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Introduction

I will tell you up front: I am not an expert in scattering theory. My own
background is in many-body theory which deals with bound states; an astute
reader might on her own detect that predilection in what follows. Yet we interact
with bound state systems through elastic and inelastic scattering and through
reactions. Therefore I wrote this book largely to teach myself and my students
how to calculate scattering and capture rates. Because of that, I emphasize
practical, numerical calculations, starting with simple analytic systems such
as a square well potential, but later discussing in detail how to actually carry
out nontrivial calculations. I do not provide sample codes, in part because
different readers will favor different tools (Mathematica/MatLab, Python, or C
or Fortran–I tend to use Fortran), and in part because I think you will learn this
best by writing your own code. But I will provide results you can compare your
codes against. This book will not exhaust the field of scattering. It focuses on
parameterizing the S-matrix through phase shifts in channels of good angular
momentum, the so-called partial-wave decomposition. I spend a great deal of
time on how to calculate phase shifts in various ways, including and especially
in the J-matrix formalism, which uses a bound state basis. But I leave out or
only briefly discuss the optical theorem, the Born approximation, form factors,
and the eikonal approximation.

I heavily rely upon examples, in particular the finite square well potential,
which can be solved analytically, but which also makes a suitable target for
simple numerical calculations. I encourage readers to attempt to replicate in
detail these examples.

This book assumes the reader has had quantum mechanics at the level of
at least Griffiths or Shankar, learning the formal Dirac bra-ket notation, the
Schrödinger equation in three-dimensions especially in spherical coordinates,
including the hydrogen atom. This book also assumes the reader has good skill
in some computational platform, although it could be easily combined with a
course in computational methods. If you do not have strong computational
skills, a more formal text in scattering may be better for you.

While scattering theory is a common topics, I chose to write this book be-
cause most quantum mechanics texts give only a brief introduction, and most
books on scattering theory emphasis formal mathematics over practical calcu-
lations.

iv



Part I

The basics of quantum
scattering
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Chapter 1

Cross-sections: a window
on the microscopic world

How do we see the tiniest of things? The wavelength of visible light is a few
hundred nanometers (10−9 m), which is thousands of times larger than atoms.
The wavelength of high energy gamma rays are tens of femtometers (10−15

m), which is also larger than individual nuclei. These objects cannot be pho-
tographed; there is no microscope through which we can peer and see them
wriggling on the slide.

The answer came from Rutherford’s groundbreaking 1911 [?? gotta check]
experiment. These were heady times, and it is hard for us today to conceive
of how swiftly our conception of nature was changing. In 1899 J.J. Thompson
had discovered the electron, the carrier of electric current. Electrons are part of
atoms, but even the reality of atoms themselves, those un-cuttable objects pos-
tulated more than two millenia before by the Greek philosopher Democritus,
only became widely accepted after Einstein’s 1905 Ph.D thesis demonstrated
the connection between Brownian motion and the atomic hypothesis. Because
electrons were negatively charged (an assignment due to an unlucky guess by
Benjamin Franklin) and atoms neutral, atoms had to have a positively charged
component. British physicists postulated a “plum pudding” model, a descrip-
tion singularly unhelpful to anyone unfamiliar with English desserts, in which
the electrons were embedded in a positively charged matrix.

Rutherford drilled a hole in a block of lead and placed inside it a bit of
polonium, one of the new elements recently discovered by the indefatigable
Marie Curie. Polonium was known to emit alpha rays, bits of positively charged
matter but much heavier than electrons; this was easy to establish, because by
putting in a magnetic field you could measure the ratio of mass to charge. Thus
out of the block of lead came a narrow–the technical term is collimated–beam
of alpha particles.

This alpha beam Rutherford aimed at a thin sheet of gold foil. Rutherford
wanted to know how the alpha rays were deflected by the gold atoms, so all
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around the gold foil he set a phosphorescent screen. When an alpha particle
struck the screen, it would be announced by a flash of light.

Rutherford, or more accurately, his assistants Geiger and Marsden, then
meticulously counted the rate at which alpha particles were deflected at different
angles. Today we have fast electronic assistants to do this kind of things, but
back them Geiger or Marsden would take turns staring through an eyepiece at
a section of phosphorescent screen of fixed area, calling out flashes, while the
other noted the counts and kept an eye on the clock. (This story is better told,
and in more details, in Cathcart’s book The Fly in the Cathedral, which I highly
recommend.)

Plotted as count rate versus angle, they found the experimental curve was
neatly described as proportional to 1/ sin4(θ/2), where θ is the scattering an-
gle. That particular formulation was not empirical, but exactly what one could
expect if the positively charged alpha particles were scattering off another pos-
itively charged object, but of infinitesmal radius. Rutherford knew the rough
size of atoms, which Thompson scattering tells us, but the data showed that
whatever the alpha particles were scattering off, it was far, far smaller. Today
we know the nucleus of the atom, composed of protons and neutrons (which
were not discovered until 1932 by James Chadwick), is around 100,000 times
smaller than the cloud of electrons swarming around it.

So this is how we see the microscopic–or better, the sub-microscopic–world:
we take little things we cannot see, but we can count, and throw them at other
little things we cannot see, and we see how they scatter.

Furthermore, we characterize our answers in terms of the cross-section, which
has units of area, and which is very much “how big” the target appears to be.
By looking at a little more detail at the Rutherford-Geiger-Marsden experiment,
we can foreshadow some key points. In particular:

Our standard conceptual setup of an experiment has two components and
three regions. The components are the target, such as the gold atoms, and the
projectile, such as the alpha particles. While the target is fixed–later we will
worry about frame of reference–the projectile passes through three distinct re-
gions. In the beginning it is incoming as a uniform collimated beam. Classically
you can think of this as beam of particles all with the same momentum vectors;
quantum mechanically we call this a plane wave. We quantify the incoming
beam by its flux, which is the number of particles passing through a unit area
per unit time. In essence, we imagine a little window in space and count how
many particles pass through it. The particle, or at least some of them, reach
the target, or the interaction region.

Any outgoing particle that is scattered now has a new momentum vector
pointing back to the target; the scattered particles do not have the same or
even parallel momentum vectors. The way we measure scattering is to again,
have a window at some distance from the target and count the particles passing
through it, as when Geiger and Marsden pressed their eyes to their viewing
scopes. There is an important difference, however. For the incoming flux,
became the momenta were parallel, we could in principle measure anywhere
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along the beam. But now that the particles are scattering out from a pointlike
target, the actual count through an area falls off with the inverse of the distance
squared. But we are now measuring with angles, so we want the count through
a solid angle.

[Eventually I’ll add figures to help illustrate this.]

Experimentally, what we measure as the physically meaningful quantity is

rate of outgoing particles through a solid angle
over

rate of incoming particles through an area

This ratio has units of area, and we call it the cross-section. As befits the
origin story of scattering, with Geiger and Marsden trading turns staring at a
little patch of phosphorescent screen, it has become our window on the sub-
microscopic world.

Also befitting the origins of scattering is the main unit of cross-sections.
Historically, in the century after Newton’s invention of calculus mathematical
physics was largely taken over by French mathematicians, hence the preponder-
ance of French names: Laguerre, Legendre, and Hermite polynomials are the
daily diet of junior physicists struggling to solve differential equations. Quantum
mechanics was dominated by German physicists, hence eigenstates and Ansätze.
But in the years between the world wars, English-speaking experimental physi-
cists, began, if not to dominate, then to make significant contributions, and in
the U.S. in particular these often came from rural or working-class backgrounds.
Hence the colloquial origin of a term probably as puzzling to non-English speak-
ers as “plum pudding” is to anyone outside the British Commonwealth: the barn,
as in the phase, couldn’t hit the broad side of a barn. A barn is 10−24 cm2.

1.1 Adding quantum mechanics: current, flux,
and the scattering amplitude

I’ve introduced a fundamental idea, which is that we learn about a tiny object
by measuring the ratio of particles out to particles in, and that this ratio has
units of area and is called the cross section. Now we want to start to develop
a theory of this scattering, and because the target is very, very tiny, we invoke
the theory of tiny things, or, more formally, of tiny action: quantum mechanics.

The wave function for incoming particles is easy. We assume a beam of
particles with uniform momentum ~p, and in quantum mechanics the momentum
operator in coordinate space is h̄

i
~∇. An eigenstate of this operator is a plane

wave, exp(i~p · ~r/h̄).
Normalization of any wave function is crucial in quantum mechanics. While

I discuss this in detail in section 4.1, for now let’s assume we put our plane wave
in a cubic box with each side of length L, so that the volume is L3. Of course,
this ignores the important issue of boundary conditions, so we don’t really have
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a true plane wave, but being physicists we set aside that unpleasantness until
later. Then the normalized, sort-of plane wave in a cube L3 is

1

L3/2
exp

(
i
~p · ~r
h̄

)
. (1.1)

Now let’s look at another idea, which is not always emphasized in introductory
quantum texts but which will be fundamental for us: the quantum current. Here
is a brief reminder of the standard motivation: for any time-dependent wave
function Ψ(~r, t), the probability density is of course ρ(~r, t) = Ψ(~r, t)∗Ψ(~r, t).
If we do not have a stationary state, that is, if we cannot factorize Ψ(~r, t) =
ψ(~r) exp(−iEt/h̄)–and although in introductory courses that kind of factor-
ization is often assumed, the most general solutions to the time-dependent
Schrödinger equation cannot be so factorized–then ρ(~r, t) can change in time.
We then invoke an idea from classical fluid flow, that is the continuity equation,

∂ρ(~r, t)

∂t
+ ~∇ · ~J(~r, t) = 0, (1.2)

where ~J(~r, t) is the current. Most introductory quantum texts show that

~J =
h̄

2Mi

(
Ψ∗~∇Ψ−Ψ~∇Ψ∗

)
. (1.3)

For a plane wave (1.1) with momentum ~p, the current is

~Jplane wave =
~p

M

1

Vol
=
h̄~k

M

1

Vol
. (1.4)

Here I’ve introduce the wave vector ~k = ~p/h̄, whose magnitude k is called the
wave number, which has dimensions of 1/length; many of our results will be
stated in terms of the wave number.

Note that the current for a plane wave in a box, (1.4) has exactly units of
time−1 area1, that is, we can interpret it as a flux. This will be very important
to us later!

So much for the incoming particles. What about the outgoing particles? Be-
cause the particles are scattered off a target that is, macroscopically, a point, we
can no longer talk about plane waves, but rather spherical waves. An outgoing
spherical wave is

exp(ikr)

r
, (1.5)

a result I’ll later justify using Green’s functions (chapter to be written). Because
we want/know our final result to depend upon the scattering angle, we further
write

ψout = f(θ)
exp(ikr)

r
, (1.6)

where f(θ) is the scattering amplitude. Here we have not normalized to a box,
or else absorbed it into the definition of f . To find the flux for this outgoing
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wave, remember that in spherical coordinates the gradient is

~∇ = êr
∂

∂r
+ êθ

1

r

∂

∂θ
+ êφ

1

r sin θ

∂

∂φ
(1.7)

so that

~∇ψout = ikêrψout +O
(

1

r

)
ψout, (1.8)

and as r →∞ only the first term survives. Then the current for ψout is

~Jout →
r→∞

h̄k

M

êr
r2
|f(θ)|2. (1.9)

When this scatters at an angle θ the amount of flux through a solid angle ∆Ω
at a distance r, and thus through an area Ωr2, is

h̄k

M
|f(θ)|2∆Ω.

Now let’s put these together. Dropping the normalization to a box of vol-
ume L3, we consider the full scattering wavefunction, with both incoming and
outgoing pieces, Ψscatt. We can only “measure” the wave function at a “large”
distance r from the target, which means

Ψscatter →
r→∞

ei
~k·~r + f(θ)

exp(ikr)

r
. (1.10)

The cross section is just the ratio, of the incoming and outgoing, that is,

dσ

dθ
= |f(θ)|2. (1.11)

Hence, in much of what we will do in this book is to find ways to characterize
and numerically calculate the scattering amplitude f , and thus the cross-section
σ, through concepts such as phase shifts, the S-matrix, and others.

1.2 Other matters, maybe

Including a brief discussion of the Born approximation, Rutherford scattering,
and form factors.

1.3 Project 1

At the end of each chapter I will propose for you a project to help you pull
together your knowledge and skills.

For this chapter, I want you to hunt down experimental cross-sections in
your field. Despite its heavy reliance upon theory and rigorous mathematics,
like all science physics is ultimately and always empirical, and the best way
to become skilled in the topic is to have a store of knowledge of experimental
results.



Chapter 2

Phase shifts and the partial
wave decomposition

One way to characterize or parameterize cross-sections σ or the scattering am-
plitude f(θ), which I introduced in the first chapter, is through phase shifts.
Phase shifts start with the idea that, far away from the interaction region, that
is, where the projectile interacts with the target or, more formally, where the
interaction potential vanishes, the particle is free. For particles with zero rel-
ative angular momentum, that is, with orbital angular momentum ` = 0 (also
called an s-wave), this looks like some combination of sines and cosines, that
is, simple waves. As discussed in the next section, if there were no scattering
potential, the solution would be a pure sine wave everywhere. If we add a scat-
tering potential, however, beyond the range of the potential the particle is still
free, but the phase of the wavefunction is now shifted: hence the name.

Most texts derive phase shifts from the so-called partial wave decomposition
or expansion, where one takes solutions to the Schrödinger equation and de-
compose it into part of good orbital angular momentum. We will do so below
in section 2.3, but we will first simply explore the idea of a phase shift before
carrying out this somewhat complicated derivation.

2.1 What is a phase shift?

The basic idea is that scattering is localized, so that at some distance the scat-
tering particle is free. The radial Schrödinger equation a particle of mass mc
is

− h̄2

2m

d2

dr2
u(r) +

h̄2`(`+ 1)

2mr2
u(r) + V (r)u(r) = Eu(r) (2.1)

where ` is the orbital angular momentum. First, let’s think about the case with
` = 0, that is, s-wave scattering. For a free particle, V = 0, the solutions are

7
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0 5 10 15
r

-2

-1

0

1

2

u
(r

)

"free" particle

shifted free particle

Figure 2.1: Illustration of the shift in s-wave (` = 0) wave function due to a hard
sphere at r = 2 (dashed red vertical line). Solid black line is the “free” particle
wave function, while the blue dotted line is for the particle in the presence of
the hard sphere.

linear combinations of sine and cosine functions, that is,

u(r) = A sin(kr) +B cos(kr), (2.2)

where k = p/h̄ =
√

2mE/h̄ is the wavenumber. Now if the potential vanishes
everywhere, the only boundary condition is at the origin and u(0) = 0 and we
are restricted to sine functions, that is, B = 0.

But now suppose V (r) 6= 0 for r within some radial distance R. For r > 0
we stil have a free particle, but we no longer have the boundary condition.
Therefore we can have B 6= 0. More generally we write

u(r) = C sin(kr + δ), (2.3)

where by trigonometric identities A = C cos δ, B = C sin δ, and finally tan δ =
B/A. We’ll see later that the phase shift δ is a function of the wavenumber k,
which mean it depends upon the momentum p or the energy E.

Example: the hard sphere. As a simple example, consider the hard
sphere, where V = ∞ for r ≤ R. This means we have a boundary condition
u(R) = 0 or sin(kR+ δ) = 0; hence δ(k) = −kR. This is shown in Fig. 2.1 for a
particle with orbtial angular momentum ` = 0 (or s-wave). The “free” particle
is just a sine function, with the boundary condition u(0) = 0, here seen as the
black solid line. The blue dotted line shows the shift in the free particle wave
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function, which now has a boundary condition at u(R) = 0. In this example
R = 2. This is a key example of phase shifts, and all other cases are just more
complicated cases of this.

What about for ` > 0? Then the free particle solutions are spherical Bessel
and spherical Neumann functions:

u`(r) = A` rj`(kr)−B` rn`(kr). (2.4)

The basic properties of spherical Bessel functions, including how to numerically
generate them, can be found in section C.1 of the appendices. For now, just
know that

j`(x) →
x→∞

sin
(
x− `π2

)
x

, (2.5)

n`(x) →
x→∞

−
cos
(
x− `π2

)
x

. (2.6)

The minus sign in front of the limit of the spherical Neumann function explains
the difference in sign between (2.4) and (2.2). From this we can generalize phase
shifts for any value of `:

u`(r) = rj`

(
kr − `π

2
+ δ`(k)

)
, (2.7)

where

tan δ` =
B`
A`
. (2.8)

Example: the hard sphere redux Consider again the hard sphere but
for arbitrary `. We have the boundary condition

u`(R) = A`Rj`(kR)−B`Rn`(kR) = 0, (2.9)

or

tan δ`(k) =
B`
A`

=
j`(kR)

n`(kR)
. (2.10)

2.2 Scattering off a finite square well potential

We will be using the finite square well of depth −V0 and radius R, that is,

V (r) =

{
−V0, r ≤ R,

0, r > R
(2.11)

over and over; we will solve it analytically, but then use it as a test case for
numerical calculations.

First, let’s do it for s-wave scattering, or ` = 0. This is easier to visualize.
To solve the finite square well, we divide and conquer two regions: region 1 is
for 0 ≤ r ≤ R, and region 2 is for R ≤ r ≤ ∞; the radial wavefunctions u1,2(r)
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and their first derivatives must match at r = R. In both cases the solutions are
sine functions; in region 1, with a boundary condition u1(0) = 0, it is

u1(r) = A sinKr,

where E = h̄2K2/2m+ V0, that is,

K =

√
2m(E + V0)

h̄

and in region 2, we can either take sine and cosine functions, or, more directly,
a sine function with a shift phase:

u2(r) = sin(kr + δ),

where k =
√

2mE/h̄. You will note I did not put a normalization constant on
u2. For now we only need the relative normalization between u1 and u2; the
absolute normalization for scattering states we put off until section 4.1.

To find the phase shift δ, we need to match at r = R both the wavefunctions,
u1(R) = u2(R),

A sinKR = sin(kR+ δ), (2.12)

and their first derivatives, u′1(R) = u′2(R),

AK cosKR = k cos(kR+ δ). (2.13)

Finally we divide (2.12) by (2.13) to eliminate the constant A and get

k tanKR = K tan(kR+ δ).

Solving, we find

δ = −kR+ tan−1

(
k

K
tanKR

)
(2.14)

We can simplify this a bit by introducing K0 =
√

2mV0/h̄, so that K =√
K2

0 + k2. We’ll use this later.
Fig. 2.2 shows the ` = 0 phase shift for a square well with m = h̄ = 1 and

for a radius R = 1, for various depths V0. Note that at V0 = 1 the phase shift
rises sharply, while at V0 = 1 it starts off negative. As we’ll discuss later, what
has happens is as V0 increases, a bound state appears.

The apparent discontinuity in the phase shift for V0 = 1.5 is really just
an ambiguity in angle: here δ is restricted to be between −π and +π radians.
Because of this ambiguity, it is sometimes convenient to plot k cot δ0, shows in
Fig.2.3 . Shortly we will see that we can interpret the y-intercept and slope
of k cot δ in terms of fundamental quantities called the scattering length and
effective range. Again, as the y-intercept passes through zero, we will see this
corresponds to a bound state.

Notice in Fig. 2.2 that as one increases V0, the phase shift is initially positive,
but with increasing slope. As one goes from V0 = 1 to V0 = 1.5, however the
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Figure 2.2: ` = 0 phase shift δ0 (in radians) for a square well with m = h̄ =
R = 1 for several depths V0, versus energy = h̄2k2/2m.
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Figure 2.3: k cot δ0 for a square well with m = h̄ = R = 1 for several depths V0,
versus energy = h̄2k2/2m.
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phase shift become negative. At the same time one sees the y-intercept in
Fig. 2.3 pass through zero from positive to negative. Later, when we discuss
Levinson’s theorem, we will see both of these are associated with a new bound
state appearing as V0 is increased (also see Fig. 4.2).

Exercise 2.1: Using any numerical platform you like (Python, MatLab, Mathe-
matica, C/C++, Fortran...) reproduce Figs. 2.2 and 2.3. Go futher and increase
the depth. Does the y-intercept of k cot δ0 become positive again?

Exercise 2.2: Square well with a hard core. Consider a potential with a hard
core out to some Rc, and an attractive square well of depth V0 from Rc < r ≤ R.
Find the ` = 0 phase shifts analytically.

We can also generalize to angular momenta with ` > 0, where the general
‘free particle’ solution is (2.4). For u1(r), we have the boundary condition
u1(0) = 0, which only the spherical bessel function j` satisfies:

u1(r) = rj`(Kr) (2.15)

while for r ≥ R we have the general solution

u2(r) = A`rj`(kr)−B`rn`(kr). (2.16)

Again we match the wavefunctions at the boundary,

Rj`(KR) = A`Rj`(kR)−B`Rn`(kR).

The overall factor of R of course cancels out. We also need to match derivatives
across the boundary. For that we need (C.8), e.g.,

d

dr
(rj`(kr)) =

d

d(kr)
(krj`(kr)) = k

(
−rj`+1(kr) +

`+ 1

kr
rj`(kr)

)
and similarly for the Neumann function, and after cancelling R from both sides,
obtain

K

(
−j`+1(KR) +

`+ 1

KR
j`(KR)

)
= k

[
A`

(
−j`+1(kR) +

`+ 1

kR
j`(kR)

)
−B`

(
−n`+1(kR) +

`+ 1

kR
n`(kR)

)]
To get the phase shift, we need (2.8), let’s first solve for B`:

B` = (A`j`(kR)− j`(KR))/n`(kR)

so that

tan δ` =
B`
A`

=
j`(kR)

n`(kR)
− j`(KR)

n`(kR)

1

A`
. (2.17)
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Figure 2.4: Phase shift δ` (in radians) for a square well with m = h̄ = R = 1,
well depth V0=5, versus energy = h̄2k2/2m, for different angular momentum `.
The dotted red line at δ = 0 is to guide the eye.

and then

K

(
−j`+1(KR) +

`+ 1

KR
j`(KR)

)
= k

[
A`

(
−j`+1(kR) +

`+ 1

kR
j`(kR)

)
− (A`j`(kR)− j`(KR))

n`(kR)

(
−n`+1(kR) +

`+ 1

kR
n`(kR)

)]
Now, with some algebra, we can solve for A` and finally we get the phase

shift,

tan δ` =
kj`(KR)j`+1(kR)−Kj`(kR)j`+1(KR)

kj`(KR)n`+1(kR)−Kn`(kR)j`+1(KR)
(2.18)

This can be tested by checking the case ` = 0, with

j0(x) =
sinx

x
, j1(x) =

sinx− x cosx

x2

n0(x) = −cosx

x
, n1(x) = −cosx+ x sinx

x2

and indeed it reduces to the correct answer,

tan δ0 =
k tanKR−K tan kR

K + k tan kR tanKR
. (2.19)
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To see how the phase shifts vary with `, see Fig. 2.4. Notice as ` increases, the
phase shifts decrease. This makes sense, because scattering at higher angular
momentum is of necessity more peripheral, and hence, the effect of the potential
is lessened. The phase shifts for ` = 0, 1 start off negative because they both
have one bound state, while ` = 2, 3, . . . do not have bound states.

Exercise 2.3. Confirm for yourself Eqn. (2.18) and that for ` = 0 we regain
(2.19).

2.3 Phase shifts and cross-sections: formal deriva-
tion

Now that we have some examples of phase shifts, we ask: how do phase shifts
affect the cross-section? Here’s the short answer: We’ve decomposed the wave-
function into pieces with good angular momentum `, the so-called partial waves.
In the absence of a scattering potential, the sum all the partial waves for the
projectile is a plane wave. In the presence of a scattering potential, each partial
wave undergoes a shift in phase, which in turn causes an interference pattern
which causes the probability to depend upon the angle–the cross-section. The
rest of this section works out these relations in depth. This is the starting point
for many introductory texts, so it’s possible you have seen this before.

First, let’s start with the incoming plane wave, and assume that the momen-
tum ~p and the wave vector ~k are both in the z-direction. Then the plane wave
is

exp(i~k · ~r) = exp(ikz) = exp(ikr cos θ), (2.20)

where in the last step I’ve moved into spherical coordinates. We can expand
any function in spherical coordinates into spherical harmonics, that is,

exp(ikr cos θ) =
∑
`,m

g`,m(r)Y`,m(θ, φ); (2.21)

except we know there is no φ-dependence, so we only needm = 0, and Y`,m(θ, φ) =
P`(cos θ) the Legendre polynomial (up to some constant), and so

exp(ikr cos θ) =
∑
`

g`(r)P`(θ). (2.22)

As discussed in the last section, however, we also know that the solutions to
the free Schrödinger equation for angular momentum ` are spherical Bessel and
spherical Neumann functions, and that only the former is regular at the origin.
Hence we must have

exp(ikr cos θ) =
∑
`

c`j`(kr)P`(θ). (2.23)
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With some more analysis, one can finally arrive at

exp(ikr cos θ) =
∑
`

i`(2`+ 1)j`(kr)P`(θ). (2.24)

This expansion is important for us, not only because it will lead us to phase
shifts, but also because we will come back and use this expansion for the asymp-
totic normalization for scattering states.

Next, we expand the scattering amplitude f(θ) in a similar way:

f(θ) =
∑
`

(2`+ 1)a`(k)P`(cos θ) (2.25)

where a`(k) is a partial scattering amplitude. Because the differential cross
section is

dσ

dΩ
= |f(θ)|2, (2.26)

if we expand in partial amplitudes and integrate over θ, or rather x = cos θ,
using ∫ 1

−1

dxP`(x)P`′(x) =
2

2`+ 1
δ``′ .

we get the total cross-section,

σ =

∫
dσ

dΩ
dΩ = 4π

∑
`

(2`+ 1)|a`(k)|2 (2.27)

With these expansions in mind, consider the full scattering wave function,
complete with both incoming and outgoing parts, at large r:

ψscatt →
r→∞

eikz + f(θ)
eikr

r
=
∑
`

[
i`j`(kr) + a`(k)

]
(2`+ 1)P`(θ). (2.28)

But at large r, we know

j`(kr) →
r→∞

(kr)−1 sin

(
kr − `π

2

)
=

1

2ikr

[
eikre−i

`π
2 − e−ikre+i `π2

]
, (2.29)

which is another way of saying a plane wave is a combination of incoming and
outgoing spherical waves. Using this expansion, we get

ψscatt →
r→∞

1

2ik

∑
`

[
(1 + 2ik a`(k))

eikr

r
− e−i(kr−`π)

r

]
(2`+ 1)P`(θ). (2.30)

There is another way to look at the asymptotic behavior, however, in terms of
phase shifts: we know that u`(k, r) = sin

(
kr − `π

2 + δ`(k)
)
, and putting in some
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amplitude, we have

ψscatt →
r→∞

1

r

∑
`

c` sin

(
kr − `π

2
+ δ`(k)

)
P`(θ) (2.31)

=
1

2ir

∑
`

c`

[
exp

(
i

(
kr − `π

2
+ δ`

))
− exp

(
−i
(
kr − `π

2
+ δ`

))]
P`(cos θ). (2.32)

Matching the terms in (2.28) and (2.32) in front of the incoming spherical
wave exp(−ikr)/r, we get

c`
2i

=
2`+ 1

2ik
exp

(
i

(
δ` +

`π

2

))
. (2.33)

Finally, matching the terms in front of the outgoing spherical wave exp(+ikr)
and using (2.33), we arrive at

1 + 2ik a`(k) = e2iδ`(k). (2.34)

Often we call e2iδ` and its generalizations the scattering or S-matrix. While it
seems abstract, it has many poweful properties we can exploit. Solving further
for the partial amplitudes,

a`(k) =

(
e2iδ` − 1

2ik

)
=
eiδ` sin δ`

k
. (2.35)

Now we can see what the scattering amplitude f(θ) is: then interference between
in the incoming plane wave and the phase-shifted scattered outgoing spherical
wave. If the phase shifts are zero, there is no scattering amplitude. We can
rewrite the total cross section as

σ =
∑
`

4π(2`+ 1)
sin2 δ`(k)

k2
. (2.36)

Notice that for any `, the maximum contribution is when δ` = π
2 ± nπ. This is

called the unitary limit and will be important when we talk about resonances
and related topics.

We can rewrite the partial scattering amplitude in different ways that will
prove useful. For example,

a` =
eiδ` sin δ`(k)

k
=

sin δ`(k)

ke−iδ`
=

sin δ`(k)

k(cos δ` − i sin δ`)
=

1

k cot δ`(k)− ik
. (2.37)

Then, for example, we can write

σ =
∑
`

4π(2`+ 1)

k2 + k2 cot2 δ`(k)
. (2.38)
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In the next figure, I plot the ` = 0 contribution to the square well for some
set of parameters. Notice the big bump; that is a resonance, which we will
explore more in the next Chapter. (Well, no, the square well does not have any
resonances in the s-wave.)

2.4 Scattering lengths and the effective range
expansion

For ` = 0,

k cot δ0 = −1

a
+

1

2
r0k

2 + . . . , ... (2.39)

where a is the scattering length and r0 is the effective range. This is particularly
useful, because in the limit as k → 0, only the s-wave channel contributes and
the total cross section at k = 0, also called at threshhold, is

lim
k→0

σ = 4πa2. (2.40)

Example: the hard sphere. The ` = 0 phase shift for a hard sphere of
radius R is δ0 = kR, hence a = −R. This means the total cross section at
threshhold is 4πR2, which is the total surface area of the hard core. At first
this seems strange; naively you might expect the cross-section to be πR2. But
as k → 0, the wavelength becomes longer and longer and the wave function of
the scattering particle “wraps around” the entire sphere.

Exercise 2.4. Show for the hard core the effective range r0 = −R/3.

Example: the finite square well. Starting from (2.14), we can write

tan δ0 = tan

[
−kR+ tan−1

(
k

K
tanKR

)]
.

Now we use a trig identity, tan(A− B) = (tanA− tanB)/(1 + tanA tanB) to
get

cot δ0 =
K + k tan kR tanKR

k tanKR−K tan kR

Using K =
√
k2 +K2

0 with K0 =
√

2mV0/h̄, we finally have

k cot δ0 =

√
k2 +K2

0 + k tan kR tan
√
k2 +K2

0R

tan
√
k2 +K2

0R−
√

1 +K2
0/k

2 tan kR
(2.41)

Expanding up to second order in k (you may use Mathematica or MatLab or
any other symbolic manipulation program), we get

k cot δ0 =
K0

tanK0R−K0R

+
1

2
k2K−1

0

tanK0R(1− 2(K0R)2)−K0R− 2K0R tan2K0R+ 2
3 (K0R)3

(tanK0R−K0R)2
(2.42)
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so that the scattering length is

a = R− tanK0R

K0
(2.43)

and the effective range is

r0 = K−1
0

(1− 2(K0R)2) tanK0R−K0R− 2K0R tan2K0R+ 2
3 (K0R)3

(tanK0R−K0R)2

(2.44)
If we define the dimensionless parameter X = K0R then

a = R

(
1− tanX

X

)
(2.45)

and

r0 = K−1
0

(1− 2X2) tanX −X − 2X tan2X + 2
3X

3

(X − tanX)2
(2.46)

While the scattering length can be positive or negative, if you take a Taylor
series expansion for r0, you will find to very high order all the terms are (???)
positive:

r0 = K−1
0

(
9 + 2X2 +

68

105
X4 . . .

)
(2.47)

You may notice that if K0R = nπ/2 for any odd integer n, the scattering
length becomes infinite. This is known as the unitary limit, in part because it
saturates the cross-section.

For shallow wells, X is small, and 1− tan(x)/x ≈ x2/3, and

a ≈ 2

3

mV0R
3

h̄2 .

that is, the scattering length increases linearly with the depth and with the
volume of the well.

Exercise 2.5. Derive the scattering length for the square well, (2.43). Plot for
various values of R and V0.

Exercise 2.6. Derive the effective for the square well, (2.44). Hard.

Can one generalize for higher angular momenta `? Yes, although the inter-
pretations are less natural. For example, one can show for the hard sphere,

lim
k→0

tan δ`(k) = −
(

2``!

(2`)!

)2

(kR)2`+1 (2.48)

Thus one could expand around k2`+1 cot δ` but the k → 0 term would have units
of (length)2`+1, which makes it less intuitive.
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Exercise 2.7. For the square well, compute

lim
k→0
− tan δ`(k)

k2`+1

which is the equivalent of the scattering length for all `. Hard.

2.5 Another analytic example: the δ-shell po-
tential

There are relatively few scattering potentials which are both analytically and
numerically tractable. For example, the hard core is easy analytically, but for
technical reasons is not tractable when we try harmonic oscillator space methods
below.

In addition to the square well, which has been our focus so far, I want to
add another example, the δ-shell potential, which has a δ-function at a radius
R from the origin, that is,

V (r) = λδ(r −R).

Before we start calculating with this, let’s do some dimensional analysis. Be-
cause the δ-function has units of inverse length, λ has units of energy × length.
Furthermore, it will become convenient to write not in terms of energy but in
in terms of some inverse length k0, with energy h̄2k2

0/2m. Putting together, we
choose

V (r) =
h̄2k0

2m
δ(r −R), (2.49)

where k0 has dimensions of inverse length, but can be positive or negative.
To solve for ` = 0, we break up u(r) into two regions:

u(r) = sin kr, 0 ≤ r ≤ R,
u(r) = A sin(kr + δ), R ≤ r.

We match the wave functions at r = R, given A = sin(kR)/(sin(kR + δ)). We
do not, however, match derivatives, because the potential is infinite at r = R
and this causes a discontinuity in the first derivative. Following the procedure
for the bound state of a δ-potential in one dimension, a standard topic in most
texts, we instead integrate over the discontinuity. Solving, we arrive at (this
should be checked!)

tan δ0 = − k0 sin2(kR)

k + k0 sin(kR) cos(kR)
(2.50)

Expanding k cot δ we get the scattering length

a = −R k0R

k0R+ 1
, (2.51)
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Figure 2.5: s-wave phase shifts (in degrees) for the δ-shell potential at a distance
R = 1, versus energy with h̄ = m = 1.

and the effective range

reff =
2

3

k0R− 1

k0
(2.52)

(Both of these should be checked!)

Fig. 2.5 shows representative phase shifts, in degrees, for m = h̄ = 1 and the
distance R = 1 for the parameter k0 = ±20. (If you happen to wonder if there
is a rule for phase shifts to be positive or negative, there is none. The most
physical convention is that all phase shifts vanish as k → 0. Also, phase shifts
may be given in degrees or radians; I am switching between them both so you
get used to asking the question!

Exercise 2.8. For the δ-shell potential with k0 < 0 (attractive), investigate the
ground state energy. Show that the condition for a bound ground state is

κ = |k0| (1− exp(−2κR)) /2, (2.53)

where κ =
√

2m|Eb|/h̄, with Eb < 0 is the bound ground state energy. For κR
large, this leads to

Eb ≈ −
h̄2k2

0

8m
.

Confirm these results.
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Figure 2.6: s-wave cross-section for the δ-shell potential at a distance R = 1,
versus energy with h̄ = m = 1, with the unitary limit (red dotted line) shown
to guide the eye.

2.6 Resonances: a first look

In Fig. 2.6 I plot the cross-sections for the the δ-shell potential for a couple
of representative strengths. You’ll note a fairly sharp bump around 4.5 for
k0 = +20 and around 5.5 for k0 = −20. These are examples of resonances, an
important phenomenon in scatteringand reactions; in many physical situations
we find resonances, either with broad or narrow peaks. Physically, resonances
are a significant rise, then fall, in cross section, often reaching the unitary limit.
Mathematically, resonances are when the phase shift passes through π/2 swiftly,
as we see happening in Fig. 2.6.

We can see in more detail what is happening in Fig. 2.7, where I plot k cot δ0.
In the previous examples I’ve given, k cot δ0 looked like a smooth polynomial,
nearly linear. But of course, as δ0 → ±π/2, cot δ0 → ±∞. In the next chapter
we will investigate this via the poles of the S-matrix in the complex momentum
plane, and be able to derive a rigorous mathematical representation for this
quite common phenomenon.

Unfortunately resonances are difficult to create in analytic cases. The square
well does not have any s-wave resonances at finite energy. They occur in more
complex potentials and in many-body scattering and reactions. We will return
to resonances later.
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Figure 2.7: k cot δ0 for the δ-shell potential at a distance R = 1, versus energy
with h̄ = m = 1 .

2.7 Project 2: A first look at data

Project 2. In each chapter I will introduce one or more detailed projects that
go beyond the exercises, although often the code you use for the exercises will
be useful for the projects and vice versa.

Even though this first part of the book is mostly analytic, it is never too early
to start getting your hand dirty on data. We will focus on nuclear data. Table
2.1 gives experimental neutron-proton phase shifts. We won’t worry about error
bars yet.

It is important here to take note of spectroscopic notation. I assume the
reader is generally familar with the rules for adding angular momentum in

Table 2.1: Proton-neutron phase shifts in degrees. Energies are in MeV.
Elab

3S1
1P1

1S0
3P0

1 147.75 -0.19 62.02 0.18
5 118.18 - 1.51 63.50 1.64

10 102.62 -3.11 59.78 3.71
25 80.68 -6.48 50.61 8.32
50 62.89 -9.85 40.09 10.99

100 43.51 -14.20 26.02 8.69
150 31.19 -17.68 15.98 3.78
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quantum mechanics, and the difference between intrinsic spin s or S, = 1/2
for electrons, protons, and neutrons, orbital angular momentum ` or L, and
total angular momentum j or J = |`± 1/2|. (If you are not, put this book aside
now and read about it in your favorite introductory quantum mechanics text.)

For two identical spin-1/2 fermions, the total spin is S = 0 or 1. (We
typically though not always use lower-case letters for single particles and capital
letters for two or more particles.) The total angular momentum is denoted L
and by tradition one uses S to denotes L = 0, P to denotes L = 1, D to denote
L = 2, F for L = 3, G for L = 4, and afterwards alphabetically. The relative
angular momentum is written as 2S+1(L)J , so that 3S1 means L = 0, S = 1
and J = 1, and is pronounced “triplet-S,” while 1D2 means L = 2, S = 0 and
J = 2.

In nuclear physics there is an additional quantum number, isospin, which
acts like spin: protons and neutrons each have isospin 1/2, while a pair of
nucleons have either isospin T = 0 or 1. Isospin is not exactly conserved, but it
is a “good enough” quantum number to help guide our thinking.

Due to antisymmetry, we must have (−1)L+S+T = −1. Thus, in Table 2.1,
3S1 and 1P1 are T = 0 and 1S0 and 3P0 are T = 1.

For the 3S1 and 1S0 channels, plot k cot δ, and extract the scattering lengths
and effective ranges. (I talk about polynomial fits later on, but for now most
graphing software allow for some sort of linear regression.) For 1P1 and 3P0 plot
k3 cot δ and extract the y-intercepts and slopes.



Chapter 3

Introducing the S-matrix

One of the fundamental concepts in scattering theory is the scattering or S-
matrix. The basic idea is simple: one aims a projectile at a target or interaction
region, which is then scattered. We conceptualize “inbound” and “outbound”
wave functions, and the S-matrix connects the two:

Ψout = ŜΨin.

To do this we have to set up the math to explain exactly what we mean by
“inbound” and “outbound.” Because there is a lot of formal development, you
can skip this chapter and return to it as needed.

What you should know: the S-matrix should be unitary, which makes sense
as one should conserve particles. Sometimes we encounter apparent exceptions,
in the case of absorbtion or reactions. In those cases, however, we have simple
truncated our Hilbert space which leads to the apparent non-unitarity. More
on this later.

In the case of elastic scattering, momentum is conserved, hence the S-matrix
is diagonal in momentum space, and as it is a unitary matrix, the elements of
the momentum-space S-matrix are just complex numbers of modulus one, which
we write as

S(k) = e2iδ(k) (3.1)

where δ(k) will turn out to be, of course, the phase shift.

3.1 Green’s functions and the Lippmann-Schwinger
equation

To find the quantum wave function we want to solve the Schrödinger equation,

Ĥ|Ψ〉 = E|Ψ〉. (3.2)

In many cases, however, it is not possible to solve the Schrödinger equation di-
rectly and we must turn to approximate methods. A powerful way to set up ap-

24
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proximate solutions is through Green’s functions and the Lippmann-Schwinger
equation.

Green’s functions are a standard way to solve differential equations, and we
only brief survey them here; as always, see your favorite math methods text for
more details. Let L̂ be some linear (differential) operator. We call

L̂|Φ0〉 = 0 (3.3)

a homogeneous equation and
L̂|Φ〉 = |f〉 (3.4)

an inhomogeneous equation, with |f〉 the source term. To solve the latter, we
introduce the Green’s function Ĝ which is formally the inverse of the operator,

L̂Ĝ = 1. (3.5)

Then the general solution is

|Φ〉 = |Φ0〉+ Ĝ|f〉, (3.6)

as we can arbitrarily add a homogeneous solution.
In quantum mechanics, we use Green’s functions to tackle problems we can-

not solve fully. Suppose we cannot solve (3.2), but for another Hamiltonian,
Ĥ0, we do know the solutions:

Ĥ0|Ψ0〉 = E|Ψ0〉. (3.7)

Typically Ĥ0 is the Hamiltonian for the free particle, or for the harmonic oscil-
lator. If we write Ĥ = Ĥ0 + V̂ , then we rewrite

Ĥ|Ψ〉 =
(
Ĥ0 + V̂

)
|Ψ〉 = E|Ψ〉

as (
Ĥ0 − E

)
|Ψ〉 = V̂ |Ψ〉. (3.8)

In this case the right hand side, V̂ |Ψ〉, plays the role of the source term. We
now introduce the Green’s function

Ĝ0(E) =
(
Ĥ0 − E

)−1

(3.9)

sometimes called the “free” Green’s function when Ĥ0 is the kinetic energy
(free-particle Hamiltonian), and now can write

|Ψ〉 = |Ψ0〉+ Ĝ0(E)|Ψ〉 = |Ψ0〉+
1

Ĥ0 − E
|Ψ〉, (3.10)

where, again, |Ψ0〉 is an “homogeneous” solution, which here is the solution
(3.7). This is the Lippmann-Schwinger equation. As we’ll see, it is the start-
ing point for approximate solutions, including perturbation theory, Feynmann
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diagrams for quantum field theory (which is itself perturbation theory), and,
relevant to us, scattering theory.

Eqn. (3.10) is most often solved iteratively, starting with the homogeneous
or “free” solution, that is, as a sequence of approximations |Ψ(I)〉 which are fed
into the next iteration:

|Ψ(0)〉 = |Ψ0〉, (3.11)

|Ψ(1)〉 = |Ψ0〉+ Ĝ0(E)V̂ |Ψ(0)〉 = |Ψ0〉+ Ĝ0(E)V̂ |Ψ0〉, (3.12)

|Ψ(2)〉 = |Ψ0〉+ Ĝ0(E)V̂ |Ψ0〉+ Ĝ0(E)V̂ Ĝ0(E)V̂ |Ψ0〉, (3.13)

|Ψ(3)〉 = |Ψ0〉+ Ĝ0(E)V̂ |Ψ0〉+ Ĝ0(E)V̂ Ĝ0(E)V̂ |Ψ0〉
+Ĝ0(E)V̂ Ĝ0(E)V̂ Ĝ0(E)V̂ |Ψ0〉, (3.14)

. . .

Note that this assumes that both |Ψ0〉 and |Ψ〉 have the same energy, E; thus
the Lippmann-Schwinger equation is usually applied to continuum solutions,
and furthermore is not well suited for methodologies with discretized continua.

3.2 Derivation of Green’s functions

First, let’s derive a Green’s function in one dimension. Consider the one-
dimensional, time-independent Schrödinger equation,

− h̄2

2M

d2

dx2
ψ(x) + V (x)ψ(x) = Eψ(x) =

h̄2k2
0

2M
ψ(x),

which I rewrite as (
d2

dx2
+ k2

0

)
ψ(x) =

2M

h̄2 V (x)ψ(x), (3.15)

an obvious candidate for a Green’s function.
There are at least two different ways to get the Green’s function. The first is

to use Sturm-Liouville theory, which will be written up at a later date. Instead
I turn to spectral decomposition, which means expanding in eigenstates of L.
Here that means a Fourier expansion.

Introducing the Green’s function G(x, x′) = G(x − x′), consider its Fourier
transform,

G̃(k) =

∫ ∞
−∞

e−ikxG(x) dx, (3.16)

and the inverse,

G(x) =
1

2π

∫ ∞
−∞

e+ikxG̃(k) dk. (3.17)

The Fourier transform of the Dirac δ-function, δ(x), is 1, and the Fourier
transform of

d2

dx2
+ k2

0
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is −k2 + k2
0. Hence in Fourier space,

(
−k2 + k2

0

)
G̃(k) = 1, or

G̃(k) =
1

k2
0 − k2

, (3.18)

and, formally,

G(x) =
1

2π

∫ ∞
−∞

eikx
1

k2
0 − k2

dk. (3.19)

I say “formally” because this integral has some subtlety in its evaluation. Most
importantly, it blows up at k = ±k0. How do we handle that? We invoke
integrals in the complex k-plane and Cauchy’s theorem.

First note that

1

k2
0 − k2

=
1

2k0

(
1

k + k0
− 1

k − k0

)
(3.20)

This explicitly points out the simple poles at k = ±k0.

The solution to the exploding integral is to shift the integral slightly into
the complex k-plane and do a contour integral. (Refer to the appendix and to
your favorite math methods text for more details.) That is, we let k0 → k0 ± iε
as ε → 0+, which means ε goes to zero, but only from the positive side. The
choice of adding or subtracting iε will implicitly lead to a boundary condition.

As a reminder, in the complex z-plane, at or near a simple pole z0 a function
f(z)

f(z)→ Resf(z0)

z − z0
(3.21)

where Resf(z0) is the residue of the function at the pole, and is just

Resf(z0) = lim
z→z0

(z − z0)f(z). (3.22)

We say z0 is a simple pole if the residue at z0 is nonzero.

The Cauchy residue theorem is∮
f(z) dz = 2πi×

∑
k∈◦

Res(f(zk)) (3.23)

where
∮

means a closed, counter-clockwise (the sense is important), contour
integral, and k ∈ ◦ means all poles enclosed by the contour.

The integral (3.19) is along the real k axis. We choose the contour integral
to either be closed in the upper half plane (see figure, to be added), or in the
lower half plane. We choose either uppper or lower half plane so that the arc
for large ±Im k vanishes. In this case, the function to be integrated is

f(k) =
eikx

k2
0 − k2

,
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with the numerator dominated away from the poles. As k is complex, exp(ikx) =
exp (i(Re k)x) × exp (−(Im k)x). We want (Im k)x > 0 to suppress contribu-
tions away from the real k-axis. Hence if x > 0, choose Im k > 0, which is the
upper half plane, and if x < 0, choose Im k < 0, the lower half plane.

As I said above, the choice of sign on iε implicitly leads to boundary condi-
tions. I will now show this in detail. First, consider shifting k0 → k0 + iε, so
there are poles at ±(k0 + iε. [Insert picture here]

For x > 0, which implies a contour in the upper half plane, we take the reside
at +k0; the residue at −k0 is outside the contour. In addition, in order to draw
the contour from −∞ to +∞ along the real k axis, and then cross back along
the upper half plane, the contour is clock-wise. As Cauchy’s residue theorem
is for counter-clockwise contours, this means we pick up an addition − sign in
the integration. For x < 0, the residue is at −k0, the contour is in the lower
half-plane. Thus, in the integral representation for the Green’s function,

G(x) =
1

2π

1

2k0

∫
eikx

(
1

k + k0
− 1

k − k0

)
dk, (3.24)

the first term in the parentheses contributes only for x < 0, and the second
terms only for x > 0.

Evaluating the integral in two regimes:

x > 0:

G(x) =
1

2π

1

2k0
2πi(−1)(−ei(+k0)x), (3.25)

where −eik0x is the residue at k = +k0, and the (−1) is for the clockwise
contour, and

x < 0:

G(x) =
1

2π

1

2k0
2πi(+ei(−k0)x), (3.26)

with the residue evaluates at k = −k0.

Putting this all together,

G(x) =
i

2k0
eik0|x|. (3.27)

I promised an interpretation in terms of boundary conditions. When we
apply the Green’s function, we have

ψ(x) =

∫
G(x− x′)ψ0(x′) dx′. (3.28)

Assume ψ0(x′) is localized, and consider x� x′, that is, we look far to the right
of our source. Then G(x− x′) = (i/2k0)eik0xe−ik0x

′
and

ψ(x) ≈ eik0x ×
[
i

2k0

∫
e−ik0x

′
ψ0(x′) dx′

]
, (3.29)
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that is, we get a right-going wave out. If we switch the assumption so that
x� x′, so that we look far to the left of our source we get

ψ(x) ≈ e−ik0x ×
[
i

2k0

∫
eik0x

′
ψ0(x′) dx′

]
, (3.30)

a left-going wave. Hence our interpretation is that this Green’s function gener-
ates waves outgoing from the source.

If, instead, we choose k0 − iε, we would end up with

G(x) = − i

2k0
exp (−ik0|x|) , (3.31)

which corresponds to incoming waves, that is, towards the source.
Let’s apply this to an example: transmission through a one-dimensional

square well.

3.3 Free-particle Green’s function in three di-
mensions

Fresh off the success of finding the free-particle Green’s function in one dimen-
sion, let’s turn to three dimensions. The equation for the Green’s function is(

∇2 + k2
0

)
G(~r − ~r′) = δ(3)(~r − ~r′). (3.32)

(Some developments have −δ(3)(~r − ~r′), to get rid of a − sign later on.) In
Fourier space this is

(−k2 + k2
0)G̃(~k) = 1. (3.33)

Therefore, as in one dimension,

G(~r − ~r′) = G(~x) =
1

(2π)3

∫
d3k

exp(i~k · ~x)

−k2 + k2
0

. (3.34)

We can choose ~k to point in any convenient direction, so let’s choose the z
direction. Then Then ~k · ~x = kx cos θ = kxu, and integrating over θ, or more
easily u, as well as trivially over φ, to get

1

2π2

1

x

∫ ∞
0

dk
k sin kx

−k2 + k2
0

(3.35)

Note the integrand is even in k, so we can rewrite this as

1

4π2

1

x

∫ ∞
−∞

dk
k sin kx

−k2 + k2
0

=
1

4ixπ2

∫ ∞
−∞

dk
keikx

−k2 + k2
0

(3.36)

as only the even part of the integrand will survive.
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The rest of the analysis is similar to that in one dimension. Note that here,
x = |~r − ~r′| ≥ 0 always. If we choose poles at ±(k0 + iε), then for exp(ikx) to
vanish far away from the real k axis, we must have Im k > 0, and hence close
the (counter-clockwise) contour in the upper half plane. Thus we evaluate the
pole at k = +k0 and get

G(x) =
1

4iπ2x
2πi(−1)

1

2k0
(+k0)ei(+k0)x = − 1

4πx
eik0x, (3.37)

or

G(~r, ~r′) == − 1

4π|~r − ~r′|
exp (ik0|~r − ~r′|) , (3.38)

which is a wave going out and away from the origin.

3.4 Mathematical interlude: Sturm-Liouville prob-
lems

Any second-order linear differential equation (this is known as a Sturm-Liouville
problem) has two solutions, and one choose between them through a boundary
condition.

3.5 Radial Green’s functions

Using what we learned in the last section, we can now derive Green’s functions
for the radial part of a wave function.

3.6 Jost functions

Jost functions are another way to arrive at the S-matrix and, in particular, to
consider complex momenta. While this may seem like a wild idea, it turns out
to be very useful.

To begin with, recall that for large r, the solution to the radial Schrödinger
equation with momentum p = h̄k

u(k, r) →
r→∞

N`(k) sin

(
kr − `π

2
+ δ`(k)

)
(3.39)

where N`(k) is some (for now unimportant) normalization. We can expand this

= N`(k)
1

2i

(
exp

(
ikr − i `π

2

)
eiδ`(k) − exp

(
−ikr − i `π

2

)
e−iδ`(k)

)
(3.40)

but we can absorb one of the phases into the normalization, and rewrite this as

u(k, r) →
r→∞

N ′`(k)

(
exp

(
ikr − i `π

2

)
e2iδ`(k) − exp

(
−ikr − i `π

2

))
. (3.41)
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Define f`(k, r) as a solution to the radial Schrödinger equation, with the fol-
lowing caveats: we no longer require f`(k, 0) = 0 and we impose the asympotic
behavior,

f`(k, r) →
r→∞

exp

(
−ikr − i `π

2

)
. (3.42)

This is an incoming wave. Similarly we define the outgoing wave,

f`(−k, r) →
r→∞

exp

(
ikr − i `π

2

)
. (3.43)

Note that, in generally, one has to solve for f`(k, r) and f`(−k, r) independently.
We defined these as solution by specifying the asymptotic behavior as r →

∞, as incoming or outgoing. But the true solution to the radial Schrödinger
equation, u`(k, r) has a boundary condition, u`(k, 0) = 0. So we write

u`(k, r) = N ′`(k)
[
f`(k, r) + (−1)`+1e2iδ`(k)f`(−k, r)

]
, (3.44)

= N ′`(k)
[
f`(k, r) + (−1)`+1S`(k)f`(−k, r)

]
, (3.45)

where the phase shift δ`(k) is given by the boundary condition; we also see that
the S-matrix in effect arises by forcing the solution to have the appropriate
boundary condition at r = 0. For ` > 0, we know the irregular solution or
Neumann solution goes like (kr)−` as r → 0, so we define the Jost functions

f`(±k) = lim
r→0

(kr)`f`(±k, r)
(2`+ 1)!!

. (3.46)

Then the phase shifts, and thus the S-matrix, are given by

f`(k) + (−1)`+1f`(−k)S`(k) = 0 (3.47)

or

S`(k) = (−1)`
f`(k)

f`(−k)
. (3.48)

While this may not look like much, it allows us to derive enormous amounts
of information about the S-matrix, the phase shifts, and the behavior of the
scattering cross section. In particular, we consider continuation into the complex
k-plane.

3.7 The S-matrix in the complex momentum
plane

Although it may seem strange to the novice, it’s useful to consider solutions
to the radial Schrödinger equation with complex momentum p or wavenumber
k = p/h̄: [

− h̄2

2m

d2

dr2
+
h̄2`(`+ 1)

2mr2
+ V (r)− h̄2k2

2m

]
f`(−k, r) = 0
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By taking the complex conjugate of this equation,[
− h̄2

2m

d2

dr2
+
h̄2`(`+ 1)

2mr2
+ V (r)− h̄2k∗2

2m

]
f∗` (−k, r) = 0 (3.49)

we see that f∗` (−k, r) is a solution for complex momentum k∗. But clearly, so
is f`(−k∗, r). The only difference is the asymptotic behavior, with

f∗` (−k, r) →
r→∞

exp

(
−ik∗r + i

`π

2

)
, (3.50)

while

f`(−k∗, r) →
r→∞

exp

(
ik∗r − i `π

2

)
, (3.51)

so that
f∗` (−k, r) = (−1)`f`(k

∗, r). (3.52)

This carries over to the Jost functions:

f∗` (k) = (−1)`f`(−k∗). (3.53)

From this we get two important symmetry relations:

S`(k)S∗` (k∗) = S`(k)S`(−k) = 1. (3.54)

Now we are in a position to interpret these complex solutions. For real values
of k, S`(k) = exp(2iδ`(k)), which trivially has modulus one. But for complex
k, the S-matrix can have modulus different from one, and can even go to zero
or blow up to infinity. When S`(k) = ∞, we call that a pole of the S-matrix.
If you’ve studied complex analysis, you will remember that poles are central
concepts.

By rewriting our general solution, so that

u`(k, r) = f`(k, r) + (−1)`+1S`(k)f`(−k, r) (3.55)

∝ f`(−k)f`(k, r)− f`(k)f`(−k, r) (3.56)

we see that when the S-matrix has a pole at k, then f`(−k) = 0 and the
solution asymptotically goes like f`(−k, r) ∼ exp(+ikr), and that when the S-
matrix has a zero at k, then f`(+k) = 0 and the solution asymptotically goes
like f`(k, r) ∼ exp(−ikr).

So, for example, bound states have exponentially decaying solutions, that is,

u`(r) →
r→∞

exp(−κr). (3.57)

This corresponds to the S-matrix have a pole at k = +iκ.
Poles in the lower half plane can be written as k = −iκ+ γ. Asymptotically

these go like exp(+κr + iγr), that is, grow exponentially, which is unphysical
but still crucial to our understanding. If γ 6= 0 these are called resonances and
if γ = 0 they are called antibound or virtual states. While resonances are not
physical solutions, their influence is crucial to understand.
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3.8 S-matrix poles and resonances

3.9 Application to the square well potential

For our usual attractive square well potential, that is,

V (r) =
−V0, r ≤ R,

0, r > R

we can compute the Jost functions for ` = 0. Outside the well, we have
wavenumber k, which may be complex, and a wavefunction f0(k, r) = exp(−ikr).
Inside the well, we have f0(k, r) = A exp(iKr) + B exp(−iKr), where K2 =
k2 + 2mV0/h̄

2. By matching the wave function and its first derivative at r = R,
one can solve for A and B and find that

f0(k) = e−ikR
(

cosKR+ i
k

K
sinKR

)
, (3.58)

and thus

S0(k) = e−2iδ0(k) =
f0(k)

f0(−k)
= e−2ikRK cosKR+ ik sinKR

K cosKR− ik sinKR
. (3.59)

Note that K(−k) = K(+k).

Exercise. Show you regain the analytic phase shift we found before.

Bound states are given by poles along the positive imaginary axis, that is,
k = +iκ and K2 = −κ2 + 2mV0/h̄

2. The pole in the S-matrix then is given by
K cosKR+ κ sinKR = 0, or κ = −K cotKR.

Exercise. Compare with results for the square well from any elementary quan-
tum text. You will have to pay attention to the boundary condition at r = 0.

One can also find antibound states, where k = −iκ, which are states which
increase exponentially at large r. While unphysical, they are part of the con-
tinuation into the complex plane. For our example the solutions are given by
κ = +K cotKR.

For more general poles in the complex plane, we have to allow complex k in
the lower complex plane, that is, k = −iε+ γ.

3.10 Application to the δ-shell potential

After introducing the δ-shell potential in 2.5, we saw in 2.6 for the first time
resonances or sharp peaks in the cross-section induces as the phase shift passes
rapidly through ±π2 . Indeed, that was my motivation in introducing an other-
wise odd and not very physical potential. Now we can analyze its pole structure.
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First one must get the Jost function. Much like the square well, for r > R,
we have f0(k, r) = exp(−ikr), while for r < R we have f0(k, r) = A exp(ikr) +
B exp(−ikr). Matching the wavefunctions at r = R we have

A exp(2ikR) = 1−B.

By integrating the Schrödinger equation around r = R, we can show the Jost
function is

f0(k) = A+B = 1− ik0

2k

(
1− e−2ikR

)
. (3.60)

From this the S-matrix is

S0(k) =
f0(k)

f0(−k)
=
k − 2ik0

(
1− e−2ikR

)
k + 2ik0 (1− e2ikR)

(3.61)

The poles of the S-matrix are then given by

k = −1

2
ik0

(
1− e2ikR

)
. (3.62)

Breaking into real and imaginary parts, k = γ + iε,

ε = −1

2
k0

(
1− e−2εR cos(2γR)

)
, (3.63)

γ = −1

2
k0e
−2εR sin(2γR). (3.64)

When k0 < 0 and γ = 0 we regain the bound state condition (2.53), with the
bound state energy E = −h̄2ε2/2m; for general poles we have to search for
self-consistent solutions.

3.11 Project 3

Find the s-wave poles of the attractive square well? of the δ-shell potential?
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Chapter 4

Discretizing the continuum
in coordinate space

4.1 The mathematics of continuum states

When we first learn quantum mechanics, we generally work with finite, bounded
states. That is, when we solve the one-dimensional Schrödinger equation,

Ĥψn(x) =

(
− h̄2

2m

d2

dx2
+ V (x)

)
ψn(x) = Enψn(x), (4.1)

we first focus on solutions labeled by discrete integers n = 1, 2, 3, . . . and which
have finite orthonormality relations,∫ ∞

−∞
ψ∗m(x)ψn(x) dx = δm,n (4.2)

where δm,n is the Kronecker -δ and = 1 if m = n and =0 if m 6= n. Often we
simplify this using the Dirac bra-ket notation,

Ĥ|Ψn〉 = En|Ψn〉, (4.3)

and

〈Ψm|Ψn〉 = δm,n (4.4)

(If you are somehow unfamiliar with this notation, get yourself a current quan-
tum mechanics textbook, for example Griffths or Shankar.) Even when we work
in three-dimensions, we focus either on cases which have only discrete solutions,
such as the three-dimensional harmonic oscillator, or, in the case of the Coulomb
potential (hydrogen atom), consider only the bound states.

Continuum states, also called scattering states or unbound states, are tech-
nically more challenging, and thus are generally less emphasized in introductory

36
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courses and texts. Consider the free particle in one-dimension, with the Hamil-
tonian

Ĥ = − h̄2

2m

d2

dx2
.

The eigenstates are exp ikx where the wavenumber k is any real number, with
energies E(k) = h̄2k2/2m. (We can relate the wavenumber to momentum by
p = h̄k.) But x can range from −∞ to +∞, and so any normalization integral
diverges. Furthermore, on any interval of wavenumbers there are an infinite
number of values of k.

The solution to the normalization problem, of course, is to generalize the
Kronecker-δ to a Dirac-δ(x). Technically the Dirac-δ is not a function but a
distribution or a limit function, but for simplicity it’s often called the Dirac
δ-function. You’ve probably encountered it before. It has the properties

δ(x) = 0, x 6= 0; (4.5)

δ(0) =∞; (4.6)∫ b

a

δ(x) dx = 1 if a < 0 < b, else = 0. (4.7)

In other words, the Dirac δ-‘function’ is infinitely narrow, infinitely high at
x = 0, and has unit area. (We also deduce the units of δ(x) are 1/length, if x
has units of length.)

There are several ways one can represent the Dirac δ-function. One can
represent it as a limit function, i.e., an infinitely narrow Gaussian,

δ(x) = lim
a→0

√
2πa2 exp

(
− x2

2a2

)
(4.8)

or an infinitely narrow box function,

δ(x) = lim
a→0

{
1
a , −

a
2 ≤ x ≤ +a

2 ,
0, |x| > a

2

. (4.9)

For our purposes, however, we want to use the Fourier representation:

δ(x) =
1

2π

∫ ∞
−∞

eikx dk. (4.10)

Then the ‘normalized’ eigenfunctions of the free particle are

〈x|k〉 = φk(x) =
1√
2π
eikx (4.11)

and the corresponding orthonormality relation is

〈k|k′〉 =
1

2π

∫ ∞
−∞

e−ikxeik
′x dx = δ(k − k′). (4.12)

While this is a formal generalization to continuum states, it is not very practical.
In much of the rest of this book I will be describing practical methods to deal
with continuum states.
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r
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Figure 4.1: s-wave continuum wave functions in a box of length 10. Left-hand
side: no potential (“free” particle). Right-hand side: attractive square well
potential of radius R = 2, depth V0 = 5.

4.2 Boxing up the continuum

So how do we deal with the troublesome infinities of continuum states? In
physics and many other fields, we often solve problems by making them look
like other problems we already know how to solve. We take the same strategy
here: we make the continuum states look like bound states.

The simplest way is to put the problem in a box. This converts an infinite
problem into a finite problem. Consider a box of size L, that is, 0 ≤ x ≤ L. For
free particles of mass m, the Hamiltonian is the kinetic energy operator,

T̂ = − h̄2

2m

d2

dx2
, (4.13)

but with wavefunctions vanishing at the boundaries x = 0 and L. The eigen-
states are sine functions,

ψn(x) =

√
2

L
sin

nπx

L
, (4.14)

with energies

En =
h̄2π2n2

2mL2
. (4.15)

These states approximate the continuum, or rather, are a subset of continuum
states. Later, in section 5.1 I will discuss how to compute phase shifts in this
discrete Fourier space. In almost all our methods we discuss, however, we dis-
cretize the continuum, by finding a finite subset of continuum states.
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Fig. 4.1 shows the lowest continuum states in a box of size L = 10. The left
hand side is for the “free” particle, without any potential; for the s-wave (` = 0),
these are just sine functions. The right-hand side are states in the presence of
an attractive square well potential of radius R = 2 and depth V0 = 5 (and
m = h̄ = 1). Notice that the right-hand side looks a lot like the left hand side,
except for the distortions due to the presence of the attractive well.

But now we must have practical ways to calculate scattering states and
their phase shifts. A straightfoward approach is to calculate on a lattice in
coordinate space. That is, for a given integer N we introduce a lattice space
∆r = L/(N + 1) assign ri = i∆r, i = 1, 2, 3, . . . , N . The radial wavefunction
similarly is discretized,

ui = u(ri), i = 1, 2, 3, . . . , N. (4.16)

Notice that this leaves off u0 = u(0) and uN+1 = u(L). (Important: This
is when the vector ui goes from i = 1 to i = N as in Fortran. If you are
using Python or C, where the default goes from i = 0 to i = N − 1, then
u−1 = u(x = 0) = 0 and uN = u(x = L) = 0.) Instead, we implicitly assume
u(0) = u(L) = 0, as boundary conditions.

We want to solve the radial Schrödinger equation; to do this we need a
discrete approximation to the second derivative. Fortunately this is well-known:

d2u(r)

dr2

∣∣∣∣
r=ri

=
u(ri + ∆r)− 2u(ri) + u(ri −∆r)

∆r2
=
ui+1 − 2ui + ui−1

∆r2
(4.17)

If we treat u(r) as a vector (u1, u2, u3, . . . , uN ) (and we should), then the second
derivative is just a liinear transformation, that is, a matrix:

d2

dr2
=

1

∆r2


−2 1 0 0 0 . . .
1 −2 1 0 0
0 1 −2 1 0
0 0 1 −2 1
...

. . .

 (4.18)

This is very nice, but about at the boundaries? This discretization scheme says
the second derivative at r1, right next to the boundary at the origin, is

d2u1

dr2
=
−2u1 + u2

∆r2
.

Fortuitously, we interpret this to mean that u0 = u(r = 0) = 0, that is, a
vanishing boundary condition. The same thing happnes for uN+1 = u(L) = 0.

You can, and should, test at this point. Using the above discretization,
confirm when you diagonalize

− h̄2

2m

d2

dr2
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Figure 4.2: Discretization of the continuum and the rise of bound states. Here
is a particle of mass m = 1 with h̄ = 1, with a wall at L = 5, with angular
momentum ` = 0, with a square well potential of radius R = 1 and variable
depth V0. Top: Lowest ten or so energies for the system as a function of well
depth V0. Bottom: Scattering length a as a function of V0. The red dotted line
at zero scattering length is to guide the eye.

that is, the radial kinetic energy,

Tm,n = − h̄2

2m∆r2
(δm,n+1 + δm,n−1 − 2δm,n) (4.19)

you get the expected spectrum for a particle in a box: En = h̄2π2n2/2mL2,
for n = 1, 2, 3 . . .. The eigenfunctions should be sine functions, proportional to
sin(nπr/L); but note, if you use an numerical eigensolver, there could be an
arbitrary phase ±, and it will not be normalized by an integral, that is, not

by
∫ L

0
u(r)2dr = 1, but most likely as a vector:

∑N
i=1 u

2
i = 1. The eigensolver

doesn’t know it’s solving a discretized differential equation and doesn’t know
the ‘natural’ convention for the phase.

After you have confirmed you get the particle-in-a-box solutions, you can
add in a potential:

Vmn = δm,nV (rn) (4.20)

Let’s pause here, considering first only the s-wave scattering, to solve numeri-
cally. The parameters V0 and R define the potential. To define the discretiza-
tion, you have to choose some value of L as well as N , number of lattice points.
Then create the N×N matrix Hmn = Tmn+Vmn and run through your favorite
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Figure 4.3: The importance of checking your discretization! A plot of k cot δ0
for the square well with V0 = −1.5, well radius R = 1 and m = h̄ = 1. Here I
used a box size of 30, with 6000 and 1000 grid points to give ∆r = 0.005 and
0.030, respectively.

eigensolver. You will get out a set of eigenenegies Ei, i = 1, N . If Ei < 0, it a
bound state. If Ei > 0, it is a scattering state. In reality there are an infinite
number of scattering states u(r, E), but the wall at r = L selects out those that
vanish at r = L, which means u(L,Ei) ∝ sin(k(Ei)L+ δ) = 0.

An example of the energies is shown in Fig. (4.2), for a simple case with
m = h̄ = 1 and wall L = 5 and square well radius R = 1. As the depth of
the potential V0 is lowered, bound states start to appear. Coinciding with each
new bound state, the scattering length a goes from −∞ to +∞; this is known
as Levinson’s theorem. We also saw back in Fig. 2.2 that the slope of the phase
shift increases and then switchs abruptly to negative. The bound state energies,
that is, energies less than zero, are mostly independent of the wall distance L,
but the continuum energies, those greater than zero, are quite sensitive to L.

To interpret this is somewhat subtle. Let Ei be the nth scattering state (that
is, if there are nb bound states, n = i−nb, with n ≥ 1). If there is no scattering
potential, then k(Ei)L = nπ, but here we must have k(Ei)L+ δ = nπ, so that

δ(Ei) = nπ −
√

2mEi
h̄

L. (4.21)

Now we can compare these numerical results against the exact s-wave phase
shifts from (2.14).

A note on numerics. Whenever carrying out a numerical calculation, you
should investigate how sensitive your results are to your numerical parameters;
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in this case, to N and to L. In principle, different choices of L merely result
in different subsets of scattering states. You should confirm this for yourself.
You should also investigate the sensitivity to your choice of ∆r which is also
the sensitivity to N . You should choose N such that your results do not vary
much when you change N .

An example of this is given in Fig. 4.3, where I choose two different dis-
cretizations for the attractive square well with parameters m = h̄ = 1, well
radius R = 1 and depth V0 = 1.5. Notice the deviation occurs around an energy
of 5, which corresponds to a wavenumber k ≈ 3.

A note on ambiguities in the phase shifts. Once you start plotting
phase shifts, you will notice that phase shifts can sometimes jump around. This
is easily understood that one can add or subtract 2π to any phase shift and
get the exact same result. If you are trying, however to fit the parameters of
a potential to a set of phase shifts this can be troublesome. One option is to
not plot the phase shifts but, for example k cot δ, which has no ambiguity and
has the further advantage of tying into the effective range expansion of section
(2.4).

Now we can easily generalize. For example, we can generalize to any local
potential V (r) such as a Gaussian or Woods-Saxon potential.

We can also consider higher value of orbital angular momentum `. You have
to add in the rotational kinetic energy term,

δmn
h̄2`(`+ 1)

2mr2
n

.

To get the phase shifts, we have to use (2.4) and (2.8). Again we use the
boundary condition at the wall, u`(L) = 0 which means

A`Lj`(kL)−B`Ln`(kL) = 0. (4.22)

Just as in the s-wave case, we numerically find a discretized continuum spec-
trum, Ei, taking only the positive energies. (Negative energies are still bound
states.) From this we have ki =

√
2mEi/h̄ and

tan δ`(ki) =
B`
A`

=
j`(kiL)

n`(kiL)
. (4.23)

You should solve this numerically and compare to analytic phase shifts derived
above.

4.3 The δ-shell potential

We can also solve the δ-shell potential numerically, although it must be handled
delicately.

Check that you reproduce the analytic phase shifts, and if you did Exercise
2.8, confirm you reproduce the bound state energy.
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Figure 4.4: s-wave phase shifts for the Malfiiet-Tjon potential, a square well
potential, and experimental 3S1 phase shifts versus lab energy. See text for
details.

4.3.1 A note on numerical eigensolvers

To reproduce this

4.4 Beyond the square well

Here I introduce some potentials which cannot be solved exactly but must be
tackled numerically.

Malfliet-Tjon
Malfliet-Tjon is a simple approximation for for the nucleon-nucleon force:

VMT (r) = −VA
e−µAr

r
+ VR

e−µRr

r
(4.24)

The original values were

µA = 1.55 fm−1, µR = 3.11 fm−1, (4.25)

VA = 635 MeV − fm, VR = 1458 MeV − fm. (4.26)

Fig. 4.4 shows the s-wave scattering off the Malfliet-Tjon potential against
the experimental neutron-proton 3S1 scattering phase shifts. (Experimental
data from Wiringa, Stoks, and Schiavilla, Phys. Rev. C 51, 38 (1995)). Here
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I give the phase shifts in degrees, against the lab energy Elab ≈ 2 × Ec.m..
(You should convince yourself why this is correct in the non-relativistic limit.)
Experimentally, the bound state, the deuteron, has a binding energy of 2.2245
MeV, while in this channel the scattering length is 5.42 fm and the effective
range is 1.76. The Malfiet-Tjon potential gives a deuteron binding energy of
2.40 MeV, a scattering length of 5.36 fm, and an effective range of 1.88 fm. A
square well potential of radius 2 fm and depth of 36.5 MeV has a bound state
energy of 2.19 MeV, a scattering length of 5.38 fm, and an effective range of
1.70 fm.

4.4.1 Finding the scattering length and effective range nu-
merically

Because we do not have analytic expressions for general potentials, in order to
find the scattering length and effective range we have to do a polynomial fit
to k cot δ0. To do this we use least-squared linear fits, a topic you likely have
encountered before but which I briefly summarize here.

Given a set of N data points, {(xi, yi)}, i = 1, N , we want to find a function
f(x) which approximates y. To do this we expand f(x) in some set of K basis
functions {gα(x)}, α = 1,K, with linear coefficients cα, that is,

y ≈
K∑
α=1

cαgα(x). (4.27)

To find the best set of coefficients cα, we minimize

χ2 =

N∑
i=1

(yi − f(xi))
2

=

N∑
i=1

(
yi −

K∑
α=1

cαgα(xi)

)2

. (4.28)

The minimum is given by

cα =
∑
β

(A−1)αβbβ (4.29)

where

Aαβ =

N∑
i=1

gα(xi)gβ(xi), (4.30)

bβ =

N∑
i=1

gβ(xi)yi. (4.31)

For a polynomial least-squared fit, we simply choose gα(x) = x2(α−1); one can
show the k cot δ must be an even function of k, and if you use even and odd
powers of k you may not get a good fit. One should be careful to not overfit,



4.4. BEYOND THE SQUARE WELL 45

that is, for our purposes choose K = 3 (quadratic) or 4 (cubic) at most. When
we do the fit, c0 = −1/a and c1 = 2reff .

In principle one can also extract the uncertainty in the coefficients, but that
requires knowing the uncertainty in the energies, which I will try to cover later.



Chapter 5

Discretizing the continuum
in Hilbert spaces

When you take a serious course in quantum mechanics, one of the first tasks is
to unlearn all your erroneous notions about vectors and to learn properly about
vectors spaces. In mathematics, and in mathematical physics, vectors are not
‘magnitude plus direction;’ instead a vector is a member of a vector space which
satisfies certain properties. I’m presuming of course you’ve gone through this.
Along with general, abstract vector spaces one needs to add in an inner product
and you’ve got a Hilbert space, which is the basis of quantum mechanics. This
is not a rigorous mathematics text, so I will just say that a Hilbert space is
a vector space, that is a set of vectors {|a〉}, with an inner product defined.
Mathematicians tend to use the notation (a, b) to denote an inner product, but
we will use the physics notation of a bra-ket:

〈a|b〉

which allows us to define normalization, to find the components of a vector in
some basis, and all the other tasks necessary for quantum mechanical calcula-
tions.

In quantum mechanics we often use function spaces, where we treat functions
f(x) as vectors and normalize them, expand in a basis, and so on. When you
first encountered function spaces they probably seemed very weird and counter-
intuitive (which is why we need formal definitions of the properties of vector
spaces, inner products, and so on, because then we can apply them to situations
where our old intuition fails us) but by now they probably seem natural; strange
how quickly we can adapt to new ideas!

One representation of the continuum are Fourier states,

1√
2π
eikx,

But we can use Hilbert spaces, specifically Hilbert function spaces, to discretize

46
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the continuum; in particular we can use bound-state-like basis states, which
makes our life easier. This is called the J-matrix method.

5.1 Phase shifts in a discrete Fourier space

Before we go on to the J-matrix method, let’s calculate phase shifts in a discrete
Fourier space. We work, as before, in a radial box of radius L, with normalized
radial states

un(r) =

√
2

L
sin

nπr

L
. (5.1)

The matrix elements of the radial kinetic energy are diagonal and trivial:

Tmn = 〈m|T̂ |n〉 =

∫ L

0

u∗m(r)

(
− h̄2

2m

d2

dr2

)
un(r) dr = δm,n

h̄2π2n2

2mL2
, (5.2)

For the potential, V̂ , we need to take integrals,

Vmn = 〈m|V̂ |n〉 =

∫ L

0

u∗m(r)V (r)Un(r) dr. (5.3)

For a finite square well, we can compute this analytically:

Vmn = −V0
2

L

∫ R

0

sin
(mπr

L

)
sin
(nπr
L

)
dr (5.4)

using the trig identity sin a sin b = (1/2)(cos(a− b)− cos(a+ b)), as well as∫ R

0

cos

(
kπr

L

)
dr =

L

kπ
sin

kπR

L

for k 6= 0, and = R for k = 0. Thus, for m 6= n

Vmn = −V0
1

π

[
1

m− n
sin

(
(m− n)πR

L

)
− 1

m+ n
sin

(
(m+ n)πR

L

)]
(5.5)

and on the diagonal

Vnn = −V0

[
R

L
− 1

2πn
sin

(
2nπR

L

)]
. (5.6)

Let’s pause here, considering first only the s-wave scattering, to solve nu-
merically. The parameters V0 and R define the potential. To define the dis-
cretization, you have to choose some value of L as well as N , the maximum
value of the index n labeling the sine functions. Then create the N ×N matrix
Hmn = Tmn + Vmn and run through your favorite eigensolver. You will get out
a set of eigenenegies Ei, i = 1, N . If Ei < 0, it a bound state. If Ei > 0, it is
a scattering state. In reality there are an infinite number of scattering states
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u(r, E), but the wall at r = L selects out those that vanish at r = L, which
means u(L,Ei) ∝ sin(k(Ei)L+ δ) = 0.

To interpret this is somewhat subtle. Let Ei be the nth scattering state
(that is, if there are nb bound states, n = i − nb). If there is no scattering
potential, then k(Ei)L = nπ, but here we must have k(Ei)L+ δ = nπ, so that

δ(Ei) = nπ −
√

2mEi
h̄

L (5.7)

For ` > 0 we need the rotational kinetic energy term,

T rot
m,n =

∫ L

0

u∗m(r)
h̄2`(`+ 1)

2mr2
un(r) dr. (5.8)

For this we approximate L ≈ ∞ and use∫ ∞
0

1

x2
sin ax sin bx dx =

π

2
min(a, b). (5.9)

While with proper massaging one can get this from MatLab or Mathematica,
one can also look up this integral in a table of integrals or, as done in the
appendix, use contour integrals. Then

T rot
m,n =

h̄2`(`+ 1)π2

2mL2
min(m,n) (5.10)

Then diagonalize as before

Tm,n + T rot
m,n + Vm,n

and solve for phase shifts. If you have bound states, the bound state energies
should be nearly the same as your results for discretization in the box.

5.1.1 The δ-shell potential

You can also solve for the δ-shell potential. The matrix elements are analytic
and straightforward. Reproduce prior results.

5.1.2 A cross-check on matrix elements

One of the prime achievements of science is to recognize humans are inevitably
fallible and to develop systematic, nearly paranoid checks on our results to find
those mistakes. For example, all along I have been encouraging you to compare
your numerical results for the square well (and in the next subsection, the δ-shell
potential).

Another test or diagnostic is to look at matrix elements of a potential V (r)
in a basis. How can we know when we have included enough states, that is,
gone up to high enough n? One way is a straightforward sum rule. If V (r) is of
a single sign, that is, is always negative or always positive, then it is should be
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obvious that Vn,n is always of the same sign too. Then, by using a completeness
relation, we arrive at ∫ ∞

0

V (r) dr =
∑
n

Vn,n. (5.11)

In cases where we know Vn,n is always of a fixed sign, then we know that∫∞
0
V (r) dr will always be a bound, either upper or lower, on a finite sum∑Nmax

n Vn,n.
NOTE: I am not sure this is completely correct. Still trying to work out.

Exercise. For a spherical square well of radius R and depth −V0,
∫∞

0
V (r) dr =

−V0R. Plot this against the running sum of Vn,n, using Eq. (5.6).

5.2 The J-matrix method

In general, the J-matrix method is when the kinetic energy T is tridiagonal in
the basis, even if the basis states are “bound.” There are two main J-matrix
regimes, the harmonic oscillator basis and the Laguerre basis, but any basis for
which T is tridiagonal would work.

The basic idea is very similar to that for the continuum discretized in coor-
dinate space: in a given basis, we have

H ≈
(

T + V 0
0 T

)
, (5.12)

that is, for some finite set of basis states we have both the kinetic and potential
energies, but beyond that set only the kinetic energy is important. If the kinetic
energy is tridiagonal, then we can solve for the vectors by a recursion relation.

We will take a simplified version of J-matrix theory, however, inspired by our
earlier results. We will simpy cut off at some maximum basis N . Diagonalizing,
the continuum is discretized, and if

H~v = E~v =
h̄2k2

2m
~v, (5.13)

then it implies that vN+1 = 0. From this we can extract the phase shift.
This idea is illustrated in Fig. 5.1. This sample calculation shows a cal-

culation in some basis–here a harmonic oscillator basis, though that is not
important–and by truncated to some Nmax, forcing the wave function in the
Hilbert space to have a node (a zero) at Nmax + 1, where the red dashed line is.
This works the same in discretized coordinate space (but I have yet to add the
corresponding figure).

Specifically, let {φi(r)}, i = 1, N be our radial basis states. Because we
assume bound states, they have the convenient orthonormality condition,∫ ∞

0

φ∗i (r)φj(r) dr = δij .
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Figure 5.1: An illustration of the simplified J-matrix method. An implicit
“wall” (dashed red line) is inserted, so that all solutions must have a zero (node)
at the wall. The wave function actually continues on, as shown, but we only
calculate the part to the left of the wall.
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Then at a given eigenenergy E which corresponds to a wavenumber k =
√

2mE/h̄,
we expand

u(E, r) =
∑
i

vi(E)φi(r) (5.14)

Then the boundary condition is that vN+1 = 0. But we know that where there
is only kinetic energy,

u(E, r)→ C (rj`(kr) cos δ − rn`(kr) sin δ) (5.15)

where V (r) = 0. As the coefficient vN+1 = 0, we must have the orthogonality
conditions ∫ ∞

0

φN+1(r) (rj`(kr) cos δ − rn`(kr) sin δ) dr = 0, (5.16)

or

tan δ` =

∫∞
0
φ∗N+1(r)j`(kr)r dr∫∞

0
φ∗N+1(r)n`(kr)r dr

. (5.17)

A subtle but important condition here is that φN+1(r) is vanishingly small in
the region where V (r) is nonzero. Fortunately our cases satisfy that.

In this basis, the matrix elements of the potential are

V
(`)
n′,n =

∫ ∞
0

φ∗n′,`(r)V (r)φn,`(r) dr. (5.18)

5.3 Harmonic oscillator basis

For much of this text we will focus on using a basis of spherical (3-dimensional)
harmonic oscillator states. The full wave function is

ψn`m(r, θ, φ) =
un`(r)

r
Y`m(θ, φ),

with ` the orbital angular momentum as usual and n = 0, 1, 2, . . . counts the
number of nodes in the radial wave function u(r) and is called the (radial) nodal
quantum number. An alternate quantum number is N = 2n + `, the principal
quantum number, as the energy for the harmonic oscillator Hamiltonian is E =
(N + 3/2)h̄ω. The appendix describes their construction in more detail.

Fig. 5.2 shows s-wave (` = 0) harmonic oscillator for n = 0, 100, 300, and
demonstrates how for large n the wavefunctions become almost oscillatory. They
are also bounded, and we see empirically the wave functions fall off rapidly for
r > 2

√
nb. Nonetheless we can expand Bessel and Neumann functions in terms

of harmonic oscillator wave functions. Given the expansion

rj`(kr) =
∑
n=0

cn un,`(r),



52 CHAPTER 5. THE CONTINUUM IN HILBERT SPACES

0 10 20 30
r

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

u
n
(r

)

n = 0

n = 100
n = 300

Figure 5.2: Radial spherical harmonic oscillator wavefunctions un(r) for n =
0, 100, 300, with length parameter b = 1.

Fig. 5.3 shows the coefficients cn for ` = 0, k = 1, b = 1. You can see in this case
the coefficients vanish or become very small for some values of n, illustrating
the basic idea of our simplified J-matrix method.

A very useful and lucid reference is Shirokov, Mazur, Mazur, and Vary,
Phys. Rev. C 94, 064320 (2016), also arXiv:1608.05885. Note, however, some
differences: I express everything in terms of the radial nodal quantum number n
while Shirokov et al. use the principal quantum number N = 2n+`, I express my
results primarily in terms of the length parameter b =

√
h̄/mω while Shirokov

et al. use h̄ω, and finally and of most concern, there is a phase factor (−1)n

between their radial wavefunctions un`(r) and mine (to be further investigated).
In the harmonic oscillator basis, the matrix elements of the kinetic energy are

analytic and simple–and tridiagonal, which is the whole point of the J-matrix
method:

T (`)
n,n =

1

2M

〈
n, `

∣∣p̂2
∣∣n, `〉 =

h̄2

2Mb2
(2n+ `+ 3/2), (5.19)

T
(`)
n+1,n =

1

2M

〈
n+ 1, `

∣∣p̂2
∣∣n, `〉 =

h̄2

2Mb2

√
(n+ 1)(n+ `+ 3/2). (5.20)

Note that h̄2/(2Mb2) = h̄ω.
As an exercise, diagonalize T for ` = 0 for some large maximum n. What

does the spectrum look like? What about for ` > 0? Note that in this rep-
resentation, T(`) includes all of the kinetic energy, both the ‘radial’ and the
‘centrifugal’ parts.
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Figure 5.3: Expansion of s-wave spherical Bessel function j0(kr), with k = 1,
into spherical harmonic oscillator basis functions with length parameter b = 1.
The line is to guide the eye.

Exercise. Diagonalize T for some ` (always start with ` = 0) and find the
eigenenergies and write the eigenvector components to a file. Choose some
solution and deduce k =

√
2mE/h̄. Decompose j`(kr) into harmonic oscillator

components as in Fig. 5.3. Overlay the two on a graph; they should be the
same, except for some overall normalization, including possibly a phase.

Shirokov et al. find analytic solutions (which I have to check): To be added.

We should, however, be able to numerically compute the phase shifts and
matrix elements using (5.17), with numerical quadrature. Appendix B discusses
in some detail the radial wave functions, which can be computed using the
recursion relation (B.21) starting from (B.29), (B.30). I recommend starting
with integrals with Boole’s rule, but then shifting to Gauss-Hermite quadrature.
To check you are using an appropriate grid for either, always check in advance
the orthonomality condition is numerically satsified.

Fig. 5.4 demonstrates the limitation of the J-matrix method, namely that
in a Hilbert space the potential may not be very “localized.” Here I compute
the diagonal s-wave matrix elements Vn,n = 〈` = 0, n|V̂ |` = 0, n〉 as well as
the off-diagonal V0,n, for a square barrier with height 1 and with radius of 0.25
×b, where b is the oscillator length parameter. We see the matrix element do
not complete vanish even as far out as n = 400, and going to 800 does not
significantly change the situation. To some extent this is a worse-case scenario.
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Figure 5.4: s-wave matrix elements for a square barrier of radius 0.25 and unit
height, in a harmonic oscillator basis with length parameter b = 1.

For a radius of 1× b, the central peak is much sharper and higher, so the error
is smaller. Nonetheless one has to make an approximation by truncating the
potential at some maximum n. You should always do a careful study, through
plots such as this, as well as checking the dependence on the cutoff in n in the
representation of the potential.

5.3.1 A toy model

For a simple toy model with one parameter, let Vmn = 0 except V00 = −V̄ , that
is, a single point. Find the phase shifts numerically (later, using the theory of
orthogonal polynomials, we’ll try to find them ‘analytically’). Track how bound
states (with energy < 0) enter as you increase V̄ .

5.4 Laguerre basis



Chapter 6

Integral relations

Here I derive an interesting integral relation. I consider simple two-body scat-
tering in a single channel, so that the scattering solution for angular momentum
` is given by the radial Schrödinger equation,

− h̄2

2m

d2

dr2
u(r) +

(
h̄2`(`+ 1)

2mr2
+ V (r)

)
u(r) = Eu(r) =

h̄2k2

2m
u(r). (6.1)

If we leave off the potential V (r) the free solution is ufree(r) = rj`(kr). We can
pair up the two differential equations, after multiplying through by −2m/h̄2:

d2u(r)

dr2
+

(
k2 − `(`+ 1)

r2
− 2m

h̄2 V (r)

)
u(r) = 0, (6.2)

d2ufree(r)

dr2
+

(
k2 − `(`+ 1)

r2

)
ufree(r) = 0 (6.3)

Now multiply (6.2) by ufree(r) on the left, and (6.3) by u(r),

ufree

[
d2u(r)

dr2
+

(
k2 − `(`+ 1)

r2
− 2m

h̄2 V (r)

)
u(r) = 0

]
,

u(r)

[
d2ufree(r)

dr2
+

(
k2 − `(`+ 1)

r2

)
ufree(r) = 0

]
and take the difference to get

−ufree(r)
2m

h̄2 V (r)u(r) = u(r) d
2

dr2ufree(r)− ufree(r) d
2

dr2u(r)

= d
dr

[
u(r) ddrufree(r)− ufree(r) ddru(r)

]
(6.4)

Next integrate

−2m

h̄2

∫ ∞
0

ufree(r)V (r)u(r)dr =

[
u(r)

d

dr
ufree(r)− ufree(r)

d

dr
u(r)

]∣∣∣∣r=∞
r=0

(6.5)
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To evaluate the righthand side, we note that both u(0) = ufree(0) = 0, and
asymptotically

ufree(r) =
r→∞

1

k
sin

(
kr − `

2
π

)
, (6.6)

u(r) =
r→∞

1

k
sin

(
kr − `

2
π + δ

)
. (6.7)

From this we can show

u(r)
d

dr
ufree(r)− ufree(r)

d

dr
u(r) =

r→∞

sin δ

k
. (6.8)

Putting it all together

sin δ = −2m

h̄2 k

∫ ∞
0

ufree(r)V (r)u(r)dr. (6.9)

The beauty of this equation is that it only depends upon u(r) where V (r) 6= 0,
that is, is an integral over the “interior” of the wavefunction.

Clearly we can do this in a discrete space, at least for a two-particle system.
The challenge is to carry this out for a many-body system.



Chapter 7

Direct capture and other
reactions

Up until this point, we have been concerned with scattering. Now we want to
shift gears and look at so-called direct reactions, such as the neutron capture
reaction

3He + n→4 He + γ.

This shift requires a significant change in our focus. The key idea in scattering
is the change in the wave functions at large distance from the interaction region,
parameterized by the phase shift or the S-matrix, with no need for knowledge of
the amplitude of wave functions. As I’ll discuss in more detail, capture reactions
are very different: we need overlap integrals which encompass the interaction
region (although as I’ll show, for low energy the integrands can be maximum
far outside the interaction region) and getting the amplitude right is critical.

Direct reactions are contrasted with compound reactions. The primary dif-
ference between direct reactions and compound reactions is that direct reactions
generally go to a single, “simple” state, which compound reactions involve many,
complex states. I will expand this definition later.

For now I will focus on reactions involving neutrons. Reactions involving
protons and other charged projectiles are extremely important, perhaps even
more so than neutrons, but the Coulomb interaction adds complexity.

In order to develop the formalism for direct reactions, let’s take things step
by step:

• First, we begin with γ-decay, that is, bound-state to bound-state transi-
tions: A∗ → A+ γ..

• Second, look at the reverse: photoexcitation to a bound state: A+γ → A∗;

• Finally, look at capture and photo-disintegration, which involve scattering
states: b+ c→ A+ γ and A+ γ → b+ c
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All of these start with Fermi’s golden rule (although it was originally derived
by Dirac) for the rate from some initial state i with wave function |Ψi〉 to some
final state f with wave function |Ψf 〉:

R(i→ f) =
2π

h̄

∣∣∣〈Ψf

∣∣∣Ĥint

∣∣∣Ψi〉
∣∣∣2 dnf
dE

, (7.1)

where Ĥint is the interaction Hamiltonian with a sinusoidal time dependence
that drives the change, that is, one assumes |Ψi〉 and |Ψf 〉 are eigenstates of

some static Hamiltonian Ĥ0, and the entire system evolves under

Ĥ0 + sin(ωt)Ĥint.

Finally,
dnf
dE is the density of final states in an energy interval. As we’ll see,

this is often a Dirac-δ function. Fermi’s golden rule is derived in most quantum
textbooks in time-dependent perturbation theory, and in fact is the primary
result for time-dependent perturbation theory. You should take careful note
that this rate does indeed have dimensions of time−1–one should always use
dimensional analysis to check one’s understanding.

Rather than simply writing down the results, let’s take apart each of the
pieces:

1. One needs an initial |Ψi〉 and a final |Ψf 〉 wave function, both of which
need to be appropriately normalized, which I discuss in detail below (or
above).

2. We need an interaction operator. In the kinds of transitions discussed
here, they are electromagnetic transitions. To conceptualize the process,
imagine, for example, a dipole electric field oscillating with frequency ω,
which corresponds to electric dipole photons of energy h̄ω.

3. We need a density of final states,
dnf
dE

4. Although it’s not explicitly stated in Eq. (7.1), such transitions almost
always involve a transfer and thus change of angular momentum, which
must be handled properly.

5. Finally, to compute cross sections, we need an initial flux.

In the following sections, I discuss each of these in turn, followed with ap-
plications.

7.1 The headache of normalization

In our initial applications, we consider a simple model of potential capture, that
is, modeling capture of a particle to a many-body system by a simple capture
reaction in a potential. In that case the transition probability is∣∣∣〈ψb|Ô|ψ(k)〉

∣∣∣2 =

∫ ∞
0

u∗b(r) Ô(r)uscatt(k, r) dr (7.2)
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In a section below [to be written] I will detail some possibile transition operators
Ô(r). A simple example of one is the electric dipole operator, which is just r
times some constants.

This integral (7.2) may look intimidating, as the range of integral is formally
from zero to infinity. Fortunately, while the scattering wave function uscatt is
doggedly nonzero even as we run endlessly towards but never reaching infinity,
the integral itself is in a practical sense bound. This is because the bound state
wave function ub(r) does fade away as r →∞.

The biggest issue reminaing is normalization. Under the Born interpreta-
tion, the square of the wavefunction is a probability or a probability density.
Indeed, much of basic quantum mechanics involves learning how to transform
a wave function into the appropriate representation, in which the answer is a
probabilty which is just the square of the wave function–in that representa-
tion. The statement that a wave function is normalized is really just saying the
probabilities must sum to one.

The bound state is easily and rigorously normalized,∫ ∞
0

|ub(r)|2 dr = 1. (7.3)

You must still pay attention in numerical calculations. All numerical eigen-
solvers will normalize a discretized wave function ui by∑

i

|ui|2 = 1,

but (7.3) is for a uniform grid on r∑
i

|ui|2 ∆r ≈ 1, (7.4)

(the ≈ is because depending on the quadrature algorithm, for example trape-
zoidal rule versus Simpson’s rule versus Boole’s rule, you can get slight varia-
tions). As long as your box size is large enough, however, so that the bound
state is not “crowded,” the normalization should then be fixed.

Exercise 7.1. Using a code with a uniform discretization in r and a fixed box
size L, solve for any wave function with N points and with 4N points, and plot
both vectors. You should get something like [insert figure here]. If you multiple
both wave functions by 1/

√
∆r they should lie nearly on top of each other. Also

note that your numerical wave functions may differ by an arbitrary phase of ±1,
which has no physical meaning.

As discussed in Chapter 4, the normalization of continuum / scattering states
is trickier. Our general strategy has been to take a finite space and treat contin-
uum states like bound states. The problem that arises is the normalization then
depends strongly on the box size L. For example, suppose we had a free particle,
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Figure 7.1: Dependence on capture integral on normalization. Square well with
m = h̄ = R = 1, V0 = 5, for two box sizes, L = 10 and 20. Black line is
normalized to the continuum limit, while red and blue lines are normalized like
bound states.

with a solution C sin kr. If we follow our practice so far and put the system in
a spherical box of radius L, then the normalization coefficient C =

√
2/L and

the transition probability (7.2) is proportional to L−1. Later one we will see
this is fixed by considering the flux.

It gets worse when we consider a scattering state in a potential. Although
in a box of size L our instinct is to normalize as in (7.3), in fact in the limit as
L→∞ the proper normalization is∫ ∞

0

u∗(k′, r)u(k, r) dr = 2πδ(k′ − k). (7.5)

The way we handle this is to realize that the integral in (7.5) is dominated by
contributions far away from the potential, that is, we want

u(k, r) →
r→∞

sin(kr + δ) (7.6)

(I am worried about a factor of k here...) So in order to take care of this, when
we solving for any scattering state, we write

u(k, r) →
r→∞

C sin(kr + δ) (7.7)

where C is the amplitude of the tail of the wave function and is related (I think)
to the asymptotic normalization coefficient which I hope to discuss more later.
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How to find the amplitude C? There are two ways. The second, which I will
pick up in a separate chapter, is to use the Lippmann-Schwinger equation, where
one can explicitly start with a correctly normalized asymptotic wave function.
More about that later.

The first method, however, is to numerically find C. Previously we found
the phase shift by finding an amplitude in the wave function which is zero. We
have no such luck here. Instead we start from Eq. (2.4), which is true if we are
outside the interaction region:

u`(r) = A` rj`(kr)−B` rn`(kr).

Here is my proposed algorithm; there may be better: choose some set of Nfit

grid points {ri}, outside the interaction region, for example, the last 100 points
on the grid, and the numerical wavefunction values {ui} at those points. We
can now do a linear least-squares fit to A` and B`. For this you need to know
the wave number k =

√
2ME/hbar. Form the 2× 2 matrix M, with

M11 =
∑
i

r2
i j`(kri)

2, (7.8)

M12 = M21 =
∑
i

r2
i j`(kri)n`(kri), (7.9)

M22 =
∑
i

r2
i n`(kri)

2, (7.10)

and the vector ~b,

b1 =
∑
i

rij`(kri)ui, b2 =
∑
i

rin`(kri)ui, (7.11)

Then (
A`
B`

)
= M−1~b (7.12)

or

A` =
1

det M
(M22b1 −M12b2) , (7.13)

B` =
1

det M
(−M21b1 +M11b2) . (7.14)

Then C =
√
A2
` +B2

` . You can also find δ` = tan−1 B`
A`

. In fact, it’s a very good
and highly recommended cross-check that the phase shifts you get out of this
fit are the same, or at least very similar to, those you found from the boundary
condition. (You might very well ask: why not use this method from the start to
determine the phase shift? It does work, but, the boundary condition is more
elegant and, in my experience, more accurate.)

(Please note I am still working on these notes and so there are
likely some errors of detail !)
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7.2 Electromagnetic operators

I am focusing on transitions mediated by electromagnetism. Towards this end
we need to develop the operators for electromagnetic transitions. I will not do a
full development of the operators. For useful references see Blatt and Weisskopf,
Theoretical Nuclear Physics, Roy and Nigam, Nuclear Physics, or the text I will
most heavily rely upon, Brussaard and Glaudemans, Shell-model applications
in nuclear spectroscopy. The latter has the most modern development, but is
difficult to find. Blatt and Weisskopf, although old (1952), is readily available
as a Dover edition. See also Bohr and Mottelson, Volume I, Appendix 3C. I
also recommend deForest and Walecka, Adv. Phys. 15, 1 (1966), which gives a
more general and powerful point of view.

For a quick review: photons have intrinsic angular momentum or ‘spin’ of
1h̄, which in principle means they could have three components. In practice,
however, because they are massless, real photons have only two components.
We talk about these as being two different polarization states, but we also
talk about transverse electric and transverse magnetic modes. I won’t review
where that terminology comes from, but only note that we retain it in talking
about transitions: electric transitions and magnetic transition, and their corre-
sponding operators. (Let me comment that when one goes away from massless
photons, for example for weak transitions mediated by massive vector bosons,
or when talking about electron scattering when one has ‘virtual’ photons “off
the mass shell,” then a third class of operators arises, the so-called longitudinal
operators. In fact, in my development below we use longitudinal operators, but
they are simply related to electric operators by Siegert’s theorem in the long
wavelength limit.)

Because we are working in a framework with good angular momentum, we
have to worry about the angular momentum, λ of the electromagnetic radia-
tion. Electric transitions carry parity π = (−1)λ, while magnetic transitions
carry parity π = (−1)λ+1. Hence electric dipole, or E1, magnetic quadrupole,
or M2, and electric octupole, or E3, all carry away parity -1, while magnetic
dipole (M1), electric quadrupole (E2), and magnetic octupole (M3), all carry
away parity +1. Because real photons have spin 1, we cannot have monopole,
E0 or M0, radiation. Although I discuss general formalism, the most impor-
tant transition operators for direct reactions are E1, M1, and E2. The reason
is the long-wavelength limit. The highest the angular momentum, the more
“wrinkled” the wave function is, but most radiation, even gamma rays, have
wavelengths much larger than the nucleus, and so can only resolve and couple
to the grossest features of the nucleus. We will see this falls out of the formalism.

Although I am treating the nucleus nonrelativistically, special relativity plays
a central role in electromagnetism. Maxwell’s classical electromagnetic equa-
tions assume a coupling between the electromagnetic Lorentz 4-potential Aµ,
µ = 0, 1, 2, 3 and the Lorentz 4-current of the nucleons, Jµ:

Ĥint = −
∫
JµAµ d

3r. (7.15)
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The nuclear four-vector (ignoring factors of the speed of light c),

Jµ =
(
ρ,~j
)

(7.16)

where the nuclear charge density is

ρ(~r) =

A∑
i=1

eiδ
(3) (~r − ~ri) (7.17)

where ei is the charge of the ith nucleon (+1 for protons, 0 for neutrons). The
nuclear electromagnetic current has two contributions, that due to the motion
of the nucleons, and that from their magnetic moments:

~j(~r) =
∑
i

ei
~viδ

(3) (~r − ~ri) + δ(3) (~r − ~ri)~vi
2

+ µi~∇× ~si (~r − ~ri) , (7.18)

where si is the spin of the ith nucleon, vi the velocity, and µi is the magnetic
moment,

µi =
eh̄

2MN
gi (7.19)

with gi the spin g-factor, which has values X and Y for protons and neutrons,
respectively. Of course, this assumes point nucleons, which is clearly wrong, but
you can find corrections in other texts.

The other ingredient, the electromagnetic 4-current, also can be divided up:

Aµ = (Φ, ~A) (7.20)

with Φ the electric potential and ~A the vector potential. Because the magnetic
field is the curl of the vector potential, we have the freedom (and the curse) to
choose a particular gauge. Dealing with real photons, a natural choice is the
transverse gauge condition, ~∇ · ~A = 0. In Fourier, that is, momentum space,
this becomes

~q · ~A = 0, (7.21)

where ~q is the momentum transfer carried by the photon. If we choose ~q to be
along the z-axis, then Az = 0, and hence we have, as mentioned earlier, only free
two component, Ax and Ay, or some other linear combination. A particularly
useful linear combination are the transverse electric and magnetic components.
I won’t derive these, but simply state them in multipole expansions, which
depend upon q (the wave number for momentum transfer), angular momentum
λ and z-component µ:

T (Eλ, µ; q) = −i (2λ+1)!!
qλ+1(λ+1)

∫
~j(~r) · ~∇×

(
~r × ~∇

)
(jλ(qr)Yλµ(r̂)) d3r, (7.22)

T (Mλ,µ; q) = − (2λ+1)!!
qλ(λ+1)

∫
~j(~r) ·

(
~r × ~∇

)
(jλ(qr)Yλµ(r̂)) d3r. (7.23)
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7.3 Angular momentum algebra

7.4 Putting it all together: Flux and density of
final states

7.5 Applications and examples

7.5.1 Application: Gamma transitions

7.5.2 Application: Photoemission of neutron

Here let’s consider a very specific example of the deuteron. To begin with, let’s
consider a toy model for the deuteron bound-state wave function: let ub(r) =
2κ3/2r exp(−κr), where κ =

√
2µ|Eb|/h̄, with µ = MN/2 is the reduced mass,

and Eb ≈ −2.2 MeV is the deuteron binding energy. This toy wave function is
wrong in the interior, but has the correct asymptotic fall off.

More generally, if we consider E1 capture, the operator is approximation r,
and the capture integral is∫ ∞

0

dr r22κ3/2 exp(−κr) sin kr = 4kκ3/2 3κ2 − k2

(κ2 + k2)3
. (7.24)

If we look at the integrand in some detail, we learn an important lesson. For
small enough k, sin kr ≈ kr and the integral becomes

∼ k
∫ ∞

0

dr r3 exp(−κr)

The integrand is peaked around r = 3/κ. For the deuteron, this is around 13
fm, far outside the nucleus! Furthermore, the integrand has a long tail, which
means one has to integrate far out for small k.

7.5.3 Application: Direct capture of neutron

7.6 The Lippmann-Schwinger equation, numer-
ically

Another way to write the Lippmann-Schwinger equation is

|Ψ〉 = |Ψ0〉+
1

E − Ĥ + iε
V̂ |Ψ0〉, (7.25)

where Ĥ = Ĥ0 + V̂ , with H0 typically the kinetic energy, Ĥ0|Ψ0〉 = E|Ψ0〉, and
Ĥ|Ψ〉 = E|Ψ〉.

We can do this numerically, by adapting the code we used to solve for scat-
tering.
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The advantage of this formulation of the Lippmann-Schwinger equation is
twofold. First, we get automatically the correct normalization if we choose |Ψ0〉
as a free solution with the correct normalization. Second, this formulation is
amenable to the Lanczos algorithm, making it tractable.



Part III

Scattering and capture with
Coulomb
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Appendix A

Sturm-Liouville differential
equations

An important input into the theory of scattering are a class of second-order
differential equations known as Sturm-Liouville problems. While these are a
standard part of any course of mathematical methods for physics, I review here
the crucial points. For more details consult your favorite mathematical methods
text.
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Appendix B

The three-dimensional
harmonic oscillator

Consider the harmonic oscillator potential V (r) = 1
2mω

2r2. Assume the usual
factorization of the wavefunction in spherical coordinates,

Ψnlm(r, θ, φ) =
unl(r)

r
Ylm(θ, φ). (B.1)

This yields the radial Schrödinger equation(
− h̄2

2m

d2

dr2
+
h̄2

2m

l(l + 1)

r2
+

1

2
mω2r2 − E

)
unl(r) = 0. (B.2)

Introducing the oscillator length

b =

√
h̄

mω
(B.3)

and the dimensionless variables y = r/b and ε = E/h̄ω, we get the scaled
equation (

−1

2

d2

dy2
+

1

2

l(l + 1)

y2
+

1

2
y2 − ε

)
u(y) = 0. (B.4)

As a first step, let
u(y) = yl+1f(y). (B.5)

This transforms the equation to(
−1

2

d2

dy2
− l + 1

y

d

dy
+

1

2
y2 − ε

)
f(y) = 0. (B.6)

As a next step, let x = y2, so that

d

dy
=
dx

dy

d

dx
= 2
√
x
d

dx
,

d2

dy2
= 4x

d2

dx2
+ 2

d

dx
, (B.7)
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yielding (
−2x

d2

dx2
− (2l + 3)

d

dx
+

1

2
x− ε

)
f(x) = 0 (B.8)

The final step is to take

f(x) = exp(−x/2)p(x) (B.9)

which leads to(
x
d2

dx2
+ (l + 3/2− x)

d

dx
− 1

4
(2l + 3− 2ε)

)
p(x) = 0. (B.10)

One can solve this by a power series, but the power series are just associated
Laguerre polynomials.

B.1 Associated Laguerre polynomials

Part of the trickiness of associated Laguerre polynomials is that there are two
different conventions for normalization. Let me start first with the Laguerre
polynomial Ln(x), which has the differential equation(

x
d2

dx2
+ (1− x)

d

dx
+ n

)
Ln(x) = 0. (B.11)

The Rodrigues representation has two different normalizations. The one fre-
quently used in quantum mechanics is

Ln(x) =
ex

n!

dn

dxn
(
xne−x

)
(B.12)

which has normalization Ln(0) = 1; but another normalization found in some
mathematical methods books is

Ln(x) = ex
dn

dxn
(
xne−x

)
(B.13)

which has normalization Ln(0) = n!.
This discussion carries over to the associated Laguerre polynomials, which

have the differential equation(
x
d2

dx2
+ (k + 1− x)

d

dx
+ n

)
Lkn(x) = 0. (B.14)

where k does not have to be an integer (but k = 0 gives us the regular Laguerre
polynomial); the two Rodrigues representations are

Lkn(x) =
x−kex

n!

dn

dxn
(
xn+ke−x

)
(B.15)
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which has normalization Lkn(0) = Γ(n+ k + 1)/n!Γ(k + 1).
(There is an alternate definition and normalization,

Lkn(x) = x−kex
dn

dxn
(
xn+ke−x

)
(B.16)

which has normalization Lkn(0) = Γ(n+ k + 1)/Γ(k + 1), but in the notes that
follow I will write the solutions in terms of the first normalization convention. )

The associated Laguerre polynomial is, as a series,

Lkn(x) =

n∑
m=0

(−1)m
1

m!

Γ(n+ k + 1)

Γ(n−m+ 1)Γ(k +m+ 1)
xm. (B.17)

Note that the associated Laguerre polynomial can be written in terms of
confluent hypergeometric series.

The normalization integral for the associated Laguerre polynomial is∫ ∞
0

e−xxk+1
(
Lkn(x)

)2
dx =

Γ(n+ k + 1)

n!
. (B.18)

B.1.1 Recursion relations

It’s useful to have various recursion relations. For example, examining (B.17)
one finds

Lk+1
n−1(x) = − d

dx
Lkn(x). (B.19)

Other useful recursion relations are

xLkn(x) = (2n+ k + 1)Lkn(x)− (n+ k)Lkn−1(x)− (n+ 1)Lkn+1(x) (B.20)

which can also be rewritten as

(n+ 1)Lkn+1(x) = (2n+ k + 1− x)Lkn(x)− (n+ k)Lkn−1(x). (B.21)

There is also the derivative recursion

x
d

dx
Lkn(x) = nLkn(x)− (n+ k)Lkn−1(k). (B.22)

Alternately, one can use a generating function

exp(−xz/(1− z))
(1− z)k+1

=

∞∑
n=0

Lkn(x)zn (B.23)

which leads to
∞∑
n=0

Lk+1
n (x)zn =

1

1− z

∞∑
n=0

Lkn(x)zn (B.24)

or the following recursion relations:

Lkn(x) = Lk+1
n − Lk+1

n−1, (B.25)

Lk+1
n (x) =

n∑
i=0

Lki (x). (B.26)
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B.2 Application to the 3D harmonic oscillator

Looking back at Eq. B.10, if we define ε = 2n+l+3/2, then we get the associated
Laguerre equation B.14 with k = l + 1/2. Then we get the special form

Ll+1/2
n (x) =

n∑
m=0

(−1)m
1

m!

Γ(n+ l + 1 + 1/2)

Γ(n−m+ 1)Γ(l +m+ 1 + 1/2)
xm. (B.27)

For this we use Γ(j + 1/2) =
√
π (2j−1)!!

2j to get

Ll+1/2
n (x) =

n∑
m=0

(−1)m
1

m!

(2n+ 2l + 1)!!

2n−m(n−m)!(2m+ 2l + 1)!!
xm. (B.28)

To get for arbitrary n, one should use the recursion (B.21), starting with

L
l+1/2
0 (x) = 1, (B.29)

L
l+1/2
1 (x) = l +

3

2
− x, (B.30)

and then recurse up to n.
Finally, the radial wavefunction is, up to a normalization

unl(r) = Nnl(r/b)
l+1 exp(−1

2
(r/b)2)Ll+1/2

n ((r/b)2) (B.31)

This must be normalized by ∫ ∞
0

|unl(r)|2dr = 1. (B.32)

If we let z = (r/b)2, then we have the normalization condition

1

2
N2
nlb

3

∫ ∞
0

e−zzl+1/2
(
Ll+1/2
n (z)

)2

dz = 1 (B.33)

which, using the normalization integral (B.18) for the associated Laguerre poly-
nomial, gives

Nnl =

√
2n!

b3Γ(n+ l + 3/2)
, (B.34)

or, using the double-factorial,

Nnl =

√
2n+l+2n!

b3
√
π(2n+ 2l + 1)!!

, (B.35)

How to validate wave functions. Whenever one writes a numerical routine to
generate a function, one should validate it. Here is how I validated my person
routines for radial harmonic oscillator wave functions:
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Figure B.1: Radial spherical harmonic oscillator wavefunctions un(r) for n =
0, 100, 300, with length parameter b = 1.

• I wrote routines for generating the associated Laguerre polynomials using
the series expansion (B.17) and the recursion (B.21), and then compared for
relatively low ` and n.
• For general use, recursion should be more stable. To test further the full wave
functions, as given by (B.31), you should use quadrature to check they satisfy
the orthonormality condition,∫ ∞

0

un′`(r)un`(r) dr = δn′n. (B.36)

Such a test is also useful to make sure your numerical quadrature routines are
well matched to your wave functions; if there are too few points or an inadequate
range, (B.36) will be significantly violated.
• Finally, you should also test some of the matrix elements in the next section,
such as

〈n′, `|r|n, `〉 =

∫ ∞
0

un′`(r) r un`(r) dr. (B.37)

That will aid you to have confidence both in the wave function and in the matrix
elements.

B.3 Advanced calculation of matrix elements

While using the recursion (B.21) to get the Laguerre associated polynomial and
then (B.31) to get the full radial wave function works, for large r/b and large n it
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breaks down. This can be easily understood. If you look at Fig. B.1 (which just
reproduces Fig. 5.2), you can see that for large n, the wave functions extend out
to large r/b, roughly 2

√
n. However the Gaussian term exp(−r2/2b2) in (B.31)

will get very small, which in turn means the Laguerre associated polynomial
must get correspondingly large. In practical computations this leads to errors
or even NaN (not-a-number) flags.

To address this issue, I propose (but still have to test) a modified recursion.
For some targeted n, define

L̃km(x) ≡ exp
(
−mx

2n

)
Lkm(x) = zmLkm(x), (B.38)

where z = exp(−x/2n), which for large x = (r/b)2 i is not as tiny as exp(−x/2)
and therefore less problematic, so that

L̃kn(x) ≡ exp
(
−x

2

)
Lkn(x).

Then the recursion relation (B.21) becomes modified to

(m+ 1)L̃km+1(x) = (2m+ k + 1− x)z L̃km(x)− (m+ k)z2 L̃km−1(x). (B.39)

I believe with this recursion the growth in Lkm(x) with m is compensated by
multiplication by z, so that the final result is more tractable.

B.4 Matrix elements

I can use the recursion relations and definitions of the h.o. radial wavefunction
to compute various matrix elements I need.

For example, one can derive that

rRnl =
Nnl
Nn,l+1

Rn,l+1 −
Nnl

Nn−1,l+1
Rn−1,l+1. (B.40)

Then one easily gets the following:

〈n, l + 1|r|nl〉 =
Nnl
Nn,l+1

=
√
n+ l + 3/2, (B.41)

〈n− 1, l + 1|r|nl〉 = − Nnl
Nn−1,l+1

= −
√
n. (B.42)

Similarly, I need the matrix element〈
n′, l + 1

∣∣∣∣ ddr − l

r

∣∣∣∣n, l〉 (B.43)

Using the above one can show that(
d

dr
− l

r

)
Rnl = −rRnl − 2

Nnl
Nn−1,l+1

Rn−1,l+1 (B.44)
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which yield 〈
n, l + 1

∣∣∣∣ ddr − l

r

∣∣∣∣n, l〉 = −
√
n+ l + 3/2, (B.45)〈

n− 1, l + 1

∣∣∣∣ ddr − l

r

∣∣∣∣n, l〉 = −
√
n (B.46)



Appendix C

Special functions

C.1 Spherical Bessel functions and how to com-
pute them

j`(x) = 2`x`
∞∑
s=0

(−1)s
1

s!(2s+ 2`+ 1)!

(x
2

)2s

(C.1)

= 2`x`
[
`!

(2`)!
− (`+ 1)!

(2`+ 3)!

(x
2

)2

+
(`+ 2)!

(2`+ 5)!

(x
2

)4

+ . . .

]
(C.2)

and

n`(x) = − 1

2`x`+1

[∑̀
s=0

(2`− 2s)!

s!(`− s)!
x2s + (−1)`

∞∑
s=`+1

(−1)s
(s− `)!

s!(2s− 2`)!
x2`

]
(C.3)

= − (2`)!

2``!

1

x`+1
+ . . . ... (C.4)

We may have need of the recurrance relations

(2`+ 1)
d

dx
f`(x) = `f`−1(x)− (`+ 1)f`+1 (C.5)

d

dx
f`(x) = −f`+1(x) +

`

x
f`(x) (C.6)

f`−1(x) + f`+1(x) =
2`+ 1

x
f`(x), (C.7)

where f` is either the spherical Bessel or Neumann function. When we deal
with the finite square well, we will also have need for the following (you should
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derive from the above):

d

dx
(xf`(x)) =

`+ 1

x
xf`(x)− xf`+1(x) (C.8)

d

dx
(xf`(x)) =

1

2`+ 1
((`+ 1)xf`−1(x)− `xf`+1(x)) (C.9)

C.2 Computing

To compute the spherical Bessel functions, we use the recurrance relation (C.7).
The problem is, this recurrance is stable upwards, that is for increasing n, only
for the spherical Neumann functions. What this means is that, for arbitrary x,
one can start with known spherical Neumann functions

n0(x) = −cosx

x
, n1(x) = −cosx

x2
− sinx

x
, (C.10)

and applying (C.7) can one get n`(x) for ` = 2, 3, 4, . . .. If, however, one applies
the upward recursion to spherical Bessel functions, from numerical noise will
grow a ‘contamination’ of Neumann functions.

Instead, I propose an alternate approach. We see that we can write both
spherical Bessel and spherical Neumann functions in the form

y`(x) =
A`(x) sinx+B`(x) cosx

x`+1
(C.11)

where A`(x), B`(x) are polynomials; from (C.7) one easily gets the polynomial
recursion relation

A`(x) = (2`− 1)A`−1(x)− x2A`−2(x), (C.12)

with the same for B`(x). To start the recursion, for spherical Bessel functions,

A0 = 1, A1 = 1, , B0 = 0, B1 = −x,

and for spherical Neumann functions,

A0 = 0, A1 = −x, B0 = −1, B1 = −1.

The stability of this method needs to be investigated, but for modest ` I am
pretty sure it should be relatively stable. My tests against online calculators
show agreement to ten decimal places for a fairly wide range of values, so it
seems to be stable.

The beauty is one can simplify this even further; by looking at the starting
polynomials, we can see

j`(x) =
A`(x) sinx+B`(x) cos(x)

x`+1
, (C.13)

n`(x) =
B`(x) sin(x)−A`(x) cos(x)

x`+1
, (C.14)

if we use the A,B for spherical Bessel functions. Probably someone noticed this
a long time ago....



Appendix D

Cauchy’s residue theorem
and evaluation of integrals

This appendix is not a substitute for a proper course or monograph on complex
analysis.

Cauchy’s residue theorem states that, if one integrates along a counterclock-
wise path that encloses a pole at z0 in the complex plane, then∮

f(z)

z − z0
dz = 2πif(z0). (D.1)

This can be used to evalulate some real integrals. As an example, consider

I =

∫ ∞
0

1

x2
sin ax sin bx dx

Let’s assume a ≥ b > 0, and also a, b both real. The integrand is even, so we go
along the entire real axis:

I =
1

2

∫ ∞
−∞

1

x2
sin ax sin bx dx (D.2)

Now using a trig identity, and substituting in A = a − b and B = a + b, both
positive by assumption.

=
1

4

∫ ∞
−∞

1

x2
(cosAx− cosBx) dx (D.3)

=
1

8

∫ ∞
−∞

1

x2

(
eiAx + e−iAx − eiBx − e−iBx

)
dx. (D.4)

Now, in order to get ready for applying Cauchy’s theorem, we write this as (with
a little rearrangement)

= lim
ε→0+

1

8

∫ ∞
−∞

1

x2 + ε2
(
eiAx − eiBx + e−iAx − e−iBx

)
dx. (D.5)
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The superscript + denotes we keep the infinitesmal quantity ε positive. We
rewrite

1

x2 + ε2
=

1

2iε

[
1

x− iε
− 1

x+ iε

]
(D.6)

The first term has a pole at z = iε which is in the upper half complex plane,
that is, that part with =z > 0, because we have assume ε ≥ 0. The second term
has a pole at z = −iε, which is the lower half complex plane, with =z < 0.

Now we want to imagine taking a very, very large closed path in the complex
plane. Part of the path will be along the real axis, but then we will sweep over
and around either the upper half plane, or the lower half plane. Now because
A,B are real and positive, then eiAz and eiBz → 0 for =z large and positive,
that is, in the upper half-plane. So if we take our path along the real axis, and
then loop over the upper half-plane, those terms will vanish except along the
real axis. [Note: some day I will add a figure illustrating this.]

So we write:

1

8

∫ ∞
−∞

1

x2 + ε2
(
eiAx − eiBx

)
dx (D.7)

=
1

8

∮
1

2iε

[
1

z − iε
− 1

z + iε

] (
eiAz − eiBz

)
dz (D.8)

where the path is in the upper-half plane. Of the two poles, only the first one is
in the upper half plane, hence, finally applying Cauchy’s residue theorem, these
terms become

1

8

1

2iε
2πi

(
eiA(iε) − eiB(iε)

)
=

π

8ε

(
e−Aε − e−Bε

)
. (D.9)

Taking the limit ε→ 0+, we get

π

8
(B −A) =

πb

4
. (D.10)

I leave it as a healthy exercise for the reader to show the remaining terms yield
the same value; the only wrinkle is that the path in the lower half plane is
clockwise, which gives us a negative sign in Cauchy’s residue theorem. Adding
together the final result is

I =
πb

2



Appendix E

Orthogonal polynomials

In physics in general, and in quantum mechanics in particular, we are familiar
with families of orthogonal functions and polynomials: Laguerre, Legendre,
Hermite, and other polynomials and associated functions are useful tools. But
the general theory of orthogonal polynomials is an astonishingly rich and deep
field, with applications not only to scattering but to other topics as diverse as
random matrices. Here I will only barely touch upon them.

If you have taken a typical course on quantum mechanics–and you ought to
have, in order to be able to use this text–you are familiar with the idea of linear
vector spaces of functions. The basic idea is that one can consider a space of
function, where one can expand any function f(x) in the space in a set of basis
functions {φn(x)},

f(x) =
∑
n

cnφn(x), (E.1)

and where some definition of an inner product between functions allows you to
find the coefficients cn. One of the most widespread examples are Fourier series.
We call such a function space a Hilbert space.

Orthogonal polynomials are an example of this. Define an inner product
with a weight function w(x):

(f, g) ≡
∫ b

a

f∗(x)w(x)g(x) dx (E.2)

Despite the complex conjugate, we will general restrict ourselves to real-valued
functions in this discussion. In order for this to be a well-constructed inner
product, the weight function should be positive-definite.

Now that we have an inner product, we have a clear idea of when two
functions are “orthogonal” to each other:

(f, g) ≡
∫ b

a

f∗(x)w(x)g(x) dx = 0.
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Now consider that we have a set of polynomials, pn(x), each labeled by the
order, so that

pn(x) =

n∑
j=0

p
(n)
j xj . (E.3)

For now let’s assume the coefficients p
(n)
j are real, though this is not required. We

want these polynomials to be orthogonal to each other, though not necessarily
normalized, that is, ∫ b

a

w(x)pm(x)pn(x) dx = Nnδm,n. (E.4)

We can characterize this through the moments of the inner product, that is,

µk =

∫ b

a

xkw(x) dx, (E.5)

and, in fact, one of the many applications of orthogonal polynomials is to a
topic called the classical moment problem. Then the orthogonality condition
becomes

m∑
j=0

n∑
k=0

p
(m)
j p

(n)
k µj+k = Nmδm,n. (E.6)

One can easily construct the polynomials one by one. Let’s suppose we’ve

constructed polynomials up through order n−1, so that we know p
(m)
j for m < n.

Then the conditions for the coefficients of pn(x) are

m∑
j=0

n∑
k=0

p
(m)
j p

(n)
k µj+k = 0. (E.7)

One way to think about this is to think of the coefficients as a vector, ~pm, and
construct from the moments a positive-definite matrix

Mj,k = µj+k; (E.8)

then one is orthogonalizing each new vector against the old ones by

~pTm ·M · ~pn = 0 (E.9)

for m 6= n, which leads to a Gram-Schmidt-like orthogonalization process. One
difference is that we do not require normalization; this is simply a choice that
is historical.

While such a process is fairly intuitive, at least to someone who has been
exposed to linear functions spaces in quantum mechanics or some mathematical
methods course, less obvious is the recursion relation, which says that, given
some value of x and knowing the values of pn−1(x) and pn−2(x) we can calculate
pn(x).
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It should be self-evident that any polynomial f(x) of order k can be written
as a linear combination of polynomials p0(x) through pk(x),

f(x) =

k∑
m=0

cmpm(x), (E.10)

and in fact we can find the expansion coefficients through our inner product:

cm =
(f(x), pm(x))

(pm(x), pm(x))1/2
=

1√
Nm

∫ b

a

w(x)f(x)pm(x) dx, (E.11)

where we’ve put in the explicit normalization of pm(x).
We’re now going to use this in two different ways. The first is to prove a

lemma, which is that not only is any orthogonal polynomial pn(x) orthogonal
to all pm(x) for m 6= n, it is also orthogonal to any polynomial of order m < n.
This sounds surprising at first, but consider a polynomial g(x) of order m. It
can be expanded as usual:

g(x) =

m∑
j=0

djpj(x), (E.12)

but pn(x) with n > m is orthogonal to each term in this expansion and hence
is orthogonal to g(x).

Now let’s consider pn(x). To get the term proportional to xn, we multiply
pn−1 by x, that is, there should be some coefficient an such that

pn(x)− anxpn−1(x) (E.13)

is a polynomial of order n− 1 (because we’ve subtracted off the xn part). Thus
we know

pn(x) = anxpn−1(x) +

n−1∑
m=0

cmpm(x). (E.14)

We can find the coeffcients cm by the above procedure:

cm = N−1/2
m

∫ b

a

w(x) (pn(x)− anxpn−1(x)) pm(x) dx

= −anN−1/2
m

∫ b

a

w(x)pn−1(x)xpm(x) dx, (E.15)

because by definition pn(x) and pm(x) are orthogonal for m < n. Furthermore,
xpm(x) is a polynomial of order m+1, hence by our lemma above it is orthogonal
to pn−1(x) for any m < n− 2. Thus we can write

pn(x) = anxpn−1(x) + bnpn−1(x) + cnpn−2(x). (E.16)

This three-term recursion relation is what ties orthogonal polynomials to
the J-matrix method of scattering, as well as other topics such as the Lanczos
algorithm for diagonalization, both of which are couched in terms of tridiagonal
matrices.


