A practical Time-Series Tutorial with MATLAB

Michalis Vlachos
IBM T.J. Watson Research Center
Hawthorne, NY, 10532

Tutorial ITime-Series with Matlab

About this tutorial

- The goal of this tutorial is to show you that time-series research (or research in general) can be made fun, when it involves visualizing ideas, that can be achieved with concise programming.
- Matlab enables us to do that.

Will I be able to use this MATLAB right away after the tutorial?

I am definately smarter than her, but I am not a timeseries person, per-se. I wonder what I gain from this tutorial.

Disclaimer

- I am not affiliated with Mathworks in any way
- ... but I do like using Matlab a lot
- since it makes my life easier
- Errors and bugs are most likely contained in this tutorial.
- I might be responsible for some of them.

Tutorial | Time-Series with Matlab

Timeline of tutorial

- Matlab introduction
- I will try to convince you that Matlab is cool
- Brief introduction to its many features
- Time-series with Matlab
- Introduction
- Time-Series Representations
- Distance Measures
- Lower Bounding

- Clustering/Classification/Visualization
- Applications

Tutorial |Time-Series with Matlab

PART I: Matlab Introduction

- R Tưorial Time-Series with Mallab

Why does anyone need Matlab?

- Matlab enables the efficient Exploratory Data Analysis (EDA)
"Science progresses through observation" -- Isaac Newton

Isaac Newton

John Tukey
"The greatest value of a picture is that is forces us to notice what we never expected to see" -- John Tukey

- Interpreted Language
- Easy code maintenance (code is very compact)
- Very fast array/vector manipulation
- Support for OOP
- Easy plotting and visualization
- Easy Integration with other Languages/OS's
- Interact with C/C++, COM Objects, DLLS
- Build in Java support (and compiler)
- Ability to make executable files
- Multi-Platform Support (Windows, Mac
- Extensive number of Toolboxes
- Image, Statistics, Bioinformatics, etc

P.

History of Matlab (MATrix LABoratory)

"The most important thing in the programming language is the name. I have recently invented a very good name and now I am looking for a suitable language". -- R. Knuth

Programmed by Cleve Moler as an interface for EISPACK \& LINPACK

Cleve Moler

- 1957: Moler goes to Caltech. Studies numerical Analysis
- 1961: Goes to Stanford. Works with G. Forsythe on Laplacian eigenvalues.
- 1977: First edition of Matlab; 2000 lines of Fortran
- 80 functions (now more than 8000 functions)
" 1979: Met with Jack Little in Stanford. Started working on porting it to C
- 1984: Mathworks is founded

Video:http://www.mathworks.com/company/aboutus/founders/origins of matlab wm.html

- Aerospace, defense, computers, communication, biotech
- Mathworks still is privately owned
- Used in >3,500 Universities, with $\mathbf{~ 5 0 0 , 0 0 0}$ users worldwide
- 2004 Revenue: 300 M.
- 2004 Employees: 1,000
- Pricing:
- ~2000\$ (Commercial use),
- ~100\$ (Student Edition)

1. Money is better than poverty, if only for financial reasons. -Woody Allen

- T Tutorial ITime-Series with Matlab

Who needs Matlab?

- R\&D companies for easy application deployment
- Professors
- Lab assignments
- Matlab allows focus on algorithms not on language features

- Students

- Batch processing of files
- No more incomprehensible perl code!
- Great environment for testing ideas
- Quick coding of ideas, then porting to C/Java etc
- Easy visualization
- It's cheap! (for students at least...)

Starting up Matlab

- Dos/Unix like directory navigation
- Commands like:
- cd
- pwd
- mkdir

- For navigation it is easier to just copy/paste the path from explorer E.g.: cd 'c:\documents\'

| - |Tutorial | Time-Series with Matlab

Matlab Environment

Workspace:

Loaded Variables/Types/Size

 Matlab Environment

 Starting with Matlab

- Everything is arrays
- Manipulation of arrays is faster than regular manipulation with for-loops
$a=\left[\begin{array}{lllllllll}1 & 2 & 3 & 4 & 5 & 6 & 7 & 9 & 10\end{array}\right] \%$ define an array

Tutorial | Time-Series with Matlab

Populating arrays

- Plot sinusoid function

```
\(a=[0: 0.3: 2 * \mathrm{pi}] \%\) generate values from 0 to 2 pi (with step of 0.3 )
\(\mathrm{b}=\cos (\mathrm{a}) \%\) access cos at positions contained in array [a]
plot (a,b) \% plot a (x-axis) against b (y-axis)
```


Related:
linspace $(-100,100,15)$; $\%$ generate 15 values between -100 and 100

- Set array elements

|- T Tutorial | Time-Series with Matlab

2D Arrays

- Can access whole columns or rows
- Let's define a 2D array

Row-wise access

Column-wise access

Column-wise computation

- For arrays greater than 1D, all computations happen column-by-column

$$
\begin{aligned}
& \text { >> max (a) } \\
& \text { ans = } \\
& 3
\end{aligned}
$$

Tutorial I Time-Series with Matlab

Concatenating arrays

- Column-wise or row-wise

- \mid Tutorial | Time-Series with Matlab

Initializing arrays

- Create array of ones [ones]

```
\(\gg a=\) ones \((1,3)\)
\(\mathrm{a}=\)
    \(\begin{array}{lll}1 & 1 & 1\end{array}\)
>> \(a=\operatorname{ones}(1,3)\) *inf
\(\mathrm{a}=\)
    Inf Inf Inf
\(a=\)
Inf Inf Inf
```

- Create array of zeroes [zeros]
- Good for initializing arrays

```
>> a = ones \((2,2) * 5\);
```

$\mathrm{a}=$
$\begin{array}{ll}5 & 5 \\ 5 & 5\end{array}$

>> $a=\operatorname{zeros}(3,1)+\left[\begin{array}{lll}1 & 2 & 3\end{array}\right]^{\prime}$
$a=$
1
2
3

Tutorial | Time-Series with Matlab

Reshaping and Replicating Arrays

- Changing the array shape [reshape]
- (eg, for easier column-wise computation)

```
>> a = [lllllll}1\begin{array}{llll}{1}&{3}&{4}&{5}\end{array}
>> reshape (a,2,3)
ans =
\begin{tabular}{ll}
3 & 5 \\
4 & 6
\end{tabular}
```

- Replicating an array [repmat]

```
>> a = [lllll}1023]
>> repmat(a,1,2)
ans = 1 1 2 % 3
ans \begin{tabular}{lllllll}
1 & 2 & 3 & 1 & 2 & 3
\end{tabular}
```

>> repmat (a, 2,1)
ans $=$

1	2	
1	2	3

reshape(X,[M,N]): [M, N] matrix of columnwise version of X
>> repmat (a, 2,1)
ans $=$
3

 Useful Array functions

- Last element of array [end]

- Length of array [length]

```
>> length(a)
ans =
4
```

- Dimensions of array [size]
>> [rows, columns] = size(a)
rows $=1$
columns $=4$

Tutorial I Time-Series with Matlab

Useful Array functions

- Find a specific element [find] **

```
>> a = [llllllllll
>> b = find (a==2)
b =
    3 7
```

- Sorting [sort] ***

idx_setosa

An array of zeros and ones indicating the positions where the keyword 'setosa' was found

> >> grid on; \% show grid on axis
> >> rotate3D on; \% rotate with mouse

(Tutorial | Time-Series with Matlab

Changing Plots Visually

|- - Tutorial | Time-Series with Matlab

Changing Plots Visually (Example)

1.- Tutorial Time-Series with Matlab
 Changing Figure Properties with Code

- GUl's are easy, but sooner or later we realize that coding is faster
>> $\mathrm{a}=$ cumsum (randn $(365,1))$; \% random walk of 365 values

If this represents a year's worth of measurements of an imaginary quantity, we will change:

- x-axis annotation to months
- Axis labels
- Put title in the figure
- Include some greek letters in the title just for fun

[^0]

- - Tutorial Time-Series with Matlab

Changing Figure Properties with Code

- Axis annotation to months

The result ...

>> set (gca,'xticklabel', ['Jan'; ... Feb'; 'Mar'])

Figure No. 1 Eile Edit Yiew Insert Iools Window Help

I Real men do it command-line...-Anonymous

- You can also achieve the same result with Matlab code

[^1]

[^2]

[^3]
data $=[1: 10]$;
data $=$ repmat (data, 10,1); \% create data
surface (data, 'FaceColor', [1111], 'Edgecolor', [1001$]$); \% plot data
view (3) ; grid on; \% change viewpoint and put axis lines

Tutorial | Time-Series with Matlab

Creating .m files

- Standard text files

- Script: A series of Matlab commands (no input/output arguments)
- Functions: Programs that accept input and return output

Tutorial Time Series with Matlab

Functions in .m scripts

- When we need to:
- Organize our code
- Frequently change parameters in our scripts

function $[a, b]=$ myFunc (data, $x, y)$ \% pass \& return more arguments

Tutorial I Time-Series with Matlab

Cell Arrays

- Cells that hold other Matlab arrays
- Let's read the files of a directory

```
>> \(\mathbf{f}=\operatorname{dir}(\) '*. dat') \(\%\) read file contents
```

$\mathrm{f}=$
15x1 struct array with fields:
name
date
bytes
isdir
for $i=1$: length(f)
$\mathrm{a}\{\mathrm{i}\}=\operatorname{load}(\mathrm{f}(\mathrm{i})$. name) ;
$\mathrm{N}=$ length(a\{i\});
plot3([1:N], a\{i\}(:,1), a\{i\}(:,2), ...
' $\mathrm{r}-$ ', 'Linewidth', 1.5);
grid on;
pause;
cla;
end

|- | Tứorial Time-Series with Mallab

Reading/Writing Files

- Load/Save are faster than C style I/O operations
- But fscanf, fprintf can be useful for file formatting or reading non-Matlab files

```
fid = fopen('fischer.txt', 'wt');
for i=1:length(species),
    fprintf(fid, '%6.4f %6.4f %6.4f %6.4f %s\n', meas(i,:), species{i});
end
fclose(fid);
```

Output file:

Elements are accessed column-wise (again...)
$\mathbf{x}=0: .1: 1 ; y=[x ; \exp (x)]$; fid $=$ fopen('exp.txt', 'w'); fprintf(fid,'\%6.2f \%12.8f\n',y); fclose(fid);

Flow Control/Loops

- if (else/elseif) , switch
- Check logical conditions
- while
- Execute statements infinite number of times
- for
- Execute statements a fixed number of times
- break, continue
- return
- Return execution to the invoking function

Tutorial I Time-Series with Matlab
 Matlab Profiler

- Find which portions of code take up most of the execution time
- Identify bottlenecks
- Vectorize offending code

Hints \&Tips

- There is always an easier (and faster) way
- Typically there is a specialized function for what you want to achieve
- Learn vectorization techniques, by 'peaking' at the actual Matlab files:
- edit [fname], eg
- edit mean
- edit princomp
> - Matlab Help contains many vectorization examples

- Not as frequently required as in C/C++
- Set breakpoints, step, step in, check variables values

Set breakpoints				
4 C:Documents and Settings LAdministrator My Docume... $-\square$				
File Edit Yiew Iext Debug Breakpoints Web Window Help				
findPeriod				Col 1

Advanced Features - Making Animations (Example)

- Create animation by changing the camera viewpoint


```
azimuth = [50:100 99:-1:50]; % azimuth range of values
for k = 1:length(azimuth),
    plot3(1:length(a), a(:,1), a(:,2), 'r', 'Linewidth',2);
    grid on;
    view (azimuth(k),30); % change new
    M(k) = getframe; % save the frame
end
movie (M, 20); % play movie 20 times
```


- Tutorial I Time-Series with Matlab

Advanced Features - GUl's

- Built-in Development Environment

- Buttons, figures, Menus, sliders, etc

Several Examples in Help

- Directory listing
- Address book reader
- GUI with multiple axis

Advanced Features - Using Java

- Matlab is shipped with Java Virtual Machine (JVM)
- Access Java API (eg I/O or networking)
- Import Java classes and construct objects

- Pass data between Java objects and Matlab variables

1) | Tutorial | Time-Series with Matlab

Advanced Features - Using Java (Example)

- Stock Quote Query

- Connect to Yahoo server
- http://www.mathworks.com/matlabcentral/fileexchange/loadFile.do? objectld=4069\&objectType=file

```
                                    disp('Contacting YAHOO server using ...');
                                    disp(['url = java.net.URL(' urlString ')']);
end;
url = java.net.URL(urlString);
try
    stream = openStream(url);
    ireader = java.io.InputStreamReader(stream);
    breader = java.io.BufferedReader(ireader);
    connect_query_data= 1; %connect made;
catch
    connect_query_data= -1; %could not connect
case;
    disp(['URL: ' urlString]);
    error(['Could not connect to server. It may
be unavailable. Try again later.']);
    stockdata={};
    return;
end
disp('Contacting YAHOO server using ...')
disp(['url = java.net.URL(' urlString ')']);
end;
url = java.net.URL(urlString),
try
stream \(=\) openStream(url)
ireader = java.io.InputStreamReader(stream)
connect_query_data= 1; \%connect made;
catch
connect_query_data= -1; \%could not connect
case
error(['Could not connect to server. It may
be unavailable. Try again later.']);
ata=(1);
end
```


IAT TTuinal Time Series win Malab

Matlab Toolboxes

- You can buy many specialized toolboxes from Mathworks
- Image Processing, Statistics, Bio-Informatics, etc
- There are many equivalent free toolboxes too:
- SVM toolbox
- http://theoval.sys.uea.ac.uk/~gcc/svm/toolbox/
- Wavelets
- http://www.math.rutgers.edu/~ojanen/wavekit/
- Speech Processing
- http://www.ee.ic.ac.uk/hp/staff/dmb/voicebox/voicebox.html
- Bayesian Networks
- http://www.cs.ubc.ca/~murphyk/Software/BNT/bnt.html

Tutorial Time-Series with Matlab
 In case I get stuck...

help [command] (on the command line) eg. help fft

- Menu: help -> matlab help
- Excellent introduction on various topics
- Matlab webinars
- http://www.mathworks.com/company/events/archived webinars.html?fp
- Google groups
- comp.soft-sys.matlab
- You can find *anything* here
- Someone else had the same problem before you!

PART II: Time Series Analysis

Eight percent of success is showing up.

Tutorial I Time-Series with Matlab
What is a time-series
Definition: A sequence of measurements over time

- Medicine
- Stock Market
- Meteorology
- Geology
- Astronomy
- Chemistry
- Biometrics
- Robotics

Time-Series and Matlab

Time-series can be represented as vectors or arrays

- Fast vector manipulation
- Most linear operations (eg euclidean distance, correlation) can be trivially vectorized
- Easy visualization
- Many built-in functions
- Specialized Toolboxes

Tutorial I Time-Series with Matlab Introduction

-PART II: Time Series Matching

- A. Truional Time Series with Mallab
 Basic Data-Mining problem

Today's databases are becoming too large. Search is difficult. How can we overcome this obstacle?

Basic structure of data-mining solution:

- Represent data in a new format
- Search few data in the new representation
- Examine even fewer original data
- Provide guarantees about the search results
- Provide some type of data/result visualization

Classification: "To which group is a time-series most 'similar' to?"

| Tutorial | Time-Series with Matlab

Hierarchical Clustering

- Very generic \& powerful tool
- Provides visual data grouping

Pairwise
distances

1. Merge objects with smallest distance

2. Reevaluate distances
3. Repeat process
```
z = linkage (D) ;
\(\mathrm{H}=\) dendrogram (Z);
```


- R Tưorial Time-Series with matlab

Partitional Clustering

- Faster than hierarchical clustering
- Typically provides suboptimal solutions (local minima)
- Not good performance for high dimensions

K-Means Algorithm:

1. Initialize \boldsymbol{k} clusters (k specified by user) randomly.
2. Repeat until convergence
3. Assign each object to the nearest cluster center.
4. Re-estimate cluster centers.

See: kmeans

- . Tutorial I Time-Series with Matlab

K-Means Demo

() Tutorial I Time-Series with Matlab

K-Means Clustering for Time-Series

- So how is kMeans applied for Time-Series that are high-dimensional?
- Perform kMeans on a compressed dimensionality

Tutorial I Time-Series with Matlab

Classification

Typically classification can be made easier if we have clustered the objects

Tutorial | Time-Series with Matlab

Notion of Similarity I

- Solution to any time-series problem, boils down to a proper definition of *similarity*

Similarity is always subjective.
(i.e. it depends on the application)

Tutiorial 1 Time-Series with Matlab

Euclidean Distance

- Most widely used distance measure
- Definition: $L_{2}=\sqrt{\sum_{i=1}^{n}(a[i]-b[i])^{2}}$

L2 $=\operatorname{sqrt}(\operatorname{sum}((a-b) \cdot \wedge 2)) ; \%$ return Euclidean distance

Euclidean Distance (Vectorization)

Question: If I want to compare many sequences to each other do I have to use a for-loop?
Answer: No, one can use the following equation to perform matrix computations only...

$$
\|A-B\|=\operatorname{sqrt}\left(\|A\|^{2}+\|B\|^{2}-2^{*} A \cdot B\right)
$$

A: DxM matrix
B: DxN matrix
Result is MxN matrix

$a \mathrm{a}=\operatorname{sum}(\mathrm{a} . * \mathrm{a}) ; \quad \mathrm{b}=\operatorname{sum}(\mathrm{b} . * \mathrm{~b}) ; \quad \mathrm{ab}=\mathrm{a}^{\prime *} \mathrm{~b}$
$d=\operatorname{sqrt}\left(r e p m a t\left(a a^{\prime},[1 \operatorname{size}(b b, 2)]\right)+\operatorname{repmat}(b b,[\operatorname{size}(a a, 2) 1])-2 * a b\right)$;
|- | Tutorial I Time-Series with Matlab
Data Preprocessing (Baseline Removal)

$a=a-\operatorname{mean}(a) ;$

LATYưoral Time Series with Malabo
 Data Preprocessing (Rescaling)

Euclidean distance $=17.6$

$a=a . / \operatorname{std}(a) ;$

Tutorial I Time-Series with Matlab

Dynamic Time-Warping (Motivation)

Euclidean distance or warping cannot compensate for small distortions in time axis.

According to Euclidean distance B is more similar to A than to C

Solution: Allow for compression \& decompression in time

- - |Tưorial Time-Series with Matab
 Dynamic Time-Warping

First used in speech recognition for recognizing words spoken at different speeds
---Maat--Ilaabb

Same idea can work equally well for generic time-series data

Dynamic Time-Warping (how does it work?)

The intuition is that we copy an element multiple times so as to achieve a better matching

Euclidean distance
$\mathrm{T} 1=[1,1,2,2]$
$\mathrm{T} 2=[1,2,2,2] \quad \mathrm{d}=1$

One-to-one linear alignment
Warping distance
$\mathrm{T} 1=[1,1,2,2]$
$\mathrm{T} 2=[1,2,2,2] \quad \mathrm{d}=0$

Dynamic Time-Warping (implementation)

It is implemented using dynamic programming. Create an array that stores all solutions for all possible subsequences.

Tutorial | Time-Series with Matlab

Dynamic Time-Warping (Examples)

So does it work better than Euclidean? Well yes! After all it is more costly..

- Tưtorial | Time-Series with Matlab
 Dynamic Time-Warping (Can we speed it up?)

Complexity is $O\left(n^{2}\right)$. We can reduce it to $O(\delta n)$ simply by restricting the warping path.

We now only fill only a small portion of the array

- Tutorial Time-Series with Matlab

Dynamic Time-Warping (restricted warping)

The restriction of the warping path helps:
A. Speed-up execution
B. Avoid extreme (degenerate) matchings
C. Improve clustering/classification
 accuracy

10% warping is adequate
Warping Length

| - Tutiorial | Time-Series with Matlab
 Longest Common Subsequence (LCSS)

With Time Warping extreme values (outliers) can destroy the distance estimates. The LCSS model can offer more resilience to noise and impose spatial constraints too.

Matching within $\bar{\delta}$ time and ε in space
Everything that is outside the bounding envelope can never be matched

- | Tutorial I Time-Series with Matlab

Longest Common Subsequence (LCSS)
LCSS is more resilient to noise than DTW.

Disadvantages of DTW:

A. All points are matched
B. Outliers can distort distance
C. One-to-many mapping

Advantages of LCSS:
A. Outlying values not matched
B. Distance/Similarity distorted less
C. Constraints in time \& space

W. WTuitral ITme Series with Matab
 Longest Common Subsequence (Implementation)

Similar dynamic programming solution as DTW, but now we measure similarity not distance.

- Tưtorial Time-Series with Matlab

Distance Measure Comparison

Dataset	Method	Time (sec)	Accuracy
Camera-Mouse	Euclidean	34	20%
	DTW	237	80%
	LCSS	210	100%
ASL	Euclidean	2.2	33%
	DTW	9.1	44%
	LCSS	8.2	46%
ASL+noise	Euclidean	2.1	11%
	DTW	9.3	15%
	LCSS	8.3	31%

LCSS offers enhanced robustness under noisy conditions
4 | Tutorial | Time-Series with Matlab
Distance Measure Comparison (Overview)

Method	Complexity	Elastic Matching	One-to-one Matching	Noise Robustness
Euclidean	$O(n)$	\times	\checkmark	\times
DTW	$O\left(n^{\star} \delta\right)$	\checkmark	\times	\times
LCSS	$O\left(n^{\star} \delta\right)$	\checkmark	\checkmark	\checkmark

-PART II: Time Series Matching Lower Bounding

Concept of Lower Bounding

- You can guarantee similar results to Linear Scan in the original dimensionality, as long as you provide a Lower Bounding (LB) function (in low dim) to the original distance (high dim.)
GEMINI, GEneric Multimedia INdexIng
- So, for projection from high dim. (N) to low dim. (n): $A \rightarrow a, B \rightarrow b$ etc

$$
\mathrm{D}_{\mathrm{LB}}(\mathrm{a}, \mathrm{~b})<=\mathrm{D}_{\text {true }}(\mathrm{A}, \mathrm{~B})
$$

Projection onto X-axis

Projection on some other axis

"Find everything within range of 1 from A"

Generic Search using Lower Bounding

- M. Tutiorial ITime-Series with Matlab
 Lower Bounding the Euclidean distance

There are many dimensionality reduction (compression) techniques for time-series data. The following ones can be used to lower bound the Euclidean distance.

Tutorial I Time-Series with Matlab

Fourier Decomposition

Decompose a time-series into sum of sine waves

DFT: $\quad X\left(f_{k / N}\right)=\frac{1}{\sqrt{N}} \sum_{n=0}^{N-1} x(n) e^{-\frac{j 2 \pi k n}{N}}, \quad k=0,1 \ldots N-1$
IDFT: $x(n)=\frac{1}{\sqrt{N}} \sum_{n=0}^{N-1} X\left(f_{k / N}\right) e^{\frac{j 2 \pi k n}{N}}, \quad k=0,1 \ldots N-1$

Fourier Coefficients

"Every signal can be represented as a superposition of sines and cosines" (...alas nobody believes me...)

Tutorial | Time-Series with Matlab

Fourier Decomposition

How much space we gain by compressing random walk data?

- 1 coeff > 60\% of energy
- 10 coeff $>90 \%$ of energy

Fourier Decomposition

How much space we gain by compressing random walk data?

- 1 coeff > 60% of energy
- 10 coeff > 90% of energy

Tutorial I Time-Series with Matlab

Fourier Decomposition

How much space we gain by compressing random walk data?

- 1 coeff > 60\% of energy
- 10 coeff $>90 \%$ of energy

Fourier Decomposition

How much space we gain by compressing random walk data?

- 1 coeff > 60% of energy
- 10 coeff > 90% of energy

Tutorial I Time-Series with Matlab

Fourier Decomposition

How much space we gain by compressing random walk data?

- 1 coeff > 60\% of energy
- 10 coeff $>90 \%$ of energy

(I. . TTưorial Time-Series with Mallab

Fourier Decomposition

Which coefficients are important?

- We can measure the 'energy' of each coefficient
$-\operatorname{Energy}=\operatorname{Real}\left(X\left(f_{k}\right)\right)^{2}+\operatorname{Imag}\left(X\left(f_{k}\right)\right)^{2}$

Periodogram

$\mathrm{fa}=\mathrm{fft}(\mathrm{a})$; \% Fourier decomposition
$\mathrm{N}=$ length (a) ; \% how many?
$\mathrm{fa}=\mathrm{fa}(1:$ ceil ($\mathrm{N} / 2$)); \% keep first half only
mag $=2 * a b s(f a) . \wedge^{\wedge} 2 ; \%$ calculate energy

Most of data-mining research uses first k coefficients:

- Good for random walk signals (eg stock market)
- Easy to 'index'
- Not good for general signals

Tutorial I Time-Series with Matlab

Fourier Decomposition

Which coefficients are important?

- We can measure the 'energy' of each coefficient
$-\operatorname{Energy}=\operatorname{Real}\left(X\left(f_{k}\right)\right)^{2}+\operatorname{Imag}\left(X\left(f_{k}\right)\right)^{2}$

Periodogram

Usage of the coefficients with highest energy:

- Good for all types of signals
- Believed to be difficult to index
- CAN be indexed using metric trees

al 1 Time-Series with Matlab
Code for Plotting the Error```a = load('randomWalk.dat'); a = a-mean(a)/std(a); % z-normalization fa=fft(a); maxInd = ceil(length(a)/2); N = length(a); energy = zeros(maxInd-1, 1); E = sum(a.^2); % energy of a for ind=2:maxInd, fa_N = fa; % copy fourier fa_N(ind+1:N-ind+1) = 0; % zero out unused r = real(ifft(fa_N)); % reconstruction energy(ind-1) = sum(r.^2); % energy of reconstruction error(ind-1) = sum(abs(r-a).^2); % error end E = ones (maxInd-1, 1) *E; error = E - energy; ratio = energy ./ E; subplot(1,2,1); % left plot plot([1:maxInd-1], error, 'r', 'LineWidth',1.5); subplot(1,2,2); % right plot plot([1:maxInd-1], ratio, 'b', 'LineWidth',1.5);```

Lower Bounding using Fourier coefficients

Parseval's Theorem states that energy in the frequency domain equals the energy in the time domain:

$$
\sum_{t=0}^{N-1}\left\|x(t)^{2}\right\|=\sum_{k=0}^{N-1}\left\|X\left(f_{k / N}\right)^{2}\right\|
$$

$$
\text { or, that } \sum_{t=0}^{N-1}\|x(t)-y(t)\|^{2}=\sum_{k=0}^{N-1}\left\|X\left(f_{k / N}\right)-Y\left(f_{k / N}\right)\right\|^{2} \quad \text { Euclidean distance }
$$

If we just keep some of the coefficients, their sum of squares always underestimates (ie lower bounds) the Euclidean distance:

$$
\sum_{k=0}^{m}\left\|X\left(f_{k / N}\right)-Y\left(\left(f_{k / N}\right)\right)\right\|^{2} \leq \sum_{n=0}^{N-1}\|x(t)-y(t)\|^{2}, \quad m \leq N-1
$$

Tưorial ITime Series wih Matlab
 Wavelets - Why exist?

- Similar concept with Fourier decomposition
- Fourier coefficients represent global contributions, wavelets are localized

Fourier is good for smooth, random walk data, but not for bursty data or flat data

1. P TTuional Time Series with Maliab
 Wavelets (Haar) - Intuition

- Wavelet coefficients, still represent an inner product (projection) of the signal with some basis functions.
- These functions have lengths that are powers of two (full sequence length, half, quarter etc)

An arithmetic example
$\mathrm{X}=[9,7,3,5]$
Haar $=[6,2,1,-1]$
$\mathrm{c}=6=(9+7+3+5) / 4$
$c+d_{00}=6+2=8=(9+7) / 2$
c- $d_{00}=6-2=4=(3+5) / 2$
etc

PAA (Piecewise Aggregate Approximation) also featured as Piecewise Constant Approximation

- Represent time-series as a sequence of segments
- Essentially a projection of the Haar coefficients in time

Tutorial | Time-Series with Matlab

PAA (Piecewise Aggregate Approximation) also featured as Piecewise Constant Approximation

- Represent time-series as a sequence of segments
- Essentially a projection of the Haar coefficients in time

PAA (Piecewise Aggregate Approximation) also featured as Piecewise Constant Approximation

- Represent time-series as a sequence of segments
- Essentially a projection of the Haar coefficients in time

Tutorial | Time-Series with Matlab

PAA (Piecewise Aggregate Approximation) also featured as Piecewise Constant Approximation

- Represent time-series as a sequence of segments
- Essentially a projection of the Haar coefficients in time

PAA (Piecewise Aggregate Approximation) also featured as Piecewise Constant Approximation

- Represent time-series as a sequence of segments
- Essentially a projection of the Haar coefficients in time

Tutorial | Time-Series with Matlab

PAA (Piecewise Aggregate Approximation) also featured as Piecewise Constant Approximation

- Represent time-series as a sequence of segments
- Essentially a projection of the Haar coefficients in time

() Tutorial ITime-Series with Matlab

PAA Matlab Code

```
function data = paa(s, numCoeff)
% PAA(s, numcoeff)
% s: sequence vector (Nx1 or Nx1)
% numCoeff: number of PAA segments
% data: PAA sequence (Nx1)
N = length(s); % length of sequence
segLen = N/numCoeff; % assume it's integer
sN = reshape(s, segLen, numCoeff); % break in segments
avg = mean(sN); % average segment
data = repmat (avg, segLen, 1); % expand segments
data = data(:); % make column
```


| - Tutorial | Time-Series with Matlab

PAA Matlab Code

function data $=$ paa(s, numCoeff)	
\% PAA (s, numcoeff)	
\% s: sequence vector (Nx 1 or Nx 1)	
\% numCoeff: number of PAA segments	
\% data: PAA sequence ($\mathrm{N} \times 1$)	
	$\mathrm{N}=8$
segLen $=$ N/numCoeff; ${ }_{\text {\% }}$.assume..it...s.int.eger	- segLen $=2$
$\mathbf{s N}=$ reshape (s, segLen, numCoeff); \% break in segments	
$\mathrm{avg}=$ mean (sN); \quad \% average segments	
data $=$ repmat (avg, segLen, 1); \% expand segments	
data $=$ data(:); \quad \% make column	

avg	1.5	3.5	5.5	7.5

- You can find a bottom-up implementation here:
- http://www.cs.ucr.edu/~eamonn/TSDMA/time series toolbox/

| Tutorial | Time-Series with Matlab

Piecewise Linear Approximation (PLA)

- Approximate a sequence with multiple linear segments
- First such algorithms appeared in cartography for map approximation

Piecewise Linear Approximation (PLA)

- O(nlogn) complexity for "bottom up" algorithm
- Incremental computation possible
- Provable error bounds
- Applications for:
- Image / signal simplification
- Trend detection

- Visually not very smooth or pleasing.

Singular Value Decomposition (SVD)

- SVD attempts to find the 'optimal' basis for describing a set of multidimensional points
- Objective: Find the axis ('directions') that describe better the data variance

We need 2 numbers (x, y) for every point

Now we can describe each point with 1 number, their projection on the line

New axis and position of points (after projection and rotation)

Tutorial ITime-Series with Matlab

Singular Value Decomposition (SVD)

- Each time-series is essentially a multidimensional point
- Objective: Find the 'eigenwaves' (basis) whose linear combination describes best the sequences. Eigenwaves are data-dependent.

A linear combination of the eigenwaves can produce any sequence in the database

$$
A_{M \times n}=U_{M \times r}{ }^{*} \Sigma_{r \times r}{ }^{*} V^{\top}{ }_{n \times r}
$$

Factoring of data array into 3 matrices

```
each of length n
```


Tutorial I Time-Series with Matlab

Singular Value Decomposition

- Optimal dimensionality reduction in Euclidean distance sense
- SVD is a very powerful tool in many domains:
- Websearch (PageRank)

- Cannot be applied for just one sequence. A set of sequences is required.
- Addition of a sequence in database requires recomputation
- Very costly to compute. Time: $\min \left\{\mathrm{O}\left(\mathrm{M}^{2} \mathrm{n}\right), \mathrm{O}\left(\mathrm{Mn}^{2}\right)\right\}$ Space: O(Mn) M sequences of length n

LATYưoral Time Series with Malabo

Symbolic Approximation

- Assign a different symbol based on range of values
- Find ranges either from data histogram or uniformly

- You can find an implementation here:
- http://www.ise.gmu.edu/~jessica/sax.htm

- - Tưorial Time-Series with Matlab
 Multidimensional MBRs
 Find Bounding rectangles that completely contain a trajectory given some optimization criteria (eg minimize volume)

On my income tax 1040 it says "Check this box if you are blind." I wanted to put a check mark about three inches away.

- Tom Lehrer

Comparison of different Dim. Reduction Techniques

Absence of proof is no proof of absence.

| Tutorial | Time-Series with Matlab

-PART II: Time Series Matching Lower Bounding the DTW and LCSS

- T- Tưtorial ITime-Series with Matlab
 Lower Bounding the Dynamic Time Warping

Recent approaches use the Minimum Bounding Envelope for bounding the DTW

- Create Minimum Bounding Envelope (MBE) of query Q
- Calculate distance between MBE of Q and any sequence A
- One can show that: $\boldsymbol{D}\left(\operatorname{MBE}(Q)_{\delta}, A\right)<\operatorname{DTW}(Q, A)$

- T- Tưtorial ITime-Series with Matlab
 Lower Bounding the Dynamic Time Warping

An even tighter lower bound can be achieved by 'warping' the MBE approximation against any other compressed signal.

Lower Bounding approaches for DTW, will typically yield at least an order of magnitude speed improvement compared to the naïve approach.

Let's compare the $3 L B$ approaches:

- . Tutorial I Time-Series with Matlab

Time Comparisons

We will use DTW (and the corresponding LBs) for recognition of hand-written digits/shapes.
$\left.\begin{array}{|l|l|l|l|l|l|l|l|l|}\hline 8 & & 8 & M & M & N & 0 & 2 & 2\end{array}\right)$

Accuracy: Using DTW we can achieve recognition above 90%.
Running Time: runTime LB_Warp < runTime LB_Zhu < runTime LB-Keogh
Pruning Power: For some queries LB_Warp can examine up to 65 time fewer sequences

Upper Bounding the LCSS

Since LCSS measures similarity and similarity is the inverse of distance, to speed up LCSS we need to upper bound it.

Tutorial Time-Series with Matlab

LCSS Application - Image Handwriting

- Library of Congress has 54 million manuscripts (20TB of text)
- Increasing interest for automatic transcribing

500. Lellas Orders and Insturdions Decembentiss.

Hogg' bompary, if any apportanity offers.
You are to beparticularlyexact and carefue in these paymentsisee. ing that there io no dij aqueement between the Returm, and you Poy-Roles; a, theres. will be ohict examination into it hereapter. Iam \& c .

George Washington Manuscript

Word annotation:

1. Extract words from document
2. Extract image features
3. Annotate a subset of words
4. Classify remaining words

Features:

- Black pixels / column
- Ink-paper transitions/ col , etc

Finding similar patterns in query logs

We can find useful patterns and correlation in the user demand patterns which can be useful for:

- Search engine optimization
- Recommendations
- Advertisement pricing (e.g. keyword more expensive at the popular months)

Using the best coefficients, provides a very high quality approximation of the original time-series

Tutorial 1 Time-Series with Matlab

Finding Structural Matches

The Euclidean distance cannot distill all the potentially useful information in the weblog data.

- Some data are periodic, while other are bursty. We will attempt to provide similarity measures that are based on periodicity and burstiness.

人 Tưtorial | Time-Series with Matlab
 Matching Results with Periodic Measure

Now we can discover more flexible matches. We observe a clear separation between seasonal and periodic sequences.

A-- |Tutorial I Time-Series with Matlab
 Matching Based on Bursts

Another method of performing structural matching can be achieved using burst features of sequences.

Burst feature detection can be useful for:

- Identification of important events
- ‘Query-by-burst’

Burst Detection

Burst detection is similar to anomaly detection.

- Create distribution of values (eg gaussian model)
- Any value that deviates from the observed distribution (eg more than 3 std) can be considered as burst.

Tutorial ITime-Series with Matlab

Query-by-burst

To perform 'query-by-burst' we can perform the following steps:

1. Find burst regions in given query
2. Represent query bursts as time segments
3. Find which sequences in DB have overlapping burst regions.

Query-by-burst Results

Tutorial | Time-Series with Matlab

Structural Similarity Measures

Periodic similarity achieves high clustering/classification accuracy in ECG data

DTW

Structural Similarity Measures

Periodic similarity is a very powerful visualization tool.

Random Walk
Random Walk
Sunspots: 1869 to 1990
Sunspots: 1749 to 1869
Geat Lakes (Ontario)
reat Lakes (Erie)
Power Demand: April-June (Dutch)
Power Demand: Jan-March (Dutch)
ower Demand: April-June (Italian)
ower Demand: Jan-March (Italian)
andom
Random
video Surveillance: Eamonn, no gun
Video Surveillance: Eamonn, gun
ideo Surveillance: Ann, no gun
deo Surveillance: Ann, gun
oski ECG: fast
oski ECG: fast 1
Koski ECG: slow 2
Koski ECG: slow 1
MotorCurrent: healthy 2
MotorCurrent: healthy 1
MotorCurrent: broken bars
otorCurrent: broken bars

Tutorial / Time-Series with Matlab

Structural Similarity Measures

Burst correlation can provide useful insights for understanding which sequences are related/connected. Applications for:

- Gene Expression Data
- Stock market data (identification of causal chains of events)

Query: Which stocks exhibited trading bursts during 9/11 attacks?

Conclusion

The traditional shape matching measures cannot address all timeseries matching problems and applications.
Structural distance measures can provide more flexibility.

There are many other exciting time-series problems that haven't been covered in this tutorial:

- Anomaly Detection

I don't want to achieve immortality through my work...I want to achieve it through not dying.

- Frequent pattern Discovery
- Rule Discovery
- etc

[^0]: I Real men do it command-line...-Anonymous

[^1]: \% extract to color eps
 print -depsc myImage.eps; \% from command-line
 print (gcf,'-depsc','myImage') \% using variable as name

[^2]: time $=\left[\begin{array}{lll}100 & 120 & 80 \\ 70\end{array}\right] ;$ \% our data
 $h=\operatorname{bar}$ (time); \% get handle
 cmap = [1 0 0; 0 1 0; 0 0 1; . 50 1]; \% colors
 colormap (cmap); \% create colormap
 cdata = [1 $\left.2 \begin{array}{lll}1 & 3 & 4\end{array}\right]$ \% assign colors
 set (h,'CDataMapping','direct','CData', cdata);

[^3]: data $=[1087 ; 965 ; 864 ; 654 ; 632 ; 321] ;$
 bar3([1 243567$]$, data);
 c = colormap (gray) ; \% get colors of colormap
 $\mathrm{c}=\mathrm{c}(20: 55,:) ; \%$ get some colors
 colormap (c) ; \% new colormap

