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Abstract: With the rapid growth of usage of phasor measurement units (PMUs) for modern power
grids, the application of synchronized phasors (synchrophasors) to real-time voltage security
monitoring has become an active research area. This paper presents a novel approach for fast
determination of loading margin using PMU data from a wide-area monitoring system (WAMS) to
construct the voltage stability boundary (VSB) of a transmission grid. Specifically, a new approach
for online loading margin estimation that considers system load trends is proposed based on the
Thevenin equivalent (TE) technique and the Mobius transformation (MT) technique. A VSB is then
computed by means of real-time PMU measurements and is presented in a complex load power space.
VSB can be utilized as a visualization tool that is able to provide real-time visualization of the current
voltage stability situation. The proposed method is fast and adequate for online voltage security
assessment. Furthermore, it enables us to significantly increase a system operator’s situational
awareness for operational decision making. Simulation studies were carried out using different sized
power grid models under various operating conditions. The simulation results are shown to validate
the capability of the proposed method.

Keywords: loading margin; PMU; smart grid; synchrophasor; visualization; voltage security; voltage
stability boundary; wide-area monitoring system

1. Introduction

Recently, voltage stability has become a challenging issue in power industries since several major
blackouts worldwide have been mainly attributed to voltage collapse [1–3]. Based on this concern,
much attention has been devoted to understanding the voltage collapse phenomenon. Voltage collapse
is described as the phenomenon in which the events in sequential operations are accompanied by
voltage instability. This may lead to blackouts or abnormally low voltage distribution in a vital part
of the power grid [4,5]. Therefore, it is essential that system operators easily identify system voltage
instability to prevent possible voltage collapse.

In view of this, a variety of methods have been proposed for static voltage security analysis, such
as sensitivity methods [6,7], continuation power flow (CPF) methods [8,9], and impedance match
methods [10–15]. Indeed, the Power-Voltage (P-V) curve is widely utilized for voltage stability analysis.
Generally, such a curve is produced by calculating power flow solutions for successively increasing
load levels. To cope with the divergence issue of power flow calculation near the point of voltage
collapse, the CPF methods are presented [8,9]. Since the CPF methods belong to model-based tools,
a large amount of computation time for a bulk power grid model is required. In addition, an accurate
system model is needed for this kind of model-based approach. According to the description above,
CPF methods are not suitable for online voltage stability analysis in its current setting. In contrast,
impedance match methods are measurement-based tools for online voltage stability monitoring [10–15].
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Such methods are based on Thevenin equivalent (TE) impedance matching criterion using measured
voltage and current phasors. As voltage instability take places at a load bus, the load impedance
is equal to the TE impedance in magnitude. As a consequence, the difference between the load
impedance and TE impedance can be utilized as an index for voltage stability monitoring. Even
though the impedance margin can be employed to determine whether the present operating condition
is voltage secure, loading margin information, which is more useful for system planners and operators,
becomes obscure. Hence, an alternative approach is required.

The wide area monitoring system (WAMS) is expected to be a core technology in future smart
grids [16,17]. With the gradual installation of phasor measurement units (PMUs) in many power grids,
the PMU-based WAMS is becoming indispensable to sustaining reliability and security for modern
power grids. PMUs, which are an advanced and fully developed technology, have been produced by
many international manufacturers. Furthermore, most of the PMUs available on the market follow the
IEEE standard C37.118, which defines frequency, rate of change of frequency, and synchronized phasors
(synchrophasors) under all power system operating conditions. A more detailed description about this
standard can be found in [18]. Figure 1 illustrates a typical structure of a PMU-based WAMS in a smart
grid. Indeed, the wide-area measurements from PMUs, which is coherent and time-synchronized, can
help increase real-time situational awareness for system operators to carry out time-critical tasks under
critical conditions. This indicates that the PMU-based WAMS serves great opportunity to reconfigure the
power system before reaching the voltage collapse point and avoid power system blackouts.
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This research is mainly devoted to smart transmission grid voltage security visualization and
monitoring. The contribution of this paper is the development of a novel method which aims to
advance wide-area situational awareness enhanced with voltage stability monitoring. To this end, a
new algorithm based on the Thevenin equivalent (TE) technique and the Mobius transformation (MT)
technique for online system loading margin estimation is proposed. The approximation of a voltage
stability boundary (VSB) can then be obtained by a quadratic curve using PMU data. The computed
VSB can provide real-time visualization of the current voltage stability situation. This enables a
significant increase in the system operator’s situational awareness for operational decision making.
Furthermore, the proposed method is simple and fast, which makes it adequate for online applications.

The rest of this work is as follows: The impedance match method to static voltage stability analysis
is briefly reviewed in Section 2. Section 3 describes the proposed method, and some computational
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details are discussed. The proposed method is tested on several Electrical and Electronics Engineers
(IEEE) power grid models under various operating conditions in Section 4. Section 5 gives some
concluding remarks.

2. Review of the Impedance Match Method to Static Voltage Stability Analysis

Impedance match methods are measurement-based tools for static voltage stability
analysis [10–15]. Such methods use the concept of tracking the Thevenin equivalent (TE) parameters
for a power system at a node using local voltage and current phasor measurements.

A complex power grid seen at a load bus i can be simplified to a TE network, shown in Figure 2,
in which Eth

i is the TE voltage, Zth
i is the TE impedance, and ZL

i is the load impedance at load bus i.
Note that Eth

i , Zth
i , and ZL

i are all in phasor representation,

Eth
i =

∣∣∣Eth
i

∣∣∣∠βi

Zth
i =

∣∣∣Zth
i

∣∣∣∠αi

ZL
i =

∣∣ZL
i

∣∣∠θi

(1)

In this research, the phasors
(

Eth
i , Zth

i , ZL
i

)
are in per units, the magnitudes

(∣∣∣Eth
i

∣∣∣, ∣∣∣Zth
i

∣∣∣, ∣∣ZL
i

∣∣)
are in per units, and the angles (βi, αi, θi) are in degrees.
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A key idea of the impedance match method is summarized as follows: when voltage collapse
occurs,

∣∣ZL
i

∣∣ =
∣∣∣Zth

i

∣∣∣. Consequently, the ratio of
∣∣∣Zth

i

∣∣∣/∣∣ZL
i

∣∣ can be utilized as an index for voltage
stability monitoring, as shown in Figure 3. If the ratio is smaller than 1, the system will be stable.
On the other hand, if the ratio is higher than 1, the system is unstable.

Due to the elegance and simplicity of this impedance-matching concept, the measurement-based
real-time voltage stability analysis becomes possible [10–15]. The impedance-based index methods
can be adopted to identify if a given operating condition is within a secure voltage margin or not.
The information of the loading margin, however, becomes obscure. To address these difficulties, a new
method, which is able to provide loading margin, is proposed in this research.
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3. Proposed Method
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Figure 4 and are described in the following subsections.
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3.1. Determination of Load Increase Direction

Loading margin estimations depend on load levels and load increase directions (LIDs).
To illustrate this, Figure 5 shows the voltage collapse (critical point) surface in a load power parameter
space with active and reactive load powers as coordinates. In Figure 5, let S0 be the initial point, and
∆S1 and ∆S2 be two distinct LIDs, respectively. If S0 increases along the direction of ∆S1, the maximum
loading point would be Smax

1 . Instead, if S0 follows ∆S2, the critical point would be Smax
2 . Clearly,

distinct LIDs result in distinct voltage collapse points. Thus, it is essential to estimate the voltage
collapse point with consideration of the LID.
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The complex load power change is typically expressed as,

∆St
i = St

i − St−1
i (2)

where
St

i = Vt
i ·
(

It
i
)∗ (3)

St−1
i = Vt−1

i ·
(

It−1
i

)∗
(4)

In the above equations, Vi and Ii denote voltage and current measurements at load bus i, and
t denotes the tth sampling point. In this research, the LID is accomplished by using two sets of
consecutive PMU measurements.

3.2. Estimation of Thevenin Equivalent Network Parameters

In Figure 2, application of Kirchoff’s voltage law to TE network yields,

Eth
i = Vi + Zth

i Ii (5)

where Vi and Ii denote the load voltage and current phasors. Suppose that the data points of Vi and Ii
are available from the installed PMU. The unknown variables in Equation (5) are Eth

i and Zth
i . Since the

Thevenin equivalent parameters is approximately constant under various loading conditions [10–15],
Eth

i and Zth
i can be determined by using two data pairs

(
Vt−1

i , It−1
i

)
and

(
Vt

i , It
i
)

as,

Eth
i =

Vt−1
i It

i −Vt
i It−1

i

It
i − It−1

i

(6)

Zth
i =

Vt−1
i −Vt

i

It
i − It−1

i

(7)

From the preceding equations, TE network for a power system at a bus can be acquired. Moreover,
the load impedance can be obtained by,

ZL
i =
|Vi|2

S∗i
(8)

where S∗i denotes the conjugate of the complex load power Si = Vi I∗i .
According to Equations (6)–(8), all parameters in TE network can be obtained by

synchrophasor measurements.
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3.3. Estimation of Loading Margin

In Thevenin equivalent circuit depicted in Figure 2, the real load power at bus i is given by,

Pi =

∣∣ZL
i

∣∣∣∣∣Eth
i

∣∣∣2 cos θi∣∣Zth
i

∣∣2 + 2
∣∣ZL

i

∣∣∣∣Zth
i

∣∣ cos(αi − βi) +
∣∣ZL

i

∣∣2 (9)

As Pi increases, the trajectory of
∣∣ZL

i

∣∣ and
∣∣∣Zth

i

∣∣∣ is illustrated in Figure 6, in which ZM
i denotes the

impedance margin, and it is defined to be,

ZM
i =

∣∣∣ZL
i

∣∣∣− ∣∣∣Zth
i

∣∣∣ (10)

Once
∣∣ZL

i

∣∣ and
∣∣∣Zth

i

∣∣∣ are obtained, ZM
i can be determined. From Figure 6, it is clear that ZM

i = 0

when
∣∣ZL

i

∣∣ =
∣∣∣Zth

i

∣∣∣, which means that the maximum power transfer occurs at bus i. Furthermore, if the
maximum loading point Pmax

i is determined, the loading margin can be obtained by,

PM
i = Pmax

i − P0
i (11)

where P0
i denotes the current operating point. With PM

i , the voltage stability margin (VSM) is defined as,

VSMi =
PM

i
P0

i
(12)
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Since ZM
i =

∣∣ZL
i

∣∣− ∣∣∣Zth
i

∣∣∣ can be obtained by utilizing PMU measurements, the aim is to transform

the real-time monitored ZM
i into direct information about loading margin PM

i . In this research,
the Mobius transformation (MT) technique [19] is employed to find a transformation T such that
PM

i = T
(
ZM

i
)
. Based on the MT technique, the transformation T

(
ZM

i
)

of ZM
i is a map of the form,

T
(

ZM
i

)
=

a× ZM
i + b

c× ZM
i + d

, a, b, c, d ∈ C (13)

where the coefficients a, b, c, and d have to be determined. Indeed, the transformation depends on the
2× 2 complex matrix,
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g =

[
a b
c d

]
(14)

and let Tg be the transformation. This means that g is the matrix associated to Tg. It is noteworthy that
the composition of two transformations Tg1 and Tg2 is associative [19], i.e., the matrix associated to
Tg1 ◦ Tg2 is given by,

g1◦2 = g1 · g2 7→ Tg1 ◦ Tg2 = Tg1g2 (15)

where the arrow “ 7→” means “maps to”. This technique is used to construct a transformation that
maps ZM

i to PM
i .

To start with, let Υ be the ratio of ZM
i and VSMi, i.e.,

Υ =
ZM

i
VSMi

(16)

Substituting from Equation (12) for VSMi, PM
i can be expressed as,

PM
i =

P0
i ZM

i
Υ

(17)

In addition, according to Equation (9) and the maximum power transfer theorem,
Equation (16) becomes,

Υ =
2
∣∣ZL

i

∣∣∣∣∣Zth
i

∣∣∣[1 + cos(αi − θi)]

ZM
i

(18)

From Equations (17) and (18), the transformation Tg2 such that PM
i = Tg2 (Υ) and the

transformation Tg1 such that Υ = Tg1

(
ZM

i
)

can be obtained. Thus, the matrices g1 and g2 associated to
Tg1 and Tg2 respectively can be written as,

g1 =

[
0 2

∣∣ZL
i

∣∣∣∣∣Zth
i

∣∣∣[1 + cos(αi − θi)]

1 0

]
(19)

g2 =

[
0 P0

i ZM
i

1 0

]
(20)

Since g1 · g2 7→ Tg2 ◦ Tg1

(
ZM

i
)

, the composite function Tg1g2 = Tg2

(
Tg1

(
ZM

i
))

is given by,

Tg1g2

(
ZM

i

)
=

a× ZM
i + b

c× ZM
i + d

(21)

where [
a b
c d

]
=

[
0 P0

i ZM
i

1 0

][
0 2

∣∣ZL
i

∣∣∣∣∣Zth
i

∣∣∣[1 + cos(αi − θi)]

1 0

]

=

[
P0

i ZM
i 0

0 2
∣∣ZL

i

∣∣∣∣∣Zth
i

∣∣∣[1 + cos(αi − θi)]

] (22)

Figure 7 illustrates the construction of Tg1g2 such that PM
i = Tg1g2

(
ZM

i
)
. Once PM

i is determined,
Smax

i can be calculated by Smax
i = Pmax

i + jQmax
i , where Pmax

i = PM
i + P0

i and Qmax
i = Pmax

i tan θi.
Thus, the maximum loading point of the entire system Smax

L is obtained by Smax
L = ∑

i
Smax

i , where

i ∈ {PQ}.
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3.4. Construction of Voltage Stability Boundary

Based on the approximate quadratic property of the VSB in a complex load power space [20,21],
the VSB can be constructed by means of the quadratic curve fitting technique. A quadratic function for
the active and reactive load power is,

QL(PL) =
2

∑
i=0

ci(PL)i (23)

where ci for i = 0, 1, 2 are parameters to be determined. As stressed earlier, distinct LIDs lead to distinct
maximum loading points Smax

L . Given three different look-ahead LIDs {LIDk}3
k=1, the corresponding

maximum loading point
{

Smax
Lk = Pmax

Lk + jQmax
Lk
}3

k=1 can be quickly estimated by using the method
proposed in Section 3.3. Thus, the quadratic curve parameters in Equation (23) can be found by, Qmax

L1
Qmax

L2
Qmax

L3

 =

 1 Pmax
L1

(
Pmax

L1
)2

1 Pmax
L2

(
Pmax

L2
)2

1 Pmax
L3

(
Pmax

L3
)2


 c0

c1

c2

 (24)

Using the values of c0, c1, and c2, a VSB in a complex load power space, as shown in Figure 8, can be
obtained. Such a VSB is able to give system operators a global view of power system voltage stability.
The computation process to construct a VSB curve in P-Q plane is given in Algorithm 1.Energies 2017, 10, 1103 9 of 16 

 

Q

P

VSB

Stable Region

θ

Unstable Region

Δ LP

Δ LQ0
LP

max
LS

Q

P

VSB

Stable Region

θ

Unstable Region

Δ LP

Δ LQ0
LP

max
LS

(p.u.)

(p.u.)Q

P

VSB

Stable Region

θ

Unstable Region

Δ LP

Δ LQ0
LP

max
LS

(p.u.)

(p.u.)

 
Figure 8. Voltage stability boundary (VSB) in a complex load power space. 

Algorithm 1 Construction of a VSB curve in P-Q plane 

1: Input: ( ){ },t t
i i t

V I
=

2

1
 and { } =k kLID 3

1
; 

2: for 1, 3= k  do 

3: for { }∈i PQ  do 

4: ( )0 Re ∗←i i iP V I ; 

5: ( )Argθ ←i i iV I ; 

6: M
iZ ← IMPEDANCEMARGIN( ,i iV I ); 

7: M
iP ← POWERMARGIN( ,M

i iZ P0 ); 

8: max M
i i iP P P← + 0 ; 

9: max max tani i iQ P θ← ; 

10: max max max← +i i iS P jQ ; 

11: end for 
12: max max

Lk i
i

S S←  

13: end for 

14: Determine { }j j
c

=

2

0
 by Equation (24); 

15: Construct a VSB curve by Equation (23); 
16: return VSB curve 

17: function IMPEDANCEMARGIN( ,i iV I ) 

18:  Compute th
iZ  by Equation (7); 

19:  Compute L
iZ  by Equation (8); 

20:  M L th
i i iZ Z Z← − ; 

21: return M
iZ  

22: end function 

23: function POWERMARGIN( ,M
i iZ P0 ) 

24: Compute 
a b
c d
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Algorithm 1. Construction of a VSB curve in P-Q plane.

1: Input:
{(

Vt
i , It

i
)}2

t=1 and {LIDk}3
k=1;

2: for k = 1, · · · 3 do
3: for i ∈ {PQ} do
4: P0

i ← Re
(
Vi I∗i

)
;

5: θi ← Arg(Vi/Ii) ;
6: ZM

i ← IMPEDANCEMARGIN(Vi, Ii);
7: PM

i ← POWERMARGIN(ZM
i , P0

i );
8: Pmax

i ← PM
i + P0

i ;
9: Qmax

i ← Pmax
i tan θi ;

10: Smax
i ← Pmax

i + jQmax
i ;

11: end for
12: Smax

Lk ← ∑
i

Smax
i

13: end for
14: Determine

{
cj

}2

j=0
by Equation (24);

15: Construct a VSB curve by Equation (23);
16: return VSB curve
17: function IMPEDANCEMARGIN(Vi, Ii)
18: Compute Zth

i by Equation (7);
19: Compute ZL

i by Equation (8);

20: ZM
i ←

∣∣ZL
i
∣∣− ∣∣∣Zth

i

∣∣∣ ;
21: return ZM

i
22: end function
23: function POWERMARGIN(ZM

i , P0
i )

24: Compute

[
a b
c d

]
by Equation (22);

25: Compute PM
i by Equation (21);

26: return PM
i

27: end function

4. Case Studies

The capability of the proposed algorithm is further demonstrated by utilizing different-size test
systems. The system data and the simulation scenarios are listed in Table 1. Two metrics, accuracy and
execution time, are utilized to evaluate the performance of the proposed method. Furthermore, its
performance is also compared to the CPF method [8] that is widely used in voltage stability assessment.
All computations are performed on an Intel® Core™ i5, 1.7 GHz computer.

Table 1. System data and the simulation scenarios.

Number of IEEE 14-Bus IEEE 30-Bus IEEE 57-Bus IEEE 118-Bus IEEE 300-Bus

Generators 5 6 7 54 69
Loads 9 24 50 64 231
Lines 20 41 80 186 411

Scenario Description
Load change Various load levels together with various load patterns

Topology change Transmission line and generator outages

4.1. Load Change Cases

In this research, extensive simulation studies for load change cases have been performed, including
various load levels and various load patterns. Table 2 lists some selected cases, where λ0 represents
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the initial load level,
(
∆PEven

L , ∆QEven
L

)
denotes load increases at even load buses,

(
∆POdd

L , ∆QOdd
L

)
denotes load increases at odd load buses, and

(
∆PAll

L , ∆QAll
L

)
denotes load increases at all load buses.

Table 2. Selected load increase cases.

Case Load Level Load Pattern

1 λ0 = 1.2 (
∆PEven

L , ∆QEven
L

)
= { (∆Pi, ∆Qi)| i ∈ {even load buses} }2 λ0 = 1.4

3 λ0 = 1.6

4 λ0 = 1.2 (
∆POdd

L , ∆QOdd
L

)
= { (∆Pi, ∆Qi)| i ∈ {odd load buses} }

5 λ0 = 1.4
6 λ0 = 1.6

7 λ0 = 1.2 (
∆PAll

L , ∆QAll
L

)
= { (∆Pi, ∆Qi)| i ∈ {all load buses} }

8 λ0 = 1.4
9 λ0 = 1.6

4.1.1. IEEE 14-Bus Model

In order to test the algorithm, the IEEE 14-bus model is first utilized. The diagram of the test
model is depicted in Figure 9. This model involves 14 buses, 5 generation units, 9 loads, and 20
transmission lines [22].

The results of system VSM estimated by the proposed method under the selected test cases is
illustrated in Figure 10, where the values of VSM corresponding to the test cases are depicted on the
Y-axis of the figure. From Figure 10, one can see that the estimated VSMs are almost the same as the
actual ones.
Energies 2017, 10, 1103 11 of 16 
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4.1.3. Statistical Evaluation 

To test the capability of the proposed algorithm for online voltage stability assessment, many 
simulations were conducted. These include different-size test systems, various load levels, and 
various load patterns. Among the simulation studies, Table 3 compares the selected results of VSM, 
along with the execution time for the tested methods. Table 3 shows that the VSMs obtained by the 
proposed approach get closer to the ones obtained by the CPF approach. However, the proposed 
approach has less execution time in all cases compared to the CPF approach.  

In order to compare the overall efficiency of all the tested methods, an index called the efficiency 
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Figure 12 depicts the simulation results under the test cases listed in Table 2. In Figure 12, one can
see that the proposed algorithm is able to provide acceptable accuracy for VSM identification.
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4.1.3. Statistical Evaluation

To test the capability of the proposed algorithm for online voltage stability assessment, many
simulations were conducted. These include different-size test systems, various load levels, and various
load patterns. Among the simulation studies, Table 3 compares the selected results of VSM, along with
the execution time for the tested methods. Table 3 shows that the VSMs obtained by the proposed
approach get closer to the ones obtained by the CPF approach. However, the proposed approach has
less execution time in all cases compared to the CPF approach.

In order to compare the overall efficiency of all the tested methods, an index called the efficiency
coefficient (EC) is defined as,

EC =

∣∣log10(VSM)
∣∣

Time
(25)

This index combines execution time and accuracy, represented by the VSM based on the given
LID. A larger value of EC indicates high efficiency, in terms of less execution time and higher accuracy.
Table 3 shows the values of EC for the compared methods. Since a larger system requires more
execution time, the value of EC decreases when the system size increases. In addition, Table 3 clearly
shows that the proposed approach is significantly more efficient than the conventional CPF approach.

Table 3. Comparison of the results for the considered test systems in load change cases.

Test System VSM (%) Time (s) EC

Proposed CPF Proposed CPF Proposed CPF

IEEE 14-bus 22.17 22.48 0.25 1.36 5.38 0.99
IEEE 30-bus 34.01 34.63 0.41 2.59 3.74 0.59
IEEE 57-bus 17.57 17.96 1.06 6.04 1.17 0.21

IEEE 118-bus 9.06 9.41 1.62 10.34 0.59 0.09
IEEE 300-bus 12.94 13.27 12.44 73.42 0.09 0.02
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4.2. Topology Change Cases

The aim of this case study is to demonstrate the capability of the proposed method to deal
with topology changes in the operating condition. The considered topology change cases include
transmission line and generator outages.

Table 4 compares the results in terms of EC for the studied systems. In addition, the table shows
several out-of-service cases for each test system. Table 4 shows that the efficiency of the proposed
method is significantly higher than the CPF method. Indeed, the proposed method yields results with
acceptable accuracy, despite its ease of implementation and low computational cost. Furthermore, we
observe, based on extensive simulations carried out, that the proposed method is easily applicable to
any power system, regardless of system size and configuration.

Table 4. Comparison of the results for the considered test systems in topology change cases.

Test System Out of Service
EC

Proposed CPF

IEEE 14-bus
Line 9–10 5.25 1.36

Line 12–13 4.94 0.98
G2 5.03 1.01

IEEE 30-bus
Line 21–22 3.68 0.63
Line 10–17 3.31 0.47

G13 3.97 0.72

IEEE 57-bus
Line 23–24 1.78 0.59
Line 9–55 1.04 0.15

G8 1.36 0.34

IEEE 118-bus
Line 18–19 0.63 0.19
Line 63–64 0.58 0.11

G24 0.60 0.14

IEEE 300-bus
Line 11–13 0.14 0.05
Line 15–37 0.08 0.02

G10 0.11 0.04

4.3. Visualization of VSB in P-Q Plane

To examine the effects of different look-ahead LIDs on voltage stability assessment, we performed
many load patterns on the studied systems. Figure 13 depicts an illustrative case of VSB determination
in PQ plane for the IEEE 14-bus model. The maximum transferable load powers (P, Q, and |S|) and
the corresponding operating point can be easily identified in Figure 13 (i.e., a VSB curve can give
more meaningful information to power engineers). This real-time visualization of voltage stability is
achieved via the identification of a VSB curve using PMU measurements.

The criterion used for performance evaluation of VSB approximation is expressed as,

ECavg =
1

ncp

ncp

∑
i=1

ECi (26)

where ECi is defined previously in Equation (25) and ncp denotes the total number of compared points
on the VSB. In this study, ncp = 100 for each test system. Also note that the exact VSB is computed by
point-by-point voltage collapse point computation. Table 5 gives the values of ECavg for the compared
methods. Through quantitative comparisons with the CPF method, it can be seen that the proposed
algorithm is capable of providing acceptable accuracy, but with much less execution time and higher
efficiency. This means that a possible VSB, which can improve real-time situational awareness to
enhance voltage stability monitoring, can be given quickly by the proposed method.
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Table 5. Comparison of the results in terms of ECavg for the considered test systems.

Test System ECavg

Proposed CPF

IEEE 14-bus 5.07 1.12
IEEE 30-bus 3.65 0.64
IEEE 57-bus 1.39 0.37
IEEE 118-bus 0.61 0.15
IEEE 300-bus 0.12 0.04

4.4. Effects of Measurement Inaccuracies

To verify the effects of measurement inaccuracies on VSB determination, we carried out a lot
of test cases by simply adding random noise to the original measurements. The total number of
compared points on the VSB is set to be 100 for each test system. The results in terms of average error
are summarized in Table 6, showing that measurement errors indeed degrade the performance of
the VSB determination. However, the issue of data pre-processing can be easily solved by different
filtering methods available in studies [23,24].

Table 6. Effects of measurement errors to VSB determination.

Test System
Error (%)

No Measurement Errors With Measurement Errors

IEEE 14-bus −1.56 −4.66
IEEE 30-bus −2.05 −5.24
IEEE 57-bus −1.79 −4.98

IEEE 118-bus −2.46 −5.47
IEEE 300-bus −2.34 −5.31

5. Conclusions

A new PMU-based algorithm for online voltage security monitoring is developed to increase the
system operator’s situational awareness for operational decision making. Based on the TE technique
and the MT technique for determining loading margin of a transmission grid, the approximation of
VSB can be obtained by a quadratic curve using PMU data. Visualization of VSB in a complex load
power space gives system operators a global view of power system voltage stability. The proposed



Energies 2017, 10, 1103 15 of 16

algorithm can cope with different kinds of load increase cases. In addition, the algorithm is simple
and fast, which makes it adequate for online applications. Numerical test results, using different-size
power grid models, illustrate the effectiveness, flexibility, and capability of the proposed algorithm.
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