

A planning board generator. Part I: Problem instances and
types
Citation for published version (APA):
Wennink, M., & Savelsbergh, M. W. P. (1994). A planning board generator. Part I: Problem instances and types.
(Memorandum COSOR; Vol. 9442). Technische Universiteit Eindhoven.

Document status and date:
Published: 01/01/1994

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 31. Oct. 2022

https://research.tue.nl/en/publications/fcb22b6f-b69d-4d4c-ad19-7d3a0d12a114

EINDHOVEN UNIVERSITY OF TECHNOLOGY
Department of Mathematics and Computing Science

Memorandum COSOR 94-42

A Planning Board Generator
Part I: Problem Instances and Types

M. Wennink
M.W.P. Savelsbergh

Eindhoven, December 1994
The Netherlands

A Planning Board Generator
Part I: Problem Instances and Types

Marc Wennink
Department of Mathematics and Computing Science

Eindhoven University of Technology
P.O. Box 513

5600 MB Eindhoven
The Netherlands

Martin Savelsbergh
School of Industrial and Systems Engineering

Georgia Institute of Technology
Atlanta, GA 30332-0205

U.S.A.

Abstract

A planning board is a planning tool that uses the Gantt chart as its main representation
mechanism. A planning board generator aims at facilitating the development of planning
boards; using a description of the problem type for which a planning board is to be
developed and the desired representations and manipulations, the generator automatically
creates a prototype of the planning board. In this paper we discuss our view of a planning
board generator and introduce a method to describe problem instances and types.

Keywords: planning board, planning board generator, problem type, problem instance,
description method, Gantt chart, representation, manipulation.

1 Introduction

A planning board is a planning tool that uses a Gantt chart to represent a plan and provides
the means to modify the plan by modifying the Gantt chart. A planning board is a useful tool
in many problem situations. Unfortunately, developing an automated planning board requires
a lot of time and energy. In addition, all problem situations have their own characteristics
and require their own specific planning board.

Our goal is to identify common properties of problem situations for which a planning board
is useful and to use these properties to develop a planning board generator. Given a description
of the problem situation for which a planning board has to be developed and a specification
of the desired representations and manipulations, the generator should automatically create
an initial version of the planning board.

The purpose of this paper is twofold. First, we will discuss the main characteristics of a
planning board generator. Second, we will present description methods for problem instances
and types. Representations and manipulations will be discussed in a sequel paper.

In Section 2, we will elaborate on our view of a planning board generator. We will define
the notion of a plan more precisely and use this notion to determine problem types for which
planning boards are useful tools. In Section 3, we will introduce a method to describe instances
of such problem types. This method serves as a basis for our method to describe problem
types, which will be presented in Section 4. Examples of descriptions of problem instances
and types are given in Appendices A and B respectively.

1

2 The Planning Board Generator

As said above, a planning board is a tool that uses a Gantt chart to represent a plan and
provides the means to modify the plan by modifying the Gantt chart.

Although the Gantt chart is the primary representation, other representations, such as
data tables and inventory graphs, can also be incorporated in an automated planning board.
Various representations of instances and plans may provide a better understanding of the
problem being solved. However, a planning board should also provide the means to manip­
ulate these representations, so as to enable us to create and modify plans. The notion of
manipulation should be interpreted broadly. For a machine scheduling problem, for example,
manipulations could move a task from one machine to another as well as compute an optimal
schedule for a machine given the tasks that are currently assigned to it. In the terminology in­
troduced by Anthonisse et al. [2] with respect to interactive planning systems, manipulations
cover the entire spectrum from assistant functions to advisor functions.

Together, representations and manipulations provide a powerful tool that is useful for a
large class of problem types. However, each problem type requires its own sets of represen­
tations and manipulations. In fact, each problem type requires its own planning board. A
planning board generator (PBG) aims at facilitating the development of planning boards.

2.1 The Planning Board

On a Gantt chart the horizontal axis represents some time interval, the vertical axis represents
resources, and rectangles on the chart represent assignments of processes to resources and time
intervals.

.5 0

~ PI

~ P4 P6

~ P7 I Pg P9

R4 PIO PII

Figure 1: A Gantt chart

An example of a Gantt chart is given in Figure 1. There are twelve processes, P}, ... ,P12,

and four resources R1 , ... ,R4 • Each process is assigned to some time interval and to one of the
resources. For example, process P6 is assigned to resource R2 and the time interval [11,17].

A large part of this paper is concerned with identifying problem types for which a planning
board is a useful tool, and with developing a method to describe these problem types. To be
able to do so, we start with formalizing the notions of plan and planning board.

A plan is an assignment of processes to resources and time intervals.

2

The notions resource and process will be discussed in more detail in Section 3.3. For
the time being, it is sufficient to relate the term process to the objects represented by the
rectangles in a Gantt chart, and the term resource to the objects that are represented on
the vertical axis of the chart. Note that the Gantt chart representation plays a role in the
definition: we assign processes to resources, rather than resources to processes.

A planning boardis a tool for developing plans, which uses the Gantt chart as a representation
mechanism.

A single Gantt chart cannot represent all aspects of real-life problems, because of the
multi-dimensional character of such problems. A planning board should therefore be able to
provide several Gantt chart representations, with different resources along the vertical axes,
as well as other representation mechanisms, like data tables and inventory graphs. In order
to develop a plan, the user of a planning board must be offered the possibility to perform
several kinds of manipulations.

2.2 The Planning Board Generator

We aim at the following situation. A planner has to develop plans for a number of instances of
the same problem type. He thinks that a planning board may be a helpful tool. He therefore
asks a planning board designer to build a planning board for that specific problem type. The
designer asks for the characteristics of the problem type, the desired representations, and the
required manipulations. The designer activates the planning board generator to process this
information and to produce an initial version of the planning board.

PBG
problem

type

designer

planning problem
board instance

planner)

plan

Figure 2: Functionality of the planning board generator

This situation is depicted in Figure 2. The designer uses the PBG to construct a planning

3

board for a specific problem type. The planner uses this planning board to develop plans for
various problem instances.

A planning board can handle all instances of a certain problem type. A PBG can construct
planning boards for a set of problem types. This set will be called the general problem class.
In the next sections, we discuss the description of problem instances and problem types within
the general problem class.

2.3 Related Research

The role of decision support systems and, more specifically, graphical interfaces in solving
planning problems has been widely discussed in the literature (see e.g., Anthonisse et al.
[2], Fisher [4], Hurrion [7]). Furthermore, planning boards have been developed for a wide
range of problem situations including course scheduling, ship scheduling, timetabling, job­
shop scheduling, and production scheduling (e.g., Fisher et al. [5], Moreira and Oliveira [12],
Viviers [13]). In most cases these planning boards are equipped to handle a small and well­
specified class of problem instances. More relevant and more closely related to our research
are systems that have been developed in order to deal with a broader class of planning
situations and offer wider possibilities for problem description. Examples of such systems are
the systems developed by Jackson et al. [8], Jones and Maxwell [9], and Woerlee [14]. These
systems differ from our PBG in that they are developed for a particular application area;
material logistics, manufacturing scheduling, and production scheduling respectively. With
our PBG, we do not restrict ourselves to a particular application area, but we focus on the
underlying general problem structure: processes must be assigned to resources over time. This
general structure allows the use of the same representation mechanism (e.g., Gantt charts)
and similar manipulations for problems in completely different application areas. Therefore,
we think that this general problem structure can be exploited effectively to facilitate the
development and implementation of planning boards for these application areas.

Although it is not concerned with planning tools that use the Gantt chart as main repre­
sentation mechanism, the graph-based modeling system (GBMS) of Jones [10] is conceptually
very similar to our PBG. Both the GBMS and the PBG aim at facilitating the development
of user interfaces for interactive systems. In a GBMS, attributed graphs are used as repre­
sentation mechanism. The created interface is called an instance editor. An instance editor
enables a modeler to add and delete nodes and edges in order to construct a graph of the
appropriate type. In a GBMS, the designer specifies a graph type and the manipulations
that can be performed on graphs of that type. This specification is sufficient to automatically
generate an instance editor for graphs of that type. Using a similar terminology, one can say
that a planning board enables a planner to perform manipulations on (representations of)
plans in order to construct a solution to a problem of the appropriate type. In our setting, the
designer specifies a problem type and the desired representations and manipulations. From
this specification, the PBG automatically constructs a planning board for instances of this
type.

An important difference between a GBMS and a PBG is the representation mechanism
that is used, attributed graphs versus Gantt charts. Another important difference relates to
the way in which a graph type or problem type and the corresponding sets of manipulations
are described.

Jones's GBMS allows the designer to create his own types of nodes and edges, each with
its own set of attributes. Also the manipulations can be developed by the designer. Although

4

this bottom-up approach gives the designer a lot of freedom, it also requires knowledge of the
relatively unfamiliar theory of graph-grammars.

For our PBG, in contrast, we apply a top-down approach. There exists a general problem
class, of which all problem types that the PBG can handle are special cases. The designer
of a planning board can describe his particular problem type by specifying the appropriate
subclass of the general problem class. Similarly, a set of possible manipulations is given, from
which a planning board designer chooses a subset. The designer in a GBMS, on the other
hand, must specify the desired node types and edge types, as well as the desired manipulations,
from scratch.

The advantage of this top-down approach is that the implementation of the PBG can
be specifically equipped to deal. with the allowed problem types only, thus yielding a more
effective and efficient system. Furthermore, it has enabled us to develop a description method
that exploits the common structural properties of the problem types, in contrast to the use
of graph grammars, which are more generally applicable.

A disadvantage is that we cannot obtain full generality. Our PBG is restricted to the
general problem class. However, we have tried to keep this class as general as possible indeed,
only leaving problem types for which planning boards are not useful out of consideration.

This paper focuses on a description method for problem instances and a description method
for problem types. Therefore, it is interesting to compare its capabilities with those of existing
classification schemes, for example for machine scheduling problems (e.g. French [6], and
Lawler et al. [11]). These classification schemes typically use a fixed number of parameters,
each describing a particular problem characteristic. Since such a parameter can only specify
a characteristic of all the instances of the problem type, these classification schemes do not
offer the flexibility that we need in a description method that is to be used in a PBG that
can handle a wide range of application areas. Consider a problem type in which there are two
kinds of processes, the first kind possessing deadlines but no release times, the second kind
possessing release times but no deadlines. The existing classification schemes only allow us to
specify that all processes may possess release times and deadlines. The description methods
presented in this paper do offer the possibility to describe such a problem type correctly. It is
worth noting that the translation of a problem type description in terms of one of the existing
classification schemes into a description using our method can usually be done quite easily.

5

3 Problem Instances

The designer of a planning board has to provide the PBG with information on the problem
type, the desired representations, and the desired manipulations. The user of a planning
board has to provide the planning board with a specific problem instance. In this section, we
introduce a description method for problem instances. In Section 4, it will serve as a basis for
our description method for problem types. Examples of instances described with our method
are given in Appendix A.

3.1 An Overview of the Description Method

The instance description method has been developed with the following objectives in mind:

1. It should be possible to describe instances of all problems for which we feel that a
planning board provides a useful tool. In fact, the method will implicitly define a
general problem class. Note that this class should be fairly large for a PBG to be of
any interest.

2. The instance description method must form the basis of a type description method.
It should therefore be possible to specify subclasses of the general problem class by
identifying the typical properties of problem instances within such subclasses.

3. It should be possible to use the description of an instance to efficiently perform some of
the tasks of a planning board, such as verifying feasibility of assignments and providing
information on various aspects of a plan.

We have tried to achieve these objectives by using a widely applicable and well-studied
paradigm, namely attributed graphs, and by stressing the common structural properties of
the problems.

Attributed graphs are widely used as a mechanism for describing many kinds of models
in different fields of research, from sociology to chemistry. It is therefore not only a mech­
anism that many people are familiar with, but also one that has proven to be very flexible.
Furthermore, there exists a massive theory on problems related to graphs, which we can use.

All problems for which a planning board is useful deal with assignments of processes to
resources and time intervals. Therefore it must be possible to describe the characteristics
of the processes and the resources that occur in the instance as well as the time system.
Furthermore, it must be possible to describe relations between processes, between resources,
and between processes and resources. The most important relation that has to be described
is which assignments of processes to resources are feasible and which are not.

The attributed graph associated with an instance will be called an instance graph. The
instance graph must be able to represent a variety of situations, e.g., a process that can
be performed on any resource out of a set of resources, a process that requires a specific
combination of resources, and a process that can be performed on any combination of resources
out of a set of possible combinations of resources.

The core structure of the instance graph describes the feasible assignments of processes to
resources. Each process and each resource are represented by a node. For each possible choice
of resources and each possible combination of resources an auxiliary node is introduced that
is connected to the objects involved and thus forms a J(l,n where n is the number of objects
involved.

6

Several other relations between objects can be described by graph constructs as well.
Binary relations, i.e., relations involving exactly two objects, can be modeled by an edge or
an arc. For example a precedence relation indicating that one process has to be performed
before an other one. n-Ary relations, i.e., relations involving a set of n objects (n > 2), can
be modeled by a K1,n'

Not all aspects of problem instances can be represented in terms of nodes, arcs, and
edges. These aspects can be divided into two categories: properties of individual objects, and
properties of assignments. Examples of the first category are the sizes of the processes, the
capacities of the resources, and the length of the planning period. These properties will be
described as attributes of the corresponding nodes, or as attribute of the time system. An
example of the second category is the processing time of a process when it is assigned to a
particular combination of resources. In order to describe these kinds of properties, attributes
of appropriate auxiliary nodes are introduced.

Before we discuss the various elements of the instance graph, we will spend some time on
the key elements of plans: time, processes, and resources.

3.2 Time

Time plays an important role in planning boards. The way in which time occurs is different
for different problems. For a timetabling problem for schools, the planning period may cover
five days consisting of eight hours, with an hour being the smallest time unit, whereas for a
machine scheduling problem, the planning period may be one working day of 12 hours, with
a minute being the smallest time unit. For flexibility purposes we allow the introduction of a
time system for each problem instance. This time system consists of time units on different
levels. The smallest time unit is described in the first level, the second smallest time unit
in the second level, etc. For the jth time unit also the conversion factor with respect to the
(j-l)st time unit is given. For example, a planning period covering one week, with one second
being the smallest time unit, is described in the following way.

number of levels: 5

Levell

unit name: second

level 2

unit name: minute
conversion factor: 60

level 3
unit name: hour
conversion factor: 60

level 4
unit name: day
conversion factor: 24

level 5

unit name: week
conversion factor: 7

planning period: 1 week

7

3.3 Resources and Processes

3.3.1 Resources and their attributes

Depending on the application, a resource can be almost anything. In a production planning
application, personnel, money, raw materials, and machines may all be resources. In a time­
tabling application for a school, the resources may be classrooms and teachers.

An important concept related to resources is that of a capability. A resource may possess
several capabilities, i.e., it may be able to perform various tasks. A mechanic may be qualified
to change oil and to repair brakes. A teacher may be qualified to teach mathematics as well
as physics.

Although a resource may be able to perform different tasks, some set-up or change-over
may be necessary before a particular task can be performed. Such a set-up brings the resource
in the required mode. The corresponding set-up time can be either sequence dependent or
sequence independent. In the first case, the set-up time is completely determined by the
required mode. In the second case, the set-up time depends on the current mode of the
resource and the mode that is required. The concept of mode is differ~nt from the concept
of capability. A sawing machine may possess only one capability, the capability sawing, but
several modes, one for each possible size of an object that can be sawn.

Most resources are not free commodities. Their utilization by some process will affect
the possibilities for utilization by other processes. Quantities related to the utilization of a
resource are usage and consumption.

The usage of resource R by process P at time t is a quantity that indicates to what extent
R is occupied by P. The total usage of R at time t, i.e. the sum of the usage of all processes
assigned to R at time t, is limited by the capacity of R at time t.

The consumption of resource R by process P during a time interval [tb t2] is a quantity
that indicates to what extent R is consumed by P during that interval. The total consumption
of R up to time t*, i.e. the sum of the consumption of R up to t* over all processes assigned
to R, is limited by the supply of R up to t*.

Based on the different kinds of utilization the following distinction between resources can
be made (see also [3]):

• Renewable resources: Resources for which only their total usage at every moment is
constrained. An example of such a resource is a painting machine, which can paint all
day but no more than one object at the same time.

• Nonrenewable resources: Resources for which only their total consumption up to any
given moment is constrained. An example of such a resource is finances.

• Doubly constrained resources: Resources for which both total usage and total consump­
tion are constrained. An example is personnel. An employee can perform only a limited
number of tasks at the same time and can perform these tasks only during a limited
number of man hours.

Usage and consumption can both occur in either continuous or discrete quantities. A
painting machine may be able to paint up to ten objects at the same time. Its capacity then
is ten units, and the assignment of a painting job to this machine implies a usage of one unit.
It is impossible to paint half objects, and therefore usage, in this case, is a discrete quantity.
The storage capacity of a truck, in contrast, can be used in continuous quantities. With

8

respect to consumption, fuel will be consumed in continuous quantities, but in assembling a
car steering wheels will be consumed in discrete quantities.

Mostly, usage and consumption will be modeled as one-dimensional quantities. Multi­
dimensionality, however, is possible. For an employee there may exist a limit on the number
of hours per day he may work (e.g. 10 hours) as well as a limit on the number of hours per
week (e.g. 40 hours). This cannot be modeled by supplies that replenish the 'hours-inventory'
to 10 at the beginning of each day, because the week-limit may then be exceeded. By modeling
consumption and supply as two-dimensional quantities we can solve this problem. Another
example of two-dimensional usage is found in transportation problems, where the usage of a
truck is limited with respect to volume as well as weight.

The capacity and supply of a resource may change during the planning period as a result
of instance-dependent and plan-dependent factors. For example, during a certain period the
capacity of some machine may be smaller than normal because of maintenance, or the supply
of some half-product will increase at the moment that a process that represents the production
of that half-product is completed. Instance-dependent changes in capacity and supply will be
modeled in terms of attributes of the resources. Plan-dependent changes in the supply of a
resource will be modeled as (possibly negative) consumption of that resource. Similarly, the
available capacity of a resource is reduced when it is used by a process, and it is increased
again as soon as that process is completed.

A resource that possesses several capabilities may have different performance levels with
respect to these different capabilities. The aforementioned mechanic may be very fast in
changing oil, but he may be very slow when it comes to repairing brakes. In order to handle
such differences, resource characteristics related to speed, usage, and consumption have to be
specified for each of its capabilities.

A resource node has the following attributes:

name: A name that uniquely identifies the resource.

availability periods: A set of time intervals specifying the time periods during which the
resource is available.

category: An indicator that specifies the type of resource, i.e., Renewable, Nonrenewable, or
Doubly Constrained.

number of modes: A natural number. For each mode the following must be specified:

name: A name that uniquely identifies the mode.

set-up time: A function of the status of the resource, i.e., the active mode, that com­
putes the set-up time that is needed to bring the resource into this mode.

usage: This attribute consists of three sub-attributes.

divisibility: An indicator that specifies whether usage of the considered resource is
modeled as a continuous or as a discrete quantity. In case usage is continuous the
value is 0 and in case usage is discrete the value is the discretization unit.

dimension: A natural number representing the dimension of usage of the considered
resource.

capacity: A function of time, describing the plan-independent capacity.

9

consumption: This attribute consists of three sub-attributes.

divisibility: An indicator that specifies whether consumption of the considered resource
is modeled as a continuous or as a discrete quantity. If consumption is continuous
the value is 0 and if consumption is discrete the value is the discretization unit.

dimension: A natural number representing the dimension of consumption.

supply: A function of time, describing the plan-independent supply.

number of capabilities: A natural number. For each capability the following must be specified:

name: A name that uniquely identifies the capability. If different resources possess the
same capability, the same name must be used when referring to this capability.

speed: A real number that is used to determine the duration of a process when that
process is assigned to this resource. It is not necessarily equal to the actual speed
of the resource, as will be illustrated in Section 3.4.4.

usage factor: A real number that is used to determine the usage of the resource when
a process is assigned to this resource. If this resource is used in combination with
other resources, then this attribute is also used to determine the usage of those
resources. In Section 3.4.4 we will discuss the use of the usage factor extensively.

consumption factor: A real number that is used to determine the consumption of the
resource when a process is assigned to this resource. If this resource is used in
combination with other resources, then this attribute is also used to determine the
consumption of those resources. In Section 3.4.4 we will discuss the use of the
consumption factor extensively.

The usage attribute is only specified for renewable and doubly constrained resources, the
consumption attribute only for non-renewable and doubly constrained resources. These at­
tributes represent plan-independent properties of a resource. Usage and consumption only
occur during the time intervals in which processes are assigned to that resource, and the used
and consumed amounts will be different for different processes. It is therefore not possible
to model usage and consumption in terms of resource attributes. Furthermore, actual usage
and consumption may occur only during part of the total processing time. For example, a
production run may require a machine for the entire period, whereas it may require an em­
ployee to start the machine only for the first five minutes of the period. Similarly, the entire
required amount of raw materials may be consumed at the beginning of the process, whereas
fuel may be consumed at a constant rate during the processing period. The specification of
these usage and consumption patterns will be discussed in Section 3.4.4.

3.3.2 Processes and their attributes

A process can be anything that must be assigned to a set of resources and a time interval in
order to obtain a feasible plan. In a timetabling problem for a school, the processes may be
the lessons that must be assigned to teachers, class-rooms, and time intervals. In a machine
scheduling problem, the processes are the tasks that must be assigned to machines and time
intervals.

We distinguish two kinds of processes: repetitive and non-repetitive processes. A non­
repetitive process is performed only once. A repetitive process can be performed an arbitrary

10

number of times; the number of repetitions is determined by the planner by specification of
the processing interval.

A process node has the following attributes:

name: A name that uniquely identifies the process.

type: An indicator that specifies the type of process, i.e., repetitive or non-repetitive.

mode: An indicator that specifies the mode in which the resource to which the process is
asigned has to be.

size: A real number that is used to determine the duration of the process in case of a non­
repetitive process, or to determine the length of one repetition in case of a repetitive
process.

usage intensity: A vector that is used to determine the usage of the resource(s) that the
process is assigned to.

consumption intensity: A vector that is used to determine the consumption of the resource(s)
that the process is assigned to.

release time: A point in time before which the process cannot be performed.

deadline: A point in time after which the process cannot be performed.

due date: A point in time by which the process preferably should be completed.

split: An indicator that specifies whether the process may be preempted or not. It has value
o if the process, once started, cannot be interrupted, 1 ifthe process may be temporarily
stopped and later resumed using the same resources, and 2 if the process can also be
resumed using other resources.

3.4 Describing Feasible Assignments

In this section, we discuss requirement relations. Requirement relations are relations between
processes and resources indicating which resources can be used to perform a process. We
take an incremental approach in describing requirement relations. We start with simple
requirements, i.e., processes requiring a single capability, and continue with more complicated
requirements, i.e., processes requiring combinations of capabilities and processes requiring one
of several combinations of capabilities. At the end of this section we will discuss how aspects
related to feasible assignments such as duration, set-up times, usage, and consumption are
modeled.

3.4.1 Processes requiring a single capability

A process that requires a specific capability can be assigned to any resource that possesses that
capability. In fact, a choice has to be made between all resources that possess the required
capability. Such a choice is modeled by a J(l,n, in which the auxiliary node, the capability
node, is connected to all nodes representing resources that possess the considered capability.
For each capability that is required by some process, a capability node is introduced, and the
associated J(l,n is formed. The requirement relation is modeled by an edge connecting the

11

process node and the capability node that represents the required capability.

A capability node has only one attribute:

name: The name uniquely identifies the capability. It must be the same as the name, given
as a resource attribute, of the capability it represents.

An example is given in Figure 3. Processes PI and P2 require capability ell which is
possessed by resources Rt and R2• Process P3 requires capability C2 , which is possessed by
resources R2 and R3.

Process Capability Resource

Figure 3: Processes requiring a single capability

3.4.2 Processes requiring a combination of capabilities

In many problems, performing a process requires the use of a combination of resources, or,
better, a combination of capabilities. Both paint and a painter are needed to paint an object.
Lessons cannot be taught unless a teacher and a classroom are available. Such a combination
of capabilities is again modeled by a KI,n' The auxiliary node, the capability set node, is
connected to all capability nodes representing the required capabilities. If a process requires
a particular combination of capabilities, this is modeled by introducing an edge connecting
the process node and the corresponding capability set node. The process can be performed
by any combination of resources that possesses all capabilities in the capability set.

Note that, although any combination of capabilities may be considered a capability set,
only those combinations that are actually required by the processes are of interest.

A capability set node has several attributes. However, most of them will be introduced
when we discuss duration, consumption, and usage in more detail. Here, we only introduce
one attribute:

name: A name that uniquely identifies the capability set.

An example of requirement relations dealing with capability sets is given in Figure 4.
Processes PI and P 2 both require a resource possessing the capability C1 and a resource pos­
sessing capability C3. The resource combination {Rt, R4 } would satisfy these requirements.

12

Process P3 requires a resource with the capability C2 and a resource with the capability C3 •

The combination {R3' ~} is feasible. The combination {R2' ~} is feasible for all three
processes.

Process
Capability

Set Capability Resource

Figure 4: Processes requiring a combination of capabilities

3.4.3 Processes requiring one of several combinations of capabilities

Sometimes, a process does not require a specific combination of capabilities, but one of several
alternative capability sets. In such a case, we say that the process requires a particular
function. This is modeled by a KI,n, in which the auxiliary node, the function node, is
connected to all capability set nodes between which a choice can be made. If a process
requires a function, a choice between the associated capability sets is to be made. The
process then can be performed by any set of resources that possesses all capabilities in the
chosen capability set.

Functions may be useful for production problems in which different production modes
occur, which imply the possible use of totally different resources, e.g. production by hand or
by machine.

A function node has only one attribute:

name: A name that uniquely identifies the function.

An example of requirement relations with functions is given in Figure 5. Processes PI and
P2 both require function FI , implying that they must be performed by resources possessing
the capabilities in capability set CSI or by resources possessing the capabilities in CS2.

In summary, three different types of KI,n's may occur in the subgraph representing the
requirement relations. The auxiliary nodes are the capability nodes, the capability set nodes,
and the function nodes, respectively. The first KI,n represents a choice relation between
resources possessing the same capability. The second states that a particular combination
of capabilities is required. The third again represents a possibility for choice, now between

13

Process Function
Capability

Set Capability Resource

Figure 5: Processes requiring one of several combinations of capabilities

several capability sets. Each process node is connected, via a requirement edge, to either a
capability node, or a capability set node, or a function node.

3.4.4 Duration, set-up times, usage, consumption

The subgraph representing the requirement relations enables us to identify for each process
the resources to which it can be assigned. Given such an assignment, we want to determine
the following (assuming that the considered process is non-repetitive):

• The set-up times required to bring the resources in the correct modes.

• The duration of the process: the time to complete the process. Together with the
starting time of the process, the duration determines the processing interval.

• The usage pattern of each resource that is used: the time interval within the processing
interval during which the process occupies the resource and the amount of the resource
that is occupied by the process during this time interval.

• The consumption pattern of each resource that is consumed: the time interval within the
processing interval during which the process consumes the resource and the amount of
the resource that is consumed by the process during this time interval. We will assume
that consumption takes place at a constant rate. Instantaneous consumption can be
modeled by specifying an infinitesimal time interval.

In case of repetitive processes, a set-up is only performed at the beginning of the first
repetition, and the duration corresponds to the length of one repetition. We will assume that
the usage and consumption patterns will be the same for every repetition. If, for example,

14

at the beginning of a repetition a certain amount of raw materials is consumed, the same
amount will be consumed at the beginning of all other repetitions.

The set-ups are much easier to deal with than duration, usage and consumption, because
the set-up time of a particular resource does not depend on the other resources that are used.
Given an assignment of a process to a combination of resources, for each of those resources
the set-up time can be computed using the mode attribute of the process and the set-up
attribute of the considered resource. The duration of the process, as well as the usage and
the consumption of a specific resource, may depend on all the resources that occur in the
assignment. For example, when a process requires a machine and fuel, the consumption of
fuel will not only depend on the process but also on the machine that is actually used.

When a process requires a single capability, duration, consumption, and usage can easily
be determined. The duration of the process is computed as the quotient of the size attribute
of that process and the speed attribute of the resource it is assigned to. The interval during
which any consumption or usage occurs is equal to the processing interval. The consumed
amount is computed as the product of the consumption intensity attribute of the process and
the consumption factor attribute of the resource, and the used amount is computed as the
product of the usage intensity and the usage factor attributes.

The situation is more complicated when a process requires a combination of capabilities.
In order to deal with these complications, we introduce several attributes for the capability
set nodes. The first deals with the duration of the process.

duration: A function of the size attribute of the process and the speed attributes of the
resources that computes the duration, i.e.,

where 80 is the value of the size attribute of the process, n is the number of capabilities
in the capability set, and 8i (i = 1, .. , n) is the value of the speed attribute of the resource
possessing capability i.

Suppose the capability set consists of the capabilities machine, employee, and material.
Let 80 be the size attribute of the process, and let 81,82, and 83 be the speed attributes of
the machine, the employee, and the raw material, respectively. If the speed is completely
determined by the speed of the machine, the following duration function is used:

If the ability of the employee to work with that machine plays a role, the duration function
may be something like

where V = {Vij} is some predefined matrix, Vij being the speed at which a process is performed
when the value of the speed attribute of the used machine is i and the value of the speed
attribute of the used employee is j. Note that in this case the speed attributes do not reflect
the actual speed of the resources, but are merely indices used to extract the correct values
from a matrix.

For each capability in the capability set, the following two attributes are specified in order
to describe the usage pattern.

15

usage interval: A function of the starting time and the duration of the process that computes
the time interval during which usage of the resource possessing the considered capability
takes place, Le.,

[tt, t2] == tu(start, duration).

usage volume: A function of the usage factor attribute of the process and the usage intensity
attributes of the resources that computes the volume used, Le.,

where it!. is the value of the usage intensity attribute of the process, n is the number
of capabilities in the capability set, and It (i == 1, .. , n) is the value of the usage factor
attribute of the resource possessing capability i.

Let us again consider the example with the capability set consisting of the capabilities
machine, employee, and material. Some machines require an employee during the first five
minutes for starting it up, whereas others do not. This can be modeled by assigning a value
of 1 to the usage factor attributes of the machines that do require an employee (Ii = 1), and
a value of 0 to those that do not (Ii = 0), and by applying the following usage pattern:

tu(start,duration) = [start, start + 5],

Vt!. (i U
, Ii, 12 , 1;) = Ii·

For each capability in the capability set, the following two attributes are specified in order
to describe the consumption pattern.

consumption interval: A function of the starting time and the duration of the process that
computes the time interval during which consumption of the resource possessing the
considered capability takes place, i.e.,

[h, t2] = tc(start, duration),

where start is the starting time of the process, and duration is the value computed by
the function found in the duration attribute described above.

consumption volume: A function of the consumption factor attribute of the process and the
consumption intensity attributes of the resources that computes the volume consumed,
i.e.,

vc(iC
, If,···, I~),

where i C is the value of the consumption intensity attribute of the process, n is the
number of capabilities in the capability set, and Jr (i = 1, .. , n) is the value of the
consumption factor attribute of the resource possessing capability i.

Suppose the capability set again consists of the capabilities machine, employee, and ma­
terial, and let the material capability be the only one that is possessed by non-renewable

16

resources. If a process consumes a fixed amount of the material at a constant rate during the
entire interval, the consumption pattern for the material capability is as follows:

tc(start,duration) = [start,start + duration],

(.c I C fC IC) ·c Vc t, 1, 2' 3 = t ,

where the value of the consumption intensity attribute (iC) equals the fixed consumed amount.
The attributes of the capability sets allow us to describe complex consumption and usage

patterns for a large variety of problems. Obviously, assigning the correct values to the different
process and resource attributes is important. Sometimes it may be necessary to assign to, for
example, the speed attribute of a resource, a value that has little to do with the actual speed
of that resource.

Example 3.1 We consider the problem of making coffee, more specifically the capability set
MakeCoJJee consisting of the capabilities CoJJeeMachine, Filter, GroundBeans, Water, and
CoJJee.

There are two resources that possess the capability CoJJeeMachine. Machine A can make
one liter of coffee in 15 minutes, machine B does it in 10 minutes. Making one liter of coffee
requires 0.10 units of GroundBeans, consumed at the beginning of the processing interval,
and 1 liter of water, consumed gradually during the entire processing interval. Independently
of the amount of coffee to be made, one filter is required, consumed at the start.

If we want to perform the process O.8CoJJee, making 0.8 liter of coffee, we model this by
assigning the value 0.8 to the consumption intensity attribute as well as to the size attribute
of the process.

Furthermore, we assign the values 4/60 and 6/60 to the speed attributes of resource A and
B respectively, and use one minute as time unit.

The attributes of the capability set MakeCoJJee then are:

duration: size / CoJJeeMachine.speed

(CoJJeeM achine)

usage interval: [start, start + duration]

usage volume: 1

(Filter)

consumption interval: [start, start]

consumption volume: 1

(GroundBeans)

consumption interval: [start, start]

consumption volume: consumption intensity *0.10

(Water)

17

consumption interval: [start, start + duration]

consumption volume: consumption intensity

(Coffee)

consumption interval: [start, start + duration]

consumption volume: - consumption intensity

3.5 Other Relations Between Objects

o

Specifying the requirement structure, Le., specifying for each process the combinations of
resources it can be assigned to, is only part of the description of a problem instance. Usually
various other relations exist between processes and resources. Many of these can easily be
described in the instance graph.

3.5.1 Precedence relations

A precedence relation indicates that the set of allowed start and completion times of some
process depends on the start or completion time of some other process. Precedence relations
are binary relations that can be represented by arcs between process nodes in the instance
graph. We distinguish four types:

• finish-to-start: Process A must be completed before process B is started;

• start~to-start: Process A must be started before process B is started;

• start-to-finish: Process A must be started before process B is completed;

• finish-to-finish: Process A must be completed before process B is completed.

A time-lag may be associated with each of the four types of precedence relations. For example,
a finish-to-start relation can be stated as 'process A must be completed at least 10 minutes
before process B starts.'

The attributes of precedence arcs are:

type: Either finish-to-start, or start-to-start, or start-to-finish, or finish-to-finish.

time lag: The minimum and maximum allowed time lag.

3.5.2 Common resource relations

A set of processes may be related because they have to be processed on the same set of
resources. Such an n-ary relation is described as a /(l,n; the auxiliary node is the common
resource set node.

The attribute of the common resource set node is:

name: A name that uniquely identifies the common resource set.

18

In case of a common resource relation between several processes, there is no need for individual
requirement edges. Instead the requirement edge will connect the common resource set node
to a capability Node, a capability set node, or a function node. In this light, the common
resource relation can be seen as an obligation relation, in contrast to the choices represented
by functions and capabilities. As soon as one of the processes in a common resource set
is assigned to a particular resource combination, all other processes in that set have to be
assigned to the same resource combination.

3.5.3 Process group relations

A set of processes may be related for some other reason than common resources. Such an
n-ary relation is represented by a K l,n ; the auxiliary node is the process group node. For
instance, the notion of a job in machine scheduling problems can be modeled as a process
group.

The attributes of the process group node are:

name: A name that uniquely identifies the process group.

release time: No process in the process group can be performed before its release time.

deadline: No process in the process group may be completed after its deadline.

due date: All processes should preferably be completed by their due date.

exclusion: If this attribute has the value true, then no two processes in the process group
may be performed at the same time.

Note that release time, deadline, and due date can be specified for all processes in a process
group separately, but even when the exclusion attribute has the value false, the introduction of
a process group can be useful for emphasizing characteristic structures in problem instances.

3.5.4 Resource group relations

Similarly to process groups, resource groups can be used to emphasize certain relations be­
tween resources. The introduction of resource groups imposes no additional restrictions on
the set of feasible plans.

The attribute of the resource group node is:

name: A name that uniquely identifies the resource group.

3.6 Extensions

In the previous sections, we have shown that it is possible to describe many different aspects
of the problem instances that we are interested in by using attributed graphs. The combined
use of graph elements and attributes has enabled us to deal with such diverse problem char­
acteristics as precedence constraints, resources possessing the same capabilities, and complex
consumption patterns. Our general problem class, i.e., the class of problem types of which
instances can be described with our method, includes a large variety of problems that are
of theoretical or practical interest. However, there still exist many problem instances that
currently cannot be described. This is not a consequence of the lack of expressive power of

19

attributed graphs, but it is a consequence of the selection criteria that we have applied with
respect to the problem characteristics that we wanted to be able to describe. These selection
criteria have been chosen somewhat arbitrarily. The main goal of our research is to show
that it is possible to develop a PBG that can generate planning boards for a relatively large
class of problem types. Therefore, our description method must be able to deal with a fairly
large class of interesting problem types. Both the notions 'fairly large' and 'interesting' are
subjective, but we think that they do apply to the general problem class that is induced by
our description method.

3.7 Views of the Instance Graph

In the sections above, we have discussed the various components that can be used to describe a
problem instance by an instance graph. The specification ofthe nodes, arcs, edges, and KIln'S

with their associated attributes results in an instance graph that represents all information
about the problem instance under consideration. During the planning process, a planner may
want to view parts of this information. If he wants to make an assignment for a particular
process, he may be interested in the set of resources to which the considered process can be
assigned, or he may want to know which other processes have a precedence relation with the
considered process. This kind of information can easily be obtained because it corresponds
to relatively small subgraphs of the instance graph. Such a subgraph will be called a view of
the instance graph. Many views can be defined. A few examples follow below.

Figure 6: A precedence view

Assignment view: This view presents for a set of processes the resources to which it can
be assigned, i.e., all the paths originating from one of the processes and ending at a
resource. Examples of this view have already been given in Figures 3 to 5.

Process view: This view presents for a set of processes the process groups and common
resource sets to which they belong.

Resource view: This view presents for a set of resources the resource groups and capabilities
to which they belong.

20

Precedence view: This view presents for a set of processes the precedence relations between
them. An example is given in Figure 6. The arc from node B to node C implies that
process B must be started at least 5 time units and at most 20 time units before process
C is started.

A view is a convenient mechanism to present parts of the information embedded in the
instance graph. Note that it is possible that a view contains some redundancy. For example,
when a particular capability is possessed by only one resource, the corresponding capability
node can be considered as redundant. By connecting the process, common resource set,
function, and capability set nodes that are connected to that capability node, directly to the
corresponding resource node, a view can be reduced to a smaller, possibly more insightful one.

21

4 Pro blem Types

In general, planning boards are not developed as a tool for solving one particular problem
instance, but as a tool for solving a set of problem instances with similar characteristics.
We will use the term problem type to refer to a set of problem instances satisfying certain
conditions. The general problem class, i.e., the set of all problem types of which instances
can be described by the instance description method, is a problem type itself.

A PBG requires information about the problem type for which a planning board has to be
generated and information about the desired representations and manipulations. Information
about the desired manipulations could be something of the following sort: the planning board
must support the reassignment of a process. If at a given moment process A is assigned to
resource Rl with start time tt, the user should be able to reassign process A to resource R2
with start time t2' It should be obvious that the implementation of such a manipulation will
depend on the problem type. For a problem type in which all resources are available during
the whole planning period, checking the feasibility of a reassignment is much easier than for
a problem type in which the resources are only available during certain time intervals.

In fact, the main purpose of the description of the problem type is to provide the neces­
sary information to implement the desired manipulations and representations as efficiently
and effectively as possible. Consequently, a description of a problem type should provide
information on those common characteristics of the various problem instances that are im­
portant for the development of manipulations and representations. Therefore, care should be
taken to ensure that the description of the problem type is accurate. It should contain all
problem instances for which the planning board is to be used, but as few others as possible
because they may lead to a planning board that is less efficient and effective than possible.

Problem types will be specified by restrictions on the instance graph, i.e., a problem type
is the set of instances that can be described by an instance graph that satisfies the given
restrictions.

4.1 Restrictions on the Instance Graph

The characteristics of a problem instance are defined by the structure of the associated in­
stance graph and the values of the attributes of the various graph elements. We can therefore
distinguish two types of restrictions: on the graph structure and on the attribute values.

4.1.1 Restrictions on the graph structure

Characteristics of a problem type that can be described in terms of restrictions on the graph
structure relate to the presence or absence of the various graph elements and to the way these
graph elements are interconnected.

Consider the well-known job shop scheduling problem. The restrictions that have to be
imposed on the graph structure are the following:

• The only node types that appear are process, resource, capability, and process group.

• Each capability node is connected to exactly one resource node.

• Each requirement edge connects a process to a capability.

22

• Precedence relations occur in chains and only involve processes in the same process
group.

If the problem type becomes more complex, it is not always possible to describe restrictions
that are valid for all graph elements of the same type. For example, consider the extension of
the job shop scheduling problem in which each task requires both a machine and some raw
material. In an instance description, this extension would be modeled with a capability set
node that specifies that a machine and some raw material are required for a task. However,
in a type description it is insufficient to specify that capability set nodes exist and that each
capability set node is connected to exactly two capability nodes, because also instances in
which a task is assigned to two machines would satisfy this restriction.

In order to deal with such problems, we need to be able to distinguish nodes of the same
type. The notion of a node group is introduced precisely for that reason. A node group is
a group of nodes of the same type that are subject to the same restrictions. In the above
extension of the job shop scheduling problem, we would introduce two capability node groups,
Machine and Inventory, and impose the following restrictions:

• The only node types that appear are process, resource, capability, capability set, and
process group.

• Each capability node is connected to exactly one resource node.

• Each capability set node is connected to exactly one capability node in the node group
Machine and to exactly one capability node in the node group Inventory.

• Each requirement edge connects a process to a capability set.

• Precedence relations occur in chains and only involve processes in the same process
group.

Besides restrictions on the presence or absence of the various graph elements and on the the
way they are interconnected, it is often necessary to also impose restrictions on the number of
them. For example, if the raw material in our extension of the job shop scheduling problem
is the same for all tasks, one should be able to specify that the number of nodes in the node
group Inventory is precisely one.

4.1.2 Restrictions on the attributes

Characteristics of a problem type that can be described in terms of restrictions on the at­
tributes of the graph elements relate to their domains. The domain of an attribute is its
set of admissible values. In a problem type description it is possible to reduce a domain by
specifying restrictions on the set of admissible values. Attribute restrictions are specified for
node groups.

4.2 Describing Problem Types

In this subsection, we present a syntax which can be used to describe the restrictions discussed
in Section 4.1 more formally. The syntax can be modified or extended in order to deal with
other kinds of restrictions. In Appendix B several problem types are described using this
syntax.

23

4.2.1 Node groups

The first part of the description of the problem type concerns the node groups that will
appear in an instance. For each node type the associated node groups and a specification of
the number of nodes in these node groups have to be given. For example,

process: Taskl {l, ... ,oo}

resource:
capability:

Task2 {l, ... ,oo}
Machine
Type

{1, ... ,4}
{I}

indicates that there are three node types and four node groups, that the node groups Taski
and Task2 may have an arbitrary number of nodes, that the node group Machine may have
one up to four nodes, and that the node group Type has precisely one node.

Instances with five or more resources or more than one capability do not belong to this
problem type. Also instances with common resource set nodes, function nodes, capability set
nodes, process group nodes, or resource group nodes do not belong to this problem type.

In the example above, the number of nodes in a node group is restricted to be in a specified
set, e.g., {I}, {1, .. ,4}, and {I, .. ,oo}. In addition to specifying a set, it is also possible to relate
the cardinality of a node group to the number of nodes in another node group. For example,

resource: Machine {2, ... ,IOO}
capability: Type #(Machine)

would indicate that the number of nodes in the node group Type is equal to the number of
nodes in the group Machine.

4.2.2 Graph structure

The second part of the description of the problem type concerns the structure of the instance
graphs. It deals with n-ary relations, requirement edges, and precedence arcs.

For each of the KI,n's associated with the node groups, the node groups to which they can
be connected and a specification of the cardinality of these node groups have to be given. For
example,

capability: Type
capability set: Transform

Machine
Type
InputInv
OutputInv

#(Machine)
{I}
{I}
{I}

indicates that each node in the node group Type is connected to all nodes in the node group
Machine, and that each node in the node group Transform is connected to one node in the
node group Type, one in the node group InputInv, and one node in the node group OutputInv.

Requirement edges connect process nodes and common resource set nodes to function
nodes, capability set nodes, and capability nodes. Restrictions on the possible positions of
requirement edges are specified for all relevant node groups. For example,

requirement edges: Task Type
CRSetl Model
CRSet2 Mode2

indicates that (process) nodes in the node group Task a.re connected by a requirement edge
to (capability) nodes in the node group Type, and that (common resource set) nodes in the

24

node groups CRSetl and CRSet2 are connected by a requirement edge to (function) nodes in
the groups Model and Mode2, respectively.

Precedence arcs usually occur between processes in the same node group or in the same
process group. Furthermore, the graphs describing precedence relations often have a special
structure, such as chains or trees. The structure of the precedence graph is specified for all
relevant node groups. For example, suppose Groupl, ... ,Group4 are process node groups, and
Job is a node group of process groups. Then,

precedence arcs: Groupl intree
Group2 outtree
Group3 U Group4 general
Job chain

indicates, that the subgraph induced by precedence arcs of (process) nodes in the node group
Group2 is an intree, that the sub graph induced by precedence arcs of (process) nodes in
the node group Group3 is an outtree, and that the subgraph induced by precedence arcs of
(process) nodes in the node groups Group3 and Group4 does not have a special structure.
Furthermore, for each process group in the node group Job the following must hold: the
subgraphs induced by precedence arcs of nodes representing processes in that process group
are chains,

4.2.3 Attributes

The third part of the description of the problem type concerns the attributes of the different
objects. For each node group as well as for the precedence arcs, a domain is specified for each
attribute. For example,

process: Task

resource:
precedence:

Machine
Groupl

type
size
category
type
time lag

non-repetitive
{l,2}
non-renewable
{finish-to-start ,start-to-start}
[0,50]

indicates that processes in the node group Task are non-repetitive and have size 1 or 2, that
resources in the node group Machine are non-renewable, and that the precedence relations
between nodes in the node group Group! are either finish-to-start or start-to-start with a
minimum time lag of 0 and a maximum time lag of 50 time units.

It is also possible to enforce two attributes to take on the same values. For example,

process: Task size {l, ... ,oo}
consumption intensity size

indicates that the size attribute of processes in the node group Task can take on any positive
integer value, and that the value of the consumption intensity attribute is equal to the value
of the size attribute.

The attributes of capability sets are functions of attributes of other objects. In the prob­
lem type description, either these functions are completely specified, or restrictions on their
shape are imposed. In referring to attributes of other objects we apply a two-field notation:
object. attribute, where object is a node group. When misinterpretation is impossible, it suffices
to only state attribute. For example,

25

capability set: ResourceSet duration
(Mae Cap)
usage interval
usage volume
(InvCap)
consumption interval
consumption volume

size/MacCap.speed

[start, start + duration]
I

[start, start]
a * consumptionintensity
aE(O,oo)

indicates that for a capability set in the node group ResourceSet the duration function is
defined as the quotient of the size of the process and the speed of the resource possessing a
capability in the node group MacCap. Furthermore, that resource is used during the entire
processing interval, the resource possessing a capability in the node group InvCap is consumed
at the beginning of the processing interval, and the function that is used for computing the
consumed volume is a linear function of the consumption intensity attribute of the process.

When certain attributes of objects are irrelevant for the problem type we want to describe,
for example the due date attribute in case no due dates occur, this can be indicated by 'does
not apply'. If no domain is specified for an attribute of an object, we assume that the default
domain specifications apply. The default domain specifications for the different attributes are
the following:

ATTRIBUTES
process: type non-repetitive

mode does not apply
size (0,00)
usage intensity 1
consumption intensity does not apply
release time does not apply
deadline does not apply
due date does not apply
split 0

resource: availability periods does not apply
category renewable
number of modes 0
usage

divisibility 1
dimension 1
capacity e(t) = 1

consumption
divisibility 1
dimension 1
supply set) E {I, ... , oo}, t 0

set) = 0, t f 0
number of capabilities no default

speed 1
usage factor I
consumption factor does not apply

26

capability set:

process group:

precedences:

duration
usage interval
usage volume
consumption interval
consumption volume
release time
deadline
due date
type
time lag

no default
no default
no default
no default
no default
does not apply
does not apply
does not apply
finish-to-start
[0,00]

Time occurs in the problem type description in a similar way as attributes. In the default
time system, there is only one level and there is no restriction on the length of the planning
period:

TIME
number of levels
planning period

1
{l, ... ,oo }

27

5 Concluding Remarks

We have introduced and discussed various aspects of a planning board generator, a tool
that facilitates the development of automated planning boards. A planning board generator
uses a specification of the characteristics of a problem type, a specification of the desired
representations, and a specification of the required manipulations to produce a prototype of
an automated planning board.

In this paper, we have concentrated on specifying characteristics of problem instances and
problem types. We have developed an instance description methods and a type description
method, both of which rely heavily on the concepts of attributed graphs.

In a subsequent paper, we will concentrate on specifying representations and manipu­
lations. In an interactive planning environment informative representations of a problem
instance and possible solutions as well as easy-to-use manipulations are extremely important.

Although the Gantt chart has been and will be the main representation mechanism for a
planning board, various other representations, such as the 'views' that were discussed briefly in
this paper, can enhance its effectiveness considerably. It is a nontrivial task to take concepts
such as a Gantt chart and a view and convert them into an actual representation using
available graphic primitives.

Although simple manipulations on the Gantt chart, such as reassigning a process to another
resource and time interval, have been and will remain important functions of a planning board,
more advanced manipulations can be supported in an automated planning board, such as the
computation of a schedule for a given subset of the processes. It is a challenging task to
design a relatively small set of simple and advanced manipulations that together constitute
a powerful yet easy-to-use planning board.

It is prohibitive to develop the most effective and efficient representations and manipu­
lations for all possible problem types. We envision that the planning board generator will
incorporate a scheme that exploits the structure of problem types, as defined implicitly by
our description method, to customize representations and manipulations.

The preceding remarks provide a preview of some of the aspects that will be discussed in
greater detail in our sequel paper.

28

References

[1] J.M. ANTHONISSE, K.M. VAN HEE, J.K. LENSTRA. 1988. Resource-Constrained
Project Scheduling: an International Exercise in DSS Development. Decision Support
Systems 4, 249-257.

[2] J.M. ANTHONISSE, J.K. LENSTRA, M.W.P. SAVELSBERGH. 1988. Behind the Screen:
DSS from an OR Point of View. Decision Support Systems 4,413-419.

[3] J. BLAZEWICZ, W. CELLARY, R. SLOWINSKI, J. WEGLARZ. 1986. Scheduling under
Resource Constraints - Deterministic Models. Annals of Operations Research 7.

[4] M.L. FISHER. 1985. Interactive Optimization. Annals of Operations Research 5,541-556.

[5] M.L. FISHER, M.B. ROSENWEIN. 1989. An Interactive Optimization System for Bulk­
Cargo Ship Scheduling. Naval Research Logistics 36, 27-42.

[6] S. FRENCH. 1982. Sequencing and Scheduling: an Introduction into the Mathematics of
the Job-Shop, Horwood, Chichester.

[7] R.D. HURRION. 1986. Visual Interactive Modelling. European Journal of Operational
Research 23, 281-287.

[8] P. JACKSON, J.A. MUCKSTADT, C.V. JONES. 1989. COSMOS: A Framework for a
Computer-aided Logistics System. Journal of Manufacturing and Operations Manage­
ment. 2, 122-148.

[9] C.V. JONES, W.L. MAXWELL. 1986. A System for Manufacturing Scheduling with
Interactive Computer Graphics. IIE Transactions 18, 298-303.

[10] C.V. JONES. 1990. An Introduction to Graph-Based Modeling Systems, Part I:
Overview. ORSA Journal on Computing 2, 136-151.

[11] E.L. LAWLER, J.K. LENSTRA, A.H.G. RINNOOY KAN, D.B. SHMOYS. 1993. Sequenc­
ing and Scheduling: Algorithms and Complexity, in: S.C. Graves, A.H.G. Rinnooy Kan,
P.H. Zipkin (eds.), Logistics of Production and Inventory, Handbooks in OR & MS 4,
Elsevier Science Publishers B.V., North-Holland, Amsterdam.

[12] N.A. MOREIRA, R.C. OLIVEIRA. 1991. A Decision Support System for Production
Planning in an Industrial Unit. European Journal of Operational Research 55, 319-328.

[13] F. VIVIERS. 1983. A Decision Support System for Job Shop Scheduling. European Journal
of Operational Research 14, 95-103.

[14] A.P. WOERLEE. 1991.Decision Support Systems for Production Scheduling. PhD Thesis,
Erasmus University Rotterdam.

29

A Examples of Problem Instances

In this appendix we describe the instance graphs, or parts of it, of three problem instances.
The first example shows what kinds of connections between the different types of nodes are
possible. In the second example, we consider a timetabling problem for a school. The third
example deals with a factory scheduling problem with a non-trivial consumption pattern.

Example A.1 We consider the following production planning problem. Four products of
two different types are to be made. Products 1 and 2 are products of the first type, products
3 and 4 are of the second type. Processes P 1, P2, P3, and P 4 represent the production of
products 1, 2, 3, and 4. There is a fifth process, M, which represents some maintenance
activities. Performing P1 can be done in two modes, the normal node or the special mode, P2
requires the special mode. In both modes an employee and a machine of the type MT1 are
used, but some machines of that type can only be used in the special mode and others only
in the normal mode. The processes P3 and P 4 require a machine of the type MT2 and an
employee. The combination that is used for P3 must also be used for P4. The maintenance
process is to be performed by one of the employees. The instance graph for this problem is
given in Figure 7.

Process
Group Process

C·R.
Set Function

Capability
Set Capability

Figure 7: A production planning problem instance

Resource

This example illustrates that all different kinds of resource requirements discussed in Sec­
tion 3.4 can occur in the same problem instance. Process P1 requires a function, process P2
requires a capability set, and process M requires a capability. Furthermore, since processes
P3 and P 4 must be performed on the same combination of resources, there is an associated
requirement edge connecting the corresponding common resource set node with, in this case,

30

a capability set node. o

Example A.2 We consider the following timetabling problem. Each week, each group of
pupils has to get lessons in different subjects during a specified number of hours. Some lessons
require teachers with full qualification, others require teachers with partial qualification. Most
lessons can be given in normal classrooms, but for some subjects the lessons require special
rooms. Chemistry lessons, for example, must be given in rooms in which experiments with
chemicals can be performed.

We can describe this situation in the following way. The processes are the lessons given to
the different groups. They are non-repetitive. An example is the chemistry lesson for group
3. There are two kinds of resources: teachers and classrooms. A teacher can have several
capabilities, representing the subjects he is qualified to teach and the levels of qualification.
Since a teacher may be fully qualified for one subject and partially qualified for the other,
it is necessary to introduce capability nodes for each possible combination of subject and
qualification. A classroom also may have several capabilities. A particular classroom may be
suited for chemistry lessons, as well as normal (for example, English) lessons.

Each lesson requires a particular kind of classroom and a particular kind of teacher. These
requirements are represented by requirement edges connecting the processes and capability
sets. Each capability set consists of two capabilities, one representing the required kind of
classroom, the other representing the required kind ofteacher. For example, the lesson English
for group 4 requires the capability set E-F, representing a normal classroom and a teacher
with full qualification for the subject English.

A part of an instance is depicted in Figure 8. Only the lessons English and chemistry for
groups 3 and 4 and not all teachers and classrooms are considered.

Capability
Set Capability Resource

Resource
Group

Figure 8: Part of a timetabling instance

The planning period will consist of 5 days of say 8 hours. The resources are renewable
resources with capacity 1. A process uses both kinds of resources fully during the entire
processing interval, which is always one hour. 0

31

Example A.3 Jones and Maxwell [9] give an example of a factory scheduling problem. There
are three processes, 1 MSUB, 2MSUB, and ASSEM. Process lMSUB uses a machine of the
type A-MILL and materials MATl and MAT2to create half-products SUB1. Process 2MSUB
uses the machine MILL and the half-product SUB3 to create another half-product, SUB2.
Process ASSEM is performed by a worker, who assembles half-products SUBl and SUB2 to
create the end-product WIDGET. The reduced assignment view of this instance is given in
Figure 9.

Process
C~ablllty

Set Capability Resource

Figure 9: A reduced assignment view of a factory scheduling instance

All processes are repetitive. The machines are renewable resources; the materials, half­
products, and end-products are non-renewable resources. The machines have capacity 1 and
are always used up to capacity. The materials are consumed at a constant rate during the
processing period, and the half products and end products are consumed (produced) at the
beginning (end) of each repetition.

We consider the capability set CS1. The duration solely depends on the MILL that is used,
and the consumed volumes are completely determined by the consumption intensity (iC) of
the process and the consumption factor of the considered resource (r(.)). The attributes of
capability set CSl then are:

name: CSl

duration: = size / A-MILL.speed

(MAT1)

consumption interval: [start, start + duration]

32

consumption volume: consumption intensity / MAT1.consumptionfactor

(MAT2)

consumption interval: [start, start + duration]

consumption volume: consumption intensity / MAT2.consumptionfactor

(A-MILL)

usage interval: [start, start + duration]

usage volume: 1

(SUB1)

consumption interval: [start + duration, start + duration]

consumption volume: - consumption intensity / SUB1.consumptionfactor

33

o

B Examples of Problem Types

Example B.1 The simple job shop scheduling problem type discussed in Section 4.1, in
which each task requires one specific machine, can be described as follows:

NODE GROUPS
process:
resource:
capability:
process group:

Task
Machine
MacCap
Job

{I, ... ,oo }
{I, ... ,oo }
#(Machine)
{l, ... ,oo}

GRAPH STRUCTURE
capability:
process group:
requirement edge:
precedence arcs:

ATTRIBUTES

MacCap
Job
Task
Job

process:
resource:

Task type
Machine category

Machine
Task
MacCap
chain

{I}
{I}

number of capabilities
(Mac Cap, 1)

non-repetitive
renewable
1

Note that although non-repetitive and renewable are the default values for the type and
category attributes, we have explicitly mentioned them in the problem type description for
~~ 0

Example B.2 In Appendix A, an example of a timetabling problem has been discussed.
Lessons must be assigned to teachers and classrooms, and the feasibility of an assignment
depends on the qualification of the teacher (what subject, full or partial qualification) and
the properties of the classroom (chemistry lessons require specific facilities for performing
experiments). The example can be seen as an instance of the problem type in which each
lesson (process) requires a combination (capability set) of a type of classroom and a specific
qualification (both capabilities).

In the terminology of our description method, these restrictions can be formulated in the
following way. We only give the node groups and the graph structure restrictions that are
related to the processes, resources, capabilities, and capability sets.

NODE GROUPS
process:
resource:

capability:

capability set:

Lesson
Teacher
Classroom
Qualification
Classroom Type
Room&Qual

{I, ... ,oo }
{I, ... ,oo }
{I, ... ,oo }
{I, ... ,oo }
{I, ... ,oo }
{I, ... ,oo }

34

GRAPH STRUCTURE
capability:

capability set:

requirement edges:

Qualification
Classroom Type
Room&Qual

Lesson

Teacher
Classroom
Classroom Type
Qualification
Room&Qual

{l, ... ,oo }
{l, ... ,oo }
{I}
{I}

o

Example B.3 Anthonisse et al. [1] describe resource-constrained project scheduling (RCPS)
as follows.

A set of tasks is to be processed by a set of resources. For each task, there is a
release time and a deadline, which define a time interval in which the task must
be processed. Once a task is started it must be completed without interruption.

For any two tasks, there are a lower bound and an upper bound on the length of
the time period between the completion of one task and the start of the other.
(...)
A function may be performed by various combinations of resources, each with its
own speed. In general, each function has a class of feasible resource sets, and the
processing time of a task depends on the feasible resource set that is chosen to
perform the function it requires. The processing time is the amount of work (Le.,
the number of units of the function) required by the task divided by the speed of
the feasible resource set.

No resource can be allocated to two tasks at the same time. If a set of resources
is allocated to a task, then each of its constituent resources is occupied by that
task from its starting time until its completion time. For each resource there is a
set of time intervals during which the resource is available.

We will now describe this problem type with our description method.
The time system is the default system. There is only one time unit, and the planning

period can be as small or as large as one wants.
Four kinds of objects are distinguished in the description above: tasks, resources, resource

sets, and functions. In our terminology, they are processes, resources, capability sets, and
functions, respectively. In fact, a fifth kind of object, the project, is considered, which is equal
to the process group. Beside these five objects, our method requires capability nodes. Each
resource has a unique capability. Therefore, the number of capability nodes is equal to the
number of resource nodes. There are no restrictions on the number of nodes of any of the
other types.

NODE GROUPS
process:
resource:
capability:
capability set:
function:
process group:

Task
Resource
ResCap
ResourceSet
Function
Project

{l, ... ,oo }
{l, ... ,oo }
(Resource)
{l, ... ,oo }
{l, ... ,oo }
{l, ... ,oo}

35

Each resource possesses a unique capability. Therefore, each capability node (belonging to
the node group ResCap) is connected to one resource node. The capability K1.n's are in fact
KI.l'S. The ResourceSets may consist of any number of resources, or better, of any number
of capabilities. Each function node may be connected to any number of ResourceSet nodes
(possibly one), and each process requires a function. For each Project, the number of tasks
in it is completely instance dependent. Precedence relations are only possible between tasks
in the same Project.

GRAPH STRUCTURE
capability: ResCap Resource {I}
capability set: ResourceSet ResCap {l,. .. ,oo }
function: Function ResourceSet {l, ... ,oo }
process group: Project Task {l, ... ,oo }
requirement edges: Task Function
precedence arcs: Project general

All processes are non-repetitive. The usage intensity does not apply, because it is not
required in order to describe usage in the capability set attribute. The consumption intensity
does not apply because all resources are renewable. The size attribute of processes, and the
release time, deadline, and due date attributes of Projects and processes may take on any value.
The tasks cannot be preempted.

Only renewable resources occur. A resource cannot be used for different tasks at the same
time. Hence, the capacity is constantly 1, and the usage discretization unit is also 1. The
speed is not determined by individual resources, but only by the resource set as a whole.
Therefore, the speed attribute does not apply. Also, the usage factor and the consumption
factor do not apply.

Since no consumption occurs, the consumption attributes do not apply. The duration is
determined as the quotient of the size attribute of the process and a number representing the
speed of a resource combination that is different for each capability set. Each resource that a
process is assigned to is used during the entire processing interval. The used volume is equal
to one for each resource.

The precedence relations are always of the finish-to-start type. There are no restrictions
on the corresponding time lags.

ATTRIBUTES
process:

resource:

Task type
usage intensity
consumption intensity
release time
deadline
due date

Resource category
number of capabilities
(Res Cap, 1)

speed
usage factor
consumption factor

36

non-repetitive
does not apply
does not apply
[0,00)
[0,00)
[0,00)
renewable
1

does not apply
does not apply
does not apply

capability set: ResourceSet duration

(Res Cap)

a * size
aE(O,oo)

usage interval [start, start + duration]
usage volume 1

process group: Project release time [0,00)
deadline [0,00)
due date [0,00)

precedences: Project time lag [[0,00),[0,00)]

Anthonisse et al. [1] give an example of a problem instance of the RCPS type. The corre­
sponding instance graph is given in Figure 10.

Process
Group Process Function

Capability
Set

Figure 10: The RCPS instance

Capability Resource

o

Example B.4 Jones and Maxwell, [9], discuss factory scheduling problems. In these prob­
lems three kinds of objects occur: processes, inventories, and machines. Processes are per­
formed on one machine and consume and produce the contents of inventories.

In their article, Jones and Maxwell introduce a description method that is based on net­
works. We can describe this problem type with our description method as well.

We introduce three resource node groups. One node group consists of nodes that represent
machines, the other two represent continuous inventories and discrete inventories, respectively.
The reason for introducing two inventory node groups is that different restrictions on the
attribute values can be specified for continuous and discrete inventories.

Since different consumption patterns apply when an inventory serves as input or occurs as
output of a process, for each of both types of inventory two capability node groups are intro­
duced. There are no functions, common resource sets, process groups, and resource groups.

37

NODE GROUPS
process: Process {l, ... ,oo }
resource: Machine {l, ... ,oo }

Contlnventory· {l, ... ,oo }
DiscIn ventory {l, ... ,oo }

capability: MachineType {l, ... ,oo }
Contlnlnv {l, ... ,oo}
ContOutlnv {l, ... ,oo }
DiscInlnv {l, ... ,oo }
DiscOutlnv {l, ... ,oo }

capability set: ResourceSet #(Process)

There may be several machines of a particular type. For each process, the actually required
inventories are completely specified. Hence, the corresponding J(l,n'S connecting capabilities
and resources are simple edges. Each ResourceSet consists of one machine type and an arbi­
trary number of inventories, which can be discrete or continuous, and can serve as input or
occur as output. There are no precedence relations.

GRAPH STRUCTURE
capability:

capability set:

MachineType
Contlnlnv
ContOutlnv
Disclnlnv
DiscOutlnv
ResourceSet

requirement edges: Process

Machine
Contlnventory
Contlnventory
Disclnventory
Disclnventory
MachineType
ContInlnv
ContOutlnv
Disclnlnv
DiscOutlnv
ResourceSet

{l, ... ,oo }
{1}
{1}
{1}
{1}
{I}
{O, ... ,oo }
{O, ... ,oo }
{O, ... ,oo }
{O, ... ,oo }

The time system is again simple. There is only one time unit, and the planning period
can be as small or as large as one wants.

All processes are repetitive processes. The size attribute can take on any value. Jones
and Maxwell introduce a process attribute (Time/Lot) that deals with both the duration of
one repetition and the consumption. In our approach, we enforce the size attribute and the
consumption intensity to take on the same value. The usage intensity does not apply. We
assume that a process may not be interrupted during a repetition, hence the split attributes
have value O. There are no release times, deadlines, and due dates.

Machines are renewable resources, with capacity equal to 1. They may have several ca­
pabilities, all representing a particular MachineType. Since the duration of a process is
uniquely determined by the size of that process, the speed attribute for machines does not
apply. Similarly, usage factor and consumption factor do not apply.

The inventories are non-renewable resources. The resources of the Contlnventory type
have continuous divisibility, the resources of the Disclnventory type have discrete divisibility.
Again, the speed, usage factor, and consumption factor attributes do not apply. The supply
attribute can take on any value.

38

Consumption patterns for the different inventories depend on whether they are discrete or
continuous and on whether they are used as input or as output. The consumed volumes are
determined by dividing a number that is different for each ResourceSet by the consumption
intensity of the process. This number is positive if the inventory is used as input, and negative
if the inventory is used as output. Consumption of the continuous inventories occurs dur­
ing the entire processing period; consumption of discrete inventories occurs at the beginning
(when used as input), or at the end (when used as output), of each repetition.

ATTRIBUTES
process:

resource:

resource:

Process type
usage intensity
consumption intensity

~achine category
number of capabilities
(Machine Type, {1,00.,00})
speed
usage factor
consumption factor

ContInventory category
consumption

divisibility
supply

number of capabilities
(ContIn/nv, 1)
speed
usage factor
consumption factor
(ContOutInv, 1)
speed
usage factor
consumption factor

DiscInventory: category
consumption

supply
number of capabilities
(Disclnlnv, 1)
speed
usage factor
consumption factor
(DiscOutInv, 1)
speed
usage factor
consumption factor

39

repetitive
does not apply
size
renewable
{l, ... ,<X)}

does not apply
does not apply
does not apply
non-renewable

° set) E [0,(0)
2

does not apply
does not apply
does not apply

does not apply
does not apply
does not apply
non-renewable

set) E {O, ... ,<X)}
2

does not apply
does not apply
does not apply

does not apply
does not apply
does not apply

capability set: ResourceSet duration
(Machine)
usage interval
usage volume
(Contlnlnv)
consumption interval
consumption volume

(ContOutInv)
consumption interval
consumption volume

(DiscIn In v)
consumption interval
consumption volume

(ContOutInv)
consumption interval
consumption volume

size

[start, start + duration]
1

[start, start + duration]
a / consumptionintensity
aE(O,oo)

[start, start + duration]
a/ consumptionintensity
a E (-00,0)

[start, start]
a/ consumptionintensity
aE(O,oo)

[start + duration, start + duration]
a/ consumptionintensity
a E (-00,0)

In Appendix A we have already discussed an instance of this problem type. The graph
given in Figure 9 does not fit in the description of the problem type above since it represents a
reduced view. In the complete graph the connections between capability sets and resources are
always established via capabilities. The resource SUB2 would be connected to two capability
nodes, one representing the use of SUB2 as input and one representing the use of SUB2 as
output. MAT2 on the other hand, although also occurring in two capability sets, would be
connected to only one capability node, since it is only used as input. 0

40

