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Challenges in Quench Heat Treatment 

Simulation

• Modeling preheating in furnaces
– Not something to be ignored – potential for energy saving

• Effect of Transfer Time from Furnace to Quench Tank (large components)
– Minimum temperature above Ae3 must be ensured, edges cool faster than surfaces

• Modeling Microstructure Evolution  during Quenching
– Compromise between equilibrium and TTT diagrams

• Heat Transfer during Quenching
– Two phase heat transfer, not properly quantifiable; all three phases present 

simultaneously – film boiling, nucleate boiling and convective heat transfer

• Development of Proper Tools for Measuring HTC / Heat Flux Rate during 
Quenching
– Measurement of HTC in plant conditions, a major challenge (Equipment design and 

Estimation) 

• Modeling Hardness of as-Quenched Structures
– Varies with composition and quenching rates – a property defined by the process 

route, not just by the composition!

• Stresses, Cracks and Distortion
– Material characterization at high temperatures – Elastic / Plastic / Viscoelastic ?

• Modeling Tempered Hardness
– Effect of both time and temperature 

2Heat Treatment Simulation



Heat Treatment Simulation 3

Understanding Metallurgy of Steels

The Fe-C equilibrium diagram is not of 
much use to Modeling Heat Treatment

• The Fe-C (Fe-Fe3C) diagram is 
an equilibrium diagram

• Steel is a multicomponent 
alloy

• The equilibrium Diagram is a 
Binary Diagram

• The effect of other alloying 
elements are considered 
through defining a Carbon 
Equivalent

• There are many formulae for 
CE

The TTT diagram provides basic 
information for modeling Heat 
Treatment

• Shows non-equilibrium 
phases

• Isothermal transformation 
which is practically 
impossible

• The effect of all alloying 
elements are considered

• Experimentally obtained –
Grade Specific (Atlas of 
TTT) 

Calculated TTT diagram from 
first principles – Composition 
Specific (JMatPro)

• Neither Fe-C Equilibrium Diagram nor the TTT diagram can be independently used for heat treatment 
simulation for both have deficiencies

• We need to use the information from both diagrams and develop an appropriate diagram for tracking 
austenite decomposition
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Critical Temperatures – Importing TTT Data 
onto Fe-C Equilibrium Diagram

Ae3 boundary was obtained by a standard

regression equation
Ae3=912-203C0.5+15.2Ni+44.7Si-104V+31.5Mo+13.1W-

30Mn-11Cr-20Cu+700P+400Al+120As+ 400Ti

Ae1 temperature for the steel was read off from

the TTT diagram for the steel grade

Ae3 temperature for the steel was read off from

the TTT diagram for the steel grade, fixing CE

Bs, Fend, Ms and Mf were obtained by TTT 

Diagram

CE

Ae1

Ae3

Bs

Fend

Ms

Mf

Ae3 Line

Ae2 Line

Ae2 Line

Carbon %

Temp

0.02

912

Eutectoid

A+F

F+P

F+B

B

M



Heat Treatment Simulation 5

Austenite Transformation Models
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Generating CCT Diagrams from TTT Diagrams

Obtaining the CCT curve using TTT 
curve and calculated temperature
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• Correct interpretation of critical information (Ac3, 
Ae1, Acm, CE etc.)

• Reconciliation of Equilibrium and TTT data on 
steels

• Composition specific TTT diagram (if not at least 
grade specific)

• Distinct regimes of ferrite, pearlite, bainite and 
martensite transformation especially in the case of 
high alloy steels

• An algorithm to track austenite transformation as 
the steel cools – generate CCT curves

• Thermophysical properties of different phases
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Input on Steels – A Summary
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Film boiling 

phase: Heat 

transfer 

impeded by 

a vapor 

blanket

“Handbook of Quenchants and Quenching 
Technology,” 1993,  Eds: G.E.Totten, C.E.Bates, 
N.A.Clinton, ASM

Heat Transfer during Quenching

Nucleate 

boiling 

phase: 

Maximum 

heat 

transfer 

due to 

wetting

Convective 
Phase: 
Low heat 
transfer 
through 
convection 

• For simulating quenching, we must know the HTC 
(Heat Transfer Coefficient) during quenching. 

• Boiling heat transfer is one of the most complex heat 
transfer phenomenon to quantify. 

• A special tool – ‘Reference Quench Probe’ has been 
developed to measure HTC during quenching in various 
quenchants

Cooling Curve Cooling Rate Curve



Measurement of HTC During Quenching

10

Designed for portability 
and

in-situ testing

The specimen has been 
redesigned for testing 
different section sizes

Heat Treatment Simulation

A new tool ‘Reference Quench Probe’ has been designed for measuring boiling heat transfer
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Quench specimen for HTC determination as 

function of section thickness
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Setup for estimating Heat Transfer Coefficient during 
Quenching in Laboratory Condition

Furnace Probe Steel Sample Quench Vessel

Temperature 
recorder



Theory of Reference Quench Probe

– Inverse Heat Transfer*
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• Boiling heat transfer cannot be easily measured or calculated using CFD 

*T.S.Prasanna Kumar “A serial solution for the 2-D inverse heat conduction problem for estimating multiple heat 

flux components”- Numerical Heat Transfer Part B-Fundamentals, Vol 45, n 6, June, 2004, pp 541-563

• Since the temperature can be easily measured, we use the temperature data as input and calculate the 
heat flux rate

• This is known as the INVERSE Heat Transfer Problem, a very difficult problem to solve, developed* in 
2004. 
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Theory of Reference Quench Probe –

Metallurgical Model
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Theory of Reference Quench Probe 

– Finite Element Analysis
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Using Sensitivity 

Coefficient: 

Iterative FE formulation within time step for non linear problems:
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Modeling HTC during Quenching in Water*
*K Babu and T.S.Prasanna Kumar, Mathematical Modeling of Heat Flux during Quenching, Met Trans., Vol 41B, pp 214- 224, Feb 2010

• Experiments showed that the heat flux rate is 
dependent on soaking temperature.

• From the model, the heat flux values at different 
surface temperature can be calculated.

• It is known that for large objects like gear wheels etc, 
the surface temperature varies depending on 
geometry (corners cool fastest)

• The heat flux model has two parts: 
– A model from the start of the quenching up to the peak 

and 

– A model from the peak to the end of quenching. 



Need for Accurate Heat Transfer Modeling:

Influence of Steel Grade on Heat Flux Rates*
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*T.S.Prasanna Kumar, ‘Influence of Steel Grade on 

Surface Cooling Rates and Heat Flux during Quenching’,

JMEPEG _ASM International DOI: 10.1007/s11665-
013-0552-9 1059-9495

Computed surface heat flux 
rates : En19 and C45 
quenched in mineral oil 

Computed heat flux rates : 
EN19 and C45 quenched in 
an aqueous polymer
solution



Need for Accurate Heat Transfer Modeling:

Influence of Polymer Concentration on Heat Flux and 

Cooling Rates
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• Quenching is accompanied by boiling  - complex 
heat transfer

• Heat transfer during quenching 
– affected by quench tank design (agitation levels and 

uniformity) 

– the type and state of quenchants(oxidation, 
contamination etc.)

• Necessary to measure HTC in situ for best results 

• Reference Quench Probe is the tool 
– Based on Inverse Heat Transfer and metallurgical 

models

• Regression models for HTC are plant specific 
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Boiling Heat Transfer – A Summary
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Estimation of As-Quenched Hardness

C25 EN8

EN19 EN31

EN24

Abhaya Simha N. R, Sushanth M. P, Sachin V Bagali, Maruti, T. S. Prasanna Kumara, V. Krishna ’Estimation of hardness during heat treatment of 
steels’ Metal Science and Heat Treatment, Vol. 61, Nos. 7 – 8, November, 2019 (Russian Original Nos. 7 – 8, July – August, 2019)
Translated from Metallovedenie i Termicheskaya Obrabotka Metallov, No. 7, pp. 51 – 58, July, 2019.A
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Estimation of As-Quenched Hardness
Abhaya Simha N. R, Sushanth M. P, Sachin V Bagali, Maruti, T. S. Prasanna Kumara, V. Krishna ’Estimation of hardness during heat treatment of 
steels’ Metal Science and Heat Treatment, Vol. 61, Nos. 7 – 8, November, 2019 (Russian Original Nos. 7 – 8, July – August, 2019)
Translated from Metallovedenie i Termicheskaya Obrabotka Metallov, No. 7, pp. 51 – 58, July, 2019.A
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Estimation of As-Quenched Hardness –

Industrial Trials with Different Quenchants



Estimation of Tempered Hardness*
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*R.A.Grange, C.R.Hribal and L.F.Porter, ‘Hardness of Tempered Martensite in Carbon and Low-alloy Steels’, Met. 
Trans A, Vol 8 A, Nov 1977, pp 1775-1785

Tempered hardness 
is the sum of 
hardness of the base 
Fe-C alloy plus the 
contributions from all 
the alloying 
elements: Mn, Ni, Cr, 
Mo, V…..



Model Integration and Features of 

Simulation Software
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3D Model; 
SolidWorks 

Pre-Processor; 
Meshing; BC; 
IC; 

Import 
Data into 
TmmFE

Select 
Steel

Specify 
Sensor 
Locations

Specify 
furnace 
heating 
condition

If OK, transfer 
to Quench 
Tank

Pre-heat; 
check for 
soaking 
conditions

If Not OK, redefine heating

If Quenching Conditions OK, 
proceed with quenching

If Not OK, redefine heating

Export Data to 
Post Processor

View in TmmFE

2D Model 
TmmFE

TmmFE_HT: Flow Chart
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Post Processing -TmmHT



Stresses during Quenching
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Post Processing - GiD
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Industrial Case Studies
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Industrial Consultancy / Case Studies
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Steels tested:

C45, 41Cr4, 100Cr6, 8822H, 
SA 542, 52100, 4140, SUP 9, 
ORVO, H13, DAC, MSSR 
6503, AMS 6431, S99

Quenchants tested

Servo 707, Castrol 798, 
Nippon 303, Hardcastle 
Polymer solutions (4.5%, 
6.0%, 13.5%, 14.0%), Water 
All in agitated tanks

Gas Quenching

Lab trials in static 
quenchants

Heat Treatment Simulation

Sl No Company

1 Ace Carbo Nitriders, Peenya

2 Automotive Axles Ltd, Mysore, India

3 Bharath Earth Movers Ltd., KGF, India

4 Bharath Forge Ltd., Pune, India

5 Caterpillar, Hosur

6 HAL, Bangalore, India

7 IndCarb, Attibele

8 L&T, Hazira, India

9 LVM, Bangalore, India

10 Mahindra Forge Ltd., Pune, India

11 NBC Bearings, Jaipur, India

12 SKF Bearings, Pune, India

13 SSS Springs, Siriperambudur, India

14 Tamilnadu Heat Treatment and Fettling Services, Hosur

25 International Journal / Conference Publications / Presentations



Crack Elimination during IH of Cam Shafts
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Lowering the 
concentration of 
PAG polymer 
was the solution
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Zone Th(mm) %C
Core 6.50 0.179
Low carbon 1.50 0.215
Medium carbon 0.97 0.380
High carbon 0.76 0.650
Very high carbon 0.77 0.870

Test No Furnace Condition

Av CR 

(600-

100)

Predict

ed HRc

Measur

ed HRc Error

Test 1 D Agitated 10 53.7 54.5 0.8

Test 3 G Agitated 12.2 57.4 57.5 0.1

Test 4 Bucket New Oil 6.4 47.7 47.0 -0.7

Test 5 F Agitated 11.9 56.9 56.0 -0.9

Test 6 F Agitated 14.1 60.6 62.5 1.9

Test 7 F Agitated 17 65.4 64.0 -1.4

Test 8 B Agitated 13.8 60.1 60.5 0.4

y = 1.6738x + 37.008
R² = 0.9604
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Graph showing relationship of HRc 
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In-Situ testing of Case Hardened Steels



Stacking Efficiency
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Horizontally 
kept rods

Quenchant 
flowing past 
the rods

Different 
cooling rates 
along the 
periphery 
and hence 
variation in 
hardness

Thermocouples

Schematic of the test rod (90 mm diameter) 
instrumented with four thermocouples

Sl 

No

Parameter Top Left Bot’m Right Core

1 Maximum heat flux (MW/m2) 1.50 3.40 2.97 1.84 -

2 Surface temperature at 

which Maximum heat flux 

occurs (C) 

430.00 570.00 572.00 523.0 -

3

Maximum heat transfer 

coefficient (W/mK)

- - - - -

4 Surface temperature at 

which the maximum heat 

transfer coefficient occurs 

(C)

- - - - -

5 Maximum cooling rate (C/s) 73.00 320.00 269.00 119.00 13.6

6

Surface temperature at 

which the maximum cooling 

rate occurs (C)

673.00 569.00 572.00 523.00 680.00

Location Ferrite Pearlite Bainite Martensite Austenite Hardness(Rc)

Top 0.02 0.00 0.37 0.58 0.03 44.89

Left 0.00 0.00 0.23 0.73 0.04 48.20

Bottom 0.00 0.00 0.42 0.55 0.03 45.14

Right 0.18 0.00 0.13 0.67 0.02 43.33

Core 0.26 0.15 0.59 0.00 0.00 25.21
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Vacuum Hardening of Tool Steels

Coooling curves at the surface of different steel 

samples
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Sl

No

Sample ID HRC Microstructure (Volume %)

Carbid

e

Pearli

te

Bainit

e

Martensi

te

1 DAC Surface 54.51 12.37 0.00 2.43 84.61

2 DAC Core 54.50 12.37 0.00 2.54 84.58

3 H13 Surface 54.49 12.47 0.00 2.57 83.65

4 H13 Core 54.50 12.22 0.00 2.42 84.22

5 ORVAR 

Surface

54.59 11.08 0.00 2.24 86.23

6 ORVAR 

Core

54.59 10.94 0.00 2.34 86.28

Sl

No

Sample ID HRC Error 

%Measured Computed

1 DAC 

Surface

55.0 54.51 -0.89

2 DAC Core 54.7 54.50 -0.37

3 H13 

Surface

55.0 54.49 -0.93

4 H13 Core 55.4 54.50 -1.65

5 ORVAR 

Surface

55.0 54.59 -0.75

6 ORVAR 

Core

55.7 54.59 -2.03
Uniformly distributed spheroidal carbide particles in a matrix of 
tempered martensite in ORVAR Supreme samples.
Left: Core; right: Surface



Anomalous Quenching of C45 in Oil 

(Harder core, Softer surface)

35

Surface re-
heat resulting 
in early 
decompositio
n of austenite 
into ‘softer’ 
ferrite and 
bainite

Normal 
cooling at the 
core  results in 
decomposition 
of austenite 
into 
martensite as 
well at lower 
temperatures
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About TmmFE-HT

• Designed with the plant engineer in mind with the theory of heat transfer and metallurgical 

transformation working in the background.

• Integrates all processes during heat treatment from pre-heating to tempering

• Interface ensures smooth running of the software with inputs in practical terms.

• Robust algorithm combining features of both TTT diagram and the Equilibrium diagrams

• Reference Quench Probe – both in-situ and lab versions – indigenously designed, developed and 

tested in industries for measuring heat transfer coefficient / heat flux rate during quenching

• Heat transfer coefficient measured in-situ based on coupled inverse heat transfer and austenite 

transformation models - a unique feature.

• Model of HTC specific to steel and the plant conditions used for simulation for ensuring hardness 

estimation within 2-3 HRc.

• Surface cooling effects during transfer of large components from the furnace to the quench tanks are 

considered. 

• Apart from end-to-end simulation TmmFE can be used for trouble shooting, selection of quenchants, 

defect elimination, improving stacking efficiency, monitoring of quenchnats etc. 

• Saves energy during pre-heating by optimization of soaking time

• Two specialized modules tested extensively in laboratories and industries related to quench heat 

treatment. 

• Helps to understand and optimize the Heat Treatment processes.

• For both (i) Metallurgical Engineers in industry and (ii) Researchers in Process Engineering and 

Mathematical Modeling
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