
©Copyright	JASSS

Volker	Nissen	and	Danilo	Saft	(2014)

A	Practical	Guide	for	the	Creation	of	Random	Number	Sequences	from	Aggregated	Correlation	Data	for	Multi-Agent
Simulations

Journal	of	Artificial	Societies	and	Social	Simulation 	17	(4)	7	
<http://jasss.soc.surrey.ac.uk/17/4/7.html>

Received:	07-Nov-2013				Accepted:	18-May-2014				Published:	31-Oct-2014

Abstract

This	article	describes	a	scalable	way	to	initialise	a	simulation	model	with	correlated	random	numbers.	The	focus	is	on	the	nontrivial	issue	of	creating	predefined	multidimensional	correlations
amongst	those	numbers.	A	multi-agent	model	serves	as	a	basis	for	practical	demonstrations	in	this	paper,	while	the	method	itself	is	interesting	for	an	even	wider	audience	within	the	modelling
and	simulation	community	beyond	the	field	of	agent-based	modelling.	In	particular,	we	demonstrate	how	streams	of	correlated	random	numbers	for	different	empirically-based	model	parameters
can	be	generated	when	just	given	aggregated	statistics	in	the	form	of	a	correlation	matrix.	An	example	initialisation	procedure	is	demonstrated	using	the	open	source	statistical	computing
software	"R"	as	well	as	the	open	source	multi-agent	simulation	software	"Repast	Simphony"	We	also	provide	a	digression	for	NetLogo	users.

Keywords:
Correlated	Random	Numbers,	R-Project,	Repast,	Guide,	Tutorial

	Introduction

1.1 The	simulation	of	a	model	may	sometimes	require	setting	many	parameters	which	influence	its	outcome.	In	a	subset	of	these	cases,	the	parameters	may	be	interdependent	in	such	a	way	that	the
initialisation	of	a	model	needs	two	or	more	parameters	to	correlate	in	a	predefined	manner.	A	procedure	to	generate	and	utilise	such	numbers	will	be	explained	in	the	following.	We	use	the
example	of	an	agent-based	model,	since	one	of	our	main	research	areas	is	the	field	of	agent-based	economics.	In	this	research,	we	regularly	find	scenarios	to	which	the	concept	presented	in	this
contribution	is	applicable.	During	this	paper,	an	illustrative	example	will	be	used	to	explain	our	central	ideas	in	the	context	of	multi-agent	simulations.	However,	the	concept	can	easily	be	transferred
to	the	initialisation	of	other	types	of	simulation	models	as	well.

1.2 In	a	variety	of	multi-agents	systems,	the	model	to	be	simulated	may	consist	of	a	large	number	of	heterogeneous	agents.	Heterogeneity	can	come	in	the	form	of	different	spatial	positions	of
individual	agents,	different	network	connections,	opinions,	etc.	In	general,	each	of	these	agents	possesses	a	set	of	parameters	with	different	initialisation	values.	Researchers	may	want	to	relay
data	acquired	from	the	real	world	(e.g.	through	measurement	series,	questionnaires	or	statistical	archives)	to	initialise	their	agents	with	according	parameter	values	for	reasons	of	testing,
forecasting,	or	simply	for	validity.

1.3 In	the	case	of	social	or	economic	simulations,	agents	may	possess	variables	such	as	income,	reputation,	job	satisfaction,	household	size,	etc.	One	may	however	not	in	all	cases	be	lucky	enough
to	find	real-world-data	at	a	level	that	is	as	detailed	as	their	desired	simulation	setup	may	require.	A	possible	option	is	to	evade	to	more	aggregated	forms	of	simulation,	matching	the	aggregation
level	of	the	empirical	data	available.	This	option	can	be	unsatisfactory	as	important	details	of	the	micro-level	to	be	simulated	and/or	the	emerging	micro-macro-links	within	such	a	simulation	might
need	to	stay	unaddressed.

1.4 In	the	remainder	of	this	paper	we	are	adressing	an	alternative	way	to	cope	with	such	data	limitations.	In	the	course	of	our	approach	we	assume	that	aggregated	distributions	and	correlations	of
different	variables	are	given	in	an	empirical	study	even	though	more	detailed	data	is	not	available.	Still	we	aim	for	a	simulation	at	a	detailed	level	(exploring	the	dynamics	of	interaction	between
individuals)	that	takes	into	account	the	empirical	facts.

	Demonstrative	example

2.1 In	the	course	of	this	paper	we	will	use	a	fictitious	example	to	explain	our	ideas.	More	specifically,	a	social	network	of	historical	painters	is	to	be	simulated	using	multiple	agents.	Let	us	assume	that
in	the	past	an	empirical	study	on	these	painters	was	conducted	that	analysed	for	several	painters	in	each	year	the	quality	of	their	works,	sales	prices	as	well	as	the	age	of	the	painters	and	their
ability	to	attract	painting	apprentices.	Let	us	further	assume	that	unfortunately	the	detailed	data	revealed	during	this	study	were	lost	or	never	got	published.	However,	aggregated	results	in	the	form
of	a	correlation	matrix,	as	given	in	table	1,	are	still	available.	This	situation	that	only	aggregated	data	is	published	can	be	viewed	as	typical	for	many	empirical	studies,	for	instance	in	organizational
research	(e.g.	Oreg	2006)	that	is	of	particular	interest	to	us.

Table	1:	Correlation	matrix	between	parameters	of	a	fictitious	painter	agent
(demonstrative	example)

Variable Mean Standard
Deviation

1 2 3 4

1.	Age 40 12 1 0,4 0,6 0,6

2.	Quality	of	Paintings 0,7 0,2 0,4 1 0,8 0,4

3.	Expected	Price	of	Painting 2000 500 0,6 0,8 1 0,1

4.	Educational	Reputation 1 0,3 0,6 0,4 0,1 1

2.2 Even	though	only	aggregated	correlation	data	is	accessible	we	desire	to	simulate	individuals	in	their	interaction.	In	particular,	we	want	to	simulate	where	painters	become	apprentices	and	how	this
influences	their	later	success	in	terms	of	sales	prices,	quality	of	work	and	attractiveness	as	a	teacher	to	other	painters.	A	multi-agent	simulation	on	the	micro-level	of	individuals,	based	on	the
(static)	aggregated	correlation	matrix,	will	allow	us	to	analyse	the	dynamic	behavior	in	the	network	of	painters.

2.3 In	this	example,	the	goal	of	research	in	the	field	of	multi-agent-based	simulation	(MABS)	would	be	to	better	understand	the	process	of	individual	and	group	interaction	as	well	as	possible	emergent
interaction	patterns	at	the	macroscopic	level	of	the	simulation.	Beyond	our	concrete	example	there	is	a	broad	application	potential	for	performing	simulations	by	using	data	of	published	aggregated

field	studies1.	This	requires	(here:	agent-based)	modelling	at	a	more	detailed	level	than	the	aggregated	statistical	data	from	such	empirical	studies	provides.	To	this	end	we	can	however	use
values	such	as	the	ones	given	in	our	example	table	1	to	yield	specific	initialisation	data	for	any	number	of	simulated	individuals.	This	challenge	is	trivial	only	when	one	needs	to	generate	two
correlated	series	of	random	numbers,	i.e.	when	the	agents	in	the	simulation	only	possess	pairs	of	two	correlated	properties.	In	our	case	here	and	the	way	it	is	often	in	reality	not	only	two	but	at	least

http://jasss.soc.surrey.ac.uk/17/4/7.html 1 16/10/2015

/admin/copyright.html
../../JASSS.html
http://jasss.soc.surrey.ac.uk/17/4/7/nissen.html
/admin/submit.html#donation

four	quantities,	e.	g.	age	and	quality	of	pictures,	are	correlated	and	connected	among	themselves,	which	makes	it	more	difficult	to	gain	individual	parameter	values	for	every	single	agent.	In	the
following	we	illustrate	the	necessary	procedure	by	using	the	mentioned	example	data.

2.4 The	focus	on	correlations	in	the	steps	we	describe	here	shows	a	similarity	to	factor	analysis.	However,	while	factor	analysis	aims	for	data	reduction	(either	in	the	variables	or,	less	common
perhaps,	in	the	persons/entities)	our	method	aims	to	reconstruct	(and	then	simulate)	the	detailed	level	of	individuals	from	aggregated	correlation	data.	Thus,	one	could	call	the	approach	something
like	the	reverse	of	a	factor	analysis.

	Mathematical	Background

3.1 For	only	two	numbers	(parameters)	to	be	correlated,	there	is	a	simple	approach	to	derive	two	correlated	random	numbers	from	a	set	of	uncorrelated	random	numbers:

y1	=	 *x1 	 	 (1)

y2	=	c* 	+	 * *x2 	 	 (2)

where	x1	and	x2	are	two	uncorrelated	random	numbers	from	a	given	distribution,	 	and	 	are	their	standard	deviations,	and	c	is	the	desired	correlation	coefficient	between	y1	and	y2;	i.e.	the

resulting	correlated	random	numbers.

3.2 With	more	than	two	sequences	of	correlated	random	numbers	to	generate,	one	can	use	a	variety	of	mathematical	approaches	that	are	more	or	less	difficult	to	go	through	manually.	In	our	case,	an
Eigenvector-decomposition	was	employed.	There	also	is	the	option	of	using	the	Cholesky-decomposition	(Trefethen	&	Bau	III	1997,	pp.	172–178)	which	will	however	not	be	explained	further	here.
Given	a	correlation	matrix	C	(see	table	1)	one	can	define	a	matrix

V	=	EiDiag (3)

3.3 where	Ei	are	the	eigenvectors	of	C	and	 	are	the	eigenvalues	of	C.	With	a	matrix	Iu	consisting	of	formerly	uncorrelated	random	numbers,	we	can	derive	a	matrix

Ic	=	IuVT (4)

where	VT	is	the	transpose	of	V.	Ic	then	contains	random	numbers	with	correct	correlations.	Iu	can	consist	of	any	number	of	random	values	where	each	line	can	represent	the	initialisation	values	for
a	single	agent	and	each	column	stands	for	one	of	the	correlated	parameters	of	an	agent.	This	offers	great	flexibility	since	one	only	needs	to	choose	the	number	of	rows	in	the	original	matrix	Iu	as
big	as	the	number	of	agents	one	wishes	to	instantiate/simulate.	Iu	should	not	yet	include	the	general	distribution	properties	such	as	-	in	our	case	-	the	mean	and	standard	deviations	given	in
table	1.	These	will	later	be	applied	to	Ic	containing	the	already	correlated	values.	Further	details	concerning	these	mathematical	fundamentals	and	the	procedure	can	be	found	e.	g.	in	(Van	den
Berg	2012).

	A	Pracitcal	guide	for	the	utilisation	of	correlated	random	number	sequence	using	"R"	and	"REPAST"

4.1 While	the	pattern	to	generate	correlated	random	numbers	shown	in	section	2	can	be	time-consuming	to	do	by	hand,	it	is	a	very	easy	process	once	one	employs	supporting	software.	The	popular
and	well-documented	open	source	program	"R"	(Vinod	2009;	Jones	et	al.	2012)	is	able	to	make	the	necessary	calculations	(for	all	practical	purposes	implied	here)	in	just	a	fraction	of	a	second.
The	tool,	along	with	many	additional	packages,	can	be	downloaded	freely	for	a	variety	of	platforms	(R	2010).

4.2 Below,	we	will	present	exemplary	step-by-step	R	code	to	generate	random	number	sequences	for	the	four	correlated	(normalized)	parameters	"Age",	"Quality	of	Paintings",	"Expected	Price	per
Painting",	and	"Reputation	as	Educator"	listed	in	table	1.	The	code	is	to	generate	correctly	correlated	random	numbers	for	500	agents	as	virtual	"painters".	Note	that	the	code	pattern	is	scalable	to
a	very	large	number	of	parameters	and	agents.

4.3 The	first	step	is	to	generate	a	matrix	filled	with	uncorrelated	random	numbers	for	each	agent	and	parameter.

//Create a matrix with 4 columns for 4 parameters and 500
//rows for 500 agents.Fill data with 500*4 = 2000 random
//values using a normal distribution for all parameters:
Iu <- matrix(data=rnorm(2000), ncol=4, nrow=500)

4.4 Next,	the	correlations	for	these	parameters	need	to	be	filled	into	another	matrix	C:

//Create a squared matrix and fill in the correlations
//for each of the four correlated parameters, using the
//order "Age", "Quality of Paintings", "Expected price",
//and "Reputation as Educator":
C <- matrix(, ncol=4, nrow=4)
C[1,] <- c(1, 0.4, 0.6, 0.6)
C[2,] <- c(0.4, 1, 0.8, 0.4)
C[3,] <- c(0.6, 0.8, 1, 0.1)
C[4,] <- c(0.6, 0.4, 0.1, 1)

4.5 R	offers	a	simple	command	to	calculate	both	the	eigenvalues	and	eigenvectors	of	a	matrix.	We	will	save	the	result	of	this	operation	in	an	object	E.	The	parameter	"symmetric"	refers	to	C	being	a
symmetrical	matrix	so	that	only	the	lower	triangle	of	the	matrix	needs	to	be	used	in	the	calculations:

E <- eigen(C, symmetric=TRUE)

4.6 The	call	to	E$vectors	will	then	give	us	the	eigenvectors	of	C	and	E$values	will	return	the	eigenvalues	accordingly.	We	use	the	command	"diag"	to	construct	a	fictive	matrix	diagonal	from	the	square
roots	of	the	three	eigenvalues	of	C.	This	call	is	necessary	for	a	valid	multiplication.	Note	that	for	the	calculation	of	the	square	roots	to	be	valid,	all	eigenvalues	of	C	must	be	positive.	This	will
however	implicitly	be	the	case	for	valid	correlation	matrices.	We	can	then	create	the	matrix	V	according	to	equation	2	given	in	section	3:

V <- E$vectors diag(sqrt(E$values))

4.7 We	can	now	multiply	our	formerly	uncorrelated	random	number	matrix	Iu	with	the	transpose	of	V	in	order	to	receive	a	matrix	Ic	with	500	rows	each	containing	correctly	correlated	values	in	four
columns,	where	(in	our	example)	the	first	column	stands	for	the	parameter	"Age",	the	second	for	"Quality	of	Paintings",	the	third	is	for	"Expected	price	per	painting"	and	the	last	one	for	"Reputation
as	Educator":

Ic <- Iu %*% t(V)

4.8 Finally,	we	must	apply	the	distribution	of	each	parameter	(mean	and	standard	deviation)	to	the	correlated	random	values	by	simply	multiplying	each	column	with	the	standard	deviation	and	adding
to	it,	the	mean	of	the	parameter:

//Apply mean and standard deviation for "Age",
Ic[,1] <- Ic[,1]*12 + 40

http://jasss.soc.surrey.ac.uk/17/4/7.html 2 16/10/2015

//for "Painting Quality",
Ic[,2] <- Ic[,2]*0.2 + 0.7

//for "Expected Price of Painting",
Ic[,3] <- Ic[,3]*500 + 2000

//and finally for "Reputation as Educator"
Ic[,4] <- Ic[,4]*0,3 + 1

4.9 The	result	of	this	code	can	be	saved	in	a	CSV-File.	In	order	to	do	this,	we	can	use	the	"write.table"	command	included	in	R.	"write.table"	takes	several	parameters	of	which	the	first	is	the	matrix	to
write	into	a	file	and	the	second	is	the	file's	name	on	disk.	The	parameter	"sep"	defines	a	character	by	which	the	values	of	the	matrix	are	to	be	separated	in	the	output	file.	We	use
"col.names=FALSE"	and	"row.names=FALSE"	to	specify	that	we	do	not	wish	to	export	any	column	or	row	names.	In	order	to	not	put	any	values	of	the	matrix	in	quotes,	we	set	"quote=FALSE".	In
case	a	value	is	not	set	in	the	matrix	(which,	following	the	aforementioned	steps,	ought	to	be	irrelevant	in	our	case),	we	can	specify	a	string	value	written	to	the	file	in	its	place.	Here,	for	instance,	we
could	use	the	Java-compatible	"NaN"	string	for	"not	a	number"	by	setting	the	parameter	"na"	accordingly:

write.table(Ic,"C:/filename.csv", sep=",", col.names=FALSE,
row.names=FALSE, quote=FALSE, na="NaN")

4.10 We	can	now	use	the	random	number	sequences	in	this	file	for	use	in	any	external	program,	in	our	case	the	Recursive	Porous	Agent	Simulation	Toolkit	Repast	Simphony	(North	et	al.	2006)	.	It	is	a
Java-based	open	source	software	with	seemingly	growing	popularity	in	the	MABS-research	community	(Barnes	&	Chu	2010)	and	is	available	as	a	free	download	(Repast	2010).

4.11 Repast	employs	a	so-called	Context	Creator	to	initialise	simulations.	Within	this	class,	agents	can	be	created	and	parameters	may	be	set	before	the	simulation	begins.	Skipping	over	most	of	the
code	of	our	initialisation	routine,	we	will	again	present	exemplary	code	to	assign	the	generated	correlated	values	to	each	agent	using	the	Context	Creator,	recently	also	called	"SimBuilder".	In	our
example,	we	wish	to	create	a	virtual	world	with	500	painters,	each	having	different,	but	correlated	parameters	as	explained	above.	We	utilise	a	CSV-reader	class	that	simply	returns	the	matrix

saved	by	R	as	a	two-dimensional	Java	Double	array2.

Double[][]correlatedRandomNumbers =
CSV_Reader.readFile("C:/filename.csv");

4.12 All	we	then	need	to	do	is	to	create	our	agents	and	read	out	the	correlated	random	values	in	the	correct	order:

//stylised iteration:
for (int i=0; i<500; i++) {
 AgentPainter aP = new AgentPainter();
 aP.Age = correlatedRandomNumbers[i,0];
 aP.PaintingQuality = correlatedRandomNumbers[i,1];
 aP.SellsFor = correlatedRandomNumbers[i,2];
 aP.EducationQuality = correlatedRandomNumbers[i,3];
 ...
}

4.13 The	approach	itself	is	very	flexible	and	scalable	to	a	large	number	of	agents	and	correlated	parameters.	Performance	tests	were	conducted	on	an	Intel	Core2-Duo	PC	with	4GB	memory	and	a	hard
disk	spinning	at	5400rpm.	Figure	1	shows	a	3D-mesh-plot	portraying	the	execution	times	for	the	generation	of	10.000	to	50.000	correlated	vectors	(i.e.	agents)	for	respectively	10	to	100
parameters	for	each	individual.	The	left	part	of	figure	1	displays	execution	times	for	the	calculations	themselves	without	disk	output	to	a	CSV	file.	The	righthand	plot	shows	execution	times
including	the	disk	output.	The	data	shows	that	even	for	the	calculation	of	100	correlated	parameters	for	50.000	agents	it	only	takes	slightly	over	two	seconds	to	retrieve	all	necessary	values	using	a
code	analogous	to	the	example	code	listed	above.	Also,	the	computation	complexity	seems	to	rise	only	linearly	with	a	rising	number	of	agents	and	parameters	which	makes	this	approach
interesting	for	large	scale	simulations	with	either	a	large	number	of	agents	or	parameters	in	one	simulation,	or	a	large	number	of	simulations	running	in	parallel	(e.g.	for	parameter	optimisation
purposes).

http://jasss.soc.surrey.ac.uk/17/4/7.html 3 16/10/2015

Figure	1:	Computation	time	of	generating	random	correlated	number	sequences	for	varying	numbers	of	agents	and	parameters	with	(right)	and	without	(left)	disk	output	to	a	CSV	file.

4.14 Note	that	there	is,	however,	a	performance-bottleneck	where	the	files	need	to	be	written	to	disk.	Thus,	it	would	be	helpful	to	not	read	in	the	data	necessary	for	initialisation	from	a	file,	but	to	send
the	commands	necessary	directly	from	the	simulation	tool	to	R	and	to	then	evaluate	the	results.	In	addition	it	could	also	be	possible	that	in	the	case	of	a	multi	agent	simulation	particular	agents	are
not	generated	and	initialized	at	the	beginning	of	a	simulation,	but	come	into	being	during	the	running	process.	Here	you	cannot	be	sure	about	the	date	of	origin	or	the	availability	of	a	CSV	file
mentioned	above.	Transferred	to	our	fictitious	example	of	the	painters	this	could	mean	that	after	a	first	initialisation	we	would	like	to	grow	the	painters	older	with	every	time	step	of	the	simulation.
Additionally	individuals	shall	leave	the	simulation	due	to	retirement	and	others	join	because	of	first-time	employment.	On	the	assumption	that	the	correlations	have	to	be	valid	for	the	progressing
simulation,	too,	in	every	time	step	all	parameters	have	to	be	calculated	anew.	This	makes	the	so	far	procedure	of	saving	the	results	in	R	and	importing	them	from	files	impractical.	In	addition	the
usage	of	files	would	make	the	simulation	much	slower	in	every	calculation	step.

	Sending	R	Commands	directly	from	Repast

5.1 Therefore,	one	should	refer	to	(Lang	2005)	or	(JRI	2013)	for	a	way	to	directly	call	R-functions	from	within	Java-	based	applications	such	as	Repast.	We	will	explain	this	process	briefly	in	the
following.

5.2 The	so-called	Java-R-Interface	(JRI	2013),	amongst	other	interfaces	available,	is	able	to	send	commands	to	an	instance	of	R	running	in	the	background	of	a	Java-based	application.	Since
simulations	in	the	MAS-tool	Repast	Simphony	can	be	programmed	in	the	Java	language,	JRI	can	be	easily	implemented	for	use	in	such	multi-agent-simulations.

5.3 JRI	is	available	as	part	of	a	package-extension	of	R	called	"rJava",	which	was	originally	designed	to	send	data	and	commands	in	the	opposite	direction,	i.e.	from	R	to	Java.	The	quickest	method	to
utilise	only	the	functionality	of	the	Java-R-Interface,	nevertheless,	is	to	install	the	complete	"rJava"	package	within	R.	Once	installed,	the	downloaded	folders	within	R's	own	extension	library	will

contain	the	JRI	Java-archive	for	implementation	as	a	library	in	any	Java	project,	too.	3	Once	JRI	is	available	for	use	in	Repast,	one	can	extend	the	initialisation	class	of	a	simulation	analogously	to
the	case	of	CSV	files	described	above.	However,	here	one	would	directly	initialise	agents	using	the	calculations	made	in	R.	For	our	example	case,	the	necessary	code	is	listed	below:

5.4 As	a	first	step,	it	is	important	to	make	the	JRI	library	available	to	the	Repast	simulation	project	and	include	it	in	the	import	statements	of	the	simulation	part	needing	to	access	R,	i.e.	the
ContextCreator.java	(or	in	case	one	wishes	to	use	the	new	ReLogo	edition:	SimBuilder.groovy	resp.	UserObserver.groovy)	class	file	in	our	case:

import org.rosuda.JRI.REXP;
import org.rosuda.JRI.Rengine;
import org.rosuda.REngine.*;

5.5 We	are	then	using	the	initialisation	routine	of	the	Context	Creator	class	(e.g.	the	"build	()"	method)	to	access	R	routines.	Here,	we	instantiate	an	object	of	type	Rengine	which	is	the	main	instance
passing	commands	and	data	between	Java	and	R.	The	constructor	of	this	class	can	pass	various	arguments	to	the	instance	of	R	to	be	used.	Please	refer	to	the	JRI	documentation	(JRI	2013)	at
this	point	in	order	to	adjust	this	step	for	your	requirements.	In	all	cases,	the	"	waitForR()"	function	of	the	newly	created	Rengine	object	should	be	called	to	make	sure	that	the	R	thread	finished	its
program	start	sequence	before	calculations	can	begin.	Not	including	a	call	to	this	method	may	lead	to	Java	exceptions	being	raised	at	this	step	and	the	failure	of	Repast's	Context	Creator
initialisation	routine:

//Creating a new instance of R for calculations,
//making it a public variable to allow access
//from external classes such as agents or datasets:
public Rengine re;
...
re = new Rengine(new String[]{""}, false, null);
//Important: waiting for the R instance //to finish loading:
if (!re.waitForR()) {
 System.out.println("Cannot load R");
}

5.6 The	Rengine	type	now	offers	the	method	"	eval	(Stringcommand)"	(amongst	numerous	others)	to	execute	and	evaluate	a	command	passed	over	to	R	in	the	form	of	a	simple	string	parameter.	This
method	returns	an	object	of	type	REXP	(R	expression),	which	can	subsequently	be	used	to	output	or	further	interpret	results	of	the	command	sent	via	"eval".	The	following	code	listing
demonstrates	several	calls	to	send	commands	to	R	analogous	to	the	example	R-code	already	given	above.	We	retrieve	the	final	calculation	of	matrix	Ic	within	the	object	ex	of	type	REXP:

//Creating instance for return values:

http://jasss.soc.surrey.ac.uk/17/4/7.html 4 16/10/2015

REXP ex;
//Executing R example code as stated in
//beginning of section 4 of this paper:
re.eval("Iu <- matrix(, ncol=4,
nrow=500)");
re.eval("Iu[,] <- rnorm(2000);
re.eval("C <- matrix(, ncol=4, nrow=4)");
re.eval("C[1,] <- c(1, 0.4, 0.6, 0.6) ");
re.eval("C[2,] <- c(0.4, 1, 0.8, 0.4) ");
re.eval("C[3,] <- c(0.6, 0.8, 1, 0.1) ");
re.eval("C[4,] <- c(0.6, 0.4, 0.1, 1) ");
re.eval("E <- eigen(C,symmetric=TRUE)");
re.eval("V <- E$vectors %*% diag(sqrt(E$values))");

//Catching the result of Ic in "ex" for further handling:
ex =re.eval("Ic <- Iu %*% t(V)");

5.7 Now	we	only	need	to	create	an	array	just	as	one	would	when	using	CSV	files.	The	REXP	type	has	several	routines	for	formatting	the	results,	e.g.	an	"	asString()"	method	for	outputting	its	contents
to	the	Java	console.	Here,	we	use	the	"	asMatrix()"	method	that	interprets	the	results	as	a	two-dimensional	array	of	Double	values.	We	can	then	again	use	this	array	to	iterate	through	it,	assigning
the	parameter	values	to	each	of	our	agents:

Double[][] corrRandNumbers=ex.asMatrix()
//stylised iteration:
 for (int i=0; i<500; i++) {
 AgentPainter aP = new AgentPainter();
 aP.Age = corrRandNumbers[i,0] * 12) + 40;
 aP.PaintingQuality = corrRandNumbers[i,1] * 0.2) + 0.7;
 ...
 }

5.8 In	the	above	code	example	we	have	decided	to	assign	the	random	numbers	directly	in	the	Repast	Code,	as	they	are	just	simple	multiplications	and	additions,	for	which	we	do	no	longer	have	to
use	the	Java	R	Interface.	Of	course	one	could	provide	the	correlated	random	numbers	by	analogy	to	the	code	from	Section	4	by	using	further	re.eval	commands.

5.9 Accessing	R	through	the	JRI	library	is	a	very	efficient	method	to	compute	the	necessary	calculations	for	the	initialisation	of	a	Repast	simulation.	Further	performance	tests	using	this	method	have
shown	that	there	is	no	loss	of	performance	when	using	JRI	rather	than	R	itself	to	create	large	numbers	of	correlated	random	values.	Performance	results	are	comparable	to	those	shown	in	the
lefthand	part	of	fig.	1.

	Correlations	during	simulation	and	between	agents

6.1 The	JRI	offers	a	much	broader	range	of	utilizability	than	the	formulations	shown	in	Section	4	and	5.	Beyond	the	simple	initialisation	at	the	beginning	of	the	simulation	we	are	able	to	gain	access	to
R	functions	at	nearly	any	position	of	the	simulation.	This	makes	it	e	.g.	possible	to	create	correlated	random	numbers	in	every	time	step	after	initialisation	or	at	certain	incidents.	In	the	fictitious
example	of	the	simulation	of	painters	the	time	is	progressing	and	therefore	the	ageing	of	the	painters	could	play	a	role	so	that	in	every	time	step	each	painter's	age	is	given,	but	all	other	variables
have	to	be	calculated	accordingly.	We	did	not	have	this	possibility	with	the	approach	of	Section	4,	which	focussed	on	initialising	the	agents	before	starting	the	simulation.	To	realise	the	respective
routines,	it	is	only	necessary	to	-	analogous	to	Section	5	-	use	the	re.eval	(...)	command	in	the	step()	method	of	an	agent	being	called-up	in	every	time	step.

6.2 But	another	scenario	of	a	similar	nature	is	much	more	interesting:	in	our	fictitious	example	the	joining	painters	could	during	simulation	make	an	introducing	training	before	starting	professional	life.
A	number	of	pupils	could	visit	a	painter	and	probably	influence	themselves	in	a	limited	range	during	this	period	of	time.	We	assume	that	the	pupils	choose	their	instructors	and	that	they	take	into
consideration	the	geographical	proximity	and	the	reputation	of	the	painter	as	an	instructor	to	make	their	decision.	We	are	interested	in	the	development	of	local	clusters	of	high	and	low	quality
painters	or	in	the	spreading	of	characteristic	features	during	simulation.	But	first	in	our	fictitious	example	it	is	necessary	not	only	to	correlate	the	parameters	of	each	individual	agent	among	each
other	but	also	to	be	able	to	provide	individual	parameters	of	different	agents	with	correlations.	Therefore	we	want	to	correlate	the	parameters	"Painting	Quality"	and	"Expected	Price	per	Painting"	of
all	pupils	of	the	same	painter	among	each	other.	Figure	2	shows	the	constellation	of	correlation	connections	for	3	pupils	of	one	agent.	It	is	quickly	evident	that	the	correlation	connections	for	a	large
number	of	agents	and	/	or	correlated	parameters	lead	to	a	confusing	complexity.	Finally,	for	such	a	calculation,	only	an	extension	of	a	correlation	matrix	is	needed	the	way	it	is	shown	in	table	2	for
the	aforementioned	example.

Table	2:	Extended	correlation	matrix	for	correlations	of	parameters	(1,..,4)	within
and	between	agents	(a,b,c...)	exemplified	for	the	case	of	3	agents	(see	figure	2).

For	reasons	of	clarity,	only	the	upper	diagonal	of	the	matrix	is	presented.

Var pa1 pa2 pa3 pa4 pb1 pb2 pb3 pb4 pc1 pc2 pc3 pc4

pa1 1 0,4 0,6 0,6 0 0 0 0 0 0 0 0

pa2 	 1 0,8 0,4 0 0,15 0,1 0 0 0,15 0,1 0

pa3 	 	 1 0,1 0 0,1 0,1 0 0 0,1 0,1 0

pa4 	 	 	 1 0 0 0 0 0 0 0 0

pb1 	 	 	 	 1 0,4 0,6 0,6 0 0 0 0

pb2 	 	 	 	 	 1 0,8 0,4 0 0,15 0,1 0

pb3 	 	 	 	 	 	 1 0,1 0 0,1 0,1 0

pb4 	 	 	 	 	 	 	 1 0 0 0 0

pc1 	 	 	 	 	 	 	 	 1 0,4 0,6 0,6

pc2 	 	 	 	 	 	 	 	 	 1 0,8 0,4

pc3 	 	 	 	 	 	 	 	 	 	 1 0,1

pc4 	 	 	 	 	 	 	 	 	 	 	 1

http://jasss.soc.surrey.ac.uk/17/4/7.html 5 16/10/2015

Figure	2:	Exemplary	correlations	among	parameters	(p)	of	agents	for	3	agents	"A",	"B"	and	"C"

6.3 Theoretically	this	procedure	makes	it	possible	to	establish	correlation	values	not	only	for	every	single	pair	of	parameters	of	an	agent,	but	also	for	every	individual	pair	of	parameters	between	two
agents.	Transferred	to	our	pupil	example	this	would	mean	that	certain	pupils	are	able	to	influence	each	other	in	particular	areas	more	than	other	pupils	and	other	areas.	For	simplification	we
assume	that	all	pupils	influence	each	other	in	the	same	way	in	the	areas	mentioned,	being	shown	by	the	recurring	values	in	the	upper	right	half	of	table	2.	Due	to	the	repetitions	this	table	can	be
produced	dynamically	and	in	a	simple	manner	in	Repast	for	as	many	pupils	as	required.	We	only	need	to	use	two	interlaced	loops	to	iterate	the	agent	combinations	of	the	upper	right	half	of	the
correlation	matrix	through.	But	beforehand	it	has	to	be	determined	how	many	agents	are	the	pupils	of	the	painter	in	question	to	set	up	the	size	of	the	correlation	matrix	accordingly.	This	is	done	in
the	step()	method	of	the	instructing	painter.	We	assume	that	a	standard	network	"	networkEduction"	of	the	type	Network	in	Repast	has	been	created	and	the	pupils	been	placed	to	the	instructors
they	belong	to	during	the	current	time	step	by	the	command

networkEducation.addEdge(agent,agent)

In	the	step()	method	of	the	instructor	we	now	can	fall	back	on	the	pupils	in	the	network	and	create	the	respective	correlation	matrix:

...
//Count pupils of instructing painter:
int count_students = networkEducation.getDegree(this);
int count_parameters = 4;
//Create correlation matrix of corresponding size in R:
re.eval("C <- matrix(,ncol=" +
(count_students* count_parameters).toString() + ",nrow=" +
(count_students* count_parameters).toString());

6.4 Now	the	correlation	matrix	can	be	filled.	Due	to	the	simplifications	mentioned	above	only	one	of	the	two	4x4	correlation	matrices	has	to	be	chosen	and	added,	depending	on	whether	it	is	a
correlation	between	parameters	of	the	same	agent	or	correlations	between	parameters	of	different	agents.	In	Repast	we	differentiate	between	these	two	cases	and	send	accordingly	adapted
re.eval	(...)	commands	by	analogy	to	Section	5.	Here	only	to	the	upper	right	half	of	the	total	matrix	attention	has	to	be	paid,	as	for	further	calculations	only	values	above	the	matrix	diagonal	have	to
be	used.	Herewith	the	loop	construction	for	filling	is	further	simplified,	especially	because	no	symmetrical	values	below	the	diagonal	have	to	be	produced:

//Iterate through agents vertically and horizontally (this may be simplified if one uses ReLogo):
for (int agentV = 1; agentV<=count_students; agentV++) {
 for (int agentH = agentV; agentH<=count_students; agentH++) {
 //correlations between paramters of the same agent:
 if (agentH==agentV) {
 re.eval("C[" + (agentV-1)*count_parameters +
 1 + "," + (agentH-1)*count_parameters + 1 + ":" +
 (agentH-1)*count_parameters + 4 "] <-
 c(1, 0.4, 0.6, 0.6) ")
 ...
 re.eval("C[" + (agentV-1)*count_parameters + 4 + "," +
 (agentH-1)*count_parameters + 1 + ":" +
 (agentH-1)*count_parameters + 4 "] <-
 c(0.6, 0.4, 0.1, 1) ")
 //correlations between paramters of different agents:
 } else {
 ...
 re.eval("C[" + (agentV-1)*count_parameters + 2 + "," +
 (agentH-1)*count_parameters + 1 + ":" +
 (agentH-1)*count_parameters + 4 "] <-
 c(0, 0.15, 0.1, 0) ")
 re.eval("C[" + (agentV-1)*count_parameters + 3 + "," +
 (agentH-1)*count_parameters + 1 + ":" +
 (agentH-1)*count_parameters + 4 "] <-
 c(0, 0.1, 0.1, 0) ")
 ...
 }
 }
}

6.5 Now	a	vector	of	uncorrelated	numbers	is	generated,	containing	a	random	value	for	every	parameter	of	each	pupil	of	the	respective	agent.	Alternatively	one	could	immediately	represent	this	as	a

matrix	with	several	lines	for	several	groups	of	agents	with	equal	correlation	features	and	herewith	further	simplify	the	code4.

http://jasss.soc.surrey.ac.uk/17/4/7.html 6 16/10/2015

re.eval("cu <- rnorm(" +
(count_students*count_parameters).toString() + ")")

6.6 Thereafter	this	vector	can	be	transferred	by	analogy	to	the	commands	in	Section	5	to	correlated	random	values	and	be	completed	by	mean	and	standard	deviations.	The	results	of	the	example
show	the	parameter	values	of	every	individual	agent	in	four	columns	each,	so	the	columns	1	-	4	contain	the	values	for	Agent	A,	the	columns	5	-	8	contain	the	values	for	Agent	B	and	the	columns	9
-	12	those	for	Agent	C.	If	you	assign	these	values	to	the	pupils	in	analogy	to	the	commands	from	Section	5,	now	not	only	the	parameter	values	of	an	agent	are	correlated	according	to	table	1,	but
also	the	values	among	the	pupils	according	to	the	supplementations	from	table	2.

	Excursion:	R	and	NetLogo

7.1 Based	on	the	above-mentioned	"rJava"	package	from	which	we	extracted	and	used	the	JRI	interface,	an	extension	for	NetLogo	was	developed	(Thiele	et	al.	2012,	p.	2.2),	(Thiele	&	Grimm	2010)	5.
This	NetLogo	R	extension	enables,	in	a	similar	manner	as	sending	commands	from	Repast	to	R	was	made	possible	by	JRI,	the	communication	between	NetLogo	and	R.	In	order	to	offer	example
source	code	also	to	the	large	proportion	of	the	NetLogo	developers	in	the	JASSS	community	(cmp.	Thiele	et	al.	(2012)	fig.	1),	we	provide	a	NetLogo	template	implementation	for	the	required
initialization	steps	during	the	setup	phase	of	our	simulation	model	at	http://www.openabm.org/model/4117/version/1/view.	We	also	provide	Repast/Relogo	code	for	the	same	purpose	in	an
openabm.org	model	record	available	from	http://www.openabm.org/model/4022/version/1/view.

7.2 The	"setup"	method	of	this	NetLogo	example	communicates	with	R	and	creates	a	matrix	with	500	rows	and	4	columns	just	as	in	the	Repast	examples	above.	Based	on	the	creation	of	the
correlation	matrix	and	the	derived	Eigen-vectors	and	lambda-values,	a	matrix	of	correlated	parameters	Ic	is	being	extracted.	Agents	are	then	initialized	with	these	values.	A	cross-check	is	then
performed	by	letting	R	calculate	the	correlation	matrix	for	the	agents'	properties.	The	correlation	matrix	will	be	written	to	the	NetLogo	console	output	for	comparison	with	the	original	correlation
matrix.

7.3 In	comparison	to	Repast,	however,	we	cannot	simply	use	a	statement	like	".asMatrix()"	to	convert	Ic	back	into	a	two-dimensional	array	of	numbers.	Retreiving	Ic	from	R	using

r:get("Ic")

will	return	only	a	one-dimensional	list	of	values.	This	is	standard	behaviour,	since	arrays	and	matrices	are	only	available	as	extensions	to	NetLogo.	Hence,	we	employ	very	basic	code	that	is	based
on	the	knowledge	that	there	are	500	×	4	values	in	a	particular	order	in	the	matrix.	The	first	500	values	in	the	result	list	dubbed	corrRandNumberswill	therefore	be	age	parameters,	items	501	to	1000
will	contain	the	values	for	painting	quality,	etc..	We	are	aware	that	there	is	room	for	structural	improvements	to	this	code	and	wish	to	point	out	that	it	is	intended	for	a	basic	demonstration	only.	We
therefore	encourage	the	audience	to	make	use	of	the	benefits	that	the	above-mentioned	extensions	may	provide	to	further	optimize	and	parameterize	this	code	in	the	adaptions	you	may
implement	for	your	own	simulations.	In	addition,	while	we	find	that	communication	between	NetLogo	and	R	may	be	slightly	slower	than	between	Repast	and	R,	the	NetLogo-R-extension	provides
additional	methods	over	those	in	the	JRI	package	such	as	putList	or	putAgent,	which	can	provide	a	way	to	further	optimize	your	NetLogo	simulation	models.

	Conclusions	and	extensions

8.1 This	article	dealt	with	the	question	of	how	to	generate	scalable	sets	of	correlated	random	numbers	in	interaction	with	agent-based	simulations.	The	authors	found	this	to	be	a	question	both
important	and	difficult	as	many	empirical	studies	provide	aggregated	descriptive	statistics,	including	correlations,	while	there	is	also	a	necessity	for	detailed	simulations	at	the	level	of	single	and
interacting	individuals	to	explore	certain	issues	especially	when	dealing	with	complex	and/or	emergent	systems	(Nissen	&	Saft	2010,	p.	113).	The	process	of	extracting	correctly	correlated
sequences	of	random	numbers	for	each	agent	is	nontrivial	and	literature	on	this	topic,	especially	in	the	form	of	practical	guides	for	researchers	in	the	(multi-agent)	simulation	community	without	a
deep	mathematical	background,	is	scarce.	The	reader	therefore	was	provided	with	a	step-by-step	guide	for	how	to	create	a	matrix	containing	MAS	initialisation	data	in	the	form	of	correlated
random	number	sets	for	each	agent	as	well	as	with	a	stylised	example	code	for	the	wide-spread	Repast	simulation	software	in	order	to	access	those	values	indirectly	via	file	output	or	directly
using	the	so-called	JRI-package.

8.2 This	paper	therefore	serves	as	a	demonstrative	guide	for	a	wide	audience	of	researchers	in	the	simulation	community.	It	provides	a	time-saving	way	as	well	as	a	quick	access	for	newcomers	to
the	creation	of	correlated	random	number	sequences	for	MAS	parameterisation.

8.3 The	steps	shown	here	can	further	be	enhanced	by	using	additional	packages,	e.g.	the	R-Commander	package	for	R,	providing	quick	and	easy	access	to	basic	R	operations	via	a	graphical	user
interface	(Fox	2010).	There	are	also	other	options	to	call	R	directly	from	Java	and	Java-based	software	(Lang	2005),	eliminating	the	need	to	use	CSV	Files	for	storage.	Such	approaches	are
beneficial	since	one	is	not	only	able	to	outsource	initialisation	calculations,	but	any	complex	set	of	calculations	that	should	rather	be	executed	in	a	professional	environment	such	as	R.

8.4 An	example	model	demonstrating	the	basic	steps	explained	in	this	article	in	a	ReLogo	project	can	be	downloaded	from	http://www.openabm.org/model/4022/version/1/view.	Note	that	this	project
needs	all	prerequisites	(R,	JRI)	to	be	set	up	and	work	before	it	can	run	correctly.

8.5 This	article	concentrated	on	providing	a	basic,	intuitive	guide	to	correctly	initialize	individual	agents	from	aggregated	correlated	data.	For	this	purpose,	we	used	the	demonstrative	example	of
painters	with	four,	normally	distributed,	properties.	However,	one	cannot	always	assume	that	parameters	of	similar	simulation	studies	are	necessarily	normally	distributed.	They	may	not	even	be
continuous	values,	but	variables	on	a	categorical/nominal	or	ordinal	scale.	The	general	approach	to	calculate	the	initialization	values	for	the	agent	parameters	in	R	can	still	be	applied	in	these
cases,	though.	But	the	R	source	code	required,	or	the	mathematical	background,	may	become	less	accessible.	However,	there	is	useful	R	code	available	from	some	online	ressources,	also
dealing	with	the	statistics	of	such	cases.	For	instance,	in	Stevenson	(2013)	the	generation	of	correlated	time	series	for	several	categorical	parameters	by	employing	additional	R	packages	is
demonstrated.	To	become	familiar	with	the	underlying	mathematical	procedures	Gange	(1995)	can	be	a	helpful	source.	With	these	extensions	the	procedures	outlined	our	paper	can	be	applied	in
an	analogous	mode.	Tannenbaum	et	al.	(2006)	propose	an	approximate	and	even	more	lean	method	to	simulate	correlated	categorical	and	continuous	covariates	in	the	same	turn.	Using	this
approach,	all	parameters	of	a	model	are	considered	to	be	on	a	continuous	scale	and	then	discretized	according	to	critical	values	obtained	from	correlation	information.	The	authors	use	the
example	of	simulating	virtual	patient	data	for	a	clinical	trial	simulation.	However,	the	idea	is	not	necessarily	limited	to	the	example	topic.	Therefore,	the	mathematical	background	provided	by	former
example	as	well	as	the	information	in	Kaiser	et	al.	(2011)	regarding	the	creation	of	correlated	values	on	an	ordinal	scale	provide	ways	to	extend	our	approach	even	further	and	may	in	the	future
lead	to	a	rich	toolset	for	the	community	to	create	simulation	models	from	complex	covariate	datasets.

	Acknowledgements

	The	authors	would	like	to	thank	the	anonymous	reviewers	for	their	comments	and	suggestions	to	improve	the	quality	of	the	paper,	especially	with	regards	to	the	idea	of	providing	NetLogo	source
code	and	very	valuable	thoughts	and	literature	hints	on	dealing	with	categorical	variables.

	Notes

	1	We	utilise	the	real-world	study	of	"resistance	to	change"	behaviour	in	organisations	to	initialise	our	own	multi-agent	simulation	of	a	virtual	organisation	in	order	to	better	understand	how
resistance	to	change	spreads	and	can	be	influenced	by	management.

2	Several	similar	Java-based	CSV-readers	are	also	available	online.

3	Note	that	the	subsequent	setup	of	the	JRI	library	files	can	be	difficult.	For	a	quick	overview	regarding	the	most	difficult	steps	in	Eclipse/Repast,	one	can,	e.g.,	refer	to	easily	available	short	notes
and	articles	in	technological	blogs	such	as	(Mavlarn	2012)	or	(StackOverflow	2013).

4	We	abandon	such	simplifications	in	order	to	demonstrate	the	flexibility	of	our	approach.

5	The	extension	and	installation	instructions	can	be	downloaded	from	http://r-ext.sourceforge.net/.	Setting	up	the	right	combination	of	your	operating	system,	NetLogo	version,
NetLogo-R-extension	version	and	R	version	is	a	non-trivial,	but	well-documented	process	that	you	will	need	to	follow	closely	in	order	to	make	use	of	the	source	code	we	provide	in	this	section.

References

	BARNES,	D.	J.	&	CHU,	D.	(2010).	ABMs	using	Repast	and	Java.	In:	Introduction	to	Modeling	for	Biosciences.	Springer,	pp.	79-130.	[doi:10.1007/978-1-84996-326-8_3]

FOX,	J.	(2010).	The	r	commander:	A	basic-statistics	gui	for	r.	http://socserv.mcmaster.ca/jfox/Misc/Rcmdr/.	Archived	at:	http://www.webcitation.org/6NvGiHhwW.

http://jasss.soc.surrey.ac.uk/17/4/7.html 7 16/10/2015

http://www.openabm.org/model/4117/version/1/view
http://www.openabm.org/model/4022/version/1/view
http://www.openabm.org/model/4022/version/1/view
http://r-ext.sourceforge.net/
http://dx.doi.org/10.1007/978-1-84996-326-8_3
http://socserv.mcmaster.ca/jfox/Misc/Rcmdr/

GANGE,	S.	J.	(1995).	Generating	multivariate	categorical	variates	using	the	iterative	proportional	fitting	algorithm.	The	American	Statistician	49(2),	134-138.

JONES,	O.,	MAILLARDET,	R.	&	ROBINSON,	A.	(2012).	Introduction	to	scientific	programming	and	simulation	using	R.	CRC	Press.

JRI	(2013).	Jri.	http://www.rforge.net/JRI/.	Archived	at:	http://www.webcitation.org/6NvIpV2bn.

KAISER,	S.,	TRäGER,	D.	&	LEISCH,	F.	(2011).	Generating	correlated	ordinal	random	values.

LANG,	D.	T.	(2005).	Calling	R	from	Java.	http://www.omegahat.org/RSJava/RFromJava.pdf.

MAVLARN	(2012).	Calling	R	from	Java	using	JRI.	http://www.cnblogs.com/mavlarn/archive/2012/12/24/2831688.html.	Archived	at:	http://www.webcitation.org/6NvFpp1IE.

NISSEN,	V.	&	SAFT,	D.	(2010).	Social	emergence	in	organisational	contexts:	benefits	from	multi-agent	simulations.	In:	Proceedings	of	the	2010	Spring	Simulation	Multiconference.	Society	for
Computer	Simulation	International.	[doi:10.1145/1878537.1878548]

NORTH,	M.	J.,	COLLIER,	N.	T.	&	VOS,	J.	R.	(2006).	Experiences	creating	three	implementations	of	the	Repast	agent	modeling	toolkit.	ACM	Transactions	on	Modeling	and	Computer	Simulation
(TOMACS)	16(1),	1-25.	[doi:10.1145/1122012.1122013]

OREG,	S.	(2006).	Personality,	context,	and	resistance	to	organizational	change.	European	Journal	of	Work	and	Organizational	Psychology	15(1),	73-101.	[doi:10.1080/13594320500451247]

R	(2010).	The	R	project	for	statistical	computing.	http://www.r-project.org/.	Archived	at:	http://www.webcitation.org/6NvHwxRHI.

REPAST	(2010).	Repast	home	page.	http://repast.sourceforge.net.	Archived	at:	http://www.webcitation.org/6NvHOTVWA.

STACKOVERFLOW	(2013).	Question	about	JRI	error.	http://stackoverflow.com/questions/4894002/question-about-jri-error.	Archived	at:	http://www.webcitation.org/6NvHgojvH.

STEVENSON,	W.	(2013).	Simulating	random	multivariate	correlated	data	(categorical	variables).	http://www.statistical-research.com/simulating-random-multivariate-correlated-data-categorical-
variables/.	Archived	at:	http://www.webcitation.org/6NvI7z1VE.

TANNENBAUM,	S.	J.,	HOLFORD,	N.	H.,	LEE,	H.,	PECK,	C.	C.	&	MOULD,	D.	R.	(2006).	Simulation	of	correlated	continuous	and	categorical	variables	using	a	single	multivariate	distribution.	Journal	of
pharmacokinetics	and	pharmacodynamics	33(6),	773-794.	[doi:10.1007/s10928-006-9033-1]

THIELE,	J.	C.	&	GRIMM,	V.	(2010).	Netlogo	meets	R:	Linking	agent	-based	models	with	a	toolbox	for	their	analysis	.

THIELE,	J.	C.,	KURTH,	W.	&	GRIMM,	V.	(2012).	Agent-based	modelling:	Tools	for	linking	Netlogo	and	R.	Journal	of	Artificial	Societies	and	Social	Simulation	15(3),	8.
http://jasss.soc.surrey.ac.uk/15/3/8.html.

TREFETHEN,	L.	N.	&	BAU	III,	D.	(1997).	Numerical	linear	algebra,	vol.	50.	Siam.

VAN	DEN	BERG,	T.	(2012).	Generating	correlated	random	numbers.	http://www.sitmo.com/article/generating-correlated-random-numbers/.	Archived	at:
http://www.webcitation.org/6NvGU3pjH.

VINOD,	H.	D.	(2009).	Advances	in	social	science	research	using	R,	vol.	196.	Springer.

http://jasss.soc.surrey.ac.uk/17/4/7.html 8 16/10/2015

http://www.rforge.net/JRI/
http://www.omegahat.org/RSJava/RFromJava.pdf
http://www.cnblogs.com/mavlarn/archive/2012/12/24/2831688.html
http://dx.doi.org/10.1145/1878537.1878548
http://dx.doi.org/10.1145/1122012.1122013
http://dx.doi.org/10.1080/13594320500451247
http://www.r-project.org/
http://repast.sourceforge.net
http://stackoverflow.com/questions/4894002/question-about-jri-error
http://www.statistical-research.com/simulating-random-multivariate-correlated-data-categorical-variables/
http://dx.doi.org/10.1007/s10928-006-9033-1
http://jasss.soc.surrey.ac.uk/15/3/8.html
http://www.sitmo.com/article/generating-correlated-random-numbers/

	Abstract
	Introduction
	Demonstrative example
	Mathematical Background
	A Pracitcal guide for the utilisation of correlated random number sequence using "R" and "REPAST"
	Sending R Commands directly from Repast
	Correlations during simulation and between agents
	Excursion: R and NetLogo
	Conclusions and extensions
	Acknowledgements
	Notes
	References

