ELSEVIER

Available online at www.sciencedirect.com

The Journal of Systems and Software 79 (2006) 107-119

d &< The Journal of
scIENcECDIREcT® systems and
Software

www.elsevier.com/locate/jss

A practical framework for eliciting and modeling
system dependability requirements: Experience from the NASA
high dependability computing project

Paolo Donzelli *, Victor Basili *°

& Department of Computer Science, University of Maryland, College Park, MD 20742, USA
® Fraunhofer Center for Experimental Software Engineering, College Park, MD 20742, USA

Received 9 December 2004; received in revised form 21 March 2005; accepted 21 March 2005
Available online 29 April 2005

Abstract

The dependability of a system is contextually subjective and reflects the particular stakeholder’s needs. In different circumstances,
the focus will be on different system properties, e.g., availability, real-time response, ability to avoid catastrophic failures, and pre-
vention of deliberate intrusions, as well as different levels of adherence to such properties. Close involvement from stakeholders is
thus crucial during the elicitation and definition of dependability requirements. In this paper, we suggest a practical framework for
eliciting and modeling dependability requirements devised to support and improve stakeholders’ participation. The framework is
designed around a basic modeling language that analysts and stakeholders can adopt as a common tool for discussing dependability,
and adapt for precise (possibly measurable) requirements. An air traffic control system, adopted as testbed within the NASA High

Dependability Computing Project, is used as a case study.
© 2005 Elsevier Inc. All rights reserved.

Keywords: System dependability; Requirements elicitation; Non-functional requirements

1. Introduction

Individuals and organizations increasingly use
sophisticated software systems from which they demand
great reliance. “‘Reliance” is contextually subjective and
depends on the particular users’ needs. Therefore, in dif-
ferent circumstances, the users will focus on different
properties of such systems, e.g., availability, real-time
response, ability to avoid catastrophic failures, capabil-
ity of resisting adverse conditions, and prevention of
deliberate intrusions, as well as different levels of adher-
ence to such properties. For example, while safety-criti-
cal applications development strives to guarantee

* Corresponding author. Tel./fax: +1 3014052740.
E-mail addresses: donzelli@cs.umd.edu (P. Donzelli), basili@
cs.umd.edu (V. Basili).

0164-1212/$ - see front matter © 2005 Elsevier Inc. All rights reserved.

doi:10.1016/j.js5.2005.03.011

absence of failures (with higher costs, longer time to
market and slower innovations) (Knight, 2002; Little-
wood and Stringini, 2000), everyday software (mobile
phones, PDAs, etc.) must provide cost effective service
with reasonably low failures rates (i.e., to be “sufficiently
correct” rather than “‘correct”) (Boehm et al., 2004;
Boehm and Huang, 2003; Shaw, 2002).

The concept of dependability enables these various
concerns to be subsumed within a single conceptual
framework. The International Federation for Informa-
tion Processing WG-10.4 (IFIP) defines dependability
as the trustworthiness of a computing system that allows
reliance to be justifiably placed on the services it delivers.

Achieving systems dependability is a major challenge
that has spawned many efforts at the national and inter-
national level, including, for example, the European Ini-
tiative on Dependability (European Union, 2002), the

mailto:donzelli@cs.umd.edu
mailto:basili@ cs.umd.edu
mailto:basili@ cs.umd.edu

108 P. Donzelli, V. Basili | The Journal of Systems and Software 79 (2006) 107-119

US National Strategy to Secure Cyberspace (US, 2003),
and the Critical Infrastructures improvement and pro-
tection initiatives adopted by various countries (Moteff
et al., 2003; Wenger et al., 2004). The work we present
here is part of the High Dependability Computing Pro-
ject (HDCP, 2002), a five-year cooperative research
agreement between NASA and various universities
and research centers to increase NASA’s ability to engi-
neer highly dependable software systems. The Project
involves: (a) understanding NASAs dependability
problems; (b) developing new dependability modeling
mechanisms, engineering practices, and technologies to
address such problems; (c) empirically assessing (and
iteratively improving) the capabilities of new practices
and technologies, using realistic testbeds; (d) transfer-
ring technologies to technology users with clear indica-
tions about their effectiveness under varying conditions.

HDCP brings together, under the common goal of
improving systems dependability, a large and heteroge-
neous group of actors, from government and academia
alike, with various perspectives and different (sometimes
even conflicting) needs:

e The system users, who are concerned mainly about
the final system’s behavior, and who need to under-
stand whether or not, and to what extent, they can
depend upon a system to achieve their goals.

e The system developers (or technology users), who
need to know which processes and or technologies
should be selected to meet the system users’ needs
in the most efficient and effective way.

e The technology researchers/developers, who focus on
specific approaches to develop dependable systems
and need to know where new technological capabili-
ties are necessary.

e The empirical researchers, who act as “observers”, to
measure and make explicit what is achievable and
what has been achieved, in order to improve the
transfer of knowledge (needs, opportunities, technol-
ogies’ capabilities and limits) among the other actors.

The success of the project depends on the synergistic
collaboration of all these actors. For this reason, at the
University of Maryland we have developed a framework
for modeling dependability (hereafter referred to as
UMD) that the different HDCP actors can adopt as a
common language to specify, communicate, and under-
stand dependability requirements and dependability
achievement of individual systems. This, we believe,
could be beneficial to all the involved actors, enabling
them to better focus their specific activities.

UMD is designed around a basic modeling language
that stakeholders and analysts may use to identify and
make explicit (i.e., measurable) the dependability prop-
erties a system must possess in order to satisfy the spe-
cific needs of its application context.

This paper is organized as follows. Section 2 intro-
duces UMD, by illustrating its underlying concepts in
the context of the current view of dependability pro-
vided by the literature. This section concludes with a
brief description of the web-based tool developed to
implement it. Section 3 describes the case study, its
implementation and the obtained results. The goal is
twofold: perform a feasibility analysis of the UMD con-
cept while eliciting and modeling the dependability
requirements for an air traffic control system, adopted
as testbed within HDCP (Asgari et al., 2004; Dennis,
2003; HDCP, 2002). Finally, Section 4 concludes and
provides an outline of future work.

2. The dependability-modeling framework

Dependability is commonly recognized as an integra-
tive concept that encompasses different attributes (Avi-
zienis et al., 2001; Basili et al., 2004a,b; Boehm et al.,
2003; Littlewood and Stringini, 2000; Melhart and
White, 2000); little consensus, however, has been
reached on which attributes should be considered. For
example, Littlewood and Stringini (2000) suggest that
dependability comprises reliability, safety, security and
availability. Laprie et al. (Avizienis et al., 2001; Laprie,
1992) define dependability as a combination of availabil-
ity, reliability, safety, confidentiality, integrity, and
maintainability. Here, in line with the security commu-
nity’s view (US DOD, 1985), security is not seen as a
separate attribute, but is defined as a combination of
availability (i.e., availability for authorized users only),
confidentiality (i.e., absence of unauthorized disclosure
of information), and integrity (i.e., absence of unautho-
rized system alterations). In addition, the attribute of
maintainability is introduced, defined as the system’s
ability to undergo repairs and modifications (i.e., correc-
tive, perfective and adaptive maintenance).

Other authors, although recognizing the relevance of
maintainability (the ability of the system to be easily and
quickly repaired is, in fact, strictly related to availability,
and faults are often introduced into a system as results
of maintenance problems), consider it a static system
property and thus distinct from the other dimensions
of dependability (reliability, safety, security, and avail-
ability). To express the capability of a system to be
quickly repaired, thus minimizing the disruption caused
by a failure, the attribute reparability is sometimes
suggested (Sommerville, 2004).

Maintainability is not the only property to appear
occasionally among the dependability attributes. For
example, accuracy and performance are suggested in
(Boehm et al., 2003); responsiveness is indicated as a
key attribute of dependability in (Walkerdine et al.,
2004); real-time performance and interoperability are
introduced in (Weinstock et al., 2004).

P. Donzelli, V. Basili | The Journal of Systems and Software 79 (2006) 107-119 109

Another dependability attribute subject to alternate
vicissitudes is survivability. According to Laprie et al.
(Avizienis et al., 2001; Laprie, 1992), in fact, survivabil-
ity represents another name for dependability (as well
as trustworthiness); for other authors (Melhart and
White, 2000; Sommerville, 2004) it instead plays an
independent role, highlighting potential threats to the
system (deliberate or accidental attacks). In particular,
Sommerville (2004) establishes a link between security
and survivability, both taking into account external at-
tacks. The situation is further complicated by the fact
that each of these dependability attributes is defined
in the literature in a variety of ways. In particular, dif-
fering research communities (reliability, safety, depend-
ability, critical infrastructures (Wenger et al., 2004),
security, requirements engineering (Chung et al.,
2000), etc.) use different definitions and terminologies
(Randel, 1998). Moreover, when referring to different
attributes, definitions often overlap, resulting in differ-
ent communities claiming their right to specific prob-
lems (Bass et al., 2003). For example, in (Knight,
2002) it is observed that a security failure in an infor-
mation system could lead to considerable potential
losses, becoming in this way a safety-critical issue as
well.

UMD attempts to overcome the difficulty of defining
dependability requirements by introducing a modeling
language that adopts a small set of basic dependability
concepts to facilitate stakeholders’ identification and
precise formulation of their needs.

2.1. UMD basic concepts

In order to begin our analysis to derive UMD, let us
consider the attributes: reliability, availability, safety,
security, and survivability. It is important to note that
this choice is purely arbitrary, and any other set could
have been adopted. In the following (Section 2.6) we will
show that our results are independent from the selected
set. As mentioned above, for each of these attributes dif-
ferent definitions are available in the literature, and any
of them could have been chosen. Again, it is important
to note that our choice is purely arbitrary. In the follow-
ing we will show that UMD is independent from the
selected definitions. On this basis, we have selected
the following definitions:

o Reliability is the continuity of correct service (a ser-
vice is correct when it implements its specification)
(Avizienis et al., 2001).

o Availability is readiness for correct service (Avizienis
et al., 2001).

e Safety is freedom from those conditions (hazards)
that can cause death, injury, occupational illness,
damage to or loss of equipment or property, or dam-
age to the environment (US DOD, 2000).

e Security is the ability of the system to deliver its
required service without unauthorized disclosure or
alteration of sensitive information, or denial of ser-
vice to legitimate users by unauthorized persons
(Mellor, 1992).

o Survivability is the ability of a system to continue to
deliver its services to users in the face of deliberate
or accidental attack (Sommerville, 2004).

Availability and reliability emphasize the absence of
failures. A failure occurs when the delivered service devi-
ates from correct service (Avizienis et al., 2001; Sommer-
ville, 2004). As stated in (Avizienis et al., 2001),
reliability and availability are closer to each other than
they are to safety and security. They represent different
views of the same phenomenon, with availability taking
the repair time into account.

Safety emphasizes the avoidance of specific situations
(hazards) that could have serious consequences on the
user(s), properties or the environment. Safety and reli-
ability are related but distinct (Avizienis et al., 2001).
In general, reliability is a necessary but insufficient con-
dition for system safety: reliability is concerned with
conformance of the system to its specification, while
safety is concerned that the system cannot cause damage
irrespective of whether or not it conforms to its specifi-
cation. Hazard and failure are not exclusive. A failure
may be a hazard (i.c., a failure that could have serious
consequences on the user(s), properties or the environ-
ment), but a hazard can also occur without a failure
occurring (Sommerville, 2004).

Security reflects the system’s ability to protect itself
from accidental conditions or deliberate external attacks
that could lead to alteration or disclosure of sensitive
information, or to normal services being unavailable
or significantly degraded. Security is a pre-requisite for
reliability: security emphasizes the avoidance of specific
types of failures (i.e., disclosure or alteration of sensitive
information, incorrect or degraded service) due or not to
external attacks (e.g., denial of service attack).

Finally, survivability represents the ability of the sys-
tem to provide its service despite external attacks. Like
security, survivability is a prerequisite for reliability.
Survivability, in fact, emphasizes the avoidance of a spe-
cific class of failures, i.e., failures resulting from deliber-
ate or accidental attacks.

All the above definitions share some common con-
cepts. First, each of these definitions emphasizes the ab-
sence of issues (or of a specific class of issues) that the
system could cause to the users. An issue may be a fail-
ure and/or a hazard. For example, reliability emphasizes
the absence of any class of failure; survivability empha-
sizes the absence of a specific class of failures (i.e., fail-
ures resulting from deliberate or accidental external
attacks); safety emphasizes the absence of any class of
hazard. Then, an issue may be characterized by its scope,

110 P. Donzelli, V. Basili | The Journal of Systems and Software 79 (2006) 107-119

given that it may concern the whole system or only a
specific service. Finally, as pointed out by the definitions
of survivability and security, an issue could also be the
result of an external event, i.e., any deliberate or acciden-
tal external condition or action harmful for the system.

Due to the commonality across the various defini-
tions, we have decided to adopt the concepts of issue,
scope and event as the basic elements of our dependabil-
ity modeling language, allowing stakeholders to express
their dependability needs in terms of issue, scope and
event. In particular, through UMD, stakeholders opera-
tionalize their dependability requirements by specifying
the actual issue (or class of issues) that should not affect
the system or a service (scope). In addition, by using the
concept of event, stakeholders may also specify (when
appropriate) external events that could be harmful for
the system and describe their possible impact on the sys-
tem in terms of resulting issues and corresponding
scope.

Example. An example dependability requirement built
using UMD for an on-line bookstore is (Fig. 1): “The
search service (scope) should not have a response time
greater than 10s (issue) in case of denial of service
attack (event).”

2.2. Using UMD to elicit requirements

While for a stakeholder it could be difficult to define
dependability, or to provide a clear definition of what a
dependability attribute means for a specific system, it is
easier to think in terms of issues, scope and events. Put
another way, the concepts of issue, scope and event re-
duce the complexity of the problem, so that stakehold-
ers, rather than dealing with abstract entities
(dependability and its attributes), can organize their
thoughts about dependability by focusing on the issues
that should not affect the system or specific services
(scope), together with the possible triggering external
events. UMD thus transfers the dependability definition
problem towards a more concrete level, as schematized
in Fig. 2.

The expressiveness of issue, scope and event stems
from the fact that they are basic concepts that stake-
holders can easily grasp and associate with entities prop-
er their application domain. For example, while
referring to an office automation application, stakehold-

event é > issue Ié >
cause concern scope
denial of
service attack

On-line bookstore dependability requirement example

response time

search service
>10 seconds]

Fig. 1. UMD basic concepts.

abstract

level
Dependability
Reliability S
Maintainability Availability
<> P
<

m

..........................

ev_ent CBUSEE: Issue concern sco e
denial of
service attack

On-line

response time

rch servi
>10 seconds search sef ce]

[
[
[
[
0
0
.

Fypl-

Fig. 2. UMD makes the “dependability definition” problem more
concrete.

ers can associate the UMD concept of event with situa-
tions that are typical of an office environment, such as
power outages, internet breakdowns, novice users, and
so on. The case for an avionics application would be
completely different. Here external events could be ad-
verse weather conditions, lack of on-ground support,
communication breakdowns, and so on.

2.3. Decomposing UMD concepts to improve guidance
to the stakeholders

Although the concepts of event, scope, and issue bear
a “‘sufficiently”’ precise meaning to help stakeholders
focus their analysis, we may further refine them to pro-
vide better guidance and allow for the definition of more
precise requirements. For example, to help stakeholders
identify what issues should not affect the system or a
specific service, we may suggest the different types of
failures that could occur (e.g., response time failures,
accuracy failures, disclosures of sensitive information,
etc.). Similarly, to support stakeholders in better
expressing their concerns, we may further characterize
issues according to their severity. For example, we
may distinguish failures according to their impact on
the utility of the system or service for the stakeholders
(e.g., high and low severity), or according their impact
on the availability of the system or service (e.g., stopping
and non-stopping failures). The same can be repeated
for the hazards, as we could distinguish among different
severity levels depending on the potential consequences
(e.g., hazards could concern only properties or people
as well). Then, we can characterize the scope so stake-
holders can focus on the whole system or a specific ser-
vice, but also specify operational profile (e.g., workload,
transaction distribution, etc.), for the whole system or a
specific service, during which a specific issue should be
avoided. Finally, characterization can also be adopted
for the concept of event, to enable stakeholders to better
recognize and specify external situations that could
harm the system. For example, we could classify exter-

P. Donzelli, V. Basili | The Journal of Systems and Software 79 (2006) 107-119 111

nal events into attacks and adverse conditions, to sepa-
rate deliberate from accidental ones.

The characterizations of the concepts of issue, event
and scope (e.g., failures types and severity levels) repre-
sent more sophisticated elements of our modeling lan-
guage that stakeholders may adopt to better specify
their needs (e.g., using failures types), and their concerns
(e.g., using failures severity levels).

It is important to note that these characterizations
depend on the specific context (project and stakehold-
ers), and can be customized to better reflect the applica-
tion domain needs, and better guide the stakeholders.
Stakeholders play a crucial role in this customization
process. In fact, for example, while identifying and
describing issues and events on the basis of the available
types, they may also add new types that better reflect
their needs.

As illustrated in Fig. 3, UMD consists of both invari-
ant concepts (i.e., issue, scope, and event) and customiz-
able concepts (i.e., the characterizations of the invariant
ones) that can be introduced as further modeling
language items to support the elicitation activity.

2.4. Quantifying issues

UMD in its basic structure allows stakeholders to
specify the issues they do not want to occur. This, how-
ever, is not enough; we need an operational definition of
dependability. For this reason, it is important to allow
stakeholders not only to identify the undesired issues,
but also to quantify what they assume could be the
tolerable corresponding manifestations.

The concept of measure introduced into UMD (Fig. 3)
achieves this purpose. While measure is an invariant
concept of our modeling language, it can be further re-
fined to better support stakeholders in formulating their
needs. In Fig. 3, for example, the following types of
measurement models have been introduced:

- Type - Measurement Model
- Whole System - MTBF
- Service - Probability of Occurrence
- Operational Profile - % cases
- Distribution of transaction - MAX cases in interval X
- Workload volumes - Ordinal scale
- etc. (rarely/sometimes/....)
FAILURE HAZARD
concern - Type - Severity
- Accuracy - People affected
- Response Time - Property only

-ete. -etc.

N

manifest

RN - Availability impact
— - Stopping
| v - Non-Stopping
trigger

cause | | A
| - High
| -Low
|

- Impact mitigation
- warnings
- Type - alternative services
- Adverse Condition - mitigation services
- Attack - Recovery
- etc. - recovery time / actions
- Occurrence reduction
- guard services

Fig. 3. UMD concepts and relationships.

L

® Ratio and probabilistic measures, such as mean time to
failure (MTTF), probability of occurrence (e.g., in
next time unit or transaction), percentile of cases.

e Ratio and deterministic measures, such as maximum
number of occurrences (in a given time frame).

e Ordinal and probabilistic measures, for example an
ordinal scale such as “‘very rarely/rarely/sometimes”.

Example. By extending the example in the previous
section, the dependability requirement will not simply be
“the search service (scope) should not have a response
time greater than 10 s (issue) in case of denial of service
attack (event)”, but, more precisely, stakeholders could
say that “the search service (scope) should not have a
response time greater than 15 s (issue) in case of denial
of service attack (event) more often than 1% of the cases
(measure)”.

2.5. Improving dependability by specifying the desired
“system reaction”

UMD allows stakeholders to express their views of
dependability in terms of acceptable manifestations of
issues. But it also gives stakeholders the opportunity
to provide ideas to improve dependability. For this rea-
son, the concept of reaction is introduced. In this way,
stakeholders may indicate what they assume are the ser-
vices the system should provide (as reaction to the issue)
in order to become more dependable. Again, while reac-
tion is an invariant concept of our modeling language, it
can be further refined to better support stakeholders in
formulating their requirements. In Fig. 3, for example,
the following classification is proposed:

o Warning services: to warn users about what happened
or is happening (e.g., in case of response time greater
than 15 s, warn the user about the delay).

o Mitigation services: to reduce the impact of the issue
on the users (e.g., in case of response time greater
than 15 s, suggest a better time to try again).

o Alternative services: to help users to carry on their
tasks regardless of the issue (e.g., suggest user call
customer service).

o Guard services: to act as guard against the issue, i.e.,
may reduce the probability of occurrence (e.g., pre-
venting delay due to system saturation or trashing
by rejecting incoming requests). This idea can be
extended to capture any possible suggestion the
stakeholder might have to prevent the issue from hap-
pening: suggestions about modifications of existing
services, design changes, etc.

® Recovery behavior: the time necessary to recover from
the issue (e.g., expressed as mean time to recover—
MTTR) and the kind of required intervention (e.g.,
user, technician, or automatic).

112 P. Donzelli, V. Basili | The Journal of Systems and Software 79 (2006) 107-119

Example. By completing the example introduced in the
previous sections, stakeholders will not only state that
“the search service (scope) should not have a response
time greater than 10 s (issue) in case of denial of service
attack (event) more often than 1% of the cases
(measure)”, but also that if the failure occurs, the
system should provide (reaction) a warning service:
“user should be notified about the problem™, a mitiga-
tion service: ““user should be able to save the completed
work”, and be able to recover in 1 h.

2.6. “Expressiveness’” of UMD

In order to build UMD, we have begun our analysis
by considering a precise set of dependability attributes
(reliability, availability, safety, security, and survivabil-
ity), and choosing for each one of the many definitions
available in the literature.

In this section, we want to show that our framework
is independent from these initial choices; in particular
we want to show that UMD is capable of expressing
dependability requirements formulated according to:
(a) different definitions of the dependability attributes
already taken into account; (b) definitions of
other dependability attributes not included in the initial
set.

Let us start by considering different definitions for the
same dependability attributes. More examples are
discussed in (Basili et al., 2004a,b).

o Availability is the capability to maximize the amount
of time during which the system will provide stake-
holder-desired levels of service with respect to a sys-
tem’s operational profile (probability distribution of
transaction frequencies, task complexities, workload
volumes, others) (Boehm et al., 2003).

e Security is the capability of the system to minimize
the expected value of the information, property,
human life and health losses due to adversarial causes
(Boehm et al., 2003).

o Survivability is the capability of a system to accom-
plish its mission despite a man-made hostile environ-
ment, i.e., the system’s ability to detect and withstand
an attack (Melhart and White, 2000).

We can observe that these definitions can be built
around the invariant UMD concepts of issue, event,
and scope. For example, we can say that the definition
of availability emphasizes the avoidance of degradation
of services (issues), regarding the whole system or a spe-
cific service (scope). Similarly, the definition of surviv-
ability emphasizes the capability of the system or one
of its services (scope) to perform as expected (absence
of issue) also in case of hostile external conditions
(event). UMD allows model requirements expressed

according to any of these definitions. In particular, each
of these definitions emphasizes specific new types of is-
sues and external events. For example, the definition
of survivability clearly states that only man-made at-
tacks should be taken into account, while the definition
considered in our initial set referred to both deliberate
and accidental attacks. We have already pointed out
that many definitions of the same attributes are avail-
able in the literature, and each of them could be consid-
ered correct. It is up to the stakeholders to make the
most appropriate choice according to their needs.

Here, we observe that our framework is capable of
capturing these differences among the various defini-
tions, allowing stakeholders to express their dependabil-
ity needs using concepts as close as possible to their
domain. UMD, in fact, can embed these differences
(and above all make them explicit) through its customiz-
able concepts. In other terms, it is possible to adopt dif-
ferent characterizations of the invariant concepts (e.g.,
different types of failures, external events, etc.) to reflect
these needs, for example, by introducing the “opera-
tional profile description” as a further element of the
scope’s characterization. Such extension allows for the
accommodation of different definitions of dependability
attributes where the use conditions or the operation pro-
file for the system or a service are taken into account (see
the definition of availability above).

At this point, to complete our evaluation of the UMD
expressiveness, we take into account additional attri-
butes of dependability. Other examples are discussed
in (Basili et al., 2004a,b).

® Robustness is the degree to which a system or compo-
nent can function correctly in the presence of invalid
inputs or stressful environment conditions (Melhart
and White, 2000).

e Performance is a static or dynamic system’s capability
(response time, throughput, etc.) defined in terms of
an acceptable range (Sommerville, 2004).

e Accuracy is the ability of the system to minimize the
differences between delivered computational results
and the real world quantities that they represent
(Boehm et al., 2003).

o Integrity is the absence of improper system state alter-
ations (Avizienis et al., 2001).

Again, we can observe that these definitions can be
built around the invariant UMD concepts of issue, event,
and scope. For example, we can say that the definition
of performance emphasizes the absence of failures re-
lated with response time and throughput (issue), con-
cerning the system or any of its services (scope).
Similarly, the definition of accuracy emphasizes the
capability of the system or one of its services (scope)
to minimize differences between computational results
and the represented real world quantities. Finally, the

P. Donzelli, V. Basili | The Journal of Systems and Software 79 (2006) 107-119 113

definition of robustness emphasizes the ability of the
system or one of its components (scope) to function cor-
rectly (absence of issue) also in presence of invalid inputs
or stressful environment conditions (event). Thus UMD
is capable of expressing dependability requirements for-
mulated according to any of these definitions. The new
types of issues (e.g., response time, throughput, and
accuracy failures) and external events (e.g., invalid in-
puts or stressful environment conditions) can be accom-
modated by the UMD customizable concepts to provide
better guidance to stakeholders.

2.7. The UMD tool

To implement the UMD concepts, we developed a
web-based tool (Basili et al., 2004a,b). The tool is orga-
nized around two main tables:

The table “scope” (see Fig. 5), which allows stake-
holders to identify all the services of the system for
which dependability could be of concern. For the system
and each identified service, the stakeholder has to pro-
vide an identifier (name), and a brief description.

The table frame “issue” (see Figs. 6 and 7), which al-
lows users to specify their dependability needs by defin-
ing, for the whole system or a specific service, the
potential issues (failures and/or hazards), their tolerable
manifestations, the possible triggering external events,
and the desired reactions.

The tool produces an MS Access database that can
support both graphical and numerical analysis, as illus-
trated in Section 3 (Figs. 8-10). Graphical analysis, in
particular, is performed by using the visual query inter-
face (VQI) tool, developed at the Fraunhofer Center
Maryland and based on the idea of the Starfield display
(Jog and Shneiderman, 1995).

3. The case study: Applying UMD

As discussed in the introduction, the NASA High
Dependability Computing Project aims to increase
NASA'’s ability to engineer highly dependable software
systems. A key HDCP strategy is to accelerate adoption
of new software engineering technologies by employing
common-use technology evaluation testbeds representa-
tive of NASA software (HDCP, 2002). One such test-
beds is the tactical separation assisted flight
environment (TSAFE) (Erzberger, 2001), in a version
developed by Dennis (2003), and then instrumented
and adopted by University of Maryland and Fraunhofer
Center Maryland as part of a larger technology evalua-
tion effort (Asgari et al., 2004).

In order to be adopted as a testbed to evaluate tech-
nology usefulness in terms of dependability, a system
must have clearly defined dependability requirements.
For TSAFE, although a set of functional requirements

defining the system was available (Dennis, 2003), there
were no precisely stated dependability requirements.
For this reason, we have decided to adopt TSAFE as
a case study for UMD with the goal of performing a fea-
sibility analysis of the UMD concept while identifying
and modeling the dependability requirements for
TSAFE.

In the following, we describe TSAFE, the organiza-
tion of the case study, its implementation and the
obtained results.

3.1. TSAFE

The Tactical Separation Assisted Flight Environment
is a software system designed to aid air traffic controllers
in detecting and resolving short-term conflicts between
aircraft.

In the current air traffic control system, air traffic
controllers maintain aircraft separation by surveilling
radar data for potential conflicts and issuing clearances
to pilots to alter their trajectories accordingly. Under
this system, only part of the airspace capability is
exploited. Exploiting the full airspace capacity requires
a new approach, the Automated Airspace Concept (Erz-
berger, 2001), within which automated mechanisms play
a primary role in maintaining aircraft separation. The
role of TSAFE is to act as a reliable independent safety
net from inevitable imperfections in this new model. Its
aim is to detect conflicts somewhere between 2 and
7min in the future and issue avoidance maneuvers
accordingly. TSAFE plays a specific role among the
existing conflict avoidance systems, which are designed
to perform long-term conflict prediction (on the order
of 20-40 min ahead), or to detect very short-term
conflicts (only seconds away).

TSAFE provides the air traffic controller with a
graphical representation of the conditions (position,
planned route, forecasted synthesized route) and of the
status (conformance or not conformance with the
planned route) of selected flights within a defined geo-
graphical area. Fig. 4 provides a snapshot of the TSAFE
display (Dennis, 2003).

8ALTSY
SaLTT4
aCATd
SCAT
SFRNNS
&FRN>3
eFro2e
ek
sw g0
CIGREEE -3
RS ALL
nIAsiE
2WHE
L
2LP5200
Bl i : { }
ELES " { o ’ |
2LPos0 f

142315

Fig. 4. The TSAFE display.

114

Table 1
Guidelines for measure definition

Availability level Example values

MTBF =2.0E6 MTTR =1h

Mission critical availability
(99.99995%)
Very high availability (99.99%)
Medium/high availability (99.95%)
Low availability (99.9%)
Availability = MTBF/
(MTBF + MTTR)

MTBF = 1.0E4 MTTR =1h
MTBF =2.0E3 MTTR =1h
MTBF =1.0E3 MTTR =1h

3.2. Organization of the case study

For the case study, a small group of computer science
researchers and students acted as stakeholders (specifi-
cally as air traffic controllers), after being given a short
introduction to TSAFE and its goals. The primary goal
of this initial case study was to evaluate the feasibility of
the suggested approach, rather than identify the “cor-
rect” dependability requirements for TSAFE. In addi-
tion, in order to better evaluate the UMD tool
capabilities, and represent real-life situations during
which the stakeholders might be unfamiliar with auto-
matic tools, all the acting stakeholders have interacted
with the UMD tool through an analyst. Finally, to better
support the stakeholders in quantifying the tolerable
manifestation for the identified issues, the analyst was
provided with the guidelines in Table 1, derived from
the availability levels defined for the European Air Traf-
fic Management System (Eurocontrol).

3.3. Requirements elicitation

UMD has been applied in two main steps, scope def-
inition and requirements modeling.

Scape

P. Donzelli, V. Basili | The Journal of Systems and Software 79 (2006) 107-119

.

A
e

SCOPE: Tdentification of the relavant services
Name

Description

leystem | [rsare

[pisalsy airaraft pos tion | [Dispay positon of the sirc-aft 0 the map

ID\EZIléY Hight planned route I lDBpa‘y aircratt planned route it available

[pisalzy Might synthetized route

[ighlight flight non zonfo- mance
[eekec: fligh:
[L]

| [change color (& white) when aircraf: non conforman:

| [Alows sperstor tc select a flight to dspay

|
]
]
| [pEpay arcraftprojected route]
]
]
1

Fig. 5. The UMD tool “scope” table.

3.3.1. Scope definition

By analyzing the already available functional require-
ments, all the stakeholders, working together and sup-
ported by the analyst, have selected the TSAFE main
services for which they believed dependability could be
relevant. The identified services, as shown in the scope
table (Fig. 5) are: “display aircraft position”, “display
aircraft planned route”, “display aircraft projected
route” (i.e., the route computed by TSAFE according
the current aircraft status), ‘“highlight flight confor-
mance”, which changes the color of the position dot
when the aircraft is not on its planned route, and “select
flight”, which allows operators to select the flights to
display.

3.3.2. Requirements elicitation and modeling

Each stakeholder, supported by the analysts and
guided by the structure provided by the tool, has filled
as many tables as necessary to define her/his dependabil-
ity needs (see Figs. 6 and 7). As discussed in Section 2.3,
the characterizations of the invariant UMD concepts
have provided a useful guidance to the stakeholder:
The stakeholder has, in fact, used the characterizations

I Evemt I Issue (Failure) I Issue and) Measure System Reaction
Select from scope list@ Descaption: Description: Description: Measure Type and Value: Waming Services
[display synthesized route =] | [, Response time is + Z] Ml pogsible 1o mizs & =] | MTEF (hours) = am about computation |
greater than 500 ms plane on s dangerous 2.0E4 elay o0
path (towards a ah S -
collision emative Services
= 2 ff == =
ADD
Event Type: B Issue Type: B Seventy: B
/A =1 | [Response Time =1 | [Major =l Mitigation Services 2
Availability Impact ADD
Non St
kil Guard Services
Seve B
C—— o
Recovery Behavior
MTTR and MaxTTR [in Hours]:
Mean: | 0.5 Mex |1
Intervention:
Technician
Notes: Notes: Notes; Notes: Notes.
=1 | bty of the function. =] | =1 [1£the conteotteris aware =]
ecomes very low of the delay, he can pay
more attention (for no
more than | hour)

Fig. 6. UMD tool—issue not related to external event.

P. Donzelli, V. Basili | The Journal of Systems and Software 79 (2006) 107-119 115

Scape < Event I Issue (Failure) [Issue (Hazard) Measure System Reaction
Select from scope ListB Descrption: Description: Description: Measure Type and Value: Warning Services 8
System =AU Extemal data link is =1 | [system Crash =] |[Possible to miss planes =] | MTEF thours) =l lwm shout problem]
interrupted on dangerous paths [zoEs A»JADD
(towards s collision)
H & Bl Altemative Services B
ADD
Event Type: B Issue Type: 8 Seventy: B
[4 dverse condition =] | [Functional Comectness =] || [Major =] Mitigation Services
Ehuw last updated display
Availsbility Impact: 8 uggest emergency ADD
[Stopping - procedures Lo activate

Severity B
High - 400

Recovery Behavior
MTTR and MaxTTR [in Hours]:

Mean: Max [008
< Intervention:
E\.\Iomlh: s
Hotes: HNotes: Notes: Notes: Notes.
= | = | 2] avtomaticrecovery =]

ahout five minutes after
external
data link re-established

= - | = <]

Fig. 7. UMD tool—issue related to external event.

already available (introduced by the analyst at the the tool earlier), or, whenever necessary, has extended
beginning of the project or by other stakeholders using it with his/her own definitions. The characterizations
Table 2

UMD customization for TSAFE

Failure characterization
Failure types
o Functional correctness: system or service does not work or it does not implement the functional requirements
e Throughput: average or peak number of items (aircraft, routes, etc.) per unit of time dealt with by the system or service is less than expected
e Response time: response time of the system or the service greater than expected
e Peak load: max number of items handled by the system or the service is less than expected
o Accuracy: the accuracy (lateral, longitudinal, vertical) of the aircraft position or trajectory is less then expected
e Data freshness: the frequency of data updating is less than expected

Failure impact over availability
o Stopping: failure makes the system or service unfit for use
e Non-stopping: failure does not make the system or service unfit for use

Failure severity
e High severity: failure has a major impact on the utility of the system for the operator
o Low severity: failure has a minor impact on the utility of the system for the operator

Hazard characterization

Hazard types
e Catastrophic: risk of total aircraft destruction
o Severe: risk of serious damage to the aircraft, serious emergency situation, loss of human lives possible
e Major: risk of emergency situation, high stress on cockpit crew

Event characterization
e Adverse condition: any unintentional event that could have some effect on the system
e Attack: any intentional action carried out against the system

Measure characterization

Measurement models
e Mean time between failures (MTBF)
e Percentage of cases

Reaction characterization
Services types
e Warning services: warn user about the situation
o Alternative services: provide alternative ways to perform same tasks
e Mitigation services: reduce issue impact on the user
e Guard services: reduce probability of occurrence of the issue

Recovery behavior
e Mean time to recover (MTTR) max time to recover (MaxTTR)

0.5h

Warn about the problem Show
last display Suggest emergency

performance Suggest flights to
procedures to activate

Warn about diminished
leave out MTTR

Reaction

2.0E3 h
2.0E6 h

Measure
MTBF =
MTBF =

“Possible to miss a plane on a
dangerous path” Severity: major

Hazard

N/A

“Peak throughput less than 100 flights/h”

Type: throughput
Availability impact: non-stopping

Severity: high
Availability impact: stopping

Type: functional correctness
Severity: high

“System crash”

Failure

Memory board fault
External data link
is interrupted

Event

Example TSAFE requirements obtained with UMD

Table 3
Scope

System
System

. Donzelli, V. Basili | The Journal of Systems and Software 79 (2006) 107-119

obtained for TSAFE (reconciled among the different
stakeholders) are summarized in the Table 2. It is worth
noting that some of the failure types and hazard types
have been customized to the domain. In particular, the
hazard types are based upon the hazard severity classifi-
cation suggested in the RTCA standard (RTCA, 1992).

As examples of the collected data, we describe two of
the tables filled by the stakeholders.

Fig. 6 illustrates an example of an issue not related to
an external event. The stakeholder signals a potential
failure for the service “display flight synthesized route”
when the response time is greater than 500 ms. This is a

0.08 h
Warn about computation delay
0.5h MaxTTR =1h
0.5h

MaxTTR
MTTR =
Warn about problem
MaxTTR

=
= B response time, non-stopping, high severity failure, given
S N e high impact on the service’s utility for the operator.
o L“L For the stakeholder, this failure is also a hazard (Major
a a Hazard), given that he thinks he could miss spotting a
= = plane on a dangerous path. This could lead to an emer-

gency situation and possibly cause high stress on the
cockpit crew, required to perform sudden escape maneu-
vers by the very short-term conflict avoidance systems.
The stakeholder sees this failure as a very critical one,
leading the analyst to suggest MTBF of 2.0E4 (between
the values suggested for very high and mission critical
availability in Table 1). In order to be more confident
in the system, the stakeholder asks for a warning service
that will advise in case the computational time becomes
greater than 500 ms. In this way, he will know when to
pay more attention. Finally, the stakeholder asks for the
recovery to be performed within 1 h by a technician. If
this failure condition lasts more than 1 h, he feels he
would be unable to properly perform his duties, due to
the need to maintain a higher than usual level of
attention.

An example of issue related to an external event is
illustrated in Fig. 7. The stakeholder is concerned that
an interruption of the external data link (adverse condi-
tion) could lead to a failure affecting the whole system, a
system crash. This is a functional correctness, stopping,
high severity failure, given the high impact on the utility
of the system. Again, the stakeholder sees also this as a
hazard (major hazard), given that she will not be able
to spot planes on a dangerous path. As a reaction, the
stakeholder asks the system to warn about the problem
(warning service), and to provide two mitigation services:
First, that the system should continue displaying the data
displayed prior to the interruption, so she will be able to
better activate emergency procedures, knowing the
planes’ last positions; and, that the system should suggest
what emergency procedures should be activated. Then,
asked what a tolerable manifestation might be, the stake-
holder feels this failure seriously impacts the capability of
the system to perform its mission and suggests a high
MTBEF (transformed by the analysts into a MTBF of
2.0E6). Finally, she thinks that the recovery should be
automatic and within approximately 5 min from the time
the external data link connection is re-established.

“Possible to miss a plane on a
dangerous path” Severity: major
“Possible to miss a plane on a
dangerous path” Severity: major

“Response time is greater than 500 ms

Type: response time
“Accuracy: position error > Horizontal

0.25 NM Vertical 300ft”

Availability impact: non-stopping
Type: accuracy

Severity: high
Availability impact: stopping

Severity: high

N/A
N/A

route
route

Display synthesized
Display synthesized

P. Donzelli, V. Basili | The Journal of Systems and Software 79 (2006) 107-119 117

As an example of dependability requirements
collected with UMD, an extract of the requirements
expressed by one of the stakeholders are described in
Table 3.

3.4. Requirements analysis and refinement

As introduced in Section 2, the UMD tool can support
both graphical and numerical analysis. Graphical analy-
sis allows analysts and stakeholders to visualize how the
identified issues are distributed around the different ser-
vices highlighting, with different symbols colors, labels
and sizes, the properties of interest (e.g., failure type,
availability impact and severity; hazard severity; type
of external event, etc.). Fig. 8, for example, illustrates a
portion of the UMD Tool display showing how failures
are distributed around the services (y-axis) according
their type (x-axis). In addition, two colors are used to dif-
ferentiate high severity (black) from low severity failures
(gray), while labels are used to mark stopping failures.

In terms of numerical analysis, the measures express-
ing the tolerable manifestation for each of the identified
issues have been combined to provide “aggregate values
of dependability”, for example, the aggregate MTBF of
all the failures (or of all the failures that were also stop-
ping failures) for each service, as shown in Fig. 9. Simi-
larly, having the MTBF of the stopping failures, and
knowing the corresponding desired recovery time, we
could compute the desired availability for the whole
system or a specific service, as shown in Fig. 10.

Once the stakeholder finished expressing her require-
ments, the analyst presented her with the results to date.
Depending on her level of satisfaction, the stakeholder
decided to introduce changes; while the analyst, on the
other side, pointed out possible areas of risk. For exam-
ple, the issue distribution in Fig. 8 (see the dotted circle)

.‘. "n .‘
» f
Selsct Kt i L 3 *
M T
n S
it L gl tophs n g [s
nor. ccnformance -
Dudlay n .
eprtbutized 0w .. u
nro
: /
Layolay
potzaed eocte | | u
) [Ere]
Diszlay wnanl
Hless | u

Raoponac Tixe

Acenrney Dista Freraeness Functional

[Java ~pplat vindae

Fig. 8. TSAFE data graphical analysis.

MTBF vs. Services

O MTBF all failures

B MTBF Stopping Failures,

wayshs
uomisod
yemle
Aeydsig
@ynos pauued
Aeydsig
ajnol
paziayjuis
Keydsig
S0UBLLIOJUOD
uou JybIYBIH
b1l 108198

. 9. MTBEF for the different services.

e
@

Availability vs. Services

1.00000E+00 -

9.99500E-01

9.99000E-01

uonisod
yesoue
Kedsig
ajnoJ pauueld
Aeydsig
snos
pazijayjuAs
feidsig
SOUBWION0D
uou ybiybiH
UCTTREETES

Fig. 10. Computed availability.

showed that a particular type of failure (i.e., response
time) had not been taken into account for a specific ser-
vice (i.e., select flight), so the analyst asked the stake-
holder whether or not he confirmed such a choice.

Similarly, other times, the computed availability (Fig.
10) was insufficient for the stakeholder, so he decided to
revise some of the choices he made while filling the UMD
Tool tables.

The assessment led to further refinement of the al-
ready elicited requirements, and the identification of
new ones. The iteration ended when both the analyst
and the stakeholder felt confident about the results.

At this point, the analyst had to reconcile the needs
emerging from the different stakeholders. Sometimes
these could be merged, for example, when two or more
stakeholders had expressed requirements concerning the
same service, but identified different classes of failures.
In other cases, some negotiation was necessary, for
example where the stakeholders asked the system to be-
have in different and incompatible ways (e.g., asking the
system to react to the same failure by stopping or by
providing an alternative service). At the end, the analyst
produced a set of agreed-upon dependability require-
ments representing the dependability desired for TSAFE
(i.e., the TSAFE dependability model).

118 P. Donzelli, V. Basili | The Journal of Systems and Software 79 (2006) 107-119

4. Concluding remarks

The case study results have increased our confidence
in UMD’s ability to provide a common modeling lan-
guage that the different HDCP actors could adopt to
specify, communicate and understand dependability
requirements of individual systems. The concept of
issue (failure and/or hazard) has appeared to be a very
efficient and intuitive elicitation mechanism that stake-
holders could easily use to concretely identify the most
critical properties (response time, accuracy, etc.) of the
system and its services. At the same time, the concepts
of reaction and event have allowed stakeholders to
take a constructive approach towards dependability,
by suggesting active reactions to issues or indicating
potential harmful external situations to take into ac-
count. The major difficulty was the selection of the
measurement model to express the tolerable manifesta-
tion of an issue and the definition of the corresponding
value. Here the analyst was needed. Finally, the clarity
of the language has been a key factor of the elicitation
and modeling process. On the one hand, the stakehold-
ers could straightforwardly express themselves and
understand each other’s positions; on the other, the
analyst facilitated in understanding, combining and
reconciling the requirements of the different stake-
holders.

UMD can be used in different ways, from improving
requirements of an existing system, to eliciting depend-
ability requirements for a new system. UMD allows
stakeholders to deal with different aspects of the system
that are usually dealt with in isolation rather than as
part of a single framework: For example, delivered ser-
vices, quality properties that are relevant for each ser-
vice, failures modes and acceptable failure rates,
failures severity and potential hazards, recovery time
and system reaction, etc. We have found that the result-
ing synergy is beneficial to whole process of require-
ments elicitation and analysis. As recognized by others
(He et al., 2004; Sommerville, 2003), gaining a more
complete understanding of the system and its desired
behavior in context allows stakeholders to better iden-
tify and clarify their expectations.

Besides supporting the requirements elicitation and
analysis process, the application of UMD results in a
set of detailed dependability requirements that supports
subsequent system development activities. By precisely
knowing what stakeholders consider as more or less crit-
ical (in terms, for example, of failure modes and avail-
ability of each service), project managers and system
developers may more efficiently select the most appro-
priate strategies to attain dependability (e.g., fault pre-
vention, removal, and tolerance techniques (Laprie,
1992; Littlewood and Stringini, 2000)). For example,
at a planning level, project managers need to efficiently
allocate project resources to the various competing

development activities, e.g., to achieve dependability.
UMD requirements allow for better-informed decisions
as they permit project managers to focus project re-
sources (e.g., testing time) on stakeholders’ needs. In
particular, it is worth noting that UMD can act as fore-
runner for value- and dependability-based software
engineering approaches (Boehm et al., 2004; Boehm
and Huang, 2003; Shaw, 2002).

Similarly, at the design level (Bass et al., 2003), sys-
tem developers can better match requirements with
available system resources (i.e., computational power,
memory, etc.), both under normal and exceptional
(e.g., unusually high workloads, internal faults, etc.) cir-
cumstances. They can focus on stakeholders’ priorities
in terms of quality properties and system functionalities
to perform better tradeoff analysis. For example, in
designing a fault tolerant system, they can focus on
the failures most relevant to the stakeholders.

Future work will develop in three main directions.
First, additional empirical assessments are necessary.
We need to understand how to better employ UMD
to support requirements elicitation, definition, and
early verification for a system, possibly in combination
with other tools and approaches, such as the Win-Win
model (Boehm et al., 1998). These activities can, in fact,
be performed in many different ways, depending on the
system application domain, but also on the specific
needs and experience of the users and developers. Sec-
ond, we want to investigate the possibility of adopting
UMD in the context of UML-based development ap-
proaches (Fowler, 2004). The outcome of the UMD
analysis, in terms of critical non-functional properties
for the system and its services, can be linked to infor-
mation required to apply UML profiles for dealing with
non-functional requirements during system develop-
ment, such as (OMG, 2001, 2004). Finally, we want
to investigate the knowledge available in the literature
that could be incorporated into UMD to guide stake-
holders during requirements elicitation and formula-
tion. This could be both domain independent and
domain specific and take any format, from measure-
ment models, to classifications concerning dependabil-
ity issues, such as failures, hazards, and related
defects and faults (IBM Research; Mellor, 1992;
RTCA, 1992), to empirical results that could help
stakeholders focus on the concepts of issue, scope, mea-
sure, event, and reaction, enabling them to more effec-
tively transform their dependability needs into precise
requirements.

Acknowledgments
The authors wish to acknowledge support from the

NASA High Dependability Computing Project under
cooperative agreement NCC-2-1298.

P. Donzelli, V. Basili | The Journal of Systems and Software 79 (2006) 107-119 119

The authors wish to thank the researchers on the
HDCP project team for their insights and suggestions
and Jennifer Dix for proof reading this paper.

References

Asgari, S., Basili, V., Costa, P., Donzelli, P., Hochstein, L., Lindvall,
M., Rus, L., Shull, F., Tvedt, R., Zelkowitz, M., 2004. Empirical-
based estimation of the effect on software dependability of a
technique for architecture conformance verification. In: Proceed-
ings of the ICSE 2004 Workshop on Architecting Dependable
Systems, Edinburgh, UK.

Avizienis, A., Laprie, J.C., Randell, B., 2001. Fundamental concepts of
dependability. Research Report N01145, LAAS-CNRS, France.
Basili, V., Dongzelli, P., Asgari, S., 2004a. The unified model of
dependability: Putting dependability in context. IEEE Software 21

(3), 19-25.

Basili, V., Donzelli, P., Asgari, S., 2004b. Modeling dependability-the
unified model of dependability. Technical Report CS-TR-46-01,
University of Maryland College Park, MD, US.

Bass, L., Clements, P., Kazman, R., 2003. Software Architecture in
Practice, second ed. The SEI Series in Software Engineering.
Addison Wesley.

Boehm, B., Huang, L., 2003. Value-based software engineering: A case
study. IEEE Computer 36 (3), 34-41.

Boehm, B., Egyed, A., Kwan, J., Shah, A., Madachy, R., 1998. Using
the win-win spiral model: A case study. IEEE Computer 31 (7), 33—
44.

Boehm, B., Huang, L., Jain, A., Madachy, R., 2003. The nature of
information system dependability—a stakeholder/value approach.
Technical Report, University of Southern California, CA, US.

Boehm, B., Huang, L., Jain, A., Madachy, R., 2004. The ROI of
software dependability: The iDave model. IEEE Software 21 (3),
54-61.

Chung, L., Nixon, B., Yu, E., Mylopoulos, J., 2000. Non Functional
Requirements in Software Engineering. Kluwer Academic
Publisher.

Dennis, G., 2003. TSAFE: Building a trusted computing base for air
traffic control software. MSc thesis, MIT, Boston, MA, US.

Erzberger, H., 2001. The automated airspace concept. In: Proceedings
of the 4th USA/Europe Air Traffic management R&D Seminar,
Santa Fe, New Mexico, US.

Eurocontrol—European Organization for Safety of Air Navigation.
Auvailable from: <http://www.eurocontrol.be/home.html>.

European Union, 2002. European Initiative on Dependability:
Towards Dependable Information, Report, Bruxelles. Available
from: <http://deppy.jrc.it>.

Fowler, M., 2004. UML Distilled, third ed. Addison-Wesley.

HDCP—High Dependability Computing Project, 2002. Available
from: <http://hdcp.org>.

He, J., Hiltunen, M., Schlichting, R., 2004. Customizing dependability
attributes for mobile service platforms. In: Proceedings of the
International Conference on Dependable Systems and Networks,
Florence, Italy.

IBM Research. Orthogonal Defect Classification. Available from:
<www.research.ibm.com/softeng/ODC>.

IFIP—International Federation for Information Processing WG-10.4.
Available from: <www.dependability.org>.

Jog, N., Shneiderman, B., 1995. Starfield information visualization
with interactive smooth zooming. In: Proceedings of the IFIP 2.6
Visual Databases Systems, Lausanne, Switzerland.

Knight, J., 2002. Safety critical systems: Challenges and directions. In:
Proceedings of the International Conference on Software Engi-
neering, Orlando, FL, US.

Laprie, J.C., 1992. Dependability: Basic Concepts and Terminology,
Dependable Computing and Fault Tolerance. Springer-Verlag.
Littlewood, B., Stringini, L., 2000. Software reliability and depend-
ability: A roadmap. In: Proceedings of the ACM Future of

Software Engineering conference, Limerick, Ireland.

Melhart, B., White, S., 2000. Issues in defining, analyzing, refining, and
specifying system dependability requirements. In: Proceedings of
the 7th IEEE Conference on the Engineering of Computer Based
Systems, Lund, Sweden.

Mellor, P., 1992. Failures, faults and changes in dependability
measurement, 1992. Information and Software Technology 34
(10), 640-654.

Moteff, C., Copeland, J., Fisher, S., 2003. Critical infrastructures:
What makes an infrastructure critical? Technical Report RL31556,
The Library of Congress, DC, US.

OMG-—Object management Group, 2001. UML Profile for Schedu-
lability, Performance, and Time Specification. Available from:
<www.omg.org>.

OMG—Object Management Group, 2004. UML Profile for Modeling
Quality of Services and Fault Tolerant Characteristics and Mech-
anisms. Available from: <www.omg.org>.

Randel, B., 1998. Dependability, a unifying concept. In: Proceedings of
Computer Security, Dependability and Assurance: from Needs to
Solutions, York, UK and Williamsburg, VA, USA.

RTCA—Radio Technical Commission for Aeronautics, 1992. Soft-
ware Considerations in Airborne Systems and Equipment Certifi-
cation, DO-178B Standard.

Shaw, M., 2002. Everyday dependability for everyday needs. In:
Supplemental Proceedings of the 13th International Symposium on
Software Reliability Engineering, Maryland, US.

Sommerville, 1., 2003. An integrated approach to dependability
requirements engineering. In: Proceedings of the 11th Safety-
Critical Systems Symposium, Bristol, UK.

Sommerville, 1., 2004. Software Engineering, seventh ed. Addison-
Wesley, UK.

US, 2003. National Strategy to Secure Cyberspace, Report, Washing-
ton DC. Available from: <www.whitehouse.gov/pcipb>.

US Department of Defense, 1985. Trusted Computer System Evalu-
ation Criteria (Orange Book), DOD 5200.28-STD.

US Department of Defense, 2000. Standard practice for system safety,
MIL-STD-882D.

Walkerdine, J., Melville, L., Sommerville, 1., 2004. Dependability
within peer-to-peer systems. In: proceedings of the ICSE 2004
Workshop on Architecting Dependable Systems, Edinburgh, UK.

Weinstock, C.B., Goodenough, J., Hudak, J., 2004. Dependability
cases. SEI Technical Report CMU/SEI-2004-TN-016, PA, US.

Wenger, A., Metzger, J., Dunn, M., 2004. International CIIP
Handbook, Swiss Federal Institute of Technology Zurich. Avail-
able from: <www.isn.ethz.ch/crn/ docs/CIIP_Handbook 2004
web.pdf>.

http://www.eurocontrol.be/home.html
http://deppy.jrc.it
http://hdcp.org
http://www.research.ibm.com/softeng/ODC
http://www.dependability.org
http://www.omg.org
http://www.omg.org
http://www.whitehouse.gov/pcipb
http://www.isn.ethz.ch/crn/_docs/CIIP_Handbook_2004_web.pdf
http://www.isn.ethz.ch/crn/_docs/CIIP_Handbook_2004_web.pdf

	A practical framework for eliciting and modeling system dependability requirements: Experience from the NASA high dependability computing project
	Introduction
	The dependability-modeling framework
	UMD basic concepts
	Using UMD to elicit requirements
	Decomposing UMD concepts to improve guidance�to the stakeholders
	Quantifying issues
	Improving dependability by specifying the desired ldquo system reaction rdquo
	 ldquo Expressiveness rdquo of UMD
	The UMD tool

	The case study: Applying UMD
	TSAFE
	Organization of the case study
	Requirements elicitation
	Scope definition
	Requirements elicitation and modeling

	Requirements analysis and refinement

	Concluding remarks
	Acknowledgments
	References

