the eigenstate of the sys­

tem  which is considered m this case The diagonalization procedure is sufficently 

simple to perform analytically which is also shown m Cowan’s book (Cowan 1981 

chapter 8 11) As a result, the discrete state acquires some properties of the 

continuum

( , « )
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However, the admixure is small unless the discrete resonance sta te  ip is located 

near the ionization limit V(E) represents the configuration interaction m atrix 

element <  t^(E)\H\<p > which describes the coupling strength between the two 

states

The new energy eigenvalue of the system is shifted due to the configuration 

mixing from Eq to E 0  + F( E)  w ith F ( E )  — V j  VE^ j-dE' but the contribution of 

F ( E )  is usually very small due to the fact, tha t the principal integral vanishes if 

the integration is carried out symmetrically with respect to the singularity There­

fore the contribution of F( E)  is usually neglected and the new energy eigenvalue 

corresponds to the energy value of the discrete unperturbed state  <p

Furtherm ore we obtain for the reduced dipole m atrix (also called line strength)

<  $ „ | | r < ' » | | « ( £ ; )  > =  a(E) <  f a | | r«, l | | ^ ( £ )  >  + ^ { E - E a) <  1 1 >

(2 42)

w ith a(E)  = V ( E ) ( ( E  — Eo ) 2  +  n 2 V 4 (E) )~1̂ 2. According to eqn (2 33) where 

the absorption cross section is proportional to the square of the reduced dipole 

m atrix, we obtain a Beutler-Fano photoabsorption profile

< *.ii^n )̂ > riV g lS ff  <2 43>
with the HWHM T =  ttV 2 (E )  and the asymmetry or shape param eter q = 

7rF(ij<$^|r()|)H^(£;)> ^h e  shape param eter q depends on the ratio of the reduced 

dipole m atrix  elements and on the coupling strength <  <p\Hl \%l)(jE) > — V( E)

It should be pointed out here, tha t q and T are energy dependent param eters 

although they are usually considered to be constant over the resonance energy 

region of interest Therefore resonance lines are very often param eterized through 

constant values of q and T in order to describe the electron correlations One 

characteristic quantity is for example the autoiomzmg transition probability rate 

A a of the discrete state  ip into the continuum i/j w ith A“[5-1] =  t - 1  =  2^-1T 

r  represents the half life tim e of the discrete state  ip before it decays into the 

continuum ■0
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The general form of eqn (2 43) can be illustrated for three different cases

• |^| —► oo Photoabsorption is only possible into the discrete state The 

resonance line has the shape of an Lorentzian profile with crabs oc /  x T x 

■k~ 1 K (E  — E 0 ) 2 + T2) which is symmetrical with respect to the resonance 

energy E 0

• q =  0 In this case we obtain a window resonance profile with crabs oc /  x 

((E  — E 0 ) / r ) 2/ ( l  +  ((E  — E 0 ) /T )2) The dipole m atrix element of the 

transition into the discrete state  is zero and absorption is possible only into 

the continuum

• |g| <C oo We obtain an asymmetric profile due to the interference effect 

between the discrete and the continuum transition

Figure 2 4 shows typical absorption profiles for all three cases The amplitude is 

chosen differently in each case in order to allow an optimal display of all three 

curves simultanously

In summary, the photoabsorption cross section into a continuum, which inter­

acts with the discrete excited state  becomes lesonantly enhanced via an adm ixture 

of the discrete state <p to the continuum i>(E) with the fractional contribution 

a(E)  The result shows, that the contribution is spread out over a finite energy 

range 2 r  which is determined by the coupling strength between the discrete state 

and the continuum which is represented by the configuration interaction m atrix 

element V ( E )

In practice it is mostly sufficient to consider the Coulomb operator as the 

perturbation operator which causes autoionization processes This is also com­

prehensible since in an illustrative picture of configuration interaction , the redis­

tribution of the electron density is caused by the electron interactions represented 

by the Coulomb operator It follows immediately from Chapter 2 2 1 th a t au- 

toiomzmg transitions occur only into continuum states with the same quantum  

numbers L, S,  J  and M
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(E-E0)|r

Figure 2.4 Fa.no profiles for different q values The am plitude is choosen dif­

ferently m  each case m order to allow an optimal display o f all three curves 

sim ultanously

In a CI-HF calculation the diagonahzation of the energy m atrix may lead to 

a considerable mixing between the states Hence discrete and continuum eigen­

states are usually presented as a linear combination of the set of basis functions 

\b > used in the multiconfiguration-HF approach

|< ,> = £  |6 > < % > >  (2.44)
b

\*(E) > =  £  16' > <  VW.E) >
b'

The autoiomzmg rate A “ =  2h~l ir\ <  <^|r-1 \rj>(E) >  |2 can then be expressed in 

the basis |6 >

A° = tI E E < ̂  >< 6ir"1i6' >< b> (E) > i2 (2 45>
6 6'

with <  b\r 1|fe/ ^  the Coulomb interaction bet ween the basis states, w h l c h can 

be evaluated as a sum of weighted Slater integrals as discussed in Chapter 2.2.5.

Eqn (2 45) shows clearly, th a t strong Cl have a large influence on the autoion- 

lzation ra te  This is particularly well dem onstrated for La3+, where the 4e?96p(1P )
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line has a negligible autoionization width (<  0 OOleV) in a single configuration 

approximation This contradicts the experimental data, which shows a width of 

about 0 2eV The strong Cl with the 4d94 / ( 1P ) giant resonance causes the width 

of the 6p(l P)  line to be broadened to about 0 05eV The remaining discrepancy 

between the experimental da ta  and theory may be explained due to the neglect 

of the Auger width and limited experimental instrum ental resolution, which is 

estim ated to be 0 15eV

As an example of a resonance interacting with a single continuum, the double 

excitation l s 2(1S'o) —> 2s2p(1Pi) in L i+ is calculated w ithm  the Fano theory of 

resonant photoabsorption The results are compared w ith experimental data by 

Carroll & Kennedy (1977), Kiernan (1994) and with recently published theoreti­

cal data  by Sanchez h  M artin (1990) At first glance, one might thm k th a t the 

theoretical treatm ent of a two electron system is relatively simple, but the fact 

th a t m this case both electrons are located m excited orbits, leads to highly cor­

related motions which means a strong deviation from a pure central field model 

Therefore a proper treatm ent requires extended Cl calculations w ith typically a 

couple of hundred configurations (Sanchez h  M artin used 130 configurations m 

their calculation) In the following calculations, only 27 configurations were used 

and therefore the results can only be considered as an estim ation particularly for 

the q value It is worthwhile to mention here again, th a t the Fano param eters are 

actually energy dependent param eters and therefore not only difficult to calculate 

but also difficult to deduce from the experimental data  specially if the parameters 

vary greatly with energy

However, since the dipole operator is a single particle operator, double exci­

tations (or shake up’s) can only be treated  withm Cl w ith single excited states 

The following calculation included lsnp configurations w ith n = 2,3, ,8, 2smp

with m  = 2,3, ,8 and the 1 sep contmua with t  m the  energy range between

5.2-5 5 Ry The double excited 2s2p(1 P\) state  can only decay into the 1 sep^Pi )  

continuum, which can be reached directly from the ground state  via dipole exci-
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Figure 2 5 Beutler-Fano photoabsorption profile for the Is 2 ( 1 Sq) —» 2s2p(1 Pi) 

double excitation m  L i+

ta tion  Both channels interfere to give a pronounced Beutler-Fano profile The 

results are presented in Figure 2.5 and Table [2.11]

2.4 M any-B ody Effects

The independent particle model described m a previous subchapter, assumes th a t 

once the electrons are placed in their single particle atomic orbitals, they move 

and respond thereafter independently This is certainly not true in a many elec­

tron system One improvement of the IPA was the previously discussed orbital 

relaxation effects Another improvement can be made by considering the optical 

response of the electron cloud m an atom  under the influence of an external field 

Independent particles respond by polarizing in accordance to an impressed elec­

tric field to create a net dipole moment This effect is well known in the static 

approximation as the Stark effect where the perturbation theory in second order 

leads to an admixure of excited states in order to constitute a nonspherical elec-
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Table 2 11 Fano parameters o f the  l52(a5o) —*■ 2s2p(1 Pi) resonance line m L i+

this work Carroll & Kennedy Kiernan Sanchez & M artin

E 0 [eV} 149 91 150 29 150 28 150 295

FW HM  2r[eV] 0 08 0 075 0 09 0 0622

q -1 7 -1 5 -1 8 -2 2

A“[10135_1] 12 55

V(E)[Ry] 0 031

ddts[ea0] 0 0037

dcont[ea0] -0 022

tron distribution Now taking the residual Coulomb interactions into account, 

the polarized electron cloud establishes its own electric field The electrons re­

arrange m order to accommodate the to tal force acting on them  Therefore the 

electrons m ust redistribute themselves m response to the sum of the external and 

internal fields The internal field screens or antiscreens the external field which 

depends mainly on the driving frequency of the external field and on how the 

electrons can respond to the perturbation, more precisely the spatial overlap be­

tween the occupied and unoccupied electron orbitals and their energy difference 

As a result, the oscillator strength is very often shifted towards higher energies 

than  those predicted from the IP model This is the most characteristic feature 

m the optical response theory (Wendm 1984)

In the following discussion I shall be concerned w ith two classes of many body 

effects

• dynamical polarization, as already introduced qualitatively

•  self energy The typical many-body theories RPAE and TDLDA commonly 

use frozen core orbitals The self energy calculated withm the M BPT m an­

ifests itself most commonly m a dynamical relaxation (which is to a certain 

extent equivalent to the orbital relaxation discussed withm  the HF theory)
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and subsequent decay of the hole (Auger decay) produced m photoabsorp- 

tion

Polarization type many body effects are incorporated in the Random Phase Ap­

proxim ation with Exchange (RPAE) and the Tim e Dependent Local Density Ap­

proximation (TDLDA) which are closely related and which are introduced briefly 

m the next two subsections The self energy which is calculated within the Many 

Body Perturbation Theory (M BPT) for the 4d~x hole state  in La3+ is also dis­

cussed m a more qualitative m anner as far as it is of relevance for the results 

presented m this work

2.4.1 R PA E

The polarization of the atom ic charge density in response to a time dependent 

external field is described by a tim e dependent wavefunction (Amusia 1990)

=  e~Eoidet{<j>t(r , £)} (2 46)

with the single particle orbitals

<f>t{r,t)  =  (j)t(r ) +  ( ^  x mt4>m(r))e~xwt +  ( ^  ymt<l>m(r))etu,t (2 47)
m>F m>F

which is used m a tim e dependent variational procedure with a Hamiltionan de­

scribing the atom  and the external field The minimization of the time dependent 

energy functional keeping only terms linear m x mt and ymt yields after a few inter­

mediate steps to the linearized Tim e Dependent Hartree-Fock (TDHF) equations 

(Amusia 1990) represented by

(Em -  E t -  h u )ymt +  m \ V \ j m  > ynj+ < n j\V \m n  > x n,\+  < i\r\m  > =  0
n > F
}< F

(2 48)

(only one equation is shown here, the second one can be obtained by replacing 

ymt through x mt, taking the complex conjugate Coulomb m atrix  element and
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using a negative frequency) The x mt and ymi are coefficients, which are obtained 

by solving the TD H F equation If one defines now the RPAE am plitude as the 

m atrix element of a frequency dependent effective dipole operator <  i\R (u )\m  >=  

(E t -  Em -  h u )ymt and <  m \R (u )\i >= - ( E ,  -  Em +  h u )x mt eqn (2 48) can be 

w ritten as (Amusia 90)

<  m|/2(u;)|? >  =  <  m \r\i > +  ^
n > F
1< F

+

< n\R(u>)\j > <  mj\V\m >
Ej — En -I- %u> iS

<  j\R(u)n > <  mn\V\ij >
E. — E n — hu  — tS

(2 49)

with <  m n \V \ij > the Coulomb (direct and exchange) Cl integral and <  n\R(u>)\j > 

the RPAE am plitude for any interm ediate transition j  —► n including m  —> i The 

positive mfim testim al 8  insures, tha t the response of the electron system to the 

external perturbation  is causal Comparing <  m \R (u )\i > w ith <  m \r\t > , it 

becomes obvious, th a t the first m atrix  element can be treated  as an effective field 

m atrix element (in length form) th a t leads to an electron transition from state 

|m >  to state  \t > Physically one can imagine, tha t the atom  gets deformed and 

polarized by the external electromagnetic field, so th a t the actual field acting 

upon the single electrons differs from the external one and is considerably deter­

mined by the polanzability of the atomic electron shells If we replace now the 

dipole operator m eqn (2 33) by the effective one, we obtain the photoabsorption 

cross section crRPAE which takes the dynamical m any body polanzability of the 

atom  m response to the external field into account

The second im portant quantity is the effective mterelectron interaction r(u;) 
which can be obtained m analogy to the effective field (Amusia 90)

n > F
3 < F

+

<  nl\t(u))\jk > <  mj\V\m >
Ej — E n -f- %oj 1 8

<  jk\t(uj)nl > <  mn\V\i] >
E-, — E n — hu> — iS

(2 50)
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The correlational term  determines the difference between the effective and the 

Coulomb m terelectromc interaction caused by the polarization of the atomic elec­

tron cloud The effective mterelectron interaction is an im portant quantity e g 

for calculating the life tim e of discrete transitions due to autoionization (see chap­

ter 2 3 1) Eqn (2 49) and eqn (2 50) can be solved iteratively and therefore the 

RPAE is also called a self consistent field generalization o f the linear response 

form alism  (Wendm 1976)

The 4d photoabsorption spectrum  of La3+ was calculated withm the RPAE 

m ethod where the partial cross sections of the 5 interacting transitions 5p —► 

e(s,d),  5s —> ep and 4d —► e(p, f )  were obtained All cross sections exhibit m 

the 4d —► 4 /  excitation region a strong giant resonance The sum of all partial 

cross sections represents the to tal ion yield which is in this case equivalent to the 

photoabsorption yield m easured m this work

2.4.2 T D L D A

The Hartree-Fock equation has to be solved m an iterative procedure since its 

exchange potential is of a nonlocal nature However ground state  properties of 

an atom  can be well described withm the density functional theory, with use 

of a local potential m the so called Local Density Approximation (LDA) The 

LDA has its applications in many areas of physics such as solid-state, fluid or 

molecular physics in order to describe the electronic ground state  energy with its 

appropriate electron density and chemical potentials

The foundation of the density functional formalism was laid by Hohenberg k, 

Kohn (1964) who showed th a t m a many electron system which can be described 

as an mhomogenous electron gas, the ground state  energy is a functional of the 

electron density E 0[n) and attains its minimum when the density achieves its 

exact ground state  value (the iso called Hohenberg Kohn theorems I and II). In 

other words, the electron density is treated  as the fundam ental quantity m the

65



density functional theory Although the exact functional is unknown, Kohn & 

Sham (1965) showed, tha t the energy functional can be w ritten m the form

E 0[n\ = T[n] +  J v(r)n(r)dr3 +  J J dr3dr13 + E xc[n] (2 51)

v  v  V'

where the only unknown quantity is the exchange-correlation energy functional 

E xc[n] T[n] is the exact kinetic energy functional for the noninteracting elec­

trons, v (r) denotes the Coulomb potential from the nucleus and the third term  

represents the classical electrostatic Coulomb interaction between the electrons 

Furtherm ore Kohn h  Sham (Sham 1965) described the exchange energy func­

tional E xc[n] m the so called Local Density Approximation (LDA)

E xc[n\ =  J n(r)e :EC[n](r)(Zr3 (2 52)

where exc[n](r) is the averaged approximated exchange-correlation energy per 

particle The variational derivation of the energy functional leads to the Kohn- 

Sham  equation (Scherz 1990)

[ - A +  u(r) +  uw[n](r) +  uxc[n](r)] 0 t(r) =  e ^ r )  (2 53)

with Ua:c[rc](r) =  C:rc[w](r) +  dtẑ n(r) The Kohn-Sham equation has to be solved 

in order to obtain the LDA orbitals from which the electron density can be 

deduced The (R)TDLDA results presented m this work were calculated with 

use of the Gunnarsson-Lundqvist exchange-correlation potential (Gunnarsson &

with r .  the radius of theLundqvist 1976) vxc = — — 0 0666 In

Wigner-Seitz sphere

The correlation part of vxc[n] is obtained by undertaking a careful analysis of 

the homogenous electron gas using a linear combination of Slater determ inants 

as a wavefunction of the total electron system

The photoabsorption cross section in the Local Density Approximation as an 

independent particle model can be obtained from Ferm i’s golden rule (eqn (2 31)) 

using LDA orbitals instead of HF wavefunctions
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The Time Dependent Local Density Approximation (TDLDA) is a time de­

pendent generalization of the density functional formalism within the Local Den­

sity Approximation which is amenable to calculating the dynamical response to 

an external field (Zangwill & Soven 1980, Zangwill 1983, Zangwill & Liberman 

1984, Zangwill 1987). The general idea is, th a t an external field (considered

here in length form) induces a frequency dependent perturbation in the electron

density Sn(r, u )  which may be w ritten in a linear approximation as

8n(r,uj) — J x (r , r ', u)r 'd r 'z . (2.54)

The induced density 8n and the external field are related via a position and 

frequency dependent complex susceptibility x (r , ',u ;)  given in (Zangwill & Soven 

1980). Furtherm ore the density in eqn.(2.54) reflects the response to the external 

field alone. However as the electrons redistribute themselves in the atom, they 

interact with each other via the repulsive Coulomb force and produce an internal 

field via the induced Coulomb potential

SVc(r,w ) = e j  6- j ^ p y d r ' 3 (2.55)

and an induced exchange-correlation potential

SVXC(r,u/) =  |n=no 6n(r,aj). (2.56)

The internal field can be superimposed on the external one to give an effective 

driving field. The new effective field variable R(u)  then replaces the external one 

r in eqn.(2.54) in order to calculate the new deviation in the electron density. 

The procedure is repeated until self consistency is achieved.

The TDLDA cross section may then be obtained from eqn.(2.31) by replacing 

the dipole operator r by R(u>) and by using LDA orbitals as single particle states.

In summary RPAE and TDLDA incorporate polarization effects as a mean 

field theory in the sense, tha t the dynamical many-body polarization is built into 

a frequency dependent effective driving field which replaces the external one in
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the dipole transition m atrix  In fact, it can be shown, th a t the RPAE and the 

TDLDA am plitude are equivalent if one replaces the single particle HF orbitals 

by their counterparts in the LDA, and if one disregards the difference in the 

expression for the exchange potential (Zangwill 1981)

2.4.3 S elf Energy

In this section, I would like to adress another class of many electron correlations 

which can have a large influence on the photoabsorption behaviour for elements 

like the Ba, La and lanthanides As already discussed to some extent the con­

sideration of orbital relaxation may play an im portant role m the calculation of 

transition energies, thresholds and photoabsorption cross sections The physics 

of the problem may be presented in the following m anner taking the 4d pho- 

toabsorption of La3+ as an example The 4d~r hole created m photoabsorption 

relaxes by a ttracting  the surrounding electrons with a subsequent Auger decay 

into a lower ion stage The resulting rearrangement m the electron charge dis­

tribution screens the 4c?-1 hole from the outgoing continuum electron, which 

therefore experiences a different potential from tha t m the frozen core approx­

imation Relaxation effects are to some extent directly taken into account in 

the HF self consistent field procedure of the Cowan codes m calculating electron 

orbitals and their appropriate potentials of 4c?-1 hole configuration m a separate 

run which leads to the result, th a t the 4d~x hole and the 4d particle orbital are 

not equivalent However the RPAE and the TDLDA models use usually frozen 

core orbitals In order to take here relaxation effects into account, one constructs 

the relaxed 4d-1 orbital m  a multiconfiguration expansion w ith configurations de­

scribing different hole states In the case of La3+ the following configurations were 

considered (Ivanov 1994) 4d- 15p- 1np,ep, 4c?- 15.s_1n.s,e.s and 4d~2nd,ed which 

represent monopole excitations or simpler shake up ’s since the transferred angu­

lar m om entum  A l — 0 Furtherm ore multipole contributions may be included
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as e g the dipole excitations with the transferred angular m om entum  A l  =  1 

5p- 2n(s, cT),e(s, d), 5p- 15.s- 1np,ep and 4d~2n(p, f),e(p,  f )  From the many body 

point of view, the relaxed 4c?-1 orbital is constructed via mixing with other more 

complicated hole states One then can imagine tha t the initially created A d '1 

hole spends a part of its tim e (during the relaxation process ) m other particle 

hole states until it finally decays

The quantity which characterizes the interaction part of the 4c?-1 quasi hole 

is the so called self energy H ^ E )  = <  4d\L(E)\4d > It describes the deviation 

from the energy of an IPA hole state  which occurs when the residual Coulomb 

interaction between the hole and its neighbors is restored The analytical expres­

sion for the self energy is calculated in second order Brilloum-Wigner perturbation 

theory as a Many Body Perturbation Theory (M BPT) and is given for the 4d~x 

hole m Chapter 3 2 3 which presents the R PA E/M B PT results for La3+ The 

real part of S 4d gives the energy shift due to dynamical relaxation, the imaginary 

part, which is present if continuum states are included, gives the life tim e of the 

hole due to Auger decay

In order to investigate the 4d photoabsorption spectrum  of La3+ from a many- 

body point of view, a combination of RPAE and M BPT was used (Ivanov et al 

1993) The self energy S 4£; was calculated m order to obtain the energy shift and 

the life tim e due to relaxation and Auger decay The 4d —>■ n f , m p  transition 

am plitudes and widths were calculated within the RPAE, the transition energies 

corrected by the amount of R eE ^  and Im E ^  added to the autoiomzmg width 

Radiative transitions, which may give m principle an additional contribution to 

the 4d~l life tim e have not been considered here since their contributions to  the 

to tal width is negligible small The combined calculations take therefore the 

following many electron correlations into account dynamical polarization of the 

electron cloud as a response to the external perturbation and dynamical relaxation 

(Auger decay included) m form of rearrangement processes in the electronic shell 

s tructure after creating a 4d~x hole It will be shown, th a t these type of many-
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body effects are strongly present in the photoabsorption behaviour of La3+ and 

gold
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C hapter 3 

N ear Threshold 4d 

P hotoabsorption  in X enon-like  

Lanthanum

Photoabsorption of the inner 4d shell for La3+ was studied using the dual laser 

plasm a technique A dram atic strong and broad 4cP4/(1P ) giant dipole reso­

nance was observed The 4d10 —> 4d9nf,np transitions have been analysed using a 

Hartree-Fock configuration interaction technique and the Many Body Perturba­

tion Theory w ith particular attention given to the strong term  dependence for the 

predicted dom inant 4d94f(1P ) term  which gives evidence of strong polarization 

effects The experimental results fit very well into the picture of the partial 4f 

(1P)  orbital collapse phenomenon for the Xe-like ions Relativistic Time Depen­

dent Local Density Approximation calculations have been performed for Ba2+ 

and La3+ and compared with the corresponding experim ental da ta
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3.1 4d-Photoabsorption of X e, B a, La and the  

Rare Earths

The study of the inner shell excitation mechanism of atom s with atomic number 

Z =  54 — 70, m the photon energy region between 100 — 200eV, has been of 

great interest for over two decades now, since their photoabsorption spectra show 

spectacular strong, broad and asymmetric profiles, the so called giant resonances 

(Radke 1979a,b, Mansfield Sz Connerade 1984, Connerade & Pantelouris 1984) 

In following their photoabsorption behaviour along the periodic table, one realizes 

th a t the dom inant resonance lies above the 4d threshold for the lighter elements 

(Z  <  60), moves gradually towards threshold with increasing Z, passes and sinks 

below the the 4d limits with Z  > 64, where the shape of the mam resonance shows 

the characteristic asym m etry of a Beutler-Fano profile (Sonntag & Zimmermann 

1992)

The excitation process therefore was described by the  transition of a 4d elec­

tron into the 4d9(4, e ) f  states which compete with each other along the sequence 

and where the dom inant process was found to be the continuum transition for 

the lighter elements and the discrete transitions for the heavier ones The com­

petition can be explained in terms of the different localisation of the excited 4f 

orbital along the sequence resulting from the attractive electrostatic and repulsive 

centrifugal forces of the many electron system Hartree-Fock calculations for Xe 

showed, th a t the effective local potential for the excited (4, e ) f  orbital consists of 

two wells, an inner well separated from an outer one by a potential barrier (Cooper 

1964) The outer well is broad and shallow m contrast to the inner one which 

is narrow and deep The centrifugal barrier keeps the low energy (4, e ) f  orbitals 

above the outer well far outside the core, whereas the 4d wavefunction is located 

m the inner well region. The resulting small overlap between both orbitals causes 

the bulk of oscillator strength to be transferred into the higher energy continuum 

states 4d10 —► 4d?e/ ,  which explains the delayed onset of absorption beyond the
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Figure 3 1. Plot o f the configuration average (C A)H F 4 f and the LS term de­

pendent 4 f ( 1P)  local single electron potentials and radial wavefunctions for the 

4d?4f configuration m  Ba In the CA model, the 4 f wavefunction is collapsed 

into the inner well o f its appropriate potential, whereas in the term dependent 

model, the potential o f the 4 f ( 1P)  shows a pronounced potential barrier between 

the inner- and outer well and the radial wavefunction is located m  the outer well 

far outside the core (see also Griffin et a1 1987)

4d-thresholds

For Ba, where the shape of the absorption profile is simihar to that of Xe, 

the explanation is different HF calculations of the 4f orbital and its appropriate 

effective potential were carried out m the same m anner as applied for Xe which 

show th a t the 4f wavefunction is collapsed into the inner well of the double valley 

potential (see Figure 3 1) The dram atic increased spatial overlap with the 4d 

ground sta te  orbital results m the 4d-4f electrostatic interaction being the dom­

inant interaction. It follows, th a t the 4cP4f configuration is almost purely L S

73



coupled and the oscillator strength of the optically allowed 4c?10(15') —̂ 4d94 / ( 1P ) 

transition is therefore much larger than the mtercombination transitions into the 

trip let states 3D 3P  Due to the same strong electrostatic exchange effects, the 

l P  s ta te  is pushed up far above the 4d thresholds, whereas the triplets are located 

below the limits Ederer et al (1975) therefore associated the giant resonance m 

Ba w ith the 4 / ( JP ) level, supported by a model, which was proposed by Dehmer 

et al (1971) to  explain the giant resonance in the solid rare earths spectra, m 

which the discrete excitation 4c? —> 4 /  is followed by an autoionization process 

into its own continuum

Hansen et al (1975) came to somewhat different conclusions based on L S  

term -Dependent Hartree-Fock (LS'D-HF) calculations He showed, th a t m the 

L S D approach, the 4o?94 / ( 1P ) level is actually located below the 4d thresholds 

Similar calculations by Fliflet et al (1975) showed, th a t the corresponding transi­

tion has almost no oscillator strength This can be explained by calculating the 

effective central potential and the radial 4f wavefunction of the 4<f94 / ( 1P ) term , 

which shows, th a t m the L S  term -Dependent model, the 4f wavefunction looks 

significantly different from the one obtained m a center of gravity Hartree-Fock 

(c-g HF) calculation, and is located above the outer well of the double valley 

potential as shown m Figure 3 1 (see also Griffin & Pmdzola 1983) The in­

terpretation  of the photoabsorption spectrum  of Ba therefore is similar to the 

case of Xe, th a t the giant resonance actually represents the transition into the 

4d9e / ( 1P ) continuum Detailed calculations for the 4d photoionization m Ba by 

Wendm (1973) and Ba and La by Amusia et al (1975, 1976, 1980, 1989, Amusia 

& Sheftel 1976) based on the RPAE m ethod came into close agreement with the 

experim ental data

The change m shape of the absorption profile as one follows the rare earth 

sequence along the periodic table (see Figure 3.3) may therefore be explained due 

to  the term  dependence of the orbital collapse The center of gravity 4f orbital of 

the id 9A fn+1 configuration is already collapsed abruptly between Xe and Ba, but

74



50 70 90  110 130 150 170
i

p h o to n  e n e r g y  (eV )

Figure 3 2 Photoabsorption spectrum  o f X e  m  the 4d excitation region recorded 

with the dual laser plasma (DLP) facility

the wavefunction collapse of the states, which can be optically excited from the 

ground state  under L S  coupling conditions, is of a different kind and may not be 

completed before the 4f shell is filled However, a quantitative analysis for these 

elements is rather difficult due to the high degree of complexity m the angular 

momentum coupling properties of the 4f n electrons

The giant resonance phenomenon in the 4d excitation region again strongly 

a ttracted  theoretical interest (Connerade & Mansfield 1982, Nuroh et al 1982, 

Connerade 1983, Cheng & Froese Fischer 1983, Cheng & Johnson 1983, Clark 

1984), when Lucatorto et al (1981) presented their classic spectra of the measured 

Ba, Ba+ and Ba2+ photoabsorption cross sections While the shape of the Ba+ 

spectrum  is rather similar to tha t of Ba, the Ba2+ spectrum  exhibits pronounced 

line structure with four almost equally strong resonance lines m the discrete en­

ergy region below the 4d thresholds This was very surprising since following the 

discussion of the orbital collapse theory described for the neutral rare earth  ele­

ments, one would expect, th a t only the 4 / ( xP ) orbital of the 4 ^ 4 /  configuration
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Figure 3 3 Photoabsorption spectrum  of Ba, La, Ce, Sm  and Eu m  the 4d 

excitation region using the dual laser plasma (DLP) technique
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is collapsed while the wavefunctions of the higher Rydberg members remain in the 

outer region of the centrifugal barrier As a result, only one line was expected to 

be observed But detailed calculations by Connerade &; Mansfield (1982) employ­

ing term  dependent Hartree-Fock wavefunctions showed only an enhanced overlap 

between the 4d and nf (l P) (n  > 5) orbitals for Ba2+ which they described as a 

second kind o f wavefunction collapse Based on H artree-Slater calculations, which 

included configuration mixing, they concluded th a t the prom inent discrete lines 

are associated with the 4d —> 5f, 6f, transitions, while the 4 / ( 1P ) state  was 

found to lie above the 4d thresholds

Further theoretical investigations based on other atom ic models came to dif­

ferent conclusions Clark (1984) used the MCHF code to analyse the discrete 

transition sequence successfully and Nuroh et al (1982) utilized the Time De­

pendent Local Density Approximation (TDLDA) to study the Ba, Ba+ and Ba2+ 

isonuclear sequence Cheng h  Froese Fischer (1983) and Cheng h  Johnson (1983) 

analysed the Ba2+ spectrum  when they studied the term  dependence of the orbital 

collapse of the excited nf wavefunctions of Xe like Cs, Ba, La and Ce ions, where 

the calculations are not complicated by the change of the electronic configura­

tion Although a straight forward interpretation is rather difficult, Clark (1984) 

and Cheng & Froese Fischer (1983) independently identified the four strongest 

observed lines as the 4d —► n f ^ P )  transitions with n  =  4 ,5 ,6  and 7 Cheng & 

Froese Fischer (1983) also showed, th a t the 4c^4 /(1P ) resonance line becomes 

unequivocally the strongest line among the Rydberg members m following the 

Xe isoelectronic sequence from Ba2+ to  La3+

Stim ulated by the theoretical interest and the lack of experim ental photoab­

sorption data for Xe like ions, the photoabsorption behaviour of a laser produced 

lanthanum  plasma was investigated photographically (Hansen et al 1989) The 

1 5J output pulse of a Q-switched ruby laser was optically divided and focussed 

onto suitable targets to produce a backlighting XUV plasm a light source and an 

absorbing lanthanum  plasm a The plasm a conditions of the absorbing lanthanum
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column could be varied by changing the focusing conditions of the laser pulse on 

the target The recorded spectrum  clearly showed absorption lines which were 

successfully identified as belonging to the La3+ ion, however the predicted dom­

inant 4c?94 / ( 1F ) resonance line was not observed This was explained by the 

assumption, th a t its autoiomzmg width is so large and spread out over a too 

extensive wavelength range to make it visible on a photographic plate with a 

lim ited dynamic range

In order to clarify the discrepancy between theory and experiment we rein­

vestigated the photoabsorption spectrum  of a laser produced lanthanum  plasma 

using the recently installed Dual Laser Plasm a (DLP) facility with photoelectric 

detection

3.2 4d-Photoabsorption in La3+

The photoabsorption spectrum  of La3+ in the 4d excitation region is shown m Fig­

ure 3 4 Most striking is the strong resonance line at the photon energy of 118 9 

eV which m ust be associated with the predicted dominant 4cP4/(* P)  term , and 

the reduction of the continuum absorption background The calculated triplet 

state  4cP4/(3Z?) (Hansen et al 1989) is also clearly recognizable at 102 1 eV, while 

the Ad?4f(3P) term  was not observed due to the signal to noise ratio m the spec­

tra  The higher Rydberg states 4d ? n f w ith n = 5,6, ,9  are m good agreement

with the previous results (Hansen et al 1989) For a be tter understanding of the 

measured spectrum , m trachannel CI-HF, M B PT/R PA E and TDLDA/RTDLDA 

calculations have been performed for La3+ Each of them  incorporates a different 

model and technique for the description of the giant resonance and the results are 

discussed and compared with the experimental data  m the following subsections
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Figure 3 4 Photoabsorption spectrum o f La3+ m the 4d excitation region using 

the Dual Laser Plasma (DLP) technique The thresholds 4<^5/2) (3/2) deduced 

from the experimental data are 138 2dz0 2eV  and 141 1±0 2eV
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3.2.1 Configuration Interaction H artree-Fock Calculations

In order to interpret the spectra, Hartree-Fock calculations were carried out using 

the Cowan codes w ritten by Cowan (1968, 1981), in which relativistic corrections 

of the mass-velocity and the Darwin term  were taken into account as well as 

some correlation corrections to the configuration average energy. From the 

code, the corrected configuration average energies, the Slater integrals and the 

spin-orbit param eters were obtained, which were used for diagonalization of the 

Cl-energy m atrix and the construction of the eigenvector components using the 

7ZCQ programme. The HCJV code also provided the radial integrals between 

different configurations of discrete and continuum states of the same parity in 

order to perform configuration interaction (Cl) calculations and calculations of 

autoionization rates using Fano’s perturbation approach as described by Cowan 

(1981).

The results of the single configuration ab initio calculations gave satisfactory 

agreement with respect to the energy position of the observed lines except for 

the 4<f94 / ( 1P ) term , which is predicted about lle V  too high (see Table 3.2). 

As in the case of neutral Ba and La, the l P  term  of the collapsed 4f orbital 

in La3+ is strongly influenced by the electrostatic exchange integral G1(4d, i f )  

via its relatively large Slater Condon coefficient g1 (Hansen 1972a), which makes 

center of gravity Hartree-Fock (c-g HF) calculations unsuitable (Clark 1987). The 

calculated values for these param eters are listed in Table 2.1 and Table 2.2. We 

therefore performed LS'D-HF calculations for the 4 / ( 1P ) and the 4f ( 3D) with 

the suite of the Cowan codes (1968, 1981) in which the procedure is to minimize 

the energy of the term  in question instead of the center of gravity (c-g) of the 

configuration. In the case of the 4 / ( xP ) state, the Coulomb interaction 4c?_14 /  is 

so strong between the 4d_1 hole and the 4f electron, th a t its appropriate energy, 

which is given in first order perturbation theory as the weighted sum over Slater 

integrals (see eqn.(2.20)), is completely insufficient approxim ated on the basis of
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Table 3.1: Hartree-Fock parameters for the 4d94 f 15s25p6(1 Pi) term  in La3+ (val­

ues in eV).

Eat; £4 d Us F2 F4 G 1 G 3 G 5
115.63 1.142 0.012 3.85 2.032 3.481 2.087 1.449

atom ic orbitals which are obtained in a (c-g)HF calculation. Therefore in the 

L S D approach, the variation of the Coulomb energy (eqn.(2.20)) with respect 

to the radial wavefunctions P„t/t for a specific term  is taken into account in the 

energy functional given in eqn.(2.7). As a result, we obtain a LS'D-HF equation 

identical to eqn.(2.8) except for the presence of the additional direct term  (Cowan 

1981, chapter 16-8)

OO

(3-d
’ k j^i 0 >

within the brackets on the left side of eqn.(2.8), (note th a t f k(UU) =  0 in the case 

of La3+), and the additional exchange term

OO

]{r2)Pniii(r2)dr2 (3.2)
* i * / • J  r >« o

on the right hand side.

This results in different local single electron potentials V lSD(r) for the triplet 

and singlet states as illustrated for the appropriate wavefunctions 4 f ( 3Di)  and 

4 / ( 1P>i) in the upper part of Figure 3.6. Relaxation effects were included in com­

puting the HF orbitals, this proves essential when comparison is m ade with many- 

body type calculations presented later. The predicted energy of the 4d?4f(1P) 

term  using the LS'D-HF technique is in much better agreement with the experi­

m ental value. The fact, th a t the Slater integrals are smaller in this case, indicates 

th a t the L S D approach is more appropriate. The calculated Slater integrals are 

given in Table 3.1.
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The energy value obtained for the 4 / ( 1Pi) is 121 3eV which can be compared 

with the previous results of 123 8eV by Hansen (1972a) and 121 2eV by Starace 

(1974) In general, there is good agreement between the different results, al­

though all are still a few eV too high While Hansen’s calculational approach 

is similar to ours, Starace’s results are based on the Random Phase Approxi­

m ation (RPA) method, m which he included for the initial and the final state 

all configurations of multiple 4d excitations involving (4, e)f electrons This type 

of correlation is not considered m the following discussion, where we performed 

id  —> (n, e ) f  m trachannel configuration interaction Hartree-Fock (CI-HF) cal­

culations including the 6p and 7p states Large mixing among the members 

of the l P  channel is observed (see Table 2 8) by calculating the non diagonal 

(re, e ) f ( 1P)  — (n ', e ' ) f ( l P)  m atrix elements Hansen (1972b) showed by using the 

Brilloum theorem (Brilloum 1932), tha t m a LS'D-HF approach, the electrostatic 

intrachannel interactions for the members of the 1P  channel are autom atically 

included In general, it is well known, th a t many-body calculations, which go 

beyond the HF model and describe the correlations between electrons m their 

m utual Coulomb field can be performed either m a variational or m a perturba­

tion procedure as already discussed to some extent m describing relaxation effects 

as a true  many-body phenomenon In order to explain this m a more illustrative 

picture, the term  dependence of the excited 4f state  can be interpreted as a de­

parture from the original spherical symmetry of the electron distribution This 

is caused by rearrangement processes of the remaining 4d electrons m response 

to the excitation which leads to a new dipole sym m etry The consequent polar­

ization can be taken into account either m a self consistent field procedure where 

the 4d~x — 4 /  Coulomb interaction is included ( L S D approach) or m a c-g HF 

calculation including extended 4cP (n ,e )/ configuration interactions (see Figure 

3 5) The la tter calculational approach was taken by Hansen et al (1989) where 

4d —> ( n , t ) f  intrachannel configuration interaction Hartree-Fock (CI-HF) calcu­

lations including the 6p and 7p states were performed Their ab initio results are
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Figure 3.5: The LS term dependence for the 4 / ( 1P ) o f La3+ is approximated 

by using configuration average (CA) radialwavefunction and performing config­

uration interaction calculations including the 4d ? (n ,e )f Rydberg states. The 

Pajc, is obtained from an expansion o f CA wavefunctions o f the form P\jcl =  

Q.7P4fCA -  0.6P*>jCA -  0.2Pe,}CA -  0. lP7fcA -  0.1 PsfCA, where the coefficients are 

the m ixing coefficients o f the 4d?(n, t ) f  configuration interaction calculation. The 

comparison with the P4fLSD wavefunction shows a close agreement having in mind 

that the contributions from the continuum orbitals are neglected in the construc­

tion o f P* fci-

'm fairly good agreement with the new experimental data  but cannot explain the 

observed splitting of the main peak, although the calculations indicated, tha t the 

position of the second line coincides with the 4<£^26/>x/2 term  at 119.70eV, but 

its associated gf value is predicted to be far too small.

A complete intrachannel Cl calculation on the c-g HF basis includes all 

4d?(n,e) f  configrations to infinite order. Using a similiar approach to Hansen 

(Hansen et al 1989), 26 configurations of discrete and continuum states were in­

cluded in the following calculation. The continuum  was discretized as described
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by Cowan (1981) The ab initio results are m fairly good agreement with the cal­

culations performed by Hansen et al (1989) Furthermore, because only a limited 

num ber of configurations were taken into account m the CI-HF calculations, and 

e g correlations of multiply excited 4d electrons were not considered (see Starace 

1974) the quite common scaling procedure was used (Sugar 1972) to subsitute the 

neglected effects for the Ad?Af(l P) term  In the following Cl calculations, the Gk 

Slater integrals were scaled by a factor of 0 82 in order to shift the 4 / ( xP ) term  

down to its observed position from 120 9 eV to 118 9 eV Since only the 4 / ( 1P ) 

term  is largely influenced by the Gx integral, the scaling has negligible effects on 

the energy positions of the other terms The new position of the 4cP4/(1P ) state 

is now much closer to the 4 d ^ 26pi/2 state, which effects the mixing of these states 

after the diagonalization of the Cl energy m atrix In general, Cl mixing of two 

states is large if the Cl m atrix  element is large compared to their energy distance 

Due to the enhanced mixing of the 4</94 / ( 1P ) and 4c£y26pi/2 states, the latter 

one gams distinctly m oscillator strength and autoionization w idth As a result 

we obtained an f value of 5 0 for the 4d94 / ( 1P ) and 0 22 for the 4G^26p!/2 state 

The results of the new calculation enabled to assign the observed transition lines 

to members of the Rydberg series converging to their appropriate 4<̂ 5/2) (3/2) lim­

its as shown m Figure 3 4 The autoiomzmg widths of the resonance lines have 

been estim ated using the R k integrals connecting the eigenvector components of 

the diagonalized energy m atrix to the 5s25p- 1e(.s, d) and 5s15peep contmua (as 

described m C hapter 2 3 1) The results of the calculated energies, oscillator 

strengths gf and autoiomzmg FWHM widths 2 r  are presented in Table 3 2 j j - 

couplmg notation is used m Table 3 2 except for the Ad94f  configuration, where 

the L S  coupling scheme is more appropriate

According to Fano’s theory of autoionization (Fano 1961), where the case 

of a single discrete state  interacting with several different continuum states is 

considered, the absorption profile can be described by a a(q +  e)2/(  1 +  e2) +

(Ta describes the excitation into the part of the continuum which interacts with

84



Table 3 2 Calculated single configuration (SC) (ab initio) and configuration in­

teraction Hartree-Fock (CI-HF) energies (Gk scaled down to 82%), weighted os­

cillator strengths (gf) and autoiomsation widths (2T) for the 4d10 —*■ 4d?nf, mp  

transitions with n = 4,5, ,9 and m  — 6 ,7 m  La3+ and compansion with the 

experimental energy values jj-couplm g notation is used except for the 4d?4f con­

figuration, where the LS coupling scheme is more appropriate Only the strongest 

lines, which are observable m the spectrum  are listed N ote the difference o f the  

total oscillator strength o f the discrete 4d —> n f ,  m p transition array m  the SC  

and C l calculation

label experimental SC-HF f s c CI-HF f c i 2 r

energy (eV) energy (eV) energy (eV) (eV)

4d94f (3D) 102 10 102 80 0 02 102 90 0 027 0 017

4d5/2 6^3/2 117 27 0 05 117 31 0 002 0 005

4d94f(1P ) 118 95 129 72 11 6 118 90 5 03 1 2

4d3/26Pl/2 119 70 119 82 0 04 119 80 0 22 0 05

4d5/25/7/2 125 09 124 94 0 07 125 55 0 73 0 22

4d5/27P3/2 126 16 126 31 0 02 126 27 0 034 0 002

4d3/2 5/5/2 127 69 127 72 0 10 128 07 0 60 0 19

4d3/27Pl/2 128 84 129 01 0 01 128 96 0 02 0 001

4d5/2 6/7/2 129 73 129 68 0 04 130 14 0 64 0 27

4d5/27/ 7/2 131 81 132 20 0 02 132 10 0 01 0 001

4d3/26/s/2 132 61 132 51 0 04 132 84 0 41 0 14

4d5/2^/7/2 133 74 133 82 0 01 133 89 0 21 0 12

4d5/2^/7/2 134 80 134 80 0 01 134 74 0 02 0 007

4d3/27/s/2 135 40 135 50 0 02 135 14 0 14 0 03

4d3/2^/5/2 136.74 136.62 0.01 136.61 0 19 0 07

4d3/2^/s/2 137 71 137 63 0 01 137 63 0 06 0 14

s / 12 07 8 36
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the resonance while a/, represents the excitation into the resonance unaffected 

part of the contmua, e =  2(E  — E0)/2T  is the difference in photon energy from 

resonance energy E 0 m units of the FW HM 2 r  and q is the asymmetry param eter 

proportional to the ratio of the reduced dipole m atrix elements of the initial state 

to the final discrete state  and of the initial state to the final continuum state  The 

FW HM of the resonance is proportional to the sum of the autoionization rates 

into the different contmua k , which represent the configuration interaction m atrix  

elements R k of the resonance with the continuum state  The photoabsorption 

spectrum  shows tha t q is probably very large due to the rather symmetrical 

shape of the resonance lines, and th a t the continuous background a\, is negligible 

Therefore the shape of the resonances can be simplified by applying approxim ate 

Lorentzian profiles /  x T x n -1 / ( ( E  — E 0)2 +  T2) (see Chapter 2 3 1) Figure 3 6 

shows the calculated spectrum  using the param eters presented m Table 3 2 In 

order to take various broadening effects and the limited instrum ental resolution 

into account, the spectrum  is convolved w ith a Gaussian profile of 0 15eV width, 

which corresponds to the measured FW HM of the 4f ( 3D) line Good agreement 

is achieved for the 4d?n f Rydberg states and the 4gP6p lines, while the 4d?lp 

lines seem to be underestim ated

The 4c^5/ 2̂ 3/2j thresholds were estim ated from the recorded spectrum , by 

fitting the Ritz formula E  = Ip — R£2 f(n  — 6)2 to each Rydberg series, w ith R  the 

corrected Rydberg constant, Ip the threshold energy and £ the charge of the core, 

assuming the quantum  defect 6 is constant The obtained values of 138 2±0 2eV 

and 141 1±0 2eV agree well with the calculated values of 138 05 eV and 140 9eV
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Figure 1 8 Upper part- 4 f ( 3D i) and 4 / ( 1P 1) wavefunctions of La3/+ The large 

difference illustrates the strong term  dependence for the XP  state Lower part: 

Calculated photoabsorption spectrum  in the 4d excitation region for La3+ with 

the CI-HF method The spectrum  is convolved with a Gaussian profile of 0 15eV 

width for comparison with the experimental data The vertical bars represent 

the energies of the 4{f94 / ( 1P ) term  calculated via single configuration center of 

gravity (sc) Hartree-Fock and LS term  dependent Hartree-Fock method
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3.2.2 R andom  Phase A pproxim ation C alculations in Com­

bination  w ith  th e M any-B ody Perturbation  T he­

ory

In the discussion so far, the many electron response to the external field is ac­

counted by an effective one electron wave function 4 / ( 1P ) which is used in the 

calculations of the transition and electrostatic interaction m atrix  elements An 

alternative approach is to consider tha t the external field polarizes the electron 

charge cloud of the atom  which gives rise to an induced field Both external 

and induced field superimpose to produce an effective driving field to which the 

electrons respond independently In this sense, when the external field is rather 

weak,the random  phase approximation with exchange (RPAE) can be regarded as 

a tim e dependent effective mean field theory Ivanov et al (1993) have calculated 

the La3+ spectrum  using the RPAE m conjunction w ith the many body perturba­

tion theory (M BPT) over the whole photon energy region of interest The M BPT 

starts from the HF approximation (HFA) as a zero one, where the 4d subshell en­

ergy was obtained to be -146 49eV and the id  —► 4 /  transition energy 125 75eV 

The 4d spin orbit splitting was calculated withm first order perturbation the­

ory to be 2 85eV The following obtained energies are £̂ 4d5/2 =  —145 35eV and 

# 4̂ 3/2 =  —148 20eV The transition energies were improved by calculating the 

self energy part d(E) of the single electron Green function for the 4d electron 

within second order perturbation theory (Amusia 1990)

1
(21 +  1)(2 L  4- 1)

(4d,i/2||t/L|k3,»/l)(^,^ll|VL||4d,l/2) 
E  +  E$ +  E\ — E 2 +  *5(1 — 2

£ 0 (3 3)

4,i) = E

x E - E
u2 > F  V2 <F

U1 >u3 U1 >v 3

where v3 is the set of quantum  numbers (rij, l3, m 3, fij) and E is the correspond­

ing energy of this state, (j^, v2 vA) and {v i,v 2\\VL\\v^u 4) are the reduced
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Figure 3.7: Photoabsorption spectrum in the 4d excitation region o f La3+ calcu­

lated with the M B P T /R P A E  m ethod by Ivanov et al. (1993).

Coulomb m atrix elements with the transferred angular momentum L, taking into 

account the corresponding direct and combined (direct +  exchange) interactions. 

The sum v >  F(<  F) is performed on all excited (engaged) states beyond (under) 

the Fermi level. The n„ is a step-function (n =  0, if v > F  and n  =  1, if v < F). 

In case of the 4d electron, (2/ -f 1) =  5 and the transitions with the transferred 

m om enta L = 0 ,1 ,2 ,3  were taken into account in the 4d self-energy calculation.

The new energy of the 4d subshell, corrected due to the many-electron in­

teraction is obtained by solving the equation E =  E ^ f  +  Re(4d\ ^2{E4d)\4d) 

self consistently. As a result, the E4d energy shift is calculated to be 4.56eV and 

the corrected 4d subshell energy -141.9eV. The imaginary part of ( l5Z (^ 4d)|) 

determines the width of the 4d hole state due to Auger decay: 7^ =  0.059 eV.

The energies of the dipole transitions from the 4d subshell and other calcu­

lated param eters are given in Table 3.3. The oscillator strengths of the dis­

crete transitions are calculated within the RPAE, where the five dipole channels 

5p —► e(s,d);5s —> ep and 4d —> (n,e)(p, f )  are taken into account. The main
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Table 3 3 Excitation energies, widths and oscillator strengths for the dipole tran­

sitions from the 4d shell m ground state La3+ calculated with the M B P T /R P A E  

m ethod (Ivanov et al 1993) Note, that the total oscillator strength o f the RP A E  

calculation agrees remarkably well with the value obtained m  the CI-HF approach

transition excitation 

energy (eV)

total width 

(eV)

oscillator

strengths

4d(5/2) - 4f(5/2) 118 74 1 21 3 82

- 4f(7/2) 118 87 1 21

4d(5/2) - 6p(3/2) 120 24 0 07 0 185

4d(3/2) '  4f(5/2) 121 59 1 21 2 547

4d(3/2) - 6p ( l / 2) 122 50 0 07 0 123

• 6p(3/2) 123 10 0 07

4d(5/2) - 5f(5/2) 128 33 0 25 0 56

- 5f(7/2) 128 37 0 25

4d(5/2) - Tp(3/2) 129 04 0 059 0 029

4d(3/2) - 5f(5/2) 131 18 0 25 0 373

- 7p (l/2 ) 131 66 0 059 0 02

- 7p(3/2) 131 89 0 059

4d(5/2) - 6f(5/2,7/2) 132 62 0 14 0 224

- 8p(3/2) 133 11 0 059 0 0124

4d(5/2) - 7f(5/2,7/2) 135 04 0 10 0 011

- 9p(3/2) 135 36 0 059 0 0067

4d(3/2) - 6f(5/2) 135 47 0 14 0 15

- 8p ( l / 2) 135 84 0 059 0 0083

- 8p(3/2) 0 059

4d(5/2) - 8f(5/2,7/2) 136 54 0.08 0 06

• 10p(3/2) 136 73 0 059 0 004

total strength 8 13
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contribution comes from the Ad —► 4 /  transition, which reveals itself as a giant 

autoiomzmg resonance with a FWHM 2 r  =  1 15eV and an oscillator strength 

of 6 37 The results of the corrected energies, oscillator strengths and width 

(Auger and autoionization) for the Ad —> n f ,m p  transitions with n = 4 ,5 ,8 

and m  = 6, 7 ,8 ,9  are represented in Figure 3 7 The comparison with the ex­

perim ental data  confirms the assignment of the two strong resonance lines at 

118 95eV and 119 70eV due to 4d5/2 —► 4 /, 6p transitions The predicted series 

4d3/2 —> 4 / , 6p between 121- 123eV (see Figure 3 7) is not observed m the ex­

perim ent (Figure 3 4) This must be connected with a redistribution of oscillator 

strengths due to strong coupling between the 4o?5/2,3/2 —* 4 /  transitions via the ef­

fective mean field, which is considered to be im portant for overlapping resonances 

w ith large width, but has not been taken into account here In analogy to the 

classical model of the driven motion of two coupled harmonic oscillators, strong 

meanfield coupling causes the spm-orbit split subshells to oscillate in two modes 

m phase acting like a single subshell w ith a large oscillator strength and a large 

energy shift (uj = uo + oo), out of phase leading to near cancellation of the induced 

fields with a weak oscillator strength and a negligible energy shift (u> = u)0) which 

is quite nicely dem onstrated m a following RTDLDA calculation However, for 

the higher transition series, where the widths are significantly smaller, spin orbit 

splitting becomes dominant and we obtain spm-orbit split transitions 4d5/2 —> n f  

and Ad3/2 n f  with relative intensities in the ratio of the statistical weights 

6 4 if relativistic effects are negligible This can be tested from the experimental 

data  in Figure 3 6, where the intensities of the transition lines of interest are 

estim ated by taking the integral over the observed feature which should yield 

to a value proportional to the oscillator strength under the assumption, tha t the 

lim ited instrum ental resolution which causes the resonance lines to be broadened, 

can be disregarded This is certainly justified for the strong and broad 5f and 6f 

features, so th a t for the Ad —> 5 /  transitions, the experimental ratio of its ap­

propriate spm-orbit transition strength is 1 34 (CI-HF 1 22) and for the 4d —* 6 /

91



transitions, the ratio is estim ated to be of the order of 1 28 (CI-HF 1 56), which 

agrees remarkably well with the calculated cross section branching ratios of the 

4^5/2 and 4d3/2 subshells for La3+ of about 1 3 by Cheng & Johnson (1983) using 

the relativistic random  phase approximation (RRPA) Therefore, the experimen­

tal spectrum  indicates, tha t the 4d subshell is actually influenced by relativistic 

effects which go beyond a first order description to the Schrodmger equation on 

the basis of the Dirac-Hartree-Fock theory However at the same tim e the exper­

im ental da ta  also show, th a t these effects are small and nonrelativistic theories 

are applicable for the description of the 4d excitation spectrum  of La3+

3.2.3 T im e D ependent Local D ensity  A pproxim ation Cal­

culations

The giant resonance of the rare earth spectra has also been interpreted as a col­

lective resonance, where the excitation energy is shared among all electrons m an 

atom ic shell (Wendm 1982) The Time Dependent Local Densitiy Approxima­

tion (TDLDA) calculations for the Ba isonuclear sequence by Nuroh et al (1982) 

incorporate this collective type of excitation as a m any body theory

Zangwill h  Soven (1980) and Zangwill (1983) applied the TDLDA successfully 

to calculate the photoabsorption spectra for the elements Ar, Kr, Xe and Ba which 

are characterized by a spherically symmetric shell structure In the case of Ba 

the giant resonance was interpreted as a heavily dam ped collective oscillation of 

the entire 4d subshell in response to the effective driving field

We employed the TDLDA code QOCTATH. w ritten by Zangwill h  Liberman 

(1984) to calculate the photoabsorption cross section for La3+ m the energy region 

which was m vestgated experimentally The result is shown m Figure 3 8 The 

spectrum  is dom inated by a strong symmetric resonance at 117eV, which can 

be associated with the 4d —► 4 /  transition, followed by three higher Rydberg 

members converging to the 4d threshold at 131 5eV
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Figure 3 8 Photoabsorption cross sections in the 4d excitation region o f La3+ 

calculated with the TD LDA m ethod

The comparison with the calculated Ba2+ spectrum  by Nuroh et al (1982) 

shows clearly a transfer of oscillator strength  from the continuum into the Ry­

dberg states, especially into the 4f resonance, when progressing along the Xe 

isoelectronic sequence This is consistent with the experimental data of Ba2+ and 

La3+ shown in Figure 3 10

In order to investigate the influence of relativistic effects, the code DAVIT), 

a relativistic analogue of QOCXAT'H w ritten by Liberman h  Zangwill (1984) 

was used to calculate the Ba2+ and La3+ isoelectronic sequence The spectra are 

shown in Figure 3 9 Here the LDA - Dirac equation is solved to obtain the elec­

tron orbitals Each subshell is split into two shells with j  = I + s and j  =  / — s 

In contrast to the nonrelativistic model, the two 4d shells 4d5/2 and 4d3/2 which 

are coupled via the effective mean field can oscillate m two modes of collective 

motion, in phase acting essentially like a single shell or out of phase resulting in 

a resonance with a weaker oscillator strength (Wendm 1982) Thus, the spec­

tra  obtained from the relativistic code exhibits additional comparatively weak 

features The importance of relativistic effects is clearly dem onstrated from the
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Figure 3 9 Photoabsorption cross sections m  the 4d excitation region o f Ba2+ 

and La3+ calculated with the relativistic (R )TD LD A method

experimental spectra in which a number of such weak features are identifiable 

In the case of La3+, the weak line in the energy region of lOOeV corresponds m 

the LS-term  picture to the 4d?4f(3D) term, its relative strength and its energy 

distance to the main resonance line of 15eV are in fairly good agreement w ith the 

experimental data  O ther weak features like the weak transition line a t 120 4eV 

might be associated with the 4d%/27p3/2 state The absolute values of the calcu­

lated 4dgy2 and 4 d ^ 2 thresholds at 126 2eV and 129 OeV are far off the observed 

ones, although the difference of 2 8eV is consistent with the other calculated and 

observed values for the spin orbit splitting of the 4d subshell

In summary, we may conclude, tha t the TDLDA model provides a reasonable
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qualitative description of the La3+ photoabsorption spectrum  Relativistic calcu­

lations (RTDLDA) certainly improved the result qualitatively, additional lines are 

predicted which are also observed m the experiment, whereas the agreement be­

tween the calculated and observed energies of the resonance lines is worse than  m 

the nonrelativistic model Nevertheless the general trend of the photoabsorption 

behaviour for Xe like Ba and La ions is well reproduced m the TDLDA/RTDLDA 

model

3.2.4 B a2+ and La3+ in Isoelectronic Com parison

Figure 3 10 shows the relative photoabsorption cross section data  for the Ba2+ 

and La3+ isoelectronic pair The direct comparison shows a striking change in 

the photoabsorption behaviour Most impressive in following the sequence from 

Ba2+ to La3+ is the increase of oscillator strength for the 4 / ( 1P ) giving a broad 

and strong resonance and the reduction m the continuum background, the higher 

Rydberg transition lines also gam m strength These observations are consistent 

w ith the calculational analysis of the 4c?10 —► 4cP (n ,e )f transition array based 

on the CI-HF theory, which predicts for the discrete transition array with n = 

4 ,5, , 9 a  total strength of 2 2 for Ba2+ and 8 3 for La3+ and which leads to the

conclusion based on the oscillator sum rule of eqn (2 34), tha t m Ba2+ the bulk of 

oscillator strength of about 80% is manifested m continuum absorption, whereas 

in La3+ the contribution of continuum strengths is reduced down to 15% Cheng & 

Froese Fischer (1983) showed by studying the Xe-isoelectromc sequence w ith use 

of a term  dependent Hartree-Fock technique, th a t the appearance of the intense 

absorption lines in Ba2+ is due to the term  dependence of the 4f orbital collapse in 

the Ad —> p P  channel Furthermore they showed, th a t the collapse is of gradual 

nature which occurs between Ba2+ and Ce4+ After the 4f orbital is completely 

collapsed for high degrees of ionization along the isoelectronic sequence, the bulk 

of oscillator strength is concentrated at the Ad?A/ ( 1P ) level, so th a t the only
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Figure 3 10 Photoabsorption spectra o f Ba2+ and La3+ m  the 4d excitation 

region using the dual-laser plasma (DLP) technique The enlarged Ba2+ spectrum  

shows the  4^ 5/2),(3/2)n /  Rydberg series for n =  9, ,12, where the states with

the hole he above the  4<̂ 5/2) threshold The thresholds deduced from

the experimental data are 112 2±0  2eV  and 114 8± 0  2eV, which agree well with 

the values given in (Clark 1984) The La3+ spectrum  is shown together with 

photoabsorption data o f solid LaFj from Olsen et al (1980)
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strong resonance line in the spectrum  is again the id  —> 4 / ( 1P ) transition.

However, the experim ental data  show that the concentration of oscillator 

strengths into the i f  C P )  state  has already occurred in La3+, which suggests, 

th a t the main step between a hydrogenic and a collapsed 4 / ( xP) orbital takes 

place between Ba2+ and La3+.

Further insight into the orbital collapse phenomenon was provided in the cal­

culations by Hansen et al (1989), where he showed, th a t the increase of oscillator 

strengths occurs concomitantly w ith a strong broadening of the resonance line. A 

very recent RPAE calculation for the id  —> 4 /  transition in Ce4+ (Ivanov 1992) 

supports this contention which is clearly confirmed by the experimental data  of 

the Xe isoelectronic Ba and La spectra.

In Figure 3.11 the 4 / ( 1P ) radial wavefunctions and appropriate local poten­

tials are plotted for Ba2+, La3+ and Ce4+. The figure illustrates the collapse along 

the Xe isoelectronic sequence and shows, how the potential barrier between the 

inner and the outer valley disappears in moving from Ba2+ to Ce4+. The com­

parison also shows, th a t the biggest step in the gradual collapse occurs between 

Ba2+ and La3+ but is not completed before Ce4+.

3.2.5 4d P hotoabsorption  o f La3+, Solid LaF 3 , LaCl3 and 

La M etal

Apart from their fundam ental theoretical interest, photoabsorption cross sections 

of free ions also provide key data  for the understanding of the electronic structure 

of solids and molecules. In order to illustrate this point, we compare our exper­

imental data in Figure 3.12 with cross sections of solid LaF3 (Olsen et al 1982, 

Suzuki et al 1975), LaCb and La m etal (Suzuki et al 1975). All spectra show the 

dominant 4d?4f(l P) resonance and the weak 4f ( 3D) line at about 102 eV.

Since La is trivalent in the molecular and the solid state, the analyses of the 

corresponding spectra have always been based on the concept of an effectively
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Figure 3 11 4 /^ IP )  radial wavefunctions and their appropriate effective effective 

local potentials for Ba2+, La3+ and Ce4+ isoelectronic sequence N ote the loga­

rithm ic scale for the radius The potential, which is dropped below the  4 /^ IP )  

threshold, still remains sufficiently strong for Ba2+ to separate the potential m  

a inner well region and an outer one (double valley poential) The appropriate 

wavefunction is located above the outer valley with its m axim um  at about 5 Oa0 

W ith increasing Z, the barrier disappears and the  4 /^ IP )  radial wavefunctions 

collapses into the inner well region with its m axim um  o f about 2 Oao m  La3+ and 

1 2a0 m  Ce4+
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Figure 3 12 Absorption spectrum o f La3+ m  comparison with La metal, solid 

LaFj and solid LaCl-$ (a) La metal, (b) LaCls, (c) LaFj all from Suzuki et al 

(1975) (d) LaF3 from Olsen et al (1982), (e) La3+
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free triply charged ion m the ground state essentially unperturbed by the metallic 

environment (Dehmer &, Starace 1972, Starace 1972, Sugar 1972) or by the ligands 

of the other halides This was justified on the assumption, tha t the 4cP4/  states 

are strongly localized m the atom  and interatom ic interactions foi these electrons 

w ith their environment are negligible This is corroborated by the similarity 

between our La3+ spectrum  and the LaF3 spectrum  by Olsen et al (1982) to 

which I shall confine myself m the following discussion

Olsen et al (1982) observed several peaks and shoulders m the LaF3 spectrum, 

which can be identified by comparison with the ion da ta  The shoulder at 118 8 

eV therefore corresponds to the 4c^3y2̂ 6p(i/2) state  in La3+ Furthermore, the 

line w idth of the 4 ^ 4 f ( 3D) term  given by Olsen et al (1982) is 0 12 eV, while 

m the ion spectrum  the width is measured to be 0 16 eV However, based on the 

calculated results and on the observation made by Olsen et al (1982), it seems 

th a t the natural width is actually far narrower and the instrum ental resolution 

being comparable m both experiments (using a 20//m slit m the DLP experiment) 

This leads to the conclusion, th a t the 4fC  P) resonance of La3+ in its solid state 

is actually influenced by the environment albeit moderately, which causes the 

resonance to be broadened and shifted by about 1 3 eV towards lower energy 

The 4d excitations into higher Rydberg states are also recognizable m the LaF3 

spectrum  However, m these cases the disappearence of the pronounced line 

structure th a t prevails in the free ion spectrum  is a clear indication of the non 

localized character of these states

Conclusion

In this Chapter, we presented the photoabsorption spectrum  of La3+ ions m 

the 4d excitation region which was recorded using the DLP-techmque CI-HF, 

R PA E/M B PT and TDLDA/RTDLDA calculations were also carried out and dis­

cussed m comparison with the experimental data The experim ental results con­
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firm the theory which predicted a dom inant 4oP4/(aP ) resonance line but which 

was not observed m the previous experiment (Hansen et al 1989) It is shown, 

th a t the giant dipole resonance m La3+ associated with the 4d subshell excitation 

has acquired a definite discrete 4c?10 —> 4d94 / ( 1P ) character at the expense of the 

4d10 —» 4d?ef continuum transitions Polarization effects revealed through large 

term  dependence of the 4eP4/(* P) state  are found to be strong Comparison with 

the corresponding spectrum  of Ba2+ confirms the theory which predicts th a t the 

collapse of the 4f xP  orbital along the Xe isoelectronic sequence has a gradual 

nature and is not yet complete for Ba2+ Finally, the giant dipole resonance m 

La3+ remains essentially unaffected by a solid state  environment such as LaFs
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C hapter 4

X U V  P hotoabsorption  o f Laser 

G enerated A u Vapour

A bstract

Photoabsorption by atom ic Au in the 5p and 4f excitation region has been stud­

ied using the Dual Laser Plasm a technique. The observed features are dominated 

by two prominent Fano-type resonance lines which can be a ttribu ted  to 5p —*■ 

5d and 4f —» 5d transitions of valence excited 5d?6s2(2 D5/2) Au followed by au­

toionisation. The experimental results are compared to spectra calculated for 

the excitation of 5c?10651(2S'1/2) ground and 5d?6s2(2D5/2 2 D3/2) valence excited 

states within the (R)Hartree-Fock theory and the Relativistic Time Dependent 

Local Density Approximation.

4.1 Introduction

The frequent use of gold in many industrial applications e.g. gold coated XUV 

mirrors make it of particular interest for study in the XUV excitation region. 

In the free atom  form gold has the ground state  configuration (Moore

1958) with a filled 5d subshell, whereas in the metal, 5d hybridization with over­
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lapping 6s and 6p bands leads to a shift of the 5d band m which the hybridized 

part is located above the Fermi level The result is th a t the absorption edges 

are dom inated by excitations to the hybridized 5d states m the 6s and 6p con­

duction bands (Dietz et al 1989) The faint photoabsorption features observed 

at the positions of the N ej  edges m solid gold by G udat et al (1974) appear to 

correspond to the observations made by Dietz et al We therefore expect the 

photoabsorption data  of free gold atoms from the valence excited state  to be of 

particular interest for comparison with the solid state  spectrum  m order to in­

vestigate the atomic character of gold m a solid state  m atrix  O ther interesting 

phenom ena expected to be observed, include a cross over of the 5p —> 5d and 

4 /  —» 5d transition lines when following the sequence of 5d transition metals 

along the periodic table W ith increasing Z, the 4f shell is more tightly bound 

to the core which results in a gradual shift of the 4f —> 5d transitions over the 

5p excitation region Finally, gold may be vapounzed m a conventional furnace 

and is therefore amenable to detailed study of the excitation and decay dynamics 

by photoelectron spectroscopy Photoabsorption data  on atomic gold should be 

a useful starting point for such experiments

One of the first systematic studies of photoabsorption m the XUV energy 

region of the 5d transition metals Ta, W , Re, P t and of Au was carried out by 

Haensel et al (1969) using a synchrotron light source and samples prepared as thm  

films They observed strong absorption at low energies which decreased rapidly 

w ith increasing photon energy Two strong and broad absorption features, which 

originated from excitation of the electrons of the 5p shell, were observed between 

30 and 70eV, superimposed on the background which was interpreted m term s of 

transitions of the valence electrons into continuum states Transition lines from 

the 4f shell, which occur m the same energy region, were only observed for P t 

More recently Dietz et al (1980) utilized electron-energy loss spectroscopy to 

measure the 5p and 4f excitation edges m solid P t and Au Their data  provided 

more detailed information about the excitation mechanisms m the solid They
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found th a t in the case of P t the line shapes are controlled by Fano-type configu­

ration interactions in which the quasi-discrete core —> d excitation interferes with 

the excitation of valence electrons into continuum states. Interference effects be­

tween core and valence electron excitations were also observed for gold, but here 

the line shape could not be described by applying the Fano model.

Gold has already been studied in the VUV photoabsorption energy region 

(6.2-13.5eV) by Jann itti et al (1979) and in the same energy region by Dyke 

et al (1979) utilizing Hel photoelectron spectroscopy, where the 5d_16s and the 

5c?106.s_1 ionisation energies were measured. The Auger lines in solid

gold have been investigated by Nyholm et al (1986) and Evans et at (1990); and 

in the free gold atom  by Aksela et al (1984), which enabled them  to deduce the 

4f binding energies.

Costello et al (1991a) successfully carried out inner-shell photoabsorption 

studies for W and Pt. Their results together with calculations by Boyle in ref. 

[Costello et al 1991a] utilizing the many-body perturbation theory corroborate 

the predicted cross over phenomenon of the 5p —> 5d and 4 /  —► 5d transitions.

In the following chapter photoabsorption measurements of atomic Au in the 5p 

and 4f excitation region are presented. The results will be compared with theoret­

ical photoabsorption cross sections calculated for the ground state 5d106s1(1<S'i/2) 

and excited states 5(P6s2 (2 D 5 / 2 2  D 3 / 2 ) of neutral gold.

4.2 Photoabsorption of Au in the 5p and 4f 

E xcitation Region

Figure 4.1 shows the result of a series of photoabsorption measurements in the 4f 

excitation energy region obtained by varying the time delay between the genera­

tion of the absorbing and backlighting plasmas.

The sharp resonance at 80eV is attribu ted  (see later) to the 4 /  —► 5d transition
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Figure 4 1 Relative absorption cross sections o f A u vapour m  the  4 /  —► 5d 

excitation region taken at different tim e delays between the laser pulses a) 

100ns, b) 2 0 0 ns, c) 600ns and d)1000ns Spectrum  c) shows photoabsorp- 

tion from predom inantly the  2 S \ / 2  and 2D 5 / 2  states The bars m ark the po­

sition o f the 4 f u 5d9 6s2 (2 D5/2) -> 4 f 1 3 5d'°6s2 (2 F7/2) and 4 f u 5d?Gs2 (2 D3/2) -> 

4 / 135d106^2(2i ;5/2) transitions

in valence excited atom ic gold from 4 / 145c?9652(2Z)5/2) to  4 f 1 3 5d1 0 6s2 (2 F7 f2)\ the 

2 D 5 / 2  state lies 1 6eV above the ground state  2 S i / 2  and is m etastable m the dipole 

approximation Mosnier et al (1994) have previously shown th a t photoabsorption 

from valence excited states is achievable in laser created plasmas subject to the 

appropriate excitation and observation conditions The advantage is of course, 

tha t such studies provide access to upper states which are not optically allowed 

from the ground state. The associated 4 / 145cP652(2i)3/2) to 4 / 135<f106s2(2i r5/2) 

transition is observed at 82eV and as the tim e delay is increased, reduces in 

strength compared w ith the 2 D ^ / 2  feature This may be understood in terms of 

the greater excitation energy (3 OeV) of the 2 D 3 / 2  valence excited level above the 

ground state  At a tim e delay of 600ns (Figure 4 lc) the spectrum  is dominated 

by the 2  D 5 / 2  feature with only a small hint of the 2D3/2 remaining Therefore the 

photoabsorption spectrum  at 600ns is expected to arise predominantly from the 

ground (2 S i/2) and valence excited (2 D5/2) states It proved difficult to record
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satisfactory spectra for time delays greater than 600ns as the rapid expansion of 

the laser plasma plume reduced the optical opacity so th a t very poor signal to 

noise ratios were obtained (Figure 4 1)

Figure 4 2 shows the photoabsorption spectrum  over the 40-110eV region 

recorded at the 600ns delay The general shape of the spectrum  resembles very 

much that of P t recorded by Costello et al (1991a) except in the energy range of 

80eV, where only one dominant lesonance line is observed for gold

In conjunction with the tim e resolved photoabsorption study of the Au plasma 

a comprehensive set of atomic structure calculations for the mam dipole transition 

lines from ground and excited states of the bd1 0 Qs1 and bd?6 s 2  configurations were 

undertaken The main results are presented m Table 4 1 The dominant, broad 

and asymmetric peak at 55eV is a ttribu ted  mainly to the bp —> bd transition from 

bp6 bd?Gs2 ( 2 D s/2 ) to bp5  bd1 0 6 s 2  ( 2  P3/2) followed by super Coster Kromg decay into 

the bp6 bd8 6 s 2 e(p, f )  channels due to the large overlap between the 5p and 5d 

orbitals The interference with direct 5d photoionisation is responsible for the 

asymmetric shape of the resonance A similiar interpretation for the sharper 

but no less pronounced 4 /  —> bd resonance line at 80eV is made where the 

4 / 135c?10652(2F7/2) state autoiomses into the same continua with emission of an 

electron from the 5p, 5d or 6s subshell Here too, the direct photoionisation 

process interferes with the resonant one to give a typical Beutler-Fano profile 

As mentioned above, there is little  evidence of photoabsorption from the ex­

cited bd?6 s 2 (2 D 3 / 2 ) state, since the predicted 4 / 145gP6s2(2D3/2) to 4 f 1 3 bd1 0 6s2 ( 2 F5/2) 

transition at around 82eV is very weak The calculations in Table 4 1 show, th a t 

the broad feature at 70eV can be explained in terms of photoabsorption from the 

2S i/2 and (to lesser extent) 2 D 3 / 2  states to the 5p55t/10652(2P1/2) states, followed 

by a rapid decay which yields a large peakwidth of about 7eV

Interesting also is the line structure observed m the lOOeV energy region 

for which there is so far no definite explanation By shortening the tim e delay 

between the laser pulses, their relative intensity changes together with the char-
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Figure 4 2. Relative absorption cross section o f Au vapour m the 5p and 4 f  

excitation region taken at 600ns tim e delay between the two laser pulses
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Table 4.1: The strongest transition lines from states belonging to the 5d1 0 6s 1 

and 5cP6s2  configurations o f neutral gold. All energy values are in respect to the 

ground state 5d1 0 6sl (2 S i/2).

inital Ei final E f A E red. Dipole autoionization

state (eV) state (eV) (eV) (ea0) width (eV)

5d106s1(25 i /2) 0.0 5p5 5d1 0 Qs2 (2 P3/2) 57.0 57.0 -0.51 8.1

5p5 5dwQs2 (2 Pl/2) 73.1 73.1 -0.36 6.7

5 d?6 s 2 (2 D5/2) 1.4 5p5 5d1 0 Qs2 (2 P3/2) 57.0 55.6 -1.72 7.9

4 / 135<P6s2(2F7/2) 80.5 79.1 0.45 0.39

4 / 135d106s2(2F5/2) 84.2 82.8 0.10 0.39

5d9 6s2 (2 D3/2) 3.0 5p5 5d1 0 6s2 (2 P3/2) 57.0 54.0 0.57 8.2

5p5 5d1 0 6s2 (2 P i/2) 73.1 70.2 -1.28 6.6

4 f 1 3 5dw6s2 ( 2  F5 / 2 ) 84.2 81.2 -0.37 0.38

acteristic 4f line of 2 D5/2 Au. Therefore these lines must be associated with the 

neutral species in the gold plasma. They may represent the 4 /  —> 6d absorption 

lines from valence excited gold since their energy values are in part larger than 

the 4f binding energies (91.6eV and 95.3eV) of Au ground state given by Aksela 

et al (1984); however it cannot be ruled out an interpretation based on multiple 

excitations.

In order to extract the Fano param eters E0, q and T for the observed 5p —» 5d 

and 4 /  —» 5d transition lines the features were fitted each with a Beutler-Fano 

profile (Fano 1961)

* = *„[(« + (e -  £y/r)2/(i +( (e -  £„)/r)2)] + ^  (4.1)

employing the model of an isolated autoionisation resonance coupled to several 

continua. The line shape is characterized mainly by the asym m etry param eter q, 

the FWHM 2 r  and the energy position E 0  of the resonance line. The quantities 

&a and <7f, represent the two portions of cross sections describing transitions into
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continuum states which do and do not interact with the discrete autoiomsmg state 

respectively The decreasing background was approxim ated by a linear function 

of energy The best fit param eters of the 5p —> 5d resonance line are E 0  =  54 3eV, 

2 r  =  6 5eV, q = 2 3, and for the 4 /  —> 5d transition line E 0  = 80 OeV, 2 r  =  0 7eV 

and <7 =  2 0

4.3 Hartree-Fock Calculations for Au

Ab mitio  (R)HF calculations using the Cowan code (Cowan 1967,1968) were car­

ried out in order to deduce theoretical Fano param eters for comparison with the 

fitted ones These calculations include relativistic corrections of the mass-velocity 

and the Darwin term  to the configuration average energy The m ajor steps which 

were undertaken m order to obtain the Fano param eters are introduced briefly m 

the following paragraph

In the first step, the dipole m atrix  elements DtJ and energy positions E x03 for 

the transition lines > —*• \j > were calculated In the second step, the decay 

rates A a]k of the discrete excited state  \j > into the various contmua |fc >  were 

evaluated, which are determ ined by the configuration interaction m atrix  elements 

Vjk between the states |* >  and contmua \ k >  The decay ra te  of the excited states 

is assumed to be dom inated by autoionisation processes, therefore the FWHM 

2 r  is proportional to the sum of the autoionisation rates In the third step, the 

continuum dipole m atrix  elements D%k connecting the initial discrete state and 

final continuum state  were obtained In the Fano theory (Fano 1961, Ueda 1987) 

for an isolated resonance coupled to several contmua the asym m etry param eter 

q is given by

q"  =  * 'L k M ,kDlt (4 2)

with M jk = Vjk / ^ Y , k V>l

The calculated values for the 5p —»■ 5d resonance, for which 31 continuum 

channels were taken into account, are E 0  = 55 6eV, 2 r  =  7 9eV and q = 17 , and
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Figure 4.3: (left) Photoabsorption data in the  5p —► 5d excitation region. The 

data poin ts are fitted  with a Fano profile employing the model o f a single discrete 

state interacting with several continua. The obtained fit values are E 0  =  54.3eV, 

2 r  =  6 beV  and q = 2 3. The dashed curve shows the calculated cross section 

with E 0  = 55.6eV, 2T = 7 9eV and q =  1.7. (right)Photoabsorption data in the 

4 /  —► 5d excitation region in comparison with the calculated cross section (dashed 

curve) The data points are fitted with a Fano profile employing the model o f 

a single discrete sta te  interacting with several continua The obtained fit values 

are E 0  =  80.0eK, 2 r  =  0 7eV and q = 2 0 The calculated Fano parameters are 

E 0  =  79 2eV , 2 r  =  0 39eV and q =  2 2

for the  4 /  —» 5d resonance with 52 continuum channels the obtained parameters 

are E 0  =  79 2eV, 2 r  =  0 4eV and q — 2 2 . The theoretical results for both reso­

nance lines are in reasonable agreement with the fitted values The experimental 

and theoretical results are shown together for comparison in Figure 4 3.

In order to provide a more complete interpretation of the photoabsorption data 

over the  whole energy range, Martins (1994) calculated absolute photoabsorption 

spectra of the three lowest even parity states of gold over the 40-1 lOeV range. 

Energy dependent <70, a j, T and q parameters were used to describe the resonant 

cross sections, which were then added to the nonresonant contribution in order to 

provide the  to tal cross section Since the discrete resonances are widely separated
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Figure 4 4 a)-c) Calculated photoabsorption spectra o f Au withm the (R )H F the­

ory for the ground state 5d106s1(2S i /2) and valence excited bcPQs2(2D s/ 2 ,2 D3/2) 

states d)-f) Calculated photoabsorption spectra o f Au withm RTD LD A for the  

ground state 5d106sl (2Si/2 ) and valence excited 5d96s2(2D5/2 2 A 3/2) states

m energy, their mutual interactions are negligibly small which makes Fano theory 

applicable The agreement with the experim ental data  was improved by scaling 

the Slater integrals by 0 8 The individual contributions from the 2 S \ / 2  ground 

sta te  and the valence excited 2 D 5 / 2 , 2 D 3 / 2  states are shown separately in Figure 

4 4a-c
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4.4 Tim e D ependent Local D ensity Approxi­

m ation Calculations for Au

Zangwill (1983) interpreted the 3p —* 45 resonance of atomic copper as a damped 

collective oscillation of the entire 3p subshell with subsequent decay into the 3d 

photoionisation channel His calculations are based on a Time Dependent gener­

alisation of the density functional formalism within the Local Density Approxi­

mation (TDLDA) and are closely lelated to the Random Phase Approximation 

with Exchange (RPAE)

We have employed the relativistic RTDLDA code V A V X V  w ritten by Liber- 

man & Zangwill (1984) to calculate the total photoionization cross sections for the 

ground and valence excited states of gold Here the one electron Dirac equation 

is solved in order to construct the electron charge density m the gold atom Each 

atomic shell is split into two spin-orbit subshells with spin projection parallel or 

antiparallel to the orbital angular m omentum The results are shown m Figure 

4 4d-f and can be compared directly with the (R)H artree Fock results We can 

see, tha t both the (R)HF and the RTDLDA calculations yield qualitatively com­

parable photoabsorption behaviour in term s of absolute values and fine structure 

components It is also clear th a t the observed spectrum  is mostly due to the 

ground 2S1/2 and valence excited 2 D 5 / 2  levels as mentioned earlier

In order to make the comparison clearer, Figure 4 5 shows the experimental 

spectrum  together with the (R)HF and RTDLDA results The experimental curve 

in Figure 4 5 is multiplied by a constant m order to m atch the maximum to tha t 

of the (R)HF spectrum  All theoretical curves shown in Figure 4 5 are the average 

,of the 2S' 1/2 and 2 D b / 2  cross sections (This is equivalent to assuming equal 2 S \ / 2  

and 2 D 5 / 2  populations in the gold vapour and is for illustrative purposes o n ly ) 

The (R)HF results describe very sa tis fa c to r ily  the experimental spectrum. The 

direct comparison with the RTDLDA calculation and with the experimental data 

suggests th a t the use of the Hartree-Fock configuration interaction approach and
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the mean field formulation are essentially equivalent for the description of the 

photoabsorption spectrum  of gold

Following Zangwill (1987) further insight can be achieved by comparing RLDA 

and RTDLDA results Differences between the results of the independent particle 

RLDA model and the many-body RTDLDA model are attribu tab le  to the dy­

namic response effects included m the la tte r The RLDA/RTDLDA comparison 

in Figure 4 5 shows tha t the tim e dependent approach yields an enhanced pho- 

toabsorption cross section in the recorded energy range above 50eV The absence 

of the 5p —> 5d and the 4 /  —» 5d resonances in the RLDA curve is not unexpected 

as the resonant photoemission process can not be described withm an indepen­

dent particle model By shifting the RTDLDA spectrum  by about 5eV to higher 

energies reasonable agreement with experiment m term s of energy positions and 

relative absorption strength may be obtained but with incorrect form param eters 

particularly for the 5p resonance

4.5 Conclusion

In summary, for the first tim e XUV photoabsorption da ta  of atomic Au m the 

5p and 4f excitation region has been recorded The results provide first and 

foremost inform ation about the photoabsorption properties from the valence ex­

cited 5cP 652(2D 5/2) state  The observed spectrum  is dom inated by two promi­

nent Fano-type resonance lines which can be a ttribu ted  to 5p —> 5d and 4f —► 

5d transitions of valence excited 5d96s2(2D 5/2) Au followed by autoionisation 

The characteristic features m the spectrum  could be s a tis fa c to r i ly  described 

withm the Hartree-Fock theory of resonant photoabsorption taking first order 

relativistic corrections into account Furthermore detailed calculations of abso­

lute photoabsorption cross sections of gold from ground- and excited states based 

on the (R)H F and RTDLDA theories have been performed The results lead to 

the conclusion tha t interference effects between core and valence electron excita-
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photon  energy (eV)

Figure 4 5. Measured relative photoabsorption cross section o f a gold vapour 

in comparison with calculated absolute cross sections within the RLDA, the R T ­

DLDA and the (R )H F theory The experimental data are m ultplied by a constant 

in order to match the m axim um  to that o f the (R )H F spectrum  The calculated 

spectra are the averaged o f the 2S 1/2 and 2Z)5/2 cross sections, assuming equally 

populated levels in the gold vapour, for illustrative purposes only
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tions manifested in the asymm etric photoabsorption line profiles provide the most 

significant evidence for electron correlations m gold m the investigated spectral 

energy region
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Final Conclusion

To date, most experimental photoabsorption cross section data available represent 

spectra of atoms, molecules and solids, whereas the theory has already progressed 

to some extent in investigating the photoabsorption behaviour of ions especially 

in an isonuclear/isoelectronic comparison with its atomic counterparts. Theorists 

therefore have expressed their interest in suitable new experimental data which 

can be used to test the theoretical predictions and which promise new insight 

in the understanding of many-body effects. The exploration of a laser generated 

plasm a in tim e and space with use of the DLP-technique can be used to establish 

predicted trends in photoabsorption and provide motivation for succeeding more 

sophisticated experiments involving photoion or photoelectron spectroscopy. The 

study of the decay channels requires in general a profound knowledge of the 

excitation mechanism which can be provided in a photoabsorption study.

It has been shown in this work, tha t the DLP-technique is able to provide good 

quality photoabsorption data as dem onstrated for the well known Ba,La,Ce,Sm 

and Eu sequence. Furthermore the DLP-technique has been proven to be a unique 

tool in order to obtain new photoabsorption cross section data  of excited atoms 

(Au*) and ions (Ba+ , Ba2+, La3+) which is an im portant goal in following the 

new trends of interest in atomic physics. La3+ follows its isoelectronic partner 

Ba2+ which was recorded over 12 years ago (Lucatorto et al 1981) and may be 

regarded as a  key result for the understanding of the photoabsorption behaviour in 

the Xe-isoelectronic sequence. The experimental da ta  confirm the theory (Cheng 

& Froese Fischer 1983) which predicted a dominant 4 / ( 1P ) resonance in the
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La3+ spectrum  and settles a fundam ental discrepancy between experiment and 

theory, since the resonance line could not be observed m previous experimental 

investigations (Hansen et al 1989) The photoabsorption data  of Au are of more 

preliminary nature, which hopefully will stim ulate further more detailed studies 

The m ajor weakness of the experimental technique is the lack of independent 

plasma-diagnostic data  needed to cross check the identifcation of the ion stages m 

the absorption column under current investigation This was compensated in this 

work by detailed theoretical studies In fact, the interplay between theory and 

experiment led to the success in obtaining new good quality photoabsorption data 

Various theories such as the CI-HF, (R)TDLDA/(R)LDA, RPAE and M BPT were 

applied and tested, each of them  incorporates its own calculational technique and 

physical understanding for the description of the atom -photon interaction process 

In the near future, the system will be also operational m the VUV photon energy 

region, this will allow the user to probe the absorption column m the valence and 

inner-shell energy regions simultanously The XUV spectra will be characterized 

with help of the VUV data  which are generally well known It might then be 

possible to obtain cross section data  for the pure ground state  of neutral gold, 

since the VUV photoabsorption spectrum  was measured previously by Janm tti 

et al (1979)
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