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Abstract 

A planning board is a planning tool that uses the Gantt chart as its main representation 
mechanism. A planning board generator aims at facilitating the development of planning 
boards; using a description of the problem type for which a planning board is to be 
developed and the desired representations and manipulations, the generator automatically 
creates a prototype of the planning board. In this paper we discuss our view of a planning 
board generator and introduce a method to describe problem instances and types. 
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1 Introduction 

A planning board is a planning tool that uses a Gantt chart to represent a plan and provides 
the means to modify the plan by modifying the Gantt chart. A planning board is a useful tool 
in many problem situations. Unfortunately, developing an automated planning board requires 
a lot of time and energy. In addition, all problem situations have their own characteristics 
and require their own specific planning board. 

Our goal is to identify common properties of problem situations for which a planning board 
is useful and to use these properties to develop a planning board generator. Given a description 
of the problem situation for which a planning board has to be developed and a specification 
of the desired representations and manipulations, the generator should automatically create 
an initial version of the planning board. 

The purpose of this paper is twofold. First, we will discuss the main characteristics of a 
planning board generator. Second, we will present description methods for problem instances 
and types. Representations and manipulations will be discussed in a sequel paper. 

In Section 2, we will elaborate on our view of a planning board generator. We will define 
the notion of a plan more precisely and use this notion to determine problem types for which 
planning boards are useful tools. In Section 3, we will introduce a method to describe instances 
of such problem types. This method serves as a basis for our method to describe problem 
types, which will be presented in Section 4. Examples of descriptions of problem instances 
and types are given in Appendices A and B respectively. 
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2 The Planning Board Generator 

As said above, a planning board is a tool that uses a Gantt chart to represent a plan and 
provides the means to modify the plan by modifying the Gantt chart. 

Although the Gantt chart is the primary representation, other representations, such as 
data tables and inventory graphs, can also be incorporated in an automated planning board. 
Various representations of instances and plans may provide a better understanding of the 
problem being solved. However, a planning board should also provide the means to manip­
ulate these representations, so as to enable us to create and modify plans. The notion of 
manipulation should be interpreted broadly. For a machine scheduling problem, for example, 
manipulations could move a task from one machine to another as well as compute an optimal 
schedule for a machine given the tasks that are currently assigned to it. In the terminology in­
troduced by Anthonisse et al. [2] with respect to interactive planning systems, manipulations 
cover the entire spectrum from assistant functions to advisor functions. 

Together, representations and manipulations provide a powerful tool that is useful for a 
large class of problem types. However, each problem type requires its own sets of represen­
tations and manipulations. In fact, each problem type requires its own planning board. A 
planning board generator (PBG) aims at facilitating the development of planning boards. 

2.1 The Planning Board 

On a Gantt chart the horizontal axis represents some time interval, the vertical axis represents 
resources, and rectangles on the chart represent assignments of processes to resources and time 
intervals. 

.5 0 

~ PI 

~ P4 P6 

~ P7 I Pg P9 

R4 PIO PII 

Figure 1: A Gantt chart 

An example of a Gantt chart is given in Figure 1. There are twelve processes, P}, ... ,P12, 

and four resources R1 , ... ,R4 • Each process is assigned to some time interval and to one of the 
resources. For example, process P6 is assigned to resource R2 and the time interval [11,17]. 

A large part of this paper is concerned with identifying problem types for which a planning 
board is a useful tool, and with developing a method to describe these problem types. To be 
able to do so, we start with formalizing the notions of plan and planning board. 

A plan is an assignment of processes to resources and time intervals. 
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The notions resource and process will be discussed in more detail in Section 3.3. For 
the time being, it is sufficient to relate the term process to the objects represented by the 
rectangles in a Gantt chart, and the term resource to the objects that are represented on 
the vertical axis of the chart. Note that the Gantt chart representation plays a role in the 
definition: we assign processes to resources, rather than resources to processes. 

A planning boardis a tool for developing plans, which uses the Gantt chart as a representation 
mechanism. 

A single Gantt chart cannot represent all aspects of real-life problems, because of the 
multi-dimensional character of such problems. A planning board should therefore be able to 
provide several Gantt chart representations, with different resources along the vertical axes, 
as well as other representation mechanisms, like data tables and inventory graphs. In order 
to develop a plan, the user of a planning board must be offered the possibility to perform 
several kinds of manipulations. 

2.2 The Planning Board Generator 

We aim at the following situation. A planner has to develop plans for a number of instances of 
the same problem type. He thinks that a planning board may be a helpful tool. He therefore 
asks a planning board designer to build a planning board for that specific problem type. The 
designer asks for the characteristics of the problem type, the desired representations, and the 
required manipulations. The designer activates the planning board generator to process this 
information and to produce an initial version of the planning board. 

PBG 
problem 

type 

designer 

planning problem 
board instance 

planner ) 

plan 

Figure 2: Functionality of the planning board generator 

This situation is depicted in Figure 2. The designer uses the PBG to construct a planning 
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board for a specific problem type. The planner uses this planning board to develop plans for 
various problem instances. 

A planning board can handle all instances of a certain problem type. A PBG can construct 
planning boards for a set of problem types. This set will be called the general problem class. 
In the next sections, we discuss the description of problem instances and problem types within 
the general problem class. 

2.3 Related Research 

The role of decision support systems and, more specifically, graphical interfaces in solving 
planning problems has been widely discussed in the literature (see e.g., Anthonisse et al. 
[2], Fisher [4], Hurrion [7]). Furthermore, planning boards have been developed for a wide 
range of problem situations including course scheduling, ship scheduling, timetabling, job­
shop scheduling, and production scheduling (e.g., Fisher et al. [5], Moreira and Oliveira [12], 
Viviers [13]). In most cases these planning boards are equipped to handle a small and well­
specified class of problem instances. More relevant and more closely related to our research 
are systems that have been developed in order to deal with a broader class of planning 
situations and offer wider possibilities for problem description. Examples of such systems are 
the systems developed by Jackson et al. [8], Jones and Maxwell [9], and Woerlee [14]. These 
systems differ from our PBG in that they are developed for a particular application area; 
material logistics, manufacturing scheduling, and production scheduling respectively. With 
our PBG, we do not restrict ourselves to a particular application area, but we focus on the 
underlying general problem structure: processes must be assigned to resources over time. This 
general structure allows the use of the same representation mechanism (e.g., Gantt charts) 
and similar manipulations for problems in completely different application areas. Therefore, 
we think that this general problem structure can be exploited effectively to facilitate the 
development and implementation of planning boards for these application areas. 

Although it is not concerned with planning tools that use the Gantt chart as main repre­
sentation mechanism, the graph-based modeling system (GBMS) of Jones [10] is conceptually 
very similar to our PBG. Both the GBMS and the PBG aim at facilitating the development 
of user interfaces for interactive systems. In a GBMS, attributed graphs are used as repre­
sentation mechanism. The created interface is called an instance editor. An instance editor 
enables a modeler to add and delete nodes and edges in order to construct a graph of the 
appropriate type. In a GBMS, the designer specifies a graph type and the manipulations 
that can be performed on graphs of that type. This specification is sufficient to automatically 
generate an instance editor for graphs of that type. Using a similar terminology, one can say 
that a planning board enables a planner to perform manipulations on (representations of) 
plans in order to construct a solution to a problem of the appropriate type. In our setting, the 
designer specifies a problem type and the desired representations and manipulations. From 
this specification, the PBG automatically constructs a planning board for instances of this 
type. 

An important difference between a GBMS and a PBG is the representation mechanism 
that is used, attributed graphs versus Gantt charts. Another important difference relates to 
the way in which a graph type or problem type and the corresponding sets of manipulations 
are described. 

Jones's GBMS allows the designer to create his own types of nodes and edges, each with 
its own set of attributes. Also the manipulations can be developed by the designer. Although 
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this bottom-up approach gives the designer a lot of freedom, it also requires knowledge of the 
relatively unfamiliar theory of graph-grammars. 

For our PBG, in contrast, we apply a top-down approach. There exists a general problem 
class, of which all problem types that the PBG can handle are special cases. The designer 
of a planning board can describe his particular problem type by specifying the appropriate 
subclass of the general problem class. Similarly, a set of possible manipulations is given, from 
which a planning board designer chooses a subset. The designer in a GBMS, on the other 
hand, must specify the desired node types and edge types, as well as the desired manipulations, 
from scratch. 

The advantage of this top-down approach is that the implementation of the PBG can 
be specifically equipped to deal. with the allowed problem types only, thus yielding a more 
effective and efficient system. Furthermore, it has enabled us to develop a description method 
that exploits the common structural properties of the problem types, in contrast to the use 
of graph grammars, which are more generally applicable. 

A disadvantage is that we cannot obtain full generality. Our PBG is restricted to the 
general problem class. However, we have tried to keep this class as general as possible indeed, 
only leaving problem types for which planning boards are not useful out of consideration. 

This paper focuses on a description method for problem instances and a description method 
for problem types. Therefore, it is interesting to compare its capabilities with those of existing 
classification schemes, for example for machine scheduling problems (e.g. French [6], and 
Lawler et al. [11]). These classification schemes typically use a fixed number of parameters, 
each describing a particular problem characteristic. Since such a parameter can only specify 
a characteristic of all the instances of the problem type, these classification schemes do not 
offer the flexibility that we need in a description method that is to be used in a PBG that 
can handle a wide range of application areas. Consider a problem type in which there are two 
kinds of processes, the first kind possessing deadlines but no release times, the second kind 
possessing release times but no deadlines. The existing classification schemes only allow us to 
specify that all processes may possess release times and deadlines. The description methods 
presented in this paper do offer the possibility to describe such a problem type correctly. It is 
worth noting that the translation of a problem type description in terms of one of the existing 
classification schemes into a description using our method can usually be done quite easily. 
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3 Problem Instances 

The designer of a planning board has to provide the PBG with information on the problem 
type, the desired representations, and the desired manipulations. The user of a planning 
board has to provide the planning board with a specific problem instance. In this section, we 
introduce a description method for problem instances. In Section 4, it will serve as a basis for 
our description method for problem types. Examples of instances described with our method 
are given in Appendix A. 

3.1 An Overview of the Description Method 

The instance description method has been developed with the following objectives in mind: 

1. It should be possible to describe instances of all problems for which we feel that a 
planning board provides a useful tool. In fact, the method will implicitly define a 
general problem class. Note that this class should be fairly large for a PBG to be of 
any interest. 

2. The instance description method must form the basis of a type description method. 
It should therefore be possible to specify subclasses of the general problem class by 
identifying the typical properties of problem instances within such subclasses. 

3. It should be possible to use the description of an instance to efficiently perform some of 
the tasks of a planning board, such as verifying feasibility of assignments and providing 
information on various aspects of a plan. 

We have tried to achieve these objectives by using a widely applicable and well-studied 
paradigm, namely attributed graphs, and by stressing the common structural properties of 
the problems. 

Attributed graphs are widely used as a mechanism for describing many kinds of models 
in different fields of research, from sociology to chemistry. It is therefore not only a mech­
anism that many people are familiar with, but also one that has proven to be very flexible. 
Furthermore, there exists a massive theory on problems related to graphs, which we can use. 

All problems for which a planning board is useful deal with assignments of processes to 
resources and time intervals. Therefore it must be possible to describe the characteristics 
of the processes and the resources that occur in the instance as well as the time system. 
Furthermore, it must be possible to describe relations between processes, between resources, 
and between processes and resources. The most important relation that has to be described 
is which assignments of processes to resources are feasible and which are not. 

The attributed graph associated with an instance will be called an instance graph. The 
instance graph must be able to represent a variety of situations, e.g., a process that can 
be performed on any resource out of a set of resources, a process that requires a specific 
combination of resources, and a process that can be performed on any combination of resources 
out of a set of possible combinations of resources. 

The core structure of the instance graph describes the feasible assignments of processes to 
resources. Each process and each resource are represented by a node. For each possible choice 
of resources and each possible combination of resources an auxiliary node is introduced that 
is connected to the objects involved and thus forms a J(l,n where n is the number of objects 
involved. 
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Several other relations between objects can be described by graph constructs as well. 
Binary relations, i.e., relations involving exactly two objects, can be modeled by an edge or 
an arc. For example a precedence relation indicating that one process has to be performed 
before an other one. n-Ary relations, i.e., relations involving a set of n objects (n > 2), can 
be modeled by a K1,n' 

Not all aspects of problem instances can be represented in terms of nodes, arcs, and 
edges. These aspects can be divided into two categories: properties of individual objects, and 
properties of assignments. Examples of the first category are the sizes of the processes, the 
capacities of the resources, and the length of the planning period. These properties will be 
described as attributes of the corresponding nodes, or as attribute of the time system. An 
example of the second category is the processing time of a process when it is assigned to a 
particular combination of resources. In order to describe these kinds of properties, attributes 
of appropriate auxiliary nodes are introduced. 

Before we discuss the various elements of the instance graph, we will spend some time on 
the key elements of plans: time, processes, and resources. 

3.2 Time 

Time plays an important role in planning boards. The way in which time occurs is different 
for different problems. For a timetabling problem for schools, the planning period may cover 
five days consisting of eight hours, with an hour being the smallest time unit, whereas for a 
machine scheduling problem, the planning period may be one working day of 12 hours, with 
a minute being the smallest time unit. For flexibility purposes we allow the introduction of a 
time system for each problem instance. This time system consists of time units on different 
levels. The smallest time unit is described in the first level, the second smallest time unit 
in the second level, etc. For the jth time unit also the conversion factor with respect to the 
(j-l)st time unit is given. For example, a planning period covering one week, with one second 
being the smallest time unit, is described in the following way. 

number of levels: 5 

Levell 

unit name: second 

level 2 

unit name: minute 
conversion factor: 60 

level 3 
unit name: hour 
conversion factor: 60 

level 4 
unit name: day 
conversion factor: 24 

level 5 

unit name: week 
conversion factor: 7 

planning period: 1 week 
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3.3 Resources and Processes 

3.3.1 Resources and their attributes 

Depending on the application, a resource can be almost anything. In a production planning 
application, personnel, money, raw materials, and machines may all be resources. In a time­
tabling application for a school, the resources may be classrooms and teachers. 

An important concept related to resources is that of a capability. A resource may possess 
several capabilities, i.e., it may be able to perform various tasks. A mechanic may be qualified 
to change oil and to repair brakes. A teacher may be qualified to teach mathematics as well 
as physics. 

Although a resource may be able to perform different tasks, some set-up or change-over 
may be necessary before a particular task can be performed. Such a set-up brings the resource 
in the required mode. The corresponding set-up time can be either sequence dependent or 
sequence independent. In the first case, the set-up time is completely determined by the 
required mode. In the second case, the set-up time depends on the current mode of the 
resource and the mode that is required. The concept of mode is differ~nt from the concept 
of capability. A sawing machine may possess only one capability, the capability sawing, but 
several modes, one for each possible size of an object that can be sawn. 

Most resources are not free commodities. Their utilization by some process will affect 
the possibilities for utilization by other processes. Quantities related to the utilization of a 
resource are usage and consumption. 

The usage of resource R by process P at time t is a quantity that indicates to what extent 
R is occupied by P. The total usage of R at time t, i.e. the sum of the usage of all processes 
assigned to R at time t, is limited by the capacity of R at time t. 

The consumption of resource R by process P during a time interval [tb t2] is a quantity 
that indicates to what extent R is consumed by P during that interval. The total consumption 
of R up to time t*, i.e. the sum of the consumption of R up to t* over all processes assigned 
to R, is limited by the supply of R up to t*. 

Based on the different kinds of utilization the following distinction between resources can 
be made (see also [3]): 

• Renewable resources: Resources for which only their total usage at every moment is 
constrained. An example of such a resource is a painting machine, which can paint all 
day but no more than one object at the same time. 

• Nonrenewable resources: Resources for which only their total consumption up to any 
given moment is constrained. An example of such a resource is finances. 

• Doubly constrained resources: Resources for which both total usage and total consump­
tion are constrained. An example is personnel. An employee can perform only a limited 
number of tasks at the same time and can perform these tasks only during a limited 
number of man hours. 

Usage and consumption can both occur in either continuous or discrete quantities. A 
painting machine may be able to paint up to ten objects at the same time. Its capacity then 
is ten units, and the assignment of a painting job to this machine implies a usage of one unit. 
It is impossible to paint half objects, and therefore usage, in this case, is a discrete quantity. 
The storage capacity of a truck, in contrast, can be used in continuous quantities. With 
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respect to consumption, fuel will be consumed in continuous quantities, but in assembling a 
car steering wheels will be consumed in discrete quantities. 

Mostly, usage and consumption will be modeled as one-dimensional quantities. Multi­
dimensionality, however, is possible. For an employee there may exist a limit on the number 
of hours per day he may work (e.g. 10 hours) as well as a limit on the number of hours per 
week (e.g. 40 hours). This cannot be modeled by supplies that replenish the 'hours-inventory' 
to 10 at the beginning of each day, because the week-limit may then be exceeded. By modeling 
consumption and supply as two-dimensional quantities we can solve this problem. Another 
example of two-dimensional usage is found in transportation problems, where the usage of a 
truck is limited with respect to volume as well as weight. 

The capacity and supply of a resource may change during the planning period as a result 
of instance-dependent and plan-dependent factors. For example, during a certain period the 
capacity of some machine may be smaller than normal because of maintenance, or the supply 
of some half-product will increase at the moment that a process that represents the production 
of that half-product is completed. Instance-dependent changes in capacity and supply will be 
modeled in terms of attributes of the resources. Plan-dependent changes in the supply of a 
resource will be modeled as (possibly negative) consumption of that resource. Similarly, the 
available capacity of a resource is reduced when it is used by a process, and it is increased 
again as soon as that process is completed. 

A resource that possesses several capabilities may have different performance levels with 
respect to these different capabilities. The aforementioned mechanic may be very fast in 
changing oil, but he may be very slow when it comes to repairing brakes. In order to handle 
such differences, resource characteristics related to speed, usage, and consumption have to be 
specified for each of its capabilities. 

A resource node has the following attributes: 

name: A name that uniquely identifies the resource. 

availability periods: A set of time intervals specifying the time periods during which the 
resource is available. 

category: An indicator that specifies the type of resource, i.e., Renewable, Nonrenewable, or 
Doubly Constrained. 

number of modes: A natural number. For each mode the following must be specified: 

name: A name that uniquely identifies the mode. 

set-up time: A function of the status of the resource, i.e., the active mode, that com­
putes the set-up time that is needed to bring the resource into this mode. 

usage: This attribute consists of three sub-attributes. 

divisibility: An indicator that specifies whether usage of the considered resource is 
modeled as a continuous or as a discrete quantity. In case usage is continuous the 
value is 0 and in case usage is discrete the value is the discretization unit. 

dimension: A natural number representing the dimension of usage of the considered 
resource. 

capacity: A function of time, describing the plan-independent capacity. 
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consumption: This attribute consists of three sub-attributes. 

divisibility: An indicator that specifies whether consumption of the considered resource 
is modeled as a continuous or as a discrete quantity. If consumption is continuous 
the value is 0 and if consumption is discrete the value is the discretization unit. 

dimension: A natural number representing the dimension of consumption. 

supply: A function of time, describing the plan-independent supply. 

number of capabilities: A natural number. For each capability the following must be specified: 

name: A name that uniquely identifies the capability. If different resources possess the 
same capability, the same name must be used when referring to this capability. 

speed: A real number that is used to determine the duration of a process when that 
process is assigned to this resource. It is not necessarily equal to the actual speed 
of the resource, as will be illustrated in Section 3.4.4. 

usage factor: A real number that is used to determine the usage of the resource when 
a process is assigned to this resource. If this resource is used in combination with 
other resources, then this attribute is also used to determine the usage of those 
resources. In Section 3.4.4 we will discuss the use of the usage factor extensively. 

consumption factor: A real number that is used to determine the consumption of the 
resource when a process is assigned to this resource. If this resource is used in 
combination with other resources, then this attribute is also used to determine the 
consumption of those resources. In Section 3.4.4 we will discuss the use of the 
consumption factor extensively. 

The usage attribute is only specified for renewable and doubly constrained resources, the 
consumption attribute only for non-renewable and doubly constrained resources. These at­
tributes represent plan-independent properties of a resource. Usage and consumption only 
occur during the time intervals in which processes are assigned to that resource, and the used 
and consumed amounts will be different for different processes. It is therefore not possible 
to model usage and consumption in terms of resource attributes. Furthermore, actual usage 
and consumption may occur only during part of the total processing time. For example, a 
production run may require a machine for the entire period, whereas it may require an em­
ployee to start the machine only for the first five minutes of the period. Similarly, the entire 
required amount of raw materials may be consumed at the beginning of the process, whereas 
fuel may be consumed at a constant rate during the processing period. The specification of 
these usage and consumption patterns will be discussed in Section 3.4.4. 

3.3.2 Processes and their attributes 

A process can be anything that must be assigned to a set of resources and a time interval in 
order to obtain a feasible plan. In a timetabling problem for a school, the processes may be 
the lessons that must be assigned to teachers, class-rooms, and time intervals. In a machine 
scheduling problem, the processes are the tasks that must be assigned to machines and time 
intervals. 

We distinguish two kinds of processes: repetitive and non-repetitive processes. A non­
repetitive process is performed only once. A repetitive process can be performed an arbitrary 
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number of times; the number of repetitions is determined by the planner by specification of 
the processing interval. 

A process node has the following attributes: 

name: A name that uniquely identifies the process. 

type: An indicator that specifies the type of process, i.e., repetitive or non-repetitive. 

mode: An indicator that specifies the mode in which the resource to which the process is 
asigned has to be. 

size: A real number that is used to determine the duration of the process in case of a non­
repetitive process, or to determine the length of one repetition in case of a repetitive 
process. 

usage intensity: A vector that is used to determine the usage of the resource( s) that the 
process is assigned to. 

consumption intensity: A vector that is used to determine the consumption of the resource(s) 
that the process is assigned to. 

release time: A point in time before which the process cannot be performed. 

deadline: A point in time after which the process cannot be performed. 

due date: A point in time by which the process preferably should be completed. 

split: An indicator that specifies whether the process may be preempted or not. It has value 
o if the process, once started, cannot be interrupted, 1 ifthe process may be temporarily 
stopped and later resumed using the same resources, and 2 if the process can also be 
resumed using other resources. 

3.4 Describing Feasible Assignments 

In this section, we discuss requirement relations. Requirement relations are relations between 
processes and resources indicating which resources can be used to perform a process. We 
take an incremental approach in describing requirement relations. We start with simple 
requirements, i.e., processes requiring a single capability, and continue with more complicated 
requirements, i.e., processes requiring combinations of capabilities and processes requiring one 
of several combinations of capabilities. At the end of this section we will discuss how aspects 
related to feasible assignments such as duration, set-up times, usage, and consumption are 
modeled. 

3.4.1 Processes requiring a single capability 

A process that requires a specific capability can be assigned to any resource that possesses that 
capability. In fact, a choice has to be made between all resources that possess the required 
capability. Such a choice is modeled by a J(l,n, in which the auxiliary node, the capability 
node, is connected to all nodes representing resources that possess the considered capability. 
For each capability that is required by some process, a capability node is introduced, and the 
associated J(l,n is formed. The requirement relation is modeled by an edge connecting the 
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process node and the capability node that represents the required capability. 

A capability node has only one attribute: 

name: The name uniquely identifies the capability. It must be the same as the name, given 
as a resource attribute, of the capability it represents. 

An example is given in Figure 3. Processes PI and P2 require capability ell which is 
possessed by resources Rt and R2• Process P3 requires capability C2 , which is possessed by 
resources R2 and R3. 

Process Capability Resource 

Figure 3: Processes requiring a single capability 

3.4.2 Processes requiring a combination of capabilities 

In many problems, performing a process requires the use of a combination of resources, or, 
better, a combination of capabilities. Both paint and a painter are needed to paint an object. 
Lessons cannot be taught unless a teacher and a classroom are available. Such a combination 
of capabilities is again modeled by a KI,n' The auxiliary node, the capability set node, is 
connected to all capability nodes representing the required capabilities. If a process requires 
a particular combination of capabilities, this is modeled by introducing an edge connecting 
the process node and the corresponding capability set node. The process can be performed 
by any combination of resources that possesses all capabilities in the capability set. 

Note that, although any combination of capabilities may be considered a capability set, 
only those combinations that are actually required by the processes are of interest. 

A capability set node has several attributes. However, most of them will be introduced 
when we discuss duration, consumption, and usage in more detail. Here, we only introduce 
one attribute: 

name: A name that uniquely identifies the capability set. 

An example of requirement relations dealing with capability sets is given in Figure 4. 
Processes PI and P 2 both require a resource possessing the capability C1 and a resource pos­
sessing capability C3. The resource combination {Rt, R4 } would satisfy these requirements. 
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Process P3 requires a resource with the capability C2 and a resource with the capability C3 • 

The combination {R3' ~} is feasible. The combination {R2' ~} is feasible for all three 
processes. 

Process 
Capability 

Set Capability Resource 

Figure 4: Processes requiring a combination of capabilities 

3.4.3 Processes requiring one of several combinations of capabilities 

Sometimes, a process does not require a specific combination of capabilities, but one of several 
alternative capability sets. In such a case, we say that the process requires a particular 
function. This is modeled by a KI,n, in which the auxiliary node, the function node, is 
connected to all capability set nodes between which a choice can be made. If a process 
requires a function, a choice between the associated capability sets is to be made. The 
process then can be performed by any set of resources that possesses all capabilities in the 
chosen capability set. 

Functions may be useful for production problems in which different production modes 
occur, which imply the possible use of totally different resources, e.g. production by hand or 
by machine. 

A function node has only one attribute: 

name: A name that uniquely identifies the function. 

An example of requirement relations with functions is given in Figure 5. Processes PI and 
P2 both require function FI , implying that they must be performed by resources possessing 
the capabilities in capability set CSI or by resources possessing the capabilities in CS2. 

In summary, three different types of KI,n's may occur in the subgraph representing the 
requirement relations. The auxiliary nodes are the capability nodes, the capability set nodes, 
and the function nodes, respectively. The first KI,n represents a choice relation between 
resources possessing the same capability. The second states that a particular combination 
of capabilities is required. The third again represents a possibility for choice, now between 
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Process Function 
Capability 

Set Capability Resource 

Figure 5: Processes requiring one of several combinations of capabilities 

several capability sets. Each process node is connected, via a requirement edge, to either a 
capability node, or a capability set node, or a function node. 

3.4.4 Duration, set-up times, usage, consumption 

The subgraph representing the requirement relations enables us to identify for each process 
the resources to which it can be assigned. Given such an assignment, we want to determine 
the following (assuming that the considered process is non-repetitive): 

• The set-up times required to bring the resources in the correct modes. 

• The duration of the process: the time to complete the process. Together with the 
starting time of the process, the duration determines the processing interval. 

• The usage pattern of each resource that is used: the time interval within the processing 
interval during which the process occupies the resource and the amount of the resource 
that is occupied by the process during this time interval. 

• The consumption pattern of each resource that is consumed: the time interval within the 
processing interval during which the process consumes the resource and the amount of 
the resource that is consumed by the process during this time interval. We will assume 
that consumption takes place at a constant rate. Instantaneous consumption can be 
modeled by specifying an infinitesimal time interval. 

In case of repetitive processes, a set-up is only performed at the beginning of the first 
repetition, and the duration corresponds to the length of one repetition. We will assume that 
the usage and consumption patterns will be the same for every repetition. If, for example, 

14 



at the beginning of a repetition a certain amount of raw materials is consumed, the same 
amount will be consumed at the beginning of all other repetitions. 

The set-ups are much easier to deal with than duration, usage and consumption, because 
the set-up time of a particular resource does not depend on the other resources that are used. 
Given an assignment of a process to a combination of resources, for each of those resources 
the set-up time can be computed using the mode attribute of the process and the set-up 
attribute of the considered resource. The duration of the process, as well as the usage and 
the consumption of a specific resource, may depend on all the resources that occur in the 
assignment. For example, when a process requires a machine and fuel, the consumption of 
fuel will not only depend on the process but also on the machine that is actually used. 

When a process requires a single capability, duration, consumption, and usage can easily 
be determined. The duration of the process is computed as the quotient of the size attribute 
of that process and the speed attribute of the resource it is assigned to. The interval during 
which any consumption or usage occurs is equal to the processing interval. The consumed 
amount is computed as the product of the consumption intensity attribute of the process and 
the consumption factor attribute of the resource, and the used amount is computed as the 
product of the usage intensity and the usage factor attributes. 

The situation is more complicated when a process requires a combination of capabilities. 
In order to deal with these complications, we introduce several attributes for the capability 
set nodes. The first deals with the duration of the process. 

duration: A function of the size attribute of the process and the speed attributes of the 
resources that computes the duration, i.e., 

where 80 is the value of the size attribute of the process, n is the number of capabilities 
in the capability set, and 8i (i = 1, .. , n) is the value of the speed attribute of the resource 
possessing capability i. 

Suppose the capability set consists of the capabilities machine, employee, and material. 
Let 80 be the size attribute of the process, and let 81,82, and 83 be the speed attributes of 
the machine, the employee, and the raw material, respectively. If the speed is completely 
determined by the speed of the machine, the following duration function is used: 

If the ability of the employee to work with that machine plays a role, the duration function 
may be something like 

where V = {Vij} is some predefined matrix, Vij being the speed at which a process is performed 
when the value of the speed attribute of the used machine is i and the value of the speed 
attribute of the used employee is j. Note that in this case the speed attributes do not reflect 
the actual speed of the resources, but are merely indices used to extract the correct values 
from a matrix. 

For each capability in the capability set, the following two attributes are specified in order 
to describe the usage pattern. 
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usage interval: A function of the starting time and the duration of the process that computes 
the time interval during which usage of the resource possessing the considered capability 
takes place, Le., 

[tt, t2] == tu( start, duration). 

usage volume: A function of the usage factor attribute of the process and the usage intensity 
attributes of the resources that computes the volume used, Le., 

where it!. is the value of the usage intensity attribute of the process, n is the number 
of capabilities in the capability set, and It (i == 1, .. , n) is the value of the usage factor 
attribute of the resource possessing capability i. 

Let us again consider the example with the capability set consisting of the capabilities 
machine, employee, and material. Some machines require an employee during the first five 
minutes for starting it up, whereas others do not. This can be modeled by assigning a value 
of 1 to the usage factor attributes of the machines that do require an employee (Ii = 1), and 
a value of 0 to those that do not (Ii = 0), and by applying the following usage pattern: 

tu(start,duration) = [start, start + 5], 

Vt!. ( i U 
, Ii, 12 , 1;) = Ii· 

For each capability in the capability set, the following two attributes are specified in order 
to describe the consumption pattern. 

consumption interval: A function of the starting time and the duration of the process that 
computes the time interval during which consumption of the resource possessing the 
considered capability takes place, i.e., 

[h, t2] = tc(start, duration), 

where start is the starting time of the process, and duration is the value computed by 
the function found in the duration attribute described above. 

consumption volume: A function of the consumption factor attribute of the process and the 
consumption intensity attributes of the resources that computes the volume consumed, 
i.e., 

vc(iC
, If,···, I~), 

where i C is the value of the consumption intensity attribute of the process, n is the 
number of capabilities in the capability set, and Jr (i = 1, .. , n) is the value of the 
consumption factor attribute of the resource possessing capability i. 

Suppose the capability set again consists of the capabilities machine, employee, and ma­
terial, and let the material capability be the only one that is possessed by non-renewable 

16 



resources. If a process consumes a fixed amount of the material at a constant rate during the 
entire interval, the consumption pattern for the material capability is as follows: 

tc(start,duration) = [start,start + duration], 

( .c I C fC IC) ·c Vc t, 1, 2' 3 = t , 

where the value of the consumption intensity attribute (iC) equals the fixed consumed amount. 
The attributes of the capability sets allow us to describe complex consumption and usage 

patterns for a large variety of problems. Obviously, assigning the correct values to the different 
process and resource attributes is important. Sometimes it may be necessary to assign to, for 
example, the speed attribute of a resource, a value that has little to do with the actual speed 
of that resource. 

Example 3.1 We consider the problem of making coffee, more specifically the capability set 
MakeCoJJee consisting of the capabilities CoJJeeMachine, Filter, GroundBeans, Water, and 
CoJJee. 

There are two resources that possess the capability CoJJeeMachine. Machine A can make 
one liter of coffee in 15 minutes, machine B does it in 10 minutes. Making one liter of coffee 
requires 0.10 units of GroundBeans, consumed at the beginning of the processing interval, 
and 1 liter of water, consumed gradually during the entire processing interval. Independently 
of the amount of coffee to be made, one filter is required, consumed at the start. 

If we want to perform the process O.8CoJJee, making 0.8 liter of coffee, we model this by 
assigning the value 0.8 to the consumption intensity attribute as well as to the size attribute 
of the process. 

Furthermore, we assign the values 4/60 and 6/60 to the speed attributes of resource A and 
B respectively, and use one minute as time unit. 

The attributes of the capability set MakeCoJJee then are: 

duration: size / CoJJeeMachine.speed 

(CoJJeeM achine) 

usage interval: [start, start + duration] 

usage volume: 1 

(Filter) 

consumption interval: [start, start] 

consumption volume: 1 

(GroundBeans) 

consumption interval: [start, start] 

consumption volume: consumption intensity *0.10 

(Water) 
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consumption interval: [start, start + duration] 

consumption volume: consumption intensity 

(Coffee) 

consumption interval: [start, start + duration] 

consumption volume: - consumption intensity 

3.5 Other Relations Between Objects 

o 

Specifying the requirement structure, Le., specifying for each process the combinations of 
resources it can be assigned to, is only part of the description of a problem instance. Usually 
various other relations exist between processes and resources. Many of these can easily be 
described in the instance graph. 

3.5.1 Precedence relations 

A precedence relation indicates that the set of allowed start and completion times of some 
process depends on the start or completion time of some other process. Precedence relations 
are binary relations that can be represented by arcs between process nodes in the instance 
graph. We distinguish four types: 

• finish-to-start: Process A must be completed before process B is started; 

• start~to-start: Process A must be started before process B is started; 

• start-to-finish: Process A must be started before process B is completed; 

• finish-to-finish: Process A must be completed before process B is completed. 

A time-lag may be associated with each of the four types of precedence relations. For example, 
a finish-to-start relation can be stated as 'process A must be completed at least 10 minutes 
before process B starts.' 

The attributes of precedence arcs are: 

type: Either finish-to-start, or start-to-start, or start-to-finish, or finish-to-finish. 

time lag: The minimum and maximum allowed time lag. 

3.5.2 Common resource relations 

A set of processes may be related because they have to be processed on the same set of 
resources. Such an n-ary relation is described as a /(l,n; the auxiliary node is the common 
resource set node. 

The attribute of the common resource set node is: 

name: A name that uniquely identifies the common resource set. 
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In case of a common resource relation between several processes, there is no need for individual 
requirement edges. Instead the requirement edge will connect the common resource set node 
to a capability Node, a capability set node, or a function node. In this light, the common 
resource relation can be seen as an obligation relation, in contrast to the choices represented 
by functions and capabilities. As soon as one of the processes in a common resource set 
is assigned to a particular resource combination, all other processes in that set have to be 
assigned to the same resource combination. 

3.5.3 Process group relations 

A set of processes may be related for some other reason than common resources. Such an 
n-ary relation is represented by a K l,n ; the auxiliary node is the process group node. For 
instance, the notion of a job in machine scheduling problems can be modeled as a process 
group. 

The attributes of the process group node are: 

name: A name that uniquely identifies the process group. 

release time: No process in the process group can be performed before its release time. 

deadline: No process in the process group may be completed after its deadline. 

due date: All processes should preferably be completed by their due date. 

exclusion: If this attribute has the value true, then no two processes in the process group 
may be performed at the same time. 

Note that release time, deadline, and due date can be specified for all processes in a process 
group separately, but even when the exclusion attribute has the value false, the introduction of 
a process group can be useful for emphasizing characteristic structures in problem instances. 

3.5.4 Resource group relations 

Similarly to process groups, resource groups can be used to emphasize certain relations be­
tween resources. The introduction of resource groups imposes no additional restrictions on 
the set of feasible plans. 

The attribute of the resource group node is: 

name: A name that uniquely identifies the resource group. 

3.6 Extensions 

In the previous sections, we have shown that it is possible to describe many different aspects 
of the problem instances that we are interested in by using attributed graphs. The combined 
use of graph elements and attributes has enabled us to deal with such diverse problem char­
acteristics as precedence constraints, resources possessing the same capabilities, and complex 
consumption patterns. Our general problem class, i.e., the class of problem types of which 
instances can be described with our method, includes a large variety of problems that are 
of theoretical or practical interest. However, there still exist many problem instances that 
currently cannot be described. This is not a consequence of the lack of expressive power of 
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attributed graphs, but it is a consequence of the selection criteria that we have applied with 
respect to the problem characteristics that we wanted to be able to describe. These selection 
criteria have been chosen somewhat arbitrarily. The main goal of our research is to show 
that it is possible to develop a PBG that can generate planning boards for a relatively large 
class of problem types. Therefore, our description method must be able to deal with a fairly 
large class of interesting problem types. Both the notions 'fairly large' and 'interesting' are 
subjective, but we think that they do apply to the general problem class that is induced by 
our description method. 

3.7 Views of the Instance Graph 

In the sections above, we have discussed the various components that can be used to describe a 
problem instance by an instance graph. The specification ofthe nodes, arcs, edges, and KIln'S 

with their associated attributes results in an instance graph that represents all information 
about the problem instance under consideration. During the planning process, a planner may 
want to view parts of this information. If he wants to make an assignment for a particular 
process, he may be interested in the set of resources to which the considered process can be 
assigned, or he may want to know which other processes have a precedence relation with the 
considered process. This kind of information can easily be obtained because it corresponds 
to relatively small subgraphs of the instance graph. Such a subgraph will be called a view of 
the instance graph. Many views can be defined. A few examples follow below. 

Figure 6: A precedence view 

Assignment view: This view presents for a set of processes the resources to which it can 
be assigned, i.e., all the paths originating from one of the processes and ending at a 
resource. Examples of this view have already been given in Figures 3 to 5. 

Process view: This view presents for a set of processes the process groups and common 
resource sets to which they belong. 

Resource view: This view presents for a set of resources the resource groups and capabilities 
to which they belong. 
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Precedence view: This view presents for a set of processes the precedence relations between 
them. An example is given in Figure 6. The arc from node B to node C implies that 
process B must be started at least 5 time units and at most 20 time units before process 
C is started. 

A view is a convenient mechanism to present parts of the information embedded in the 
instance graph. Note that it is possible that a view contains some redundancy. For example, 
when a particular capability is possessed by only one resource, the corresponding capability 
node can be considered as redundant. By connecting the process, common resource set, 
function, and capability set nodes that are connected to that capability node, directly to the 
corresponding resource node, a view can be reduced to a smaller, possibly more insightful one. 
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4 Pro blem Types 

In general, planning boards are not developed as a tool for solving one particular problem 
instance, but as a tool for solving a set of problem instances with similar characteristics. 
We will use the term problem type to refer to a set of problem instances satisfying certain 
conditions. The general problem class, i.e., the set of all problem types of which instances 
can be described by the instance description method, is a problem type itself. 

A PBG requires information about the problem type for which a planning board has to be 
generated and information about the desired representations and manipulations. Information 
about the desired manipulations could be something of the following sort: the planning board 
must support the reassignment of a process. If at a given moment process A is assigned to 
resource Rl with start time tt, the user should be able to reassign process A to resource R2 
with start time t2' It should be obvious that the implementation of such a manipulation will 
depend on the problem type. For a problem type in which all resources are available during 
the whole planning period, checking the feasibility of a reassignment is much easier than for 
a problem type in which the resources are only available during certain time intervals. 

In fact, the main purpose of the description of the problem type is to provide the neces­
sary information to implement the desired manipulations and representations as efficiently 
and effectively as possible. Consequently, a description of a problem type should provide 
information on those common characteristics of the various problem instances that are im­
portant for the development of manipulations and representations. Therefore, care should be 
taken to ensure that the description of the problem type is accurate. It should contain all 
problem instances for which the planning board is to be used, but as few others as possible 
because they may lead to a planning board that is less efficient and effective than possible. 

Problem types will be specified by restrictions on the instance graph, i.e., a problem type 
is the set of instances that can be described by an instance graph that satisfies the given 
restrictions. 

4.1 Restrictions on the Instance Graph 

The characteristics of a problem instance are defined by the structure of the associated in­
stance graph and the values of the attributes of the various graph elements. We can therefore 
distinguish two types of restrictions: on the graph structure and on the attribute values. 

4.1.1 Restrictions on the graph structure 

Characteristics of a problem type that can be described in terms of restrictions on the graph 
structure relate to the presence or absence of the various graph elements and to the way these 
graph elements are interconnected. 

Consider the well-known job shop scheduling problem. The restrictions that have to be 
imposed on the graph structure are the following: 

• The only node types that appear are process, resource, capability, and process group. 

• Each capability node is connected to exactly one resource node. 

• Each requirement edge connects a process to a capability. 
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• Precedence relations occur in chains and only involve processes in the same process 
group. 

If the problem type becomes more complex, it is not always possible to describe restrictions 
that are valid for all graph elements of the same type. For example, consider the extension of 
the job shop scheduling problem in which each task requires both a machine and some raw 
material. In an instance description, this extension would be modeled with a capability set 
node that specifies that a machine and some raw material are required for a task. However, 
in a type description it is insufficient to specify that capability set nodes exist and that each 
capability set node is connected to exactly two capability nodes, because also instances in 
which a task is assigned to two machines would satisfy this restriction. 

In order to deal with such problems, we need to be able to distinguish nodes of the same 
type. The notion of a node group is introduced precisely for that reason. A node group is 
a group of nodes of the same type that are subject to the same restrictions. In the above 
extension of the job shop scheduling problem, we would introduce two capability node groups, 
Machine and Inventory, and impose the following restrictions: 

• The only node types that appear are process, resource, capability, capability set, and 
process group. 

• Each capability node is connected to exactly one resource node. 

• Each capability set node is connected to exactly one capability node in the node group 
Machine and to exactly one capability node in the node group Inventory. 

• Each requirement edge connects a process to a capability set. 

• Precedence relations occur in chains and only involve processes in the same process 
group. 

Besides restrictions on the presence or absence of the various graph elements and on the the 
way they are interconnected, it is often necessary to also impose restrictions on the number of 
them. For example, if the raw material in our extension of the job shop scheduling problem 
is the same for all tasks, one should be able to specify that the number of nodes in the node 
group Inventory is precisely one. 

4.1.2 Restrictions on the attributes 

Characteristics of a problem type that can be described in terms of restrictions on the at­
tributes of the graph elements relate to their domains. The domain of an attribute is its 
set of admissible values. In a problem type description it is possible to reduce a domain by 
specifying restrictions on the set of admissible values. Attribute restrictions are specified for 
node groups. 

4.2 Describing Problem Types 

In this subsection, we present a syntax which can be used to describe the restrictions discussed 
in Section 4.1 more formally. The syntax can be modified or extended in order to deal with 
other kinds of restrictions. In Appendix B several problem types are described using this 
syntax. 
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4.2.1 Node groups 

The first part of the description of the problem type concerns the node groups that will 
appear in an instance. For each node type the associated node groups and a specification of 
the number of nodes in these node groups have to be given. For example, 

process: Taskl {l, ... ,oo} 

resource: 
capability: 

Task2 {l, ... ,oo} 
Machine 
Type 

{1, ... ,4} 
{I} 

indicates that there are three node types and four node groups, that the node groups Taski 
and Task2 may have an arbitrary number of nodes, that the node group Machine may have 
one up to four nodes, and that the node group Type has precisely one node. 

Instances with five or more resources or more than one capability do not belong to this 
problem type. Also instances with common resource set nodes, function nodes, capability set 
nodes, process group nodes, or resource group nodes do not belong to this problem type. 

In the example above, the number of nodes in a node group is restricted to be in a specified 
set, e.g., {I}, {1, .. ,4}, and {I, .. ,oo}. In addition to specifying a set, it is also possible to relate 
the cardinality of a node group to the number of nodes in another node group. For example, 

resource: Machine {2, ... ,IOO} 
capability: Type #(Machine) 

would indicate that the number of nodes in the node group Type is equal to the number of 
nodes in the group Machine. 

4.2.2 Graph structure 

The second part of the description of the problem type concerns the structure of the instance 
graphs. It deals with n-ary relations, requirement edges, and precedence arcs. 

For each of the KI,n's associated with the node groups, the node groups to which they can 
be connected and a specification of the cardinality of these node groups have to be given. For 
example, 

capability: Type 
capability set: Transform 

Machine 
Type 
InputInv 
OutputInv 

#(Machine) 
{I} 
{I} 
{I} 

indicates that each node in the node group Type is connected to all nodes in the node group 
Machine, and that each node in the node group Transform is connected to one node in the 
node group Type, one in the node group InputInv, and one node in the node group OutputInv. 

Requirement edges connect process nodes and common resource set nodes to function 
nodes, capability set nodes, and capability nodes. Restrictions on the possible positions of 
requirement edges are specified for all relevant node groups. For example, 

requirement edges: Task Type 
CRSetl Model 
CRSet2 Mode2 

indicates that (process) nodes in the node group Task a.re connected by a requirement edge 
to (capability) nodes in the node group Type, and that (common resource set) nodes in the 
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node groups CRSetl and CRSet2 are connected by a requirement edge to (function) nodes in 
the groups Model and Mode2, respectively. 

Precedence arcs usually occur between processes in the same node group or in the same 
process group. Furthermore, the graphs describing precedence relations often have a special 
structure, such as chains or trees. The structure of the precedence graph is specified for all 
relevant node groups. For example, suppose Groupl, ... ,Group4 are process node groups, and 
Job is a node group of process groups. Then, 

precedence arcs: Groupl intree 
Group2 outtree 
Group3 U Group4 general 
Job chain 

indicates, that the subgraph induced by precedence arcs of (process) nodes in the node group 
Group2 is an intree, that the sub graph induced by precedence arcs of (process) nodes in 
the node group Group3 is an outtree, and that the subgraph induced by precedence arcs of 
(process) nodes in the node groups Group3 and Group4 does not have a special structure. 
Furthermore, for each process group in the node group Job the following must hold: the 
subgraphs induced by precedence arcs of nodes representing processes in that process group 
are chains, 

4.2.3 Attributes 

The third part of the description of the problem type concerns the attributes of the different 
objects. For each node group as well as for the precedence arcs, a domain is specified for each 
attribute. For example, 

process: Task 

resource: 
precedence: 

Machine 
Groupl 

type 
size 
category 
type 
time lag 

non-repetitive 
{l,2} 
non-renewable 
{finish-to-start ,start-to-start} 
[0,50] 

indicates that processes in the node group Task are non-repetitive and have size 1 or 2, that 
resources in the node group Machine are non-renewable, and that the precedence relations 
between nodes in the node group Group! are either finish-to-start or start-to-start with a 
minimum time lag of 0 and a maximum time lag of 50 time units. 

It is also possible to enforce two attributes to take on the same values. For example, 

process: Task size {l, ... ,oo} 
consumption intensity size 

indicates that the size attribute of processes in the node group Task can take on any positive 
integer value, and that the value of the consumption intensity attribute is equal to the value 
of the size attribute. 

The attributes of capability sets are functions of attributes of other objects. In the prob­
lem type description, either these functions are completely specified, or restrictions on their 
shape are imposed. In referring to attributes of other objects we apply a two-field notation: 
object. attribute, where object is a node group. When misinterpretation is impossible, it suffices 
to only state attribute. For example, 
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capability set: ResourceSet duration 
(Mae Cap) 
usage interval 
usage volume 
(InvCap) 
consumption interval 
consumption volume 

size/MacCap.speed 

[start, start + duration] 
I 

[start, start] 
a * consumptionintensity 
aE(O,oo) 

indicates that for a capability set in the node group ResourceSet the duration function is 
defined as the quotient of the size of the process and the speed of the resource possessing a 
capability in the node group MacCap. Furthermore, that resource is used during the entire 
processing interval, the resource possessing a capability in the node group InvCap is consumed 
at the beginning of the processing interval, and the function that is used for computing the 
consumed volume is a linear function of the consumption intensity attribute of the process. 

When certain attributes of objects are irrelevant for the problem type we want to describe, 
for example the due date attribute in case no due dates occur, this can be indicated by 'does 
not apply'. If no domain is specified for an attribute of an object, we assume that the default 
domain specifications apply. The default domain specifications for the different attributes are 
the following: 

ATTRIBUTES 
process: type non-repetitive 

mode does not apply 
size (0,00 ) 
usage intensity 1 
consumption intensity does not apply 
release time does not apply 
deadline does not apply 
due date does not apply 
split 0 

resource: availability periods does not apply 
category renewable 
number of modes 0 
usage 

divisibility 1 
dimension 1 
capacity e(t) = 1 

consumption 
divisibility 1 
dimension 1 
supply set) E {I, ... , oo}, t 0 

set) = 0, t f 0 
number of capabilities no default 

speed 1 
usage factor I 
consumption factor does not apply 
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capability set: 

process group: 

precedences: 

duration 
usage interval 
usage volume 
consumption interval 
consumption volume 
release time 
deadline 
due date 
type 
time lag 

no default 
no default 
no default 
no default 
no default 
does not apply 
does not apply 
does not apply 
finish-to-start 
[0,00] 

Time occurs in the problem type description in a similar way as attributes. In the default 
time system, there is only one level and there is no restriction on the length of the planning 
period: 

TIME 
number of levels 
planning period 

1 
{l, ... ,oo } 
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5 Concluding Remarks 

We have introduced and discussed various aspects of a planning board generator, a tool 
that facilitates the development of automated planning boards. A planning board generator 
uses a specification of the characteristics of a problem type, a specification of the desired 
representations, and a specification of the required manipulations to produce a prototype of 
an automated planning board. 

In this paper, we have concentrated on specifying characteristics of problem instances and 
problem types. We have developed an instance description methods and a type description 
method, both of which rely heavily on the concepts of attributed graphs. 

In a subsequent paper, we will concentrate on specifying representations and manipu­
lations. In an interactive planning environment informative representations of a problem 
instance and possible solutions as well as easy-to-use manipulations are extremely important. 

Although the Gantt chart has been and will be the main representation mechanism for a 
planning board, various other representations, such as the 'views' that were discussed briefly in 
this paper, can enhance its effectiveness considerably. It is a nontrivial task to take concepts 
such as a Gantt chart and a view and convert them into an actual representation using 
available graphic primitives. 

Although simple manipulations on the Gantt chart, such as reassigning a process to another 
resource and time interval, have been and will remain important functions of a planning board, 
more advanced manipulations can be supported in an automated planning board, such as the 
computation of a schedule for a given subset of the processes. It is a challenging task to 
design a relatively small set of simple and advanced manipulations that together constitute 
a powerful yet easy-to-use planning board. 

It is prohibitive to develop the most effective and efficient representations and manipu­
lations for all possible problem types. We envision that the planning board generator will 
incorporate a scheme that exploits the structure of problem types, as defined implicitly by 
our description method, to customize representations and manipulations. 

The preceding remarks provide a preview of some of the aspects that will be discussed in 
greater detail in our sequel paper. 
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A Examples of Problem Instances 

In this appendix we describe the instance graphs, or parts of it, of three problem instances. 
The first example shows what kinds of connections between the different types of nodes are 
possible. In the second example, we consider a timetabling problem for a school. The third 
example deals with a factory scheduling problem with a non-trivial consumption pattern. 

Example A.1 We consider the following production planning problem. Four products of 
two different types are to be made. Products 1 and 2 are products of the first type, products 
3 and 4 are of the second type. Processes P 1, P2, P3, and P 4 represent the production of 
products 1, 2, 3, and 4. There is a fifth process, M, which represents some maintenance 
activities. Performing P1 can be done in two modes, the normal node or the special mode, P2 
requires the special mode. In both modes an employee and a machine of the type MT1 are 
used, but some machines of that type can only be used in the special mode and others only 
in the normal mode. The processes P3 and P 4 require a machine of the type MT2 and an 
employee. The combination that is used for P3 must also be used for P4. The maintenance 
process is to be performed by one of the employees. The instance graph for this problem is 
given in Figure 7. 

Process 
Group Process 

C·R. 
Set Function 

Capability 
Set Capability 

Figure 7: A production planning problem instance 

Resource 

This example illustrates that all different kinds of resource requirements discussed in Sec­
tion 3.4 can occur in the same problem instance. Process P1 requires a function, process P2 
requires a capability set, and process M requires a capability. Furthermore, since processes 
P3 and P 4 must be performed on the same combination of resources, there is an associated 
requirement edge connecting the corresponding common resource set node with, in this case, 
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a capability set node. o 

Example A.2 We consider the following timetabling problem. Each week, each group of 
pupils has to get lessons in different subjects during a specified number of hours. Some lessons 
require teachers with full qualification, others require teachers with partial qualification. Most 
lessons can be given in normal classrooms, but for some subjects the lessons require special 
rooms. Chemistry lessons, for example, must be given in rooms in which experiments with 
chemicals can be performed. 

We can describe this situation in the following way. The processes are the lessons given to 
the different groups. They are non-repetitive. An example is the chemistry lesson for group 
3. There are two kinds of resources: teachers and classrooms. A teacher can have several 
capabilities, representing the subjects he is qualified to teach and the levels of qualification. 
Since a teacher may be fully qualified for one subject and partially qualified for the other, 
it is necessary to introduce capability nodes for each possible combination of subject and 
qualification. A classroom also may have several capabilities. A particular classroom may be 
suited for chemistry lessons, as well as normal (for example, English) lessons. 

Each lesson requires a particular kind of classroom and a particular kind of teacher. These 
requirements are represented by requirement edges connecting the processes and capability 
sets. Each capability set consists of two capabilities, one representing the required kind of 
classroom, the other representing the required kind ofteacher. For example, the lesson English 
for group 4 requires the capability set E-F, representing a normal classroom and a teacher 
with full qualification for the subject English. 

A part of an instance is depicted in Figure 8. Only the lessons English and chemistry for 
groups 3 and 4 and not all teachers and classrooms are considered. 

Capability 
Set Capability Resource 

Resource 
Group 

Figure 8: Part of a timetabling instance 

The planning period will consist of 5 days of say 8 hours. The resources are renewable 
resources with capacity 1. A process uses both kinds of resources fully during the entire 
processing interval, which is always one hour. 0 
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Example A.3 Jones and Maxwell [9] give an example of a factory scheduling problem. There 
are three processes, 1 MSUB, 2MSUB, and ASSEM. Process lMSUB uses a machine of the 
type A-MILL and materials MATl and MAT2to create half-products SUB1. Process 2MSUB 
uses the machine MILL and the half-product SUB3 to create another half-product, SUB2. 
Process ASSEM is performed by a worker, who assembles half-products SUBl and SUB2 to 
create the end-product WIDGET. The reduced assignment view of this instance is given in 
Figure 9. 

Process 
C~ablllty 

Set Capability Resource 

Figure 9: A reduced assignment view of a factory scheduling instance 

All processes are repetitive. The machines are renewable resources; the materials, half­
products, and end-products are non-renewable resources. The machines have capacity 1 and 
are always used up to capacity. The materials are consumed at a constant rate during the 
processing period, and the half products and end products are consumed (produced) at the 
beginning (end) of each repetition. 

We consider the capability set CS1. The duration solely depends on the MILL that is used, 
and the consumed volumes are completely determined by the consumption intensity (iC) of 
the process and the consumption factor of the considered resource (r(.)). The attributes of 
capability set CSl then are: 

name: CSl 

duration: = size / A-MILL.speed 

(MAT1) 

consumption interval: [start, start + duration] 
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consumption volume: consumption intensity / MAT1.consumptionfactor 

(MAT2) 

consumption interval: [start, start + duration] 

consumption volume: consumption intensity / MAT2.consumptionfactor 

(A-MILL) 

usage interval: [start, start + duration] 

usage volume: 1 

(SUB1) 

consumption interval: [start + duration, start + duration] 

consumption volume: - consumption intensity / SUB1.consumptionfactor 
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B Examples of Problem Types 

Example B.1 The simple job shop scheduling problem type discussed in Section 4.1, in 
which each task requires one specific machine, can be described as follows: 

NODE GROUPS 
process: 
resource: 
capability: 
process group: 

Task 
Machine 
MacCap 
Job 

{I, ... ,oo } 
{I, ... ,oo } 
#(Machine) 
{l, ... ,oo} 

GRAPH STRUCTURE 
capability: 
process group: 
requirement edge: 
precedence arcs: 

ATTRIBUTES 

MacCap 
Job 
Task 
Job 

process: 
resource: 

Task type 
Machine category 

Machine 
Task 
MacCap 
chain 

{I} 
{I} 

number of capabilities 
(Mac Cap, 1) 

non-repetitive 
renewable 
1 

Note that although non-repetitive and renewable are the default values for the type and 
category attributes, we have explicitly mentioned them in the problem type description for 
~~ 0 

Example B.2 In Appendix A, an example of a timetabling problem has been discussed. 
Lessons must be assigned to teachers and classrooms, and the feasibility of an assignment 
depends on the qualification of the teacher (what subject, full or partial qualification) and 
the properties of the classroom (chemistry lessons require specific facilities for performing 
experiments). The example can be seen as an instance of the problem type in which each 
lesson (process) requires a combination (capability set) of a type of classroom and a specific 
qualification (both capabilities). 

In the terminology of our description method, these restrictions can be formulated in the 
following way. We only give the node groups and the graph structure restrictions that are 
related to the processes, resources, capabilities, and capability sets. 

NODE GROUPS 
process: 
resource: 

capability: 

capability set: 

Lesson 
Teacher 
Classroom 
Qualification 
Classroom Type 
Room&Qual 

{I, ... ,oo } 
{I, ... ,oo } 
{I, ... ,oo } 
{I, ... ,oo } 
{I, ... ,oo } 
{I, ... ,oo } 
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GRAPH STRUCTURE 
capability: 

capability set: 

requirement edges: 

Qualification 
Classroom Type 
Room&Qual 

Lesson 

Teacher 
Classroom 
Classroom Type 
Qualification 
Room&Qual 

{l, ... ,oo } 
{l, ... ,oo } 
{I} 
{I} 

o 

Example B.3 Anthonisse et al. [1] describe resource-constrained project scheduling (RCPS) 
as follows. 

A set of tasks is to be processed by a set of resources. For each task, there is a 
release time and a deadline, which define a time interval in which the task must 
be processed. Once a task is started it must be completed without interruption. 

For any two tasks, there are a lower bound and an upper bound on the length of 
the time period between the completion of one task and the start of the other. 
( ... ) 
A function may be performed by various combinations of resources, each with its 
own speed. In general, each function has a class of feasible resource sets, and the 
processing time of a task depends on the feasible resource set that is chosen to 
perform the function it requires. The processing time is the amount of work (Le., 
the number of units of the function) required by the task divided by the speed of 
the feasible resource set. 

No resource can be allocated to two tasks at the same time. If a set of resources 
is allocated to a task, then each of its constituent resources is occupied by that 
task from its starting time until its completion time. For each resource there is a 
set of time intervals during which the resource is available. 

We will now describe this problem type with our description method. 
The time system is the default system. There is only one time unit, and the planning 

period can be as small or as large as one wants. 
Four kinds of objects are distinguished in the description above: tasks, resources, resource 

sets, and functions. In our terminology, they are processes, resources, capability sets, and 
functions, respectively. In fact, a fifth kind of object, the project, is considered, which is equal 
to the process group. Beside these five objects, our method requires capability nodes. Each 
resource has a unique capability. Therefore, the number of capability nodes is equal to the 
number of resource nodes. There are no restrictions on the number of nodes of any of the 
other types. 

NODE GROUPS 
process: 
resource: 
capability: 
capability set: 
function: 
process group: 

Task 
Resource 
ResCap 
ResourceSet 
Function 
Project 

{l, ... ,oo } 
{l, ... ,oo } 
# (Resource ) 
{l, ... ,oo } 
{l, ... ,oo } 
{l, ... ,oo} 
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Each resource possesses a unique capability. Therefore, each capability node (belonging to 
the node group ResCap) is connected to one resource node. The capability K1.n's are in fact 
KI.l'S. The ResourceSets may consist of any number of resources, or better, of any number 
of capabilities. Each function node may be connected to any number of ResourceSet nodes 
(possibly one), and each process requires a function. For each Project, the number of tasks 
in it is completely instance dependent. Precedence relations are only possible between tasks 
in the same Project. 

GRAPH STRUCTURE 
capability: ResCap Resource {I} 
capability set: ResourceSet ResCap {l,. .. ,oo } 
function: Function ResourceSet {l, ... ,oo } 
process group: Project Task {l, ... ,oo } 
requirement edges: Task Function 
precedence arcs: Project general 

All processes are non-repetitive. The usage intensity does not apply, because it is not 
required in order to describe usage in the capability set attribute. The consumption intensity 
does not apply because all resources are renewable. The size attribute of processes, and the 
release time, deadline, and due date attributes of Projects and processes may take on any value. 
The tasks cannot be preempted. 

Only renewable resources occur. A resource cannot be used for different tasks at the same 
time. Hence, the capacity is constantly 1, and the usage discretization unit is also 1. The 
speed is not determined by individual resources, but only by the resource set as a whole. 
Therefore, the speed attribute does not apply. Also, the usage factor and the consumption 
factor do not apply. 

Since no consumption occurs, the consumption attributes do not apply. The duration is 
determined as the quotient of the size attribute of the process and a number representing the 
speed of a resource combination that is different for each capability set. Each resource that a 
process is assigned to is used during the entire processing interval. The used volume is equal 
to one for each resource. 

The precedence relations are always of the finish-to-start type. There are no restrictions 
on the corresponding time lags. 

ATTRIBUTES 
process: 

resource: 

Task type 
usage intensity 
consumption intensity 
release time 
deadline 
due date 

Resource category 
number of capabilities 
(Res Cap, 1) 

speed 
usage factor 
consumption factor 
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non-repetitive 
does not apply 
does not apply 
[0,00 ) 
[0,00 ) 
[0,00 ) 
renewable 
1 

does not apply 
does not apply 
does not apply 



capability set: ResourceSet duration 

(Res Cap) 

a * size 
aE(O,oo) 

usage interval [start, start + duration] 
usage volume 1 

process group: Project release time [0,00) 
deadline [0,00) 
due date [0,00) 

precedences: Project time lag [[0,00 ),[0,00)] 

Anthonisse et al. [1] give an example of a problem instance of the RCPS type. The corre­
sponding instance graph is given in Figure 10. 

Process 
Group Process Function 

Capability 
Set 

Figure 10: The RCPS instance 

Capability Resource 

o 

Example B.4 Jones and Maxwell, [9], discuss factory scheduling problems. In these prob­
lems three kinds of objects occur: processes, inventories, and machines. Processes are per­
formed on one machine and consume and produce the contents of inventories. 

In their article, Jones and Maxwell introduce a description method that is based on net­
works. We can describe this problem type with our description method as well. 

We introduce three resource node groups. One node group consists of nodes that represent 
machines, the other two represent continuous inventories and discrete inventories, respectively. 
The reason for introducing two inventory node groups is that different restrictions on the 
attribute values can be specified for continuous and discrete inventories. 

Since different consumption patterns apply when an inventory serves as input or occurs as 
output of a process, for each of both types of inventory two capability node groups are intro­
duced. There are no functions, common resource sets, process groups, and resource groups. 
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NODE GROUPS 
process: Process {l, ... ,oo } 
resource: Machine {l, ... ,oo } 

Contlnventory· {l, ... ,oo } 
DiscIn ventory {l, ... ,oo } 

capability: MachineType {l, ... ,oo } 
Contlnlnv {l, ... ,oo} 
ContOutlnv {l, ... ,oo } 
DiscInlnv {l, ... ,oo } 
DiscOutlnv {l, ... ,oo } 

capability set: ResourceSet #(Process) 

There may be several machines of a particular type. For each process, the actually required 
inventories are completely specified. Hence, the corresponding J(l,n'S connecting capabilities 
and resources are simple edges. Each ResourceSet consists of one machine type and an arbi­
trary number of inventories, which can be discrete or continuous, and can serve as input or 
occur as output. There are no precedence relations. 

GRAPH STRUCTURE 
capability: 

capability set: 

MachineType 
Contlnlnv 
ContOutlnv 
Disclnlnv 
DiscOutlnv 
ResourceSet 

requirement edges: Process 

Machine 
Contlnventory 
Contlnventory 
Disclnventory 
Disclnventory 
MachineType 
ContInlnv 
ContOutlnv 
Disclnlnv 
DiscOutlnv 
ResourceSet 

{l, ... ,oo } 
{1} 
{1} 
{1} 
{1} 
{I} 
{O, ... ,oo } 
{O, ... ,oo } 
{O, ... ,oo } 
{O, ... ,oo } 

The time system is again simple. There is only one time unit, and the planning period 
can be as small or as large as one wants. 

All processes are repetitive processes. The size attribute can take on any value. Jones 
and Maxwell introduce a process attribute (Time/Lot) that deals with both the duration of 
one repetition and the consumption. In our approach, we enforce the size attribute and the 
consumption intensity to take on the same value. The usage intensity does not apply. We 
assume that a process may not be interrupted during a repetition, hence the split attributes 
have value O. There are no release times, deadlines, and due dates. 

Machines are renewable resources, with capacity equal to 1. They may have several ca­
pabilities, all representing a particular MachineType. Since the duration of a process is 
uniquely determined by the size of that process, the speed attribute for machines does not 
apply. Similarly, usage factor and consumption factor do not apply. 

The inventories are non-renewable resources. The resources of the Contlnventory type 
have continuous divisibility, the resources of the Disclnventory type have discrete divisibility. 
Again, the speed, usage factor, and consumption factor attributes do not apply. The supply 
attribute can take on any value. 
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Consumption patterns for the different inventories depend on whether they are discrete or 
continuous and on whether they are used as input or as output. The consumed volumes are 
determined by dividing a number that is different for each ResourceSet by the consumption 
intensity of the process. This number is positive if the inventory is used as input, and negative 
if the inventory is used as output. Consumption of the continuous inventories occurs dur­
ing the entire processing period; consumption of discrete inventories occurs at the beginning 
(when used as input), or at the end (when used as output), of each repetition. 

ATTRIBUTES 
process: 

resource: 

resource: 

Process type 
usage intensity 
consumption intensity 

~achine category 
number of capabilities 
(Machine Type, {1,00.,00}) 
speed 
usage factor 
consumption factor 

ContInventory category 
consumption 

divisibility 
supply 

number of capabilities 
(ContIn/nv, 1) 
speed 
usage factor 
consumption factor 
(ContOutInv, 1) 
speed 
usage factor 
consumption factor 

DiscInventory: category 
consumption 

supply 
number of capabilities 
(Disclnlnv, 1) 
speed 
usage factor 
consumption factor 
(DiscOutInv, 1) 
speed 
usage factor 
consumption factor 
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repetitive 
does not apply 
size 
renewable 
{l, ... ,<X)} 

does not apply 
does not apply 
does not apply 
non-renewable 

° set) E [0,(0) 
2 

does not apply 
does not apply 
does not apply 

does not apply 
does not apply 
does not apply 
non-renewable 

set) E {O, ... ,<X)} 
2 

does not apply 
does not apply 
does not apply 

does not apply 
does not apply 
does not apply 



capability set: ResourceSet duration 
(Machine) 
usage interval 
usage volume 
(Contlnlnv) 
consumption interval 
consumption volume 

(ContOutInv) 
consumption interval 
consumption volume 

(DiscIn In v) 
consumption interval 
consumption volume 

(ContOutInv) 
consumption interval 
consumption volume 

size 

[start, start + duration] 
1 

[start, start + duration] 
a / consumptionintensity 
aE(O,oo) 

[start, start + duration] 
a/ consumptionintensity 
a E (-00,0) 

[start, start] 
a/ consumptionintensity 
aE(O,oo) 

[start + duration, start + duration] 
a/ consumptionintensity 
a E (-00,0) 

In Appendix A we have already discussed an instance of this problem type. The graph 
given in Figure 9 does not fit in the description of the problem type above since it represents a 
reduced view. In the complete graph the connections between capability sets and resources are 
always established via capabilities. The resource SUB2 would be connected to two capability 
nodes, one representing the use of SUB2 as input and one representing the use of SUB2 as 
output. MAT2 on the other hand, although also occurring in two capability sets, would be 
connected to only one capability node, since it is only used as input. 0 
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