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Abstract 
Well testing is the cheapest and most accurate tool available to find the distance from a well to a linear constant-pressure boundary or fault. 
Several methods exist in the literature with which to determine this parameter. Most of them use conventional analysis and are only useful 
for isotropic reservoir systems. The few methods for anisotropic systems obtain the well-to-discontinuity distance through conventional 
analysis, type-curve matching and TDS technique, and then a correction by anisotropic effects is applied. In this work, a unified behavior 
of the pressure derivative was found, so the new shorter and most practical expressions used to find the distance from the well to the 
discontinuity, including the simultaneous effects of anisotropy angle and anisotropy index, are included. These new formulae were 
successfully tested with two synthetic examples and one field case example, and deviation errors higher than 30% are observed if an 
anisotropic system is treated as an isotropic one. 

Keywords: anisotropy; linear boundary; fault, constant-pressure boundary. 

Cálculo práctico de la distancia a una discontinuidad en sistemas 
anisotrópicos a partir de la interpretación de pruebas de presión 

Resumen 
Las pruebas de presión constituyen la herramienta más económica y precisa disponible para encontrar la distancia desde un pozo a un límite 
o falla de presión constante lineal. Existen varios métodos en la literatura para determinar este parámetro. La mayoría de ellos usa análisis
convencionales y solo son útiles para sistemas de yacimientos isotrópicos. Los pocos métodos para sistemas anisotrópicos obtienen la
distancia entre el pozo y la discontinuidad a través del análisis convencional, el ajuste de curvas de tipos y la técnica TDS, y luego se aplica
una corrección por efectos anisotrópicos. En este trabajo, se encontró un comportamiento unificado de la derivada a presión, por lo que se
incluyen las nuevas expresiones más cortas y prácticas para encontrar la distancia desde el pozo a la discontinuidad, incluidos los efectos
simultáneos del ángulo de anisotropía y el índice de anisotropía. Estas nuevas fórmulas se probaron con éxito con dos ejemplos sintéticos
y un ejemplo de caso de campo, y se observan errores de desviación superiores al 30% si un sistema anisotrópico se trata como si fuese un
sistema isotrópico.

Palabras Clave: anisotropía; barrera lineal; falla; frontera a presión constante. 

1. Introduction

Well testing is the cheapest way of reservoir 
characterization. Although it provides the most accurate 
option for finding distances from well to 
faults/discontinuities, reservoir characteristics and geology 
speed up or delay the transient wave travel time, leading to 
erroneous interpretations when isotropic methods are used. 

How to cite: Escobar, F.H., Bonilla, L.F. and Hernández, C.M., A practical calculation of the distance to a discontinuity in anisotropic systems from well test interpretation. 
DYNA, 85(207), pp. 65-73, Octubre - Diciembre, 2018.

Most of the well test methods to estimate the distance 
from wells to linear boundaries are presented for isotropic 
cases. In the semilog plot, a fault is detected when the slope 
of the radial flow regime doubles its value. The intercept of 
lines going through these two semilog lines are normally used 
to find the distance from the well to the fault. Among the 
isotropic methods, the following can be named: [8,9,17,20], 
MDH presented by [2,3,6,7,16,18,21,22], Sabet presented by 
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[24] and [24]. [13] compiled the methods produced until 
1970. 

Regarding the application of the pressure derivative, the 
work by [4] presented a new mathematical solution for a 
linear boundary detection, including wellbore storage and 
skin factor. The authors also developed a type-curve 
matching procedure and verified its application with a 
synthetic example. The first TDS Technique, [25], approach 
to find the distance from the well to a given linear 
discontinuity was presented by [19]. To estimate fault-to-
well distance, they used the time at which radial flow regime 
ends. 

[23] were the first to include fault detection in anisotropic 
reservoirs. Although they used conventional analysis 
(intersection of semilog lines) for the interpretation, new 
expressions for determining actual well image location and 
true distance were included. Later, [14] and [15], based on 
the work by [23], developed a new mathematical solution, 
including wellbore storage and skin factor. They provided 
both TDS Technique and type-curve matching interpretation 
techniques. Once the fault distance is found, the true 
distance—corrected by anisotropy effects—is obtained using 
the formulae of [23]. 

This work is also based on the works of [15] and [23]. A 
more general and practical formula was also developed using 
the time at which the radial flow regime ends. However, this 
new formula includes the effects of both anisotropy angle and 
anisotropy index. It was obtained by creating a unified 
behavior of pressure derivative against θFC tD/(IA

0.5Lf
2), where 

θFC is a correction factor involving the anisotropy angle and 
IA is the areal anisotropy index (kx/ky). When the ending time 
of the radial flow regime is obscured by noise, the inflection 
point observed between the two pressure derivative plateaus 
is used in a similar equation. However, this inflection point 
is better determined using the maximum point on the second 
pressure derivative curve. For the case of a constant-pressure 
boundary, a negative unit slope line is developed. An 
equation for such a line was empirically (linear regression) 
obtained, so an arbitrary point read on such a line is used to 
find the distance from the well to the discontinuity. Also, the 
intersect of such a line with the extension of the radial flow 
regime line is used to develop another expression to find the 
distance to the constant-pressure boundary. Synthetic 
examples and a field case were used to successfully verify the 
developed equations. Care must be taken if an anisotropic 
reservoir is dealt with as an isotropic system, since the error 
could be as high as 100%. 

 
2.  Mathematical model 

 
The classic assumptions used in well test analysis also 

apply here; this means that, regardless of gravity, a single and 
slightly compressible fluid with constant viscosity, a 
homogeneous porous medium and maximum permeability 
and minimum permeability are oriented in the x and y 
directions, respectively, the x-y coordinate system can be 
transformed by changing the scale along each axis: 

 
x x=  (1) 

 

AIy y=  (2) 
 
Thus, IA the anisotropic index or horizontal permeability 

ratio, is defined by the following: 
 

/A x yI k k=
 (3) 

 
The method of images, [5], can be applied once the 

coordinate change is achieved to convert to isotropic 
conditions. [23] presented a general well imaging technique 
based on Eqs. (1) and (2), so actual image well location is 
given by the following: 
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These equations imply that the well image location in an 

anisotropic medium is a function of both the anisotropy index 
and the angle formed by the fault and the principal 
permeability axis. Isotropic system results whenever the fault 
is normal to either principal axis (θ = 0 or π/2) as 
demonstrated by [23]. Who also provided A better picture is 
given in Fig. 1, and a detailed development of Eqs. (4) and 
(5) is presented by [23]. Using these equations, they also 
arrived at the following: 

 
2 2

cos sin( ) /
cos ² sin ² cos ² sin ²f f app A A

A A

L L I I
I I

θ θ
θ θ θ θ

    
 = +   + +       

(6) 

 
Where (Lf)app is the apparent or uncorrected well-to-fault 

distance found for the isotropic system case. Estimation of 
well pressure behavior is obtained once the image well 
location is determined. The denominator of Eq. (6) can be 
read from Fig. 9 by [23]. [15] provided a general solution, 
including wellbore storage and skin factor, for a well near 
either a sealing fault or a constant-pressure boundary. This 
solution avoids setting many well images. 

 
(1, ) (1, ) ( , )wD D wD D D D DP t P t P r t= ±  (7) 

 
Being that 
 

2
;f

D w f
w

L
r r L

r
= ≤ ≤ ∞

 
(8) 

 
The ± symbol in Eq. (7) considers the solution for either 

the fault or constant-pressure boundary. When the sign is 
positive, a sealing fault is near the well. When the sign is 
negative, a constant-pressure boundary is then set, and radial 
stabilization characterized by a negative-unit slope in the 
pressure derivative curve is presented once the constant-
pressure boundary is felt by the transient wave. Radial 
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stabilization has been characterized by [11] and [12]. The two 
terms at the right side of Eq.(7) are defined by the following: 
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(10) 

 
3.  Interpretation methodology 

 
The TDS Technique, [25], is a powerful and practical 

interpretation technique that uses characteristic lines and 
features found on the pressure derivative plot. The solutions 
of the diffusivity equation for each individual flow regime 
are used to develop mathematical expressions to determine 
reservoir parameters. Maximum points, minimum points and 
inflection points are also used to develop equations for 
further reservoir characterization or parameter verification. 
Even though the intersection of the governing equations of 
two given flow regimes do not have any physical meaning, 
its use also allows further expressions to be developed to 
create more equations.  

Let us start by defining some dimensional quantities for 
oil reservoirs: 

 

2

0.0002637
D

t w

ktt
c rφµ

=
 

(11) 

 
The dimensionless pressure and pressure derivative 

follow: 
 

141.2D
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(12) 
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The application of Eq.(7) leads to several pressure 

derivatives versus time behaviors, as displayed in Figs. 2 
through 5. As can be seen, a variety of derivatives and, of 
course, pressure responses are obtained as the parameters are 
varied. This makes the application of type-curve matching 
difficult, as proposed by [15]. [15] also extended the TDS 
Technique for anisotropic systems but they involved an 
expression for the estimation of the true well-to-discontinuity 
distance with Eq.(6), presented by [23]. A more practical 
application of the TDS Technique will be developed here. 

Fig. 1 presents the pressure derivative behavior for three 
different well-to-fault distances in isotropic systems. A 
unique behavior for the three systems is required to obtain the 
characteristic points that will be used to develop the 
interpretation equations. Notice in Fig. 1 that the 
dimensionless time at which the fault is felt increases as the 
well–fault distance increases; then, for the behavior 
unification, the dimensionless time is divided by the distance, 

Lf
n, where n is an unknown exponent that may affect the 

unified behavior. Although, not shown here, when n = 1, no 
unified behavior is obtained; then, n must be different than 
one and ought to be determined. A simple procedure to find 
n is based on the use of the pressure derivative curve with Lf 
= 1 ft.; in such a case, n has no impact on the pressure 
derivative curve, since a division by the unity does not cause 
any alteration on the result (see Fig. 5). To find the value of 
n, an arbitrary point is chosen during the time between the 
two plateaus seen on the pressure derivative, which is the 
matching zone of interest on the curve Lf = 1 ft. The arbitrary 
chosen reference point was the inflection point. An analogous 
point is taken from another curve with Lf > 1. For this case, 
the arbitrary curve for Lf = 1500 ft. was chosen. The reading 
points are then obtained from Figs. 2 and 6: 

 
(tD*PD’)inf = 0.681097 (tD)inf [for Lf =1500 ft] = 24647408.81
 (tD)inf [for Lf = 1 ft] = 10.9544 

 
Therefore, the following matching expression is given: 
 

1ftf

D D
Lx x

f f
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Which can easily be written as 
 

1ft 1500 ftf f

D
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tt
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(15) 

 
Replacing the reading values from Figs. 2 and 6. 
 

24647408.8110.9544
1500n=

 
(16) 

 
Then, n = 2 is determined using Eq.(16). Therefore, after 

dividing the dimensionless time of Fig. 1 by Lf
2, a unique 

curve, as given in Fig. 4, will be obtained. 
A similar treatment was first performed on Fig. 2 for the 

anisotropy index. As seen on that plot, the inflection point 
increases as the anisotropy index increases its effect in the 
denominator. An n value of 0.5 was found with a procedure 
similar to the one used for the well-to-fault distance case. In 
Fig. 3, the effect of the anisotropy angle, θ; is presented. As 
θ increases, the inflection point shows up earlier, meaning 
that its effect goes in the numerator. The n exponent for this 
case is the unity, but the effect changes when θ ≥ π/2. Then, 
finally, the unified behavior is obtained when the 
dimensionless time is multiplied by a correction factor, θFC, 
and divided by the product of the square root of the 
anisotropy index times the squared well-to-fault distance. 
The range of angles applied for θFC is given in Eq.(19). This 
also works for the constant-pressure boundary case, as shown 
in Fig. 4. Fig. 6 presents a unified dimensionless pressure 
derivative behavior against θFC tD/(IA

0.5Lf
2). In other words, 

universal dimensionless pressure derivative behavior is 
obtained. From that plot, the inflection time, tinf—once the 
fault has been felt—for all cases is given by the following: 
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Figure 1. Effect of fault-well distance, Lf, on the pressure derivative behavior 
for isotropic systems 
Source: Authors 
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Figure 2. Effect of anisotropy index, IA, on the pressure derivative behavior 
for anisotropic systems; θ = 0 and Lf = 1500 ft. 
Source: Authors 
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Figure 3. Effect of anisotropy angle on the pressure derivative behavior for 
anisotropic systems; IA = 10 and Lf = 1500 ft. 
Source: Authors 
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The distance from the well to the linear boundary is 

obtained from the following: 
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The anisotropy angle correction factor, θFC, is given by 

the below: 
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Figure 4. Mixed effect of anisotropy index, IA; anisotropy angle, θ; and 
discontinuity-well distance, Lf, on the pressure derivative behavior for an 
anisotropic system 
Source: Authors 
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Figure 5. Pressure derivative behavior for isotropic systems; Lf = 1 ft. 
Source: Authors 

 
 

( ) 0.2077D ret =
inf( ) 0.891Dt =

1

0.5 2

0.0002637* ' 0.502716 FC
D D

A t f

ktt P  =  
I c L

θ
φµ

−
 
  
 

0.5 2
FC

D
A f

t
I L
θ

1if 0

2.3 if / 4
2.8 if 0 / 2 and

1.8 if / 4 / 2

FC

αθ

θ

θ
θ π

θ θ π α
π θ π

=


=  ≤  < ≤ = 
  < ≤ 

t  
 *P

 '
D 

   
  D

Figure 6. Unified pressure derivative behavior for anisotropic system with 
different values of anisotropy index, IA; anisotropy angle, θ; and 
discontinuity-well distance, Lf 
Source: Authors 
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For the sealing-fault case, the inflection time is better 

obtained using the maximum point obtained on the second 
pressure derivative curve. 

It is also shown in Fig. 6 that the radial flow regime ends 
at a dimensionless time of 0.2077, meaning 
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Replacing Eq.(11) in the above equation leads to 
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From which the below is developed: 
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This is very close to the expression given by Guira et al. 

(2002) for an isotropic case: 
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As observed in Figs. 5 and 7, the constant-pressure single-

boundary case has an especial feature. Radial stabilization 
develops once the boundary has been reached by the transient 
wave, and the pressure derivative curve displays a negative 
unit-slope line. After the unification of the dimensionless 
pressure derivative curve, the governing equation for such a 
line obtained from the regression analysis is 
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Where rnusi stands for radial negative unit-Slope 

intersection. Replacing the dimensionless quantities given by 
Eqs. (11) and (13) in Eq.(24) and solving for the well-to-
discontinuity distance yields the following: 
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Figure 7. Pressure derivative versus time log–log plot for example 1 
Source: Authors 

 
 
The point of intersection between the radial flow regime 

line and the radial stabilization negative unit-slope line is a 
unique feature; by equating the right side of Eq.(24) to one 
half and solving for the well-to-discontinuity distance, it is 
obtained: 
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A t
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Finally, the reservoir permeability is found from an 

expression given by Tiab (1995): 
 

70.6
( * ')x y

r

q Bk k k
h t P

µ
= =

∆  
(27) 

 
The gas equations are provided in appendix A. 
 

4.  Examples 
 

4.1.  Synthetic example 1 
 
Using the data given in Table 1 and the pressure 

derivative plot of Fig. 7, find the distance from the well to a 
sealing fault. 

 
Solution. The following information was read from Fig. 7.  
 
(t*∆P’)r = 9.05 psi  tre = 1.13 hr   
tinf = 7.15 hr  
 
Find reservoir permeability using Eq.(27): 
 

70.6(500)(2.5)(1.23) 119.94 md
(30)(9.05)x yk k k= = =

 
 
Find the anisotropy angle factor using Eq.(19): 
 

1.8 1.8( /6)2.8 2.8( / 6) 1.28456FC
θ πθ θ π= = =  

 
Find the well–fault distance using Eqs. (18) and (22):  
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Figure 8. Pressure derivative versus time log–log plot for example 2 
Source: Authors 

 
 

Table 1.  
Reservoir and fluid data for examples 

PARAMETER Example 1 Example 2 Field Case 
rw, ft. 0.5 0.3 0.3 
h, ft. 100 30 70 
φ, % 15 20 12 

IA, md 18 30 5 

 k , md 120 250 92.53 

θ, Rad π/6 5π/12 π/6 
q, bbl/D 500 250 550 

B, rb/STB 1.23 1.25 1.324 
ct, 1/psi 1x10-6 1x10-6 1.328x10-5 

µ, cp 2.5 3 1.26 
Lf, ft 415 278  

Source: Authors 
 
 

0.5 6

1 (1.28456)(120)(7.15) 431.5 ft
60.993 (18 )(0.15)(2.5)(1 10 )fL  = − =

×  
 

0.5 6

1 (1.28456)(120)(1.13) 418.3 ft
25.0142 (18 )(0.15)(2.5)(1 10 )fL  = − =

×  
 
If the system were isotropic, the well–fault distance 

would be estimated with Eq. (23). 
 

6

1 (120)(1.13) 790.35 ft
24.06 (0.15)(2.5)(1 10 )fL  = − =

×  
 

4.2.  Synthetic example 2 
 
Find the distance from the well to a constant-pressure 

linear boundary using the data given in Table 1 and the 
pressure derivative plot of Fig. 8. 

 
Solution. The following data were taken from Fig. 8.  
 

(t*∆P’)r = 8.82 psi  tre = 0.12 hr  
 trnusi = 0.43 hr 
tnus = 67.52 hr  (t*∆P’)nus = 0.05 psi  
  

 

Reservoir permeability is found with Eq.(27), and the 
anisotropy angle factor is found using Eq.(19): 

 
70.6(250)(3)(1.25) 250.15 md

(100)(8.82)x yk k k= = =
 

 
1.8 1.8(5 /12)2.8 2.8(5 /12) 5.28066FC

θ πθ θ π= = =  
 
Find the distance from the well to the linear boundary 

using Eqs. (22), (25) and (26): 
 

0.5 6

1 (5.28066)(250)(1.13) 270.62 ft
25.0142 (30 )(0.2)(2.5)(1 10 )fL  = − =

×  
 

0.5 6

250 (39)(5.28066)(67.52)(0.05) 255.3 ft
408.0774(3) (250)(1.25)(30 )(0.2)(1 10 )fL −= =

×  
 

0.5 6

1 (5.28066)(250)(0.12) 277.6 ft
48.567 (30 )(0.2)(2.5)(1 10 )fL   −= =

×  
 
If the system were isotropic, the distance from the well to 

the linear boundary would be estimated to be the following 
by using Eq.(23): 

 

6

1 (250)(0.12) 556.33 ft
24.06 (0.2)(3)(1 10 )fL  = − =

×  
 

4.3.  Field example 
 
[14] presented field data for a pressure test run in a well 

near a sealing fault in an anisotropic system. Pressure and 
pressure derivative versus time data are provided in Fig. 9. 
Finding the distance from well to the fault is required. 

 
Solution. The following information was taken from Fig. 9.  
 

tre = 3 hr  tinf = 13 hr  
 
Find the anisotropy angle factor using Eq.(19): 
 

1.8 1.8( /6)2.8 2.8( / 6) 1.28456FC
θ πθ θ π= = =  

 
Find the well–fault distance using Eqs. (18) and (22): 
 

0.5 5

1 (1.28456)(92.53)(18) 357.9 ft
60.993 (5 )(0.12)(1.26)(1.328 10 )fL  = − =

×  
 

0.5 5

1 (1.28456)(92.53)(3) 356.3 ft
25.0142 (5 )(0.12)(1.26)(1.328 10 )fL  −= =

×  
 
If the system were isotropic, the well-to-fault distance 

would be estimated using Eq.(23). 
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Figure 9. Pressure derivative versus time log–log plot for the field example 
Source: Authors 

 
 

Table 2.  
Deviation errors from the working examples 

Example 1, Lf = 415 ft. Field Example 1, Lf = 370 ft.(*) 

Eq. Lf, ft. Abs. 
Error, % Eq. Lf, ft. Abs.  

Error, % 
18 431.5 3.97 18 357.9 3.3 
22 418.3 0.80 22 356.3 3.7 
23 790.35 90.45 23 488.7 32.1 

Example 2, Lf = 278 ft. 

 

Eq. Lf, ft. Abs.  
Error, % 

22 270.62 2.65 
25 255.30 8.17 
26 277.60 0.14 
23 556.33 100.12 

(*) Commercial interpretation software 
Source: Authors 

 
 

5

1 (92.53)(3) 488.7 ft
24.06 (0.12)(1.26)(1.328 10 )fL  = − =

×  
 
[14] estimated Lf = 462.24 ft. The authors corrected the 

apparent distance estimated with Eq.(23) by using a reading 
from Fig. 9 by [23]. We found, however, that the correction 
factor was not estimated well. Then, we interpreted the test 
with a commercial software and found the well-to-fault 
distance to be 370 ft. This value was then used as our 
reference value for the estimation of the error.  

 
5.  Discussion of results 

 
Table 2 provides the deviation error obtained for the 

working exercises. The proposed equations provided error 
values lower than 4%. The higher error was obtained from 
Eq.(25), which uses any point on the negative unit slope line.  

It is important to remark that the estimations provide 
deviation errors higher than 30% for the actual field case and 
even higher than 90% for the synthetic examples when the 
system is dealt as an isotropic case.  

 
 

6.  Conclusions 
 

1. Practical and accurate expressions using the unique 
features of the pressure derivative plot were developed 

to determine the distance from a well to a linear 
boundary (constant-pressure or sealing fault) in areal 
anisotropic reservoirs. The expressions—successfully 
tested with two simulated examples and one field case 
example—simultaneously involve the anisotropy angle 
and the anisotropic index. Most of the developed 
expressions provided errors lower than 4%, except for 
one expression that uses an arbitrary point on the 
negative-unit-slope line. 

2. The pressure derivative as a function of θFC tD/(IA
0.5Lf

0.5) 
always displays the same behavior for wells near a linear 
boundary. The anisotropy angle factor, θFC, has different 
estimations if the angle is less or higher than 45°. The 
relationship θFC tD/(IA

0.5Lf
0.5) forms the basis of the 

methodology developed in this work. 
3. Determination of the well–discontinuity distance using 

the isotropic formulae can provide errors even higher 
than 100%. For the real example, the error was 32%. 
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Nomenclature 
 

B Volume factor, rb/STB 
C Wellbore storage coefficient, bbl/psi 
ct Total system compressibility, psi-1 

DDR Dimensionless distance ratio 
h Reservoir thickness, ft. 
IA Areal anisotropic ratio or permeability ratio 
k  Reservoir horizontal permeability, md 
kx Reservoir permeability in the x-direction, md 
ky Reservoir permeability in the y-direction, md 
Lf Distance from the well to the linear boundary, ft. 
n Undetermined exponent 

m(P) Pseudopressure, psi2/cp 
P Pressure, psi 

DP   Dimensionless pressure in the Laplace space 
Pi Initial reservoir pressure, psi 
Pwf Wellbore flowing pressure, psi 
q Liquid flow rate, BPD 
qg Gas flow rate, MSCF/D 
rw Wellbore radius, ft. 
S Laplace parameter 
s Skin factor 
t Time, hr 

ta(P) Pseudotime, hr-cp/psi 
tD Dimensionless time  
tDa Dimensionless pseudotime  

tD*PD’ Dimensionless pressure derivative 
(t*∆P’) Pressure derivative 

x x-direction 
y y-direction 

 
Greeks Symbols 
 

φ Porosity, fraction 
µ Viscosity, cp 
θ Angle, Rad 

θFC Anisotropy angle correction factor 
 

Suffices 
 

app Apparent of uncorrected 
D Dimensionless 
i Initial 
I Image 

inf Inflection 
nus Negative unit slope 

r Radial 
re End of radial 

rnusi Intercept of the radial flow and the negative unit slope 
lines 

true True distance 
wf Well flowing 
ws Well static 

 
APPENDIX A. Gas Reservoirs 
 

The dimensionless pseudopressure and pseudopressure 
derivative are defined by the following: 
 

[ ( ) ( )]( )
1422.52

i
D

g

kh m P m Pm P
q T

−
=

 (A.1) 
 

[ * ( ) ']* ( ) '
1422.52D D

g

kh t m Pt m P
q T

∆
=

 (A.2) 
 

[1] introduces the pseudotime function to account for the time 
dependence of both gas viscosity and total system compressibility: 
 

( ) ( )

t

a
tto

dtt
t c tµ

= ∫
 (A.3) 

 
This function is better defined as a pressure function given in hr 

psi/cp: 
 

( / )( )
( ) ( )

P

a
tPo

dt dPt P dP
p c Pµ

= ∫
 (A.4) 

 
Now, μ and ct are pressure-dependent properties. Eq.(A.4) can 

be rewritten as follows: 
 

2

0.0002637
( )D

t i w

ktt
c rφ µ

=
 (A.5) 

 
Including the pseudotime function, ta(P), in Eq.(A.5), the 

dimensionless pseudotime is given by the below: 
 

2

0.0002637 ( )Da a
w

kt t P
rφ

 
=  

   (A.6) 
 

By multiplying and then dividing by (μct)i, a similar Eq.to the 



Escobar et al / Revista DYNA, 85(207), pp. 65-73, Octubre - Diciembre, 2018. 

73 

general dimensionless time expression, Eq.(27), can be obtained. 
 

[ ]2

0.0002637 ( ) ( )
( )Da t i a

t i w

kt c t P
c r

µ
φ µ

 
= × 

   (A.7) 
 

With these new dimensionless quantities, Eqs. (1), (17), (20) 
and (21) will become the below: 

 

inf
0.5

( )1
60.993

FC a
f

A

kt PL  = 
I

θ
φ

 (A.8) 
 

0.5

( )1
25.0142

FC a re
f

A

kt PL  = 
I

θ
φ

 (A.9) 
 

0.5

( ) [ * ( ' )]
1295.2521

FC a nus nus
f

A

h t P t m P  kL
qT I

θ
φ
∆

=
(A.10)  

 

0.5

( )1
48.567

FC a rnusi
f

A

kt PL
I

θ
φ

=
 (A.11) 

 
The reservoir permeability, [10], is given by the following: 
 

[ ]
711.26
( )* '( )

g
x y

a r

q T
k k k

h t P m P
= =

∆
 (A.12)  
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