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Abstract: Prediction of ship performance in preliminary ship design is an important consideration. It could guarantee ship in safe and 
comfort. However, many design works did not involve simultaneously ship performances predictions in preliminary design. 
Moreover, ship designers sometimes modified a ship form to obtain proper design without ship performance consideration. Therefore, 
this study concerns on predictions of total resistance and added wave resistance of a ferry using a hybrid particle-grid method and 
then its motions response after modifying bow and stern parts by conducting experiment. Research results show total resistance and 
added wave resistance have a significant different, therefore, it would be an important consideration in determining ship powering in 

preliminary ship design. The non-dimensional added wave resistance increases in increasing wave length from /Lpp = 0.5 to 1.0 and 

it decreases after L/= 1.0. In addition, it tends to decrease caused by increasing ship speed. The comparison of averaged heave and 

pitch amplitudes between basic forms after modifying bow and stern parts is quiet similar. However, the rolling amplitude of the 
modified form is significantly higher comparing with the basic form. We conclude that a ship could be design in preliminary design 
take into account performances predictions by using numerical method and experimental work. 
 
Keywords: Resistance,added wave resistance,heave motion, pitch motion, rolling motion. 

 

1. Introduction 

A proper ship design is ownership expectation and 

it could contribute some beneficial costs. In order to 

obtain a proper ship design, it is iteratively processed 

that reflects the design methodology and strategy. 

However, this would become difficult to use 

appropriate design tools and possible take longer time.  

In 1946, CFD (computational fluid 

dynamics)methods began replacing analytic equations 

and experimental fluid dynamics in ship design. Over 

the past several years, according to rapid advances in 

hardware and several computational techniques, some 

researchers concern on developing CFD method take 

into account all hydrodynamic behaviors to become 

applicable and practical tools.  

In naval architecture and ocean engineering field, 

the developed CFD methods have been done involved 

several computational techniques [1-5] developed The 
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CFD method to apply to hull form design and sterns 

with devices of complex forms. However, the 

solutions are sufficient accurate. They still require 

experimental results.  

Recently, we have developed hybrid scheme which 

is Eulerian grid with Lagrangian particles [6] to 

combine the advantages and to compensate for the 

disadvantages in both the grid-based and the particle 

based methods. This developed method has been 

applied to many various cases in naval architecture 

and ocean engineering fields. It was applied to ship 

propulsion performance [7], ship seakeeping 

performace [8], ship motions with hydroelastic effects 

[8], and investigation of resistance reduction by 

improving stern part [9], etc. However, we need more 

quantitative assessments in integrating design for 

preliminary design step purpose.  

In additions, ship hull form under still water could 

be optimized to obtained proper design based on 

minimum resistance and good motions by computing 

simultaneously during preliminary ship design process. 
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continuity and momentum equations as follows: 

D
0

D

i

i

u

t x

  
 


       (4) 

D

D

i ij
i i

fsij

u
g F

t x

 
  


       (5) 

where, ijS  is the density, ui the velocity, 
/ 3kkP - the position vector of vector j 

components, the stress tensor of the solid phase, and 

Ffsi the fluid structure interaction term. The stress 

tensor ij
s  in Eq.(5) is given by: 

-i j i j i j
s P S           (6) 

where, ijS  is the deviatoric stress tensor, the pressure 

solved by the Poisson’sEq. (9) as mentioned below. 

Our numerical model considers a large deformation 

of an elastoplastic body. The solid body changes at 

every calculation step by using the following 

equation: 

{d } [ ]{d }ij ep ijS D          (7) 

where, epD  is the elastoplastic matrix, d ij  the time 

increment of the strain, and d ijS the time increment of 

the deviatoric stress. To solve rotation of the solid 

phase during a deformation, the Jaumann derivative is 

used to ensure material frame indifference with 

respect to the rotation as follow: 

d 1
2

d 3

ijS ij ij jk kjik ikS S
ijt

         
 
  (8) 

where,  is the strain rate tensor and the spin tensor.  

The pressure with specified jump conditions is 

solved by the Poisson’s equation given by: 
1nP u

t

 



   
     

         (9) 

where,   denotes a physical value after the advection 

step. The pressure for solid phase can be obtained by 

this equation and be applied in solving a solid 

deformation.  

The fluid structure interaction Ffsiis solved by 

acceleration obtained from the pressure on the SPH 

particles interpolated using the pressure on grids 

solved by the Poisson’s Eq. (2). In the model, the fluid 

structure interaction Ffsi in Eqs.(2) and (5) can be 

given by the following equation:  

( )1
( ) - ( , )

( ) ( )
b

fsi a b a a b
ba b

P
F m W h

 
   r

r r r
r r

(10) 

To keep computational efficiency and stability, the 

time increment in the solid phase is approximately 

1/10 to 1/50 of that in fluid phase. 

2.5 Ship Motions 

A ship motion is solved by using information 

obtained from SPH particles because a ship hull 

consists of SPH particles capturing motion and 

deformation of a ship. Therefore, the 3D motion of a 

ship hull is represented by describing translation and 

rotation of the center of gravity of a ship hull by using 

the following equations: 
2

, ,

2

s k s k
fsi

i

x F
F

t m


 


       (11) 

i
iI T

t





            (12) 

i
it

 



  (13) 

where, I  is the rotational angle, i  the angular 

velocity, Tithe torque, I the inertia moment, and Ffsithe 

fluid structure interaction. In addition, the center of 

gravity of a ship hull can be obtained by solving the 

inertia moment of SPH particles, and this is calculated 

by using Baraff theory [12]. Therefore, the 

coordinates of velocity of each SPH particle in every 

time step can be tracked by using the rotation matrix 

and the amount of the angle rotation of the center of 

gravity. The quaternion is also used instead of the 

rotation matrix R(t) in 3D to avoid the Gimbal lock 

phenomenon. 

3. Experimental Method  

The motions test is performed in water tank which 

belongs to Naval Architecture Department, 

Hasanuddin University. The purposes are to measure 

heave, pitch, and roll amplitudes in zero speed.  

The ferry model was made of wood and it is 
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Based on transfer function of the heave and pitch, the 

motions were yielded maximum value when ඥܮ ⁄ߣ  

=1. Therefore, the numerical results show in good 

agreement with the experimental results.  

5. Results and Discussions 

5.1 Resistance and Added Wave Resistance Using 

Numerical Method 

The computational conditions were set where the 

grid size is normalized by length between 

perpendiculars (Lpp) 0.0025-0.015Lppand the radius of 

free surface particle is 0.00125-0.005Lpp. Then, the 

radius of the SPH particle is 0.00125Lpp. In the model, 

the ferry is represented by a large number of the SPH 

particles traced by particle based method as shown in 

Fig. 7. For wave conditions, the incident regular wave 

height is set toHw/Lpp = 0.01. The wave length is 

ranged from /Lpp = 0.5 to 2.0. In additions, the speed 

is set in maximum Fn= 0.29.  

Ship resistance and added wave resistance have 

been normalized. Non-dimensional resistance is 

defined by water density, speed V, and wetted 

surface area S. Fig. 8 shows total resistance of the 

ferry. The total resistance consists of both frictional 

resistance and pressure resistance. The frictional 

resistance is calculated using density function 

considering a water line and coefficient of 

resistance for flat plate turbulent boundary layer based 

on Schoenherr formula. The tendency of the total 

resistance from Fr=0.12 to 0.17 decreasesand then 

increases until increases until Fn = 0.29. This 

resistance tendency is the same with our previous 

results [7] where it had been validated with 

experimental result.  

Fig. 9 shows the non-dimensional added wave 

resistance in wave height Hw/Lpp = 0.01 and Fr=0.29. 

The nondimensional added wave resistance 

∆R/(g(Hw/2)2B2/L) is normalized by wave height Hw, 

ship length L and ship width B. Using this method, the 

added wave resistance is obtained from computation 

resultsbetweenthe resistancein thecalm waterand that in 

 
Fig. 7  The ferry model represented by a number of SPH 

particle.  
 

 

Fig. 8  The total resistance of the ferry.  
 

 

Fig. 9  The added wave resistance of the ferryin Hw/Lpp = 
0.01.  
 

the regular wave. The non-dimensional addedwave 

resistance decrease in increasing ship speed. The 

non-dimensional added wave resistance increases in 

increasing wave length /Lpp = 0.5 to 1.0 in Fr=0.29 

and it then decreases after /Lpp = 1.0. In addition, our 

method was applied also to that ferry with waveheight 

Hw/Lpp= 0.08, where, this means extreme condition. 

The added wave resistance is higher than wave height 

Hw/Lpp = 0.01. 
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Fig. 13  Time history of heave, pitch, and roll amplitudes 
both basic andd modification forms.  
 

reduction M1 are then predicted by conducting 

experiment in order to interpret ship seakeeping for 

preliminary design purpose. The speed model was 

setto zero. The heave, pitch, and roll are considered 

and others are fixed. The ferry main dimensions have 

similar with previous computational work. The other 

experimental parameters have been stated previously 

into experimental set-up sub-section. 

In interpreting the motions, heave and pitch 

motions have been normalized. Non-dimensional 

heave is defined by Hv/Hw and then pitch and roll are 

defined by /(HwK), where,Hvandare heave and 

pitch motions amplitude, respectively, Hw the incident 

wave height and K the wave number.  

Fig. 13 shows time histories of the heave, pitch, and 

roll amplitudes. Based on that figure, the average 

non-dimensional heave amplitudes of the basic form 

and the modification form are 0.44 and 0.41, 

respectively. Moreover, the averaged non-dimensional 

pitch amplitudes of the basic form and the 

modification form are 0.93 and 0.97, respectively. 

They are seen closer both basic form and modification 

form. However, the average non-dimensional roll 

amplitudes of the basic form and the modification 

form are sufficient different 1.15 and 1.38, 

respectively. 

The heave motion for both forms is less than Hv/Hw 

=1.0. Also the pitch motion for both form 

is/(HwK)=1.0. These means that ship forms have a 

good geometry even the wave length /L is greater 

than 2.0. However, the roll motion is greater than 

/(HwK)=1.0. This motion is concern point for that 

wave condition.  

6. Conclusions 

The present study, the hybrid Eulerian scheme with 

Lagrangian particle method can be applied practically 

to predict ship resistance and added wave resistance in 

preliminary design stage. Moreover, it is useful also to 

optimize ship hull form under still water based on 

resistance and added wave resistance. Based on 

modification work, the optimum resistance reduction 

of the modified form under still water could be 

achieved approximately 5.7%. The modification in 

bow part could reduce significantly resistance 

compared with in stern part.  

In additions, the heave, pitch, and roll motions have 

been predicted as well by conducting experiment. The 

modified form affects approximately 9% on increasing 

quiet small heave, pitch, and roll motion. Therefore, 

numerical method involved simultaneously with 

experimental work is proper way in preliminary 

design stage. 
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