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Abstract 

The aim of this paper is to build on the Pragmatic Stochastic Reserving Working Party’s first paper 
(Carrato, et al., 2016) and present an overview of stochastic reserving used with a one-year view of 
the risk, which is suitable both for those working at the coalface of reserving and capital modelling 
as well as more senior actuaries tasked with oversight of the process. We discuss in detail the one-
year view of risk, and how it relates to non-life claims reserves in particular. We describe and discuss 
three commonly use methods for calculating one-year reserve risk: the Merz-Wüthrich formula, the 
Actuary-in-the-Box, and Emergence Patterns. For the Actuary-in-the-Box method we describe the 
method in detail for Mack’s model, the Over-Dispersed Poisson model, and the stochastic 
Bornhuetter-Ferguson model described in the working party’s first paper (Carrato, et al., 2016). We 
develop the theory for Emergence Patterns in detail as this material has not be published in a unified 
form before. We also briefly describe some other methods that can be used to estimate one-year 
reserve risk. Some numerical examples are provided to illustrate the concepts discussed in the 
paper. 
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1 INTRODUCTION AND SCOPE 

1.1 OVERVIEW 

1.1.1 SCOPE 

The aim of this paper is to build on the work done in the working party’s first paper (Carrato, et al., 
2016). In the first paper we restricted ourselves to look at the ultimate view of reserve risk, in this 
paper we now look at the one-year view of reserve risk. Other than that change of focus our 
ambition remains the same: to smooth the path for general insurance actuaries, regardless of 
experience, to engage with and understand the commonly used stochastic reserving methods. 

This paper also has the same target audience as the first: 

• Actuaries tasked, through calculations and analysis, with assessing reserve variability; 

• More senior, experienced, actuaries with responsibility for the oversight and, most likely, 

review of such reserve variability assessments. 

Although this paper builds on the first, we have not assumed that the reader has a detailed 
knowledge of it. Instead, where relevant in this paper, we refer the reader to specific sections of the 
first paper. However, we encourage readers of this paper to also read the first paper in full, as it will 
give them a broader understanding of the topic. We strongly believe that neither the ultimate nor 
one-year view of risk is definitively correct or superior to the other. They take different views of the 
risk, and both provide valuable insights, and have limitations. No understanding of reserve risk is 
complete unless you understand both. 

We have chosen to focus on the following three methods for estimating one-year reserve risk: 

• The Merz-Wüthrich formula 

• The Actuary-in-the-Box method 

• Emergence Patterns 

In addition to these three methods we give brief descriptions of seven other methods. 

We chose these three methods as they are by far the most commonly used methods, and they also 
allow us to build on the material in the first paper. The Merz-Wüthrich formula gives the one-year 
view within Mack’s model, and for the Actuary-in-the-Box method we describe in detail how to apply 
it to bootstrapped versions of the three models discussed in the first paper. 

Emergence Patterns are a deceptively simple method. There has been scattered discussion of them, 
mainly in various conference presentations, but until now, there has been no unified development 
and discussion of the ideas. We give a non-technical account in the main body of the paper, and 
develop the theory in detail in an appendix. We make clear that there are multiple different 
interpretations of the basic idea, so the user needs to be clear which interpretation is being used. 
We also discuss methods of parameterising emergence factors, and argue that this is an intrinsically 
hard problem, with no wholly satisfactory solution in sight. 



As in the first paper, we limit ourselves to looking at the application of the methods to gross data, 
without allowance for reinsurance recoveries. We have also focussed on “Accident Year” data, 
instead of “Underwriting Year”, accepting that the latter is in common use. Our main reason for this 
is to preserve the relative independence of the resulting claims cohorts, which is a common 
assumption within the methods. 

Finally, we have restricted our attention to the consideration to independent error which is 
amenable to quantitative measurement. Model error, or systemic risk which requires a more 
qualitative, judgemental approach, is out of scope of the paper. However, this scope limitation is not 
intended to imply that model error may be ignored. In many cases, it represents a material 
component of the overall prediction error. In particular we do not discuss ENIDs (Events Not In Data) 
in this paper, although they should be included in any full assessment of risk. Some further 
discussion on this point may be found in the first paper in section 3.5 “Sources of Uncertainty”. 

1.1.2 GUIDE TO THE PAPER 

The paper opens with discussion comparing the one-year and ultimate view of reserve risk, and gives 
some of the reasons why it is useful to consider the one-year view. We then discuss the one-year 
view in more detail, both in general and for reserve risk in particular. 

In section 3 we describe the three main methods of estimating one-year reserve risk: the Merz-
Wüthrich formula, the Actuary-in-the-Box, and Emergence Patterns. We also discuss the strengths 
and limitations of each method. We round-off this section with brief descriptions of some other 
methods of estimating one-year reserve risk. 

In section 4 we discuss additional validation that can be done for one-year reserve risk. These 
methods are in addition to any validation done for the underlying models discussed in the first 
paper. 

In section 5 we illustrate the use of the methods with the same two example data sets as used in the 
first paper. These examples extend what was done in section 7 of the first paper. 

There are two appendices where we develop some of the material discussed in the main body of the 
paper in more technical detail. In appendix A we develop the concepts and notation needed to 
discuss one-year reserve risk. In appendix B we develop the ideas about emergence patterns 
discussed in the main body of the paper. 

As a number of acronyms are used in this paper, we have included a glossary for ease of reference. 

  



1.1.3 OTHER RELEVANT WORKING PARTIES 

The Pragmatic Stochastic Reserving Working Party has focussed on quantitative methods of 
assessing reserve risk. The following two working parties have taken a more qualitative approach, 
and we encourage readers of this paper to also study their outputs available at the Institute and 
Faculty of Actuaries website: 

• Managing Uncertainty Qualitatively 

https://www.actuaries.org.uk/practice-areas/general-insurance/research-working-

parties/measuring-uncertainty-qualitatively-muq 

• Managing Uncertainty with Professionalism 

https://www.actuaries.org.uk/practice-areas/general-insurance/research-working-

parties/managing-uncertainty-professionalism 

1.1.4 SUPPORTING FILES ON GITHUB 

Files containing example implementations of some of the methods discussed in this paper, and the 
data used in the numerical examples in section 5 are available in the working party’s repository in 
GitHub here: 

https://github.com/robertmscarth/stochastic-reserving-wp  

https://www.actuaries.org.uk/practice-areas/general-insurance/research-working-parties/measuring-uncertainty-qualitatively-muq
https://www.actuaries.org.uk/practice-areas/general-insurance/research-working-parties/measuring-uncertainty-qualitatively-muq
https://www.actuaries.org.uk/practice-areas/general-insurance/research-working-parties/managing-uncertainty-professionalism
https://www.actuaries.org.uk/practice-areas/general-insurance/research-working-parties/managing-uncertainty-professionalism
https://github.com/robertmscarth/stochastic-reserving-wp


2 INTRODUCTION TO ONE-YEAR RISK 

2.1 ULTIMATE VIEW AND ONE-YEAR VIEW 

Traditionally actuaries analysing claims reserves sought a point estimate of the future claims 
payments arising from prior periods of exposure (if working on an accident year basis), or from 
policies already written (if working on an underwriting year basis). This was often calculated using a 
fairly simple method such as the basic chain ladder or the Bornhuetter-Ferguson method; judgement 
was frequently used to augment the results or adjust the output of the methods. As early as 1975 
attempts were made to put these methods onto a firm statistical footing (Hachemeister, et al., 
1975). In 1993 Thomas Mack published his now well-known model of the chain ladder (Mack, 1993), 
and in 1998 Renshaw and Verrall (Renshaw, et al., 1998) published the over-dispersed Poisson 
model. See section 4 of (Carrato, et al., 2016) for some more details of this history. However, these 
models were little used in practice until the turn of the century, when regulations such as the UK’s 
ICAS regime required insurers to calculate capital requirements. (See sections 2 and 3 of (Taylor, et 
al., 1983) for a discussion of some of the reasons why these models were not used much in practice.) 

The regulations and the initial theoretical work both took an ultimate view of the claims reserve risk. 
This means that they considered all possible variation in the claims payments between the point in 
time that the reserve exercise was carried out and the final settlement of all the claims arising from 
the prior periods (either exposure or underwriting, depending on the basis). This is a justifiable 
approach, as the insurance company needs to hold sufficient funds to ensure it can meet its 
obligations, no matter how long it takes to settle them. Claims can be reported with some delay, and 
settlement of claims can take time. This is especially true of long-tail classes of business such as 
liability classes, where in some cases settlement of claims can involve legal action taking years. 
Furthermore, the final total amount paid is uncertain. The insurance company will therefore want to 
have an understanding of how much the final total amount paid could vary from the current best 
estimate, so that it can hold sufficient funds over and above the best estimate, to reduce the chance 
of being unable to meet its obligations to an acceptably small amount1. 

However, there are limitations with the ultimate view of risk. Insurance companies report profits on 
an annual basis, and movements in the claims reserves make a contribution to the profit. Insurance 
companies also make business plans annually for the next year. Longer term plans are also made, 
but usually for a shorter period than the time taken to settle all claims for some long-tail liability 
classes. Decisions about how to deploy capital – how much premium to write for each class, how to 
invest assets, how much capital to return to shareholders, and how much solvency capital to hold – 
are usually made annually. Furthermore, these decisions rely on taking an integrated view of the 
risks that the insurance company faces. This means that all the risks the insurance company faces 
need to be considered in a consistent manner so that they can be compared and aggregated. For 
some risks, such as equity holdings or operational risk, there is no equivalent to the ultimate view 
taken for insurance risks. Because of this it is useful to the management of the insurance company to 

                                                           
1 This is true even without regulation. Potential customers are unlikely to want to buy insurance from a company that has a high chance of 
not being able to pay claims. The principle of uberrima fides would oblige an insurer to tell potential policy holders if there was a 
reasonable chance that their claims could go unpaid. Although the possibility that some potential policy holders might not understand 
what this means, a lack of clarity about exactly how likely insolvency needs to be before insurers are obliged to tell policy holders, and 
exactly what the insurance company is obliged to say, would provide arguments in favour of solvency regulation that specifies insurers’ 
obligations more clearly. 



have a good understanding of shorter-term fluctuations in the claims reserves, particularly over a 
one-year time horizon. 

Finally, recent regulation – in particular Solvency II and the Swiss Solvency Test (SST) – require 
insurance companies to take a one-year view of risk. This was discussed in section 2 of (Carrato, et 
al., 2016). 

The ultimate view and the one-year view are different ways of viewing the same risk. To make the 
distinction between them more concrete consider the case of a single accident year, and consider 
the full life-time of the risk from the start of the period of exposure (at time 0) to the final claims 
payment (at time 𝑛𝑛). This is represented in the Figure 2-1 below. 

 

FIGURE 2-1 

The ultimate risk at time 𝑡𝑡 is the full distribution of claims paid after time 𝑡𝑡, taking account of all the 
information known at time 𝑡𝑡. From the full distribution a risk measure can be calculated. The risk 
measure used will depend on the purpose it is needed for. For example, for a reserve range a 
standard deviation might be used, whereas for capital requirements a 99.5th percentile might be 
used. The best estimate claims reserve at time 𝑡𝑡 is then the expected value of the distribution of all 
claims paid after time 𝑡𝑡, conditional on all the information known at time 𝑡𝑡. The key point is that the 
ultimate risk considers all possible variability in the claims payments between time 𝑡𝑡 and time 𝑛𝑛. 

The one-year risk is the distribution of the movement from the best estimate claims reserve at time 
𝑡𝑡 to the best estimate claims reserve at time 𝑡𝑡 + 1, making allowance for the claims paid between 
time 𝑡𝑡 and time 𝑡𝑡 + 1. The best estimate claims reserve at time 𝑡𝑡 is known at time 𝑡𝑡. The best 
estimate claims reserve at time 𝑡𝑡 + 1 is not known at time 𝑡𝑡, but will vary depending on the 
information learnt between time 𝑡𝑡 and time 𝑡𝑡 + 1. The amount of claims paid between time 𝑡𝑡 and 
time 𝑡𝑡 + 1 is not known at time 𝑡𝑡, and is part of the information learnt between time 𝑡𝑡 and time 𝑡𝑡 +
1. The key point is that the one-year risk considers all possible variability due to information learnt 
between time 𝑡𝑡 and time 𝑡𝑡 + 1. This is discussed in more detail in section 2.3 and section 9 
(appendix A). 

The contrast between the ultimate view and the one-year view is therefore that the ultimate view 
considers variability due to all information learnt between time 𝑡𝑡 and time 𝑛𝑛, whereas the one-year 
view considers variability due to information learnt between time 𝑡𝑡 and time 𝑡𝑡 + 1. Since the 
information learnt between time 𝑡𝑡 and time 𝑡𝑡 + 1 is a subset of the information learnt between time 
𝑡𝑡 and time 𝑛𝑛, it would be reasonable to conclude that the one-year risk is lower than the ultimate 
risk. This is true if variance is used as the risk measure (see section 9 appendix A). In (Papachristou, 
2016) it is claimed, without proof or a reference, that this is true for all coherent risk measures. 



It is sometimes argued that in practice it is possible for the one-year view of risk to be greater than 
the ultimate view. One possible situation this might happen is where it is known that the reserving 
actuary has a tendency to over react to information learnt between time 𝑡𝑡 and time 𝑡𝑡 + 1. In such a 
situation the best estimate claims reserves set at time 𝑡𝑡 + 1 would be increased or decreased by too 
much given the information learnt between time 𝑡𝑡 and time 𝑡𝑡 + 1, and so the variability over one 
year could be greater than the ultimate variability. However, if it is known that the over-reaction is 
happening in a systematic or predictable way then it should be allowed for as part of the model used 
for one-year risk. This point was discussed by Dimitris Papachristou in a 2016 GIRO presentation 
(Papachristou, 2016). 

It is important to note that neither the ultimate nor the one-year view is definitively correct, or 
superior to the other. They take different views of the risk, and both provide valuable insight, and 
have limitations. It is however important that the one-year view and the ultimate view are 
consistent. Ensuring this consistency is one of the challenges we discuss in this paper.  

2.2 THE ONE-YEAR VIEW OF RISK 

In this sub-section we give an overview of the one-year view of risk in an insurance company. We 
take an integrated view and consider all the risks faced by the insurance company. In the following 
sub-section, we discuss reserve risk specifically. 

An insurance company accepts risk by writing insurance policies which it sells to its customers, the 
policy holders, in exchange for the payment of a premium. In selling these policies the insurance 
company incurs a liability, first for future periods of exposure which the insurer has contracted to 
provide cover for, and then for claims which occurred during prior periods of exposure, but which 
have not yet been settled. So that it can pay these liabilities the insurer holds assets, and as the 
value of the liabilities and the assets can fluctuate it also holds risk capital to ensure that the risk that 
it cannot pay the liabilities is reduced to an acceptably small amount. This can be represented as in 
Figure 2-2 which shows the economic balance sheet at time 0. 

 

FIGURE 2-2 

The Economic Net Worth is calculated as Assets minus Liabilities, this is the capital that is available 
to absorb fluctuations in the value of the assets and liabilities. The values shown are economic 
values. For assets or liabilities which are traded on financial markets this means that the market 
values are used. For assets or liabilities that are not traded on financial markets we use market 
consistent values.  



For insurance liabilities we can calculate market consistent values as follows. First, we project all 
future cashflows, discount these using market interest rates and then take the expected value. This 
gives us the discounted best estimate of the liabilities. However, as the ultimate cost of the liabilities 
is not known, additional risk capital needs to be held to ensure that the liabilities can be paid even if 
they are greater than the best estimate. Holding this capital has a cost, and so we add the cost of the 
capital to the discounted best estimate to get the value of the liabilities. In Solvency II this additional 
amount is called the Risk Margin, and in the Swiss Solvency Test it is called the Market Value Margin. 
For further discussion of market consistent valuation (Wüthrich, et al., 2008), and for a discussion of 
the calculation of the risk margin see (Czernuszewicz, et al., 2009). 

The cost of capital arises because the capital is provided by shareholders, and the insurance 
company incurs costs in holding the capital that the shareholders would not. These costs are: 

• Double taxation. The insurance company is taxed on any return the investment earns, and 

the shareholder is taxed again when the profit is paid out as a dividend. 

• Agency costs. The shareholders have hired the management of the insurance company to 

invest their capital; management is the agent of the shareholders. The management and the 

shareholders do not have the same interests and so the management might not invest the 

shareholders’ capital in the best way for the shareholders. 

• Regulatory costs. The insurance company’s regulator might require the insurance company 

to invest its capital in a certain way, thus costing the company lost investment return. 

• Financial distress costs. If the company has to use the risk capital it will have to do so at a 

time not of its choosing and might therefore have to sell assets for a poor price. Very 

extreme losses might be caused by an event that also reduces the value of assets, for 

example a lethal pandemic. Also financial distress can lead to loss of brand or institutional 

value. 

The economic balance sheet diagram can therefore be refined by splitting the Liabilities in to the 
Best Estimate Liabilities and the Cost of Capital (Coc), as shown in Figure 2-3. 

 

FIGURE 2-3 



The Economic Net Worth is the capital that is available to absorb fluctuations in the value of assets 
and liabilities. The overall one-year risk is the distribution of the change in value of the Economic Net 
Worth over a one-year time horizon. We define this change as the Economic Net Worth at time 1 
minus the Economic Net Worth at time 0. This is then the profit or loss over the one-year period. 
Figure 2-4 shows an example where the assets have grown from time 0 to time 1, but the liabilities 
have grown by even more, so the economic net worth has gone down, and the insurer has made an 
economic loss. 

 

 

FIGURE 2-4 

Holding more capital reduces the risk that the insurance company will not be able to pay its 
liabilities. However as discussed above holding capital has a cost. There is therefore a trade-off 
between increasing security and reducing the cost. How these are traded-off depends on the risk 
appetite of the insurance company, and is a management decision2. The amount of capital that the 
management decides to hold is called the Economic Capital, and capital held in addition is called 
Excess Capital. 

 

FIGURE 2-5 

                                                           
2 There will of course be constraints, both implicit and explicit, from shareholders, bond holders, policyholders, regulators, and other 
stakeholders. 



Figure 2-5 shows the time 0 economic balance sheet, and the distribution of the economic profit 
between time 0 and time 1, with “Break even” denoting an economic profit of zero. If the Economic 
Net Worth increases then the company has made an economic profit, if it decreases it has made an 
economic loss. 

 

2.3 THE ONE-YEAR VIEW OF RESERVE RISK 

The reserves are part of the liabilities and one-year reserve risk is the part of one-year risk arising 
from movements in the reserves. This includes movements in the risk margin and potentially 
movements due to discounting. However, in this paper we concentrate on movements in the 
undiscounted best estimate claims reserves. In this sub-section we give an intuitive overview of how 
to consider reserve risk within a one-year view. In section 9 appendix A we discuss in technical detail 
the concepts and notation needed to consider one-year reserve risk. 

For one-year reserve risk we need to consider the movement from the claims reserves set up at the 
start of the year (or the opening claims reserves) to the claims reserves set up at the end of the year 
(or the closing claims reserves). The opening claims reserves are known with certainty at the start of 
the year, whereas the closing claims reserves are not, and can be consider as a random variable. We 
also need to consider the claims paid out from the reserves during the year. This is because an 
allowance for them is included in the opening reserves, but not the closing reserves. The claims paid 
during the year are also not known at the start of the year, and can be consider as a random 
variable. We call the movement from the opening position to the closing position the claims 
development result (CDR). This has the following definition 

Claims Development Result = Opening Reserve – Closing Reserve – Claims Paid During the Year 

An alternative equivalent way of defining the CDR is as the movement from the opening estimate of 
ultimate claims to the closing estimate of ultimate claims 

Claims Development Result = Opening Estimate of Ultimate – Closing Estimate of Ultimate 

If the claims reserves are set on a best estimate basis, then the sequence of estimates of the 
ultimate claims is unbiased – that is the expected value of the closing estimate of ultimate claims is 
equal to the opening estimate of the ultimate claims. This means that the expected value of the CDR 
is zero. 

As we described in section 2.1 above the opening claims reserve at time 𝑡𝑡 is the best estimate of 
claims payments made after time 𝑡𝑡. We interpret this as the expected value of the claims payments 
made after time 𝑡𝑡, conditional on the information known at time 𝑡𝑡. The closing claims reserve is 
likewise the expected value of claims payments made after time 𝑡𝑡 + 1, conditional on the 
information known at time 𝑡𝑡 + 1. Similarly, the opening estimate of ultimate claims is the expected 
value of all claims payments, conditional on the information known at time 𝑡𝑡, and the closing 
estimate of ultimate claims is the expected value of all claims payments, conditional on the 
information known at time 𝑡𝑡 + 1. 

The opening claims reserve, and the opening estimate of ultimate claims are both known with 
certainty at time 𝑡𝑡, whereas the closing claims reserve, the claims paid between time 𝑡𝑡 and time 𝑡𝑡 +



1, and the closing estimate of ultimate clams are all random variables. To get a distribution of the 
claims development result we therefore need to get a distribution of the closing estimate of ultimate 
claims, or distributions for the closing claims reserve and the claims paid between time 𝑡𝑡 and time  
𝑡𝑡 + 1. 

In this paper we discuss the following three methods for calculating a distribution of the closing 
claims reserve, or closing estimate of the ultimate claims: 

• The Merz-Wüthrich formula 

• Actuary-in-the-box 

• Emergence Patterns 

All these methods depend on, to a greater or lesser degree, a model of the claims development 
which takes an ultimate view of the risk. A distribution for the claims paid between time 𝑡𝑡 and time 
𝑡𝑡 + 1 can often, but not always, be got from the ultimate model. This is discussed further in the 
relevant sub-sections of section 3. 

These are not the only methods that have been proposed for calculating one-year reserve risk. Many 
other methods have been proposed, and we discuss some of these briefly in section 3.4. 

In this paper we focus on reserve risk. However, when taking an aggregated one-year view of the 
risks facing an insurance company for all items on the balance sheet which are estimates of 
payments stretching into the future we need to calculate a distribution of the amount on the closing 
balance sheet. These items include the following: 

• Gross Outstanding Claims Provisions 

o Claims 

o Premiums 

o Expenses 

• Reinsurance Outstanding Claims Provisions 

o Claims 

o Premiums 

o Expenses 

• Bad Debt Outstanding Claims Provisions 

• Gross Premium Provisions 

o Claims 

o Premiums 

o Expenses 

• Reinsurance Premium Provisions 

o Claims 

o Premiums 

o Expenses 



• Bad Debt Premium Provisions 

In this paper we only explicitly consider the gross outstanding claims provisions excluding premiums 
and expenses. However, the methods we describe can be used to calculate closing distributions for 
the other items. 

Furthermore, for claims reserves we do not consider claims inflation or discounting.  



3 METHODS 

3.1 THE MERZ-WÜTHRICH FORMULA 

3.1.1 METHOD INTRODUCTION 

Merz and Wüthrich ( (Merz, et al., 2008), (Wüthrich, et al., 2009), and (Merz, et al., 2015)) studied 
the claims development result (CDR) within Mack’s model (Mack, 1993). They calculated analytic 
formulae within Mack’s model for the mean squared error of prediction (MSEP) of the CDR for an 
individual accident year, and for all accident years in total. In (Merz, et al., 2008) and (Wüthrich, et 
al., 2009) this was done for the first future time period, in (Merz, et al., 2015) this was extended to 
all future time periods. In this paper we describe only the formula for the first future time period. 

The Merz-Wüthrich formula is based on Mack’s model and the discussion in this section builds on 
the discussion of Mack’s model in section 4.1 of the working party’s first paper (Carrato, et al., 
2016). 

3.1.2 DESCRIPTION OF METHOD 

In this subsection we describe the assumptions of Mack’s model, we state the Merz-Wüthrich 
formula for the MSEP of the CDR for an individual accident year, and for the total of all accident 
years, and we compare the Merz-Wüthrich formula with Mack’s formula for the MSEP of the reserve 
estimate. In this subsection we have drawn on sections 4.2 and 4.6 of (Hindley, 2018). 

First, recall the notation used in section 4.1 of the working party’s first paper. We assume that we 
have a triangle of cumulative claims, with 𝑛𝑛 origin periods and development periods 

�𝐶𝐶𝑖𝑖𝑖𝑖 ∶ 𝑖𝑖 = 1, … ,𝑛𝑛, 𝑗𝑗 = 1, … ,𝑛𝑛 − 𝑖𝑖 + 1� 

 Merz and Wüthrich make the following assumptions which are slightly stronger than (and so imply) 
the assumptions made by Mack: 

1. Origin periods are independent i.e. for each 𝑠𝑠 ≠ 𝑡𝑡, {𝐶𝐶𝑠𝑠1, … ,𝐶𝐶𝑠𝑠𝑠𝑠} and {𝐶𝐶𝑡𝑡1, … . ,𝐶𝐶𝑡𝑡𝑠𝑠} are 

independent. 

2. The time series of cumulative claims for each origin period is a Markov process, and there 

exist constants 𝑓𝑓𝑖𝑖 and 𝜎𝜎𝑖𝑖 such that for 𝑖𝑖 = 1, … ,𝑛𝑛 and 𝑗𝑗 = 2, … ,𝑛𝑛 

𝐸𝐸�𝐶𝐶𝑖𝑖𝑖𝑖 | 𝐶𝐶𝑖𝑖,𝑖𝑖−1� =  𝑓𝑓𝑖𝑖−1𝐶𝐶𝑖𝑖,𝑖𝑖−1 

𝑉𝑉𝑉𝑉𝑉𝑉�𝐶𝐶𝑖𝑖𝑖𝑖 | 𝐶𝐶𝑖𝑖,𝑖𝑖−1� =  𝜎𝜎𝑖𝑖−12 𝐶𝐶𝑖𝑖,𝑖𝑖−1 

The estimators for the parameters 𝑓𝑓𝑖𝑖 and 𝜎𝜎𝑖𝑖 are the same as in Mack’s model 

𝑓𝑓𝑖𝑖 =  
∑ 𝐶𝐶𝑖𝑖,𝑖𝑖+1
𝑠𝑠−𝑖𝑖
𝑖𝑖=1

∑ 𝐶𝐶𝑖𝑖𝑖𝑖
𝑠𝑠−𝑖𝑖
𝑖𝑖=1

 

And 



𝜎𝜎�𝑖𝑖2 =  
1

𝑛𝑛 − 𝑗𝑗 − 1
�𝐶𝐶𝑖𝑖𝑖𝑖

𝑠𝑠−𝑖𝑖

𝑖𝑖=1

�𝑓𝑓𝑖𝑖𝑖𝑖 −  𝑓𝑓𝑖𝑖�
2

 

Where the 𝑓𝑓𝑖𝑖𝑖𝑖 are the individual development factors 

𝑓𝑓𝑖𝑖𝑖𝑖 =  
𝐶𝐶𝑖𝑖,𝑖𝑖+1
𝐶𝐶𝑖𝑖𝑖𝑖

 

Before stating the formulas for MSEP of the CDR we define some variables for some of the subparts 
of the formulas. There are two reasons for doing this. First it makes it easier to see the structure of 
the formulas, and to compare the formulas for Mack and Merz-Wüthrich. Secondly, by breaking the 
formula up into sub-calculations, it makes it easier to see how to implement it in a spreadsheet or 
other software. 

First, we define variables for the column sums used in the basic chain ladder 

𝑆𝑆𝑖𝑖𝑘𝑘 =  � 𝐶𝐶𝑚𝑚𝑖𝑖

𝑘𝑘−𝑖𝑖

𝑚𝑚=1

 

With this definition, the basic chain ladder development factors are given by 𝑓𝑓𝑖𝑖 =  𝑆𝑆𝑖𝑖+1𝑠𝑠+1 𝑆𝑆𝑖𝑖𝑠𝑠� . 

Now we define four variables that are key components of the formulas for the MSEP. The four 
variables are represented by the Greek letters 𝜔𝜔,Ω, 𝜆𝜆,Λ. The upper-case forms are sums of the 
lower-case forms. The omegas are used in the formulas for the process error, whereas the lambdas 
are used in the formulas for the parameter error. The lower-case variables are used in the Merz-
Wüthrich formulas and the upper-case variables are used in Mack’s formulas (see Table 3-2 below). 
We present the formulas in the 2 × 2 Table 3-1 to emphasise these connections, and the similarity 
of the definitions. 

𝜔𝜔�𝑖𝑖𝑖𝑖 =  
𝜎𝜎�𝑖𝑖2 𝑓𝑓𝑖𝑖2�
�̂�𝐶𝑖𝑖𝑖𝑖

 Ω�𝑖𝑖 =  � 𝜔𝜔�𝑖𝑖𝑘𝑘

𝑠𝑠−1

𝑘𝑘=𝑠𝑠+1−𝑖𝑖

 

�̂�𝜆𝑖𝑖 =  
𝜎𝜎�𝑖𝑖2 𝑓𝑓𝑖𝑖2�
𝑆𝑆𝑖𝑖𝑠𝑠

 Λ�𝑖𝑖 =  � �̂�𝜆𝑘𝑘

𝑠𝑠−1

𝑘𝑘=𝑠𝑠+1−𝑖𝑖

 

TABLE 3-1 

In a similar way to Mack, Merz and Wüthrich present estimators for the MSEP of the CDR for 
individual origin periods, and for the total CDR over all origin periods. The MSEP for the individual 
origin periods is split into a process error component and a parameter error component. The 
estimator for the MSEP of the total CDR must also take account of the fact that the estimators of the 
CDR of each origin period are correlated due to the fact that they rely on the same estimated 
parameters 𝑓𝑓𝑖𝑖 and 𝜎𝜎�𝑖𝑖2. We call this term for the correlation the covariance term. The MSEP of the 
total CDR is then the sum of the MSEPs for the individual origin periods plus the covariance term. 

It is important to note that the break-down of the MSEP into the process error and parameter error 
that is given by Merz and Wüthrich depends on a linear approximation in the derivation. See 
(Wüthrich, et al., 2008) chapter 3 for a detailed discussion of this. 



We present the formulas for the three components – process, parameter, and covariance – in Table 
3-2, showing the corresponding Merz-Wüthrich and Mack formulas side by side. 

 Merz-Wüthrich Mack 

Process �̂�𝐶𝑖𝑖𝑠𝑠2 𝜔𝜔�𝑖𝑖,𝑠𝑠+1−𝑖𝑖 �̂�𝐶𝑖𝑖𝑠𝑠2 Ω�𝑖𝑖  

Parameter 
�̂�𝐶𝑖𝑖𝑠𝑠2 ��̂�𝜆𝑠𝑠+1−𝑖𝑖 + �

𝐶𝐶𝑠𝑠−𝑖𝑖,𝑖𝑖+1

𝑆𝑆𝑖𝑖𝑠𝑠+1

𝑠𝑠−1

𝑖𝑖=𝑠𝑠+2−𝑖𝑖

�̂�𝜆𝑖𝑖� �̂�𝐶𝑖𝑖𝑠𝑠2 Λ�𝑖𝑖 

Covariance 
2 � �̂�𝐶𝑖𝑖𝑠𝑠�̂�𝐶𝑘𝑘𝑠𝑠 ��̂�𝜆𝑠𝑠+1−𝑖𝑖 + �

𝐶𝐶𝑠𝑠−𝑖𝑖,𝑖𝑖+1

𝑆𝑆𝑖𝑖𝑠𝑠+1

𝑠𝑠−1

𝑖𝑖=𝑠𝑠+2−𝑖𝑖

�̂�𝜆𝑖𝑖�
1≤𝑖𝑖<𝑘𝑘≤𝑠𝑠

 2 � �̂�𝐶𝑖𝑖𝑠𝑠�̂�𝐶𝑘𝑘𝑠𝑠Λ�𝑖𝑖
1≤𝑖𝑖<𝑘𝑘≤𝑠𝑠

 

TABLE 3-2 

We now compare and contrast the formulas for Mack and Merz-Wüthrich. 

First note that all the formulas have a term for the ultimate claims. For the process and parameter 
error this is �̂�𝐶𝑖𝑖𝑠𝑠2  whereas for the covariance term it is �̂�𝐶𝑖𝑖𝑠𝑠�̂�𝐶𝑘𝑘𝑠𝑠. This is means that the RMSEP of both 
the CDR (Merz-Wüthrich), and the claims reserve (Mack) is proportional to the estimate of ultimate 
claims. 

For the process error term, the term 𝜔𝜔�𝑖𝑖,𝑠𝑠+1−𝑖𝑖 in the Merz-Wüthrich formula is the first term in the 
sum giving the corresponding term Ω�𝑖𝑖 in the Mack formula. This makes intuitive sense, as the Merz-
Wüthrich formula is an estimator for the one-year risk, and the Mack formula is an estimator for the 
ultimate risk. For the one-year process error we’d expect only the term corresponding to the first 
year’s development to contribute, as subsequent development is uncorrelated with it. 

For the parameter error term, the lambda term in the Merz-Wüthrich formula corresponding to the 
term Λ�𝑖𝑖 in the Mack formula is more complicated 

�̂�𝜆𝑠𝑠+1−𝑖𝑖 +  �
𝐶𝐶𝑠𝑠−𝑖𝑖,𝑖𝑖+1

𝑆𝑆𝑖𝑖𝑠𝑠+1

𝑠𝑠−1

𝑖𝑖=𝑠𝑠+2−𝑖𝑖

�̂�𝜆𝑖𝑖 

The term �̂�𝜆𝑠𝑠+1−𝑖𝑖 is the first term in the sum giving Λ�𝑖𝑖. The term ∑ 𝐶𝐶𝑛𝑛−𝑗𝑗,𝑗𝑗+1

𝑆𝑆𝑗𝑗
𝑛𝑛+1

𝑠𝑠−1
𝑖𝑖=𝑠𝑠+2−𝑖𝑖 �̂�𝜆𝑖𝑖 is made up of 

the second and subsequent terms in the sum giving Λ�𝑖𝑖 with the �̂�𝜆𝑖𝑖 factors scaled down. This makes 
intuitive sense. For the parameter error we need to consider the parameter error in all future 
development years; we will get the full amount for the first development year, and a reduced 
amount for the subsequent development years. 

For the covariance term, for both the Mack and Merz-Wüthrich formulas, the lambda term is the 
same as the lambda term for the parameter error. This makes sense because there is only 
correlation between the estimates because of the common parameters used. 

3.1.3 DISCUSSION OF METHOD 

The Merz and Wüthrich formulas give analytic expression for the MSEP of the CDR within Mack’s 
model. They are therefore based on a well-established model of the chain ladder, and give an 



estimate of the one-year risk that is consistent with the estimate of the ultimate risk given by Mack’s 
formulas. The formulas are simple enough to be implemented in a spreadsheet, and can be 
implemented as a fairly straight-forward extension of the calculations of Mack’s formulas. In (Merz, 
et al., 2015) the formulas were extended to all future time periods, and so give the MSEP for multi-
year CDRs, which allows us to see how the risk runs-off year on year. 

Analytic expressions have the advantage over simulation methods in that they allow for explicit 
interpretations in terms of the parameters involved, and allow for sensitivity analysis with respect to 
parameter changes. See the remark at end of section 3.1 of (Wüthrich, et al., 2008). In these remarks 
Wüthrich and Merz also say “these estimates are very easy to interpret”. However, the formulas are 
fairly complex, and it is not prima facie obvious how, in general, changes in the data or parameters 
would affect the resulting MSEP. In (Gisler, 2019) Gisler derives the uncertainty estimators in Mack’s 
model in a new way. It is claimed that the derivation is more easily understandable, and gives 
equivalent but simpler and more interpretable formulas than Mack and Merz-Wüthrich. 

The formulas only apply to Mack’s model of the chain ladder. If any alterations are made to the 
model, such as curve fitting, or adding a tail factor, then the formulas no longer apply. If a model 
other than Mack’s model has been used to estimate the ultimate risk then the one-year estimates 
from the Merz-Wüthrich formulas will not be consistent. If Mack’s model is not a good fit to the 
triangle of claims data then the Merz-Wüthrich formulas are liable to give unreasonable or 
misleading results. 

The formulas only give one statistic of the CDR – the MSEP. If other statistics are wanted (e.g. the 
99.5th percentile) then we need to do something else such as fit a distribution, and read the desired 
statistic from that. This introduces more degrees of freedom, and so greater uncertainty to the final 
results. 

The formulas also only give one-year reserve risk, and cannot give one-year premium risk. 

Both Mack and Merz-Wüthrich’s formulas apply only to a single claims triangle, and therefore they 
cannot allow for dependence between two or more claims triangles. In (Braun, 2004) Braun extends 
Mack’s model to multiple correlated claims triangles, and in (Appert-Raullin, et al., 2013) the 
corresponding one-year formulas are derived. 

3.2 ACTUARY-IN-THE-BOX 

3.2.1 METHOD INTRODUCTION 

Actuary-in-the-box is a general procedure. The term was coined by Esbjorn Ohlsson, and was first 
described in the literature in (Ohlsson, et al., 2009), although it was not new at this point. It was 
known and likely reasonably widely used for several years before 2009. A version of the method 
applied to a bootstrapped ODP model was described in 2003 in section 9 of (De Felice, et al., 2003), a 
short description of the method in a bootstrap context was described in (Björkwall, et al., 2009), and 
a version of the method was also described in (Diers, 2009). A version was first described to the first 
author by colleagues at Swiss Re around about 2003, and was in use at Swiss Re shortly thereafter. 

We first describe the more general procedure described in (Ohlsson, et al., 2009) and then describe 
the method applied to the bootstrapped models of claims data such as the Mack, and ODP models, 
and Alai, Merz and Wüthrich’s stochastic Bornhuetter-Ferguson model. 



The method described by Ohlsson and Lauzeningks is the following: 

1. Obtain the Best Estimate of the opening reserve. It is assumed that this is done 

according to a well-defined algorithm, and that it does not include any risk margin. 

2. Extend the input data needed for the algorithm used in step 1 by simulating one further 

year of data. 

3. Apply exactly the same algorithm as is step 1 to the extended data set generated in step 

2 to produce a distribution of the closing claims reserve. 

 
Following the above method gives us the opening claims reserve R0, the claims amount paid during 
the year, P, and the closing claims reserve, R1. This allows us to calculate the claims development 
result (CDR) using 

𝐶𝐶𝐶𝐶𝐶𝐶 =  𝐶𝐶0 − 𝑃𝑃 −  𝐶𝐶1 

In well behaved situations the expected value of the CDR is zero. However, there are some common 
situations where this is not the case. We discuss this further in section 3.2.5. 

Step 1 above is to obtain the best estimate opening reserves. This is a natural first step, however it is 
not necessary to do precisely this. If the goal is to get a distribution of the claims development 
result, then the claims development result can also be calculated as the movement in the estimate 
of ultimate claims 

𝐶𝐶𝐶𝐶𝐶𝐶 =  𝑈𝑈0 −  𝑈𝑈1 

It would therefore be possible for the first step to be to obtain the opening best estimate of the 
ultimate claims – this is just the best estimate opening reserves plus the claims paid to date. The 
advantage of this is that in step 2 we would not need the simulated data to include the claims paid 
during the year. This allows us to apply the actuary-in-the-box to bootstrapped triangles of incurred 
claims. However, note that in some cases it will be necessary to output the closing reserve, or the 
claims paid during the year, for example if projecting a balance sheet. In this case the model that the 
actuary-in-the-box method is applied to will need to include paid claims. 

For Step 2, Ohlsson and Lauzeningks don’t go into any details of how the further year of data should 
be simulated. They also do not state that the way that this is done needs to be consistent with the 
algorithm used in step 1, although it clearly should. Ohlsson and Lauzeningks consider the method 
above only for calculating one-year reserve risk, in step two they therefore do not include the claims 
data arising from the period of exposure between time 0 and time 1. The one-year premium risk 
does need to be considered, and Ohlsson and Lauzeningks do discuss it (in section 3), however they 
discuss other methods of calculating it. It is possible to extend the actuary-in-the-box method to 
include premium risk. We discuss this briefly in section 3.2.5 below. In the current section we follow 
Ohlsson and Lauzeningks, and do not consider claims arising from the exposure between time 0 and 
time 1. 

In their discussion of step 1 Ohlsson and Lauzeningks appear to make very few assumptions about 
the algorithm used to set the reserves. However, in their discussion of step 2 they consider only 
triangle-based models, and describe the step as simulating a new diagonal for the development 



triangle. The actuary-in-the-box method does not require a triangle-based model. However, to apply 
it we do need to assume that the algorithm used in step 1 considers claims development information 
in some manner, so that in step 2 it is possible to simulate the claims paid in the year in a way 
consistent with the algorithm used in step 1. If the reserves are set using a method that does not do 
this then the actuary-in-the-box method cannot be applied. 

It is worth emphasising that, while the extended data set produced in step 2 is stochastic, the 
algorithm applied in step 3 is a deterministic algorithm; it is applied deterministically to each 
simulated value. The output is therefore stochastic, but all the randomness comes from simulated 
additional year in step 2, no further randomness is added is step 3. 

The actuary-in-the-box procedure described by Ohlsson and Lauzeningks is a very general procedure, 
and they do not say very much about the details of how it should be implemented. However not all 
models used for calculating ultimate reserve risk are amenable to the actuary-in-the-box. We discuss 
this further in section 3.2.5 below. The most common situation where the actuary-in-the-box is 
applied are bootstrapped models. We now describe how to apply the method in these cases. 

3.2.2 ACTUARY-IN-THE-BOX AND BOOTSTRAPPED MODELS 

It is clear that the actuary-in-the-box procedure described above is a very general procedure and can 
be applied in any case where the claims reserving algorithm can be clearly specified, and where an 
additional year of data can be simulated in a way that is consistent with this algorithm. 

We now describe the procedure as it would be applied to bootstrapped models of claims data such 
as the Mack, ODP and stochastic Bornhuetter-Ferguson models. The method is the following: 

1. Carry out the bootstrap procedure 

2. Extend the claims data by one year using the bootstrap output 

3. Re-fit the underlying deterministic model to the extended claims data 

4. Calculate the ultimate claims for the extended claims data using the underlying 

deterministic model 

Steps 1 and 2 of the above procedure correspond to steps 1 and 2 of Ohlsson and Lauzeningks’ 
procedure, and steps 3 and 4 correspond to step 3 of Ohlsson and Lauzeningks’ procedure. 

To carry out the bootstrap procedure in step 1 we need to have a well-defined model, and we 
therefore meet the requirement in Ohlsson and Lauzeningks’ step 1 that the opening reserves be 
calculated using a well-defined algorithm. 

In step 2, by extending the claims data using the bootstrap output we ensure that the simulated data 
for the new risk year is consistent with the algorithm used in step 1. 

As discussed in section 2.3 the claims development result can be calculated either as the movement 
in the estimates of ultimate claims, or as the movement in the reserves (allowing for the claims paid 
in the year). In the latter case it is necessary to have a simulation of the claims paid. This means that 
the bootstrapped model of claims data must include the paid claims data. In the case of the Mack, 
ODP, or stochastic Bornhuetter-Ferguson model, this means that the model must be applied to paid 
claims triangles. Alternatively, the actuary-in-the-box could be applied to a method which uses both 



paid and incurred claims data, such as the Double Chain Ladder (Martinez-Miranda, et al., 2012) or 
the Munich Chain Ladder (Quarg, et al., 2008). 

3.2.3 MACK’S MODEL AND THE ODP MODEL 

In this section we describe how to apply the Actuary-in-the-box procedure to a bootstrapped Mack 
or ODP model. The procedure for both models is exactly the same. 

Both Mack’s model and the ODP model are discussed in (Carrato, et al., 2016). Mack’s model is 
described in section 4.1 and the application of the bootstrap is discussed in section 6.4.1. The ODP 
model is described in section 4.2 and the application of the bootstrap is discussed in section 6.4.2. 

The claims data input for the Mack and ODP models is the triangle of claims 

𝑇𝑇 =  �𝐶𝐶𝑖𝑖𝑖𝑖 ∶ 𝑖𝑖 = 1, … ,𝑛𝑛, 𝑗𝑗 = 1, … ,𝑛𝑛 − 𝑖𝑖 + 1 � 

We represent the triangle of observed claims in Figure 3-1 

 

FIGURE 3-1 

Step 1 of the actuary-in-the-box procedure is to carry out a bootstrap based on the model. The 
bootstrap procedure fills out the bottom right of the triangle to get 

𝑇𝑇∗ =  �𝐶𝐶𝑖𝑖𝑖𝑖∗ ∶ 𝑖𝑖 = 2, … ,𝑛𝑛, 𝑗𝑗 = 𝑛𝑛 − 𝑖𝑖 + 2, … ,𝑛𝑛� 

We represent the triangle of observed claims and the bootstrap projection in Figure 3-2 

 

FIGURE 3-2 



Step 2 is to extend the input claims data using the bootstrap output. The bootstrap output 
corresponding to the next year is the diagonal 

𝐶𝐶∗ =  �𝐶𝐶𝑖𝑖,𝑠𝑠−𝑖𝑖+2∗ ∶ 𝑖𝑖 = 2, … ,𝑛𝑛� 

 The original triangle is extended by appending this diagonal 

𝑇𝑇′ =  �𝐶𝐶𝑖𝑖𝑖𝑖′ ∶ 𝑖𝑖 = 1, … ,𝑛𝑛, 𝑗𝑗 = 1, … ,𝑛𝑛 − 𝑖𝑖 + 2 � 

where 

𝐶𝐶𝑖𝑖𝑖𝑖′ =  �
𝐶𝐶𝑖𝑖𝑖𝑖  if  𝑗𝑗 ≤ 𝑛𝑛 − 𝑖𝑖 + 1
𝐶𝐶𝑖𝑖𝑖𝑖∗   otherwise            

We represent the extended triangle in Figure 3-3 

 

FIGURE 3-3 

Step 3 is to re-fit the underlying deterministic model to the extended claims data. For both Mack’s 
model and the ODP model, the underlying deterministic model is the chain ladder. We fit this by 
calculating the development factors with a slight change to the usual formulae to allow for the extra 
diagonal 

𝑓𝑓𝑖𝑖′ =  
∑ 𝐶𝐶𝑖𝑖,𝑖𝑖+1′𝑠𝑠−𝑖𝑖+1
𝑖𝑖=1

∑ 𝐶𝐶𝑖𝑖𝑖𝑖′
𝑠𝑠−𝑖𝑖+1
𝑖𝑖=1

 

Note that since 𝐶𝐶𝑖𝑖,𝑠𝑠−𝑖𝑖+2′  is stochastic, the fitted development factors 𝑓𝑓𝑖𝑖′ are also stochastic. 

Step 4 is to calculate the estimate of ultimate claims for the extended claims data using the 
underlying deterministic model. This just means applying the development factors in the usual way 
to get the estimate of the ultimate claims, taking account of the extra diagonal 

�̂�𝐶𝑖𝑖𝑠𝑠′ =  𝐶𝐶𝑖𝑖,𝑠𝑠−𝑖𝑖+2′  � 𝑓𝑓𝑘𝑘′
𝑠𝑠−1

𝑘𝑘=𝑠𝑠−𝑖𝑖+2

 

We represent the deterministic projection of the extended triangle in Figure 3-4 



 

FIGURE 3-4 

If the triangle contains paid claims data then the closing reserve can be calculated using 

𝐶𝐶𝑖𝑖 =  �̂�𝐶𝑖𝑖𝑠𝑠′ − 𝐶𝐶𝑖𝑖,𝑠𝑠−𝑖𝑖+2′  

Finally, the claims development result can be calculated. 

To hopefully make the above procedure clearer, consider a single accident year. The graph in Figure 
3-5 shows the cumulative claims development for a single accident year. The accident year has seen 
three years of development, and so the first three periods are deterministic. The development after 
year three is projected using a bootstrap, and so is stochastic (step 1 is to carry out the bootstrap). In 
the graph shown there are 1000 simulations, so 1000 possible paths for claims development after 
development year three. 

 

FIGURE 3-5 

Step 2 is to extend the claims triangle by one further year of development, using the bootstrap 
output. For the single accident year under consideration, this means extending the observed claims 
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development by one further year using the bootstrap simulations. The resulting graph is shown in 
Figure 3-6 

 

FIGURE 3-6 

Step 3 is to refit the model – in this case the basic chain ladder – and then deterministically project 
to ultimate. When we do this we get projected future cumulative development as shown in Figure 
3-7 

 

FIGURE 3-7 
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One-Year Projection
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It is worthwhile to closely compare the Ultimate Development graph (Figure 3-5) and the One-Year 
Projection graph (Figure 3-7). Both show stochastic projections after development year three. 
However, the Ultimate Development graph shows more volatility in the future development than 
the One-Year Projection graph – the future development paths are more likely to cross over one 
another, and the range of final values is much wider. The reason for this is that in the one-year 
projection, the only source of randomness is the first year of development (between time three and 
time four), after the fourth development year the projection is deterministic, given the development 
between time three and time four. Whereas for the ultimate projection there is randomness at all 
the future development periods. 

The graph in Figure 3-8 shows the PDFs for the ultimate view of the ultimate claims (in grey) and the 
closing estimate of the ultimate claims (in red) for the same example as the graphs above. As can be 
seen the ultimate distribution is more spread out than the closing distribution, while the mean of 
the two distributions appears to be very similar. In section 5 below we look more closely at two 
numerical examples. 

 

FIGURE 3-8 

3.2.4 THE AMW-BORNHUETTER-FERGUSON MODEL 

In this section we describe how to apply the actuary-in-the-box procedure to a bootstrapped Alai, 
Merz, and Wüthrich Bornhuetter-Ferguson model (see (Alai, et al., 2009) and (Alai, et al., 2011)). The 
procedure is similar to that for Mack’s model and the ODP model, with some alterations to allow for 
the features specific to the Bornhuetter-Ferguson. However, there are a number of issues associated 
with the prior estimate of ultimate claims which we discuss below. 

The Alai, Merz, and Wüthrich’s stochastic Bornhuetter-Ferguson is also discussed in (Carrato, et al., 
2016). The model is described in section 4.3, and the application of the bootstrap is discussed in 
section 6.4.3. The model is also discussed in (Scarth, 2015). 
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It is worth noting that Ohlsson and Lauzeningks are sceptical about applying the actuary-in-the-box 
procedure to a Bornhuetter-Ferguson model. In section 2.1.1 of (Ohlsson, et al., 2009) they say: 

In our opinion the quite popular Bornhuetter-Ferguson (BF) method does not fulfil the 
requirement of being algorithmic. The reason is that it uses some a priori loss ratios, whose 
calculation is outside the method. In practice, these loss ratios will probably be estimated 
from loss data and in order for BF to be algorithmic, this estimation should be made explicit. 
The [Generalised Cape Cod] could be seen as a way of making BF algorithmic and is hence 
preferred here. 

This is a good point; however, they go on to say 

If [the actuary’s subjective] judgement is still necessary, we have to find an approximate 
algorithm A1, capturing the main features of the best estimate, for use in the simulation, 
Step 3. 

It is not clear why, despite the fact that the prior estimate of the ultimate claims used in the 
Bornhuetter-Ferguson comes from outwith the model, that it is not possible in at least some cases to 
model (or find an “approximate algorithm” for) the process of setting the prior estimate of the 
ultimate claims, and so apply the actuary-in-the-box procedure to the AMW-BF model. We discuss 
this further below. 

The claims data input for the AMW-BF model is the triangle of claims 

𝑇𝑇 =  �𝐶𝐶𝑖𝑖𝑖𝑖 ∶ 𝑖𝑖 = 1, … ,𝑛𝑛, 𝑗𝑗 = 1, … ,𝑛𝑛 − 𝑖𝑖 + 1 � 

and the mean and coefficient of variation (CoV) of the prior estimate of ultimate claims. 

We represent the triangle of observed claims and the prior ultimate assumptions in Figure 3-9 

 

FIGURE 3-9 

Step 1 of the actuary-in-the-box procedure is to carry out a bootstrap based on the model. The 
bootstrap procedure fills out the bottom right of the triangle to get 

𝑇𝑇∗ =  �𝐶𝐶𝑖𝑖𝑖𝑖∗ ∶ 𝑖𝑖 = 2, … ,𝑛𝑛, 𝑗𝑗 = 𝑛𝑛 − 𝑖𝑖 + 2, … ,𝑛𝑛� 



We represent the triangle of observed claims, the bootstrap projection and the simulated prior 
ultimates used in the bootstrap in Figure 3-10 

 

FIGURE 3-10 

Step 2 is to extend the input claims data using the bootstrap output. The triangle can be extended in 
exactly the same way as for Mack’s model and the ODP model (see above). We also need to 
generate new prior estimates of the ultimate claims. However, it is not clear exactly how to do this. 
We will discuss this further below, but for now we assume that we have simulated new prior 
estimates of the ultimate claims, 𝜈𝜈𝑖𝑖′. 

We represent the extended triangle and the simulated prior ultimates in Figure 3-11 

 

FIGURE 3-11 

Step 3 is to re-fit the underlying deterministic model to the extended claims data. For the AMW-BF 
model this means re-fitting the chain-ladder model to calculate the cumulative development 
pattern. To do this calculate the development factors 𝑓𝑓𝑖𝑖′ as for the Mack and ODP models and then 
calculate the cumulative development proportions using 



�̂�𝛽𝑖𝑖′ =  
1

∏ 𝑓𝑓𝑘𝑘′𝑠𝑠−1
𝑘𝑘=𝑖𝑖

 

Note that the �̂�𝛽𝑖𝑖′ are stochastic. 

Step 4 is to calculate the reserves for the extended claims data using the underlying deterministic 
model. The underlying deterministic model is the Bornhuetter-Ferguson method, so this just means 
applying that method to calculate the ultimate claims, taking account of the extra year of 
development, using the following formula 

�̂�𝐶𝑖𝑖𝑠𝑠′ =  𝐶𝐶𝑖𝑖,𝑠𝑠−𝑖𝑖+2′ +  �1 −  �̂�𝛽𝑠𝑠−𝑖𝑖+2′ � 𝜈𝜈𝑖𝑖′ 

We represent the deterministic projection of the extended triangle in Figure 3-12 

 

FIGURE 3-12 

The closing reserve is then calculated in exactly the same way as for the Mack and ODP models. 

We now discuss some of the issues with simulating the prior estimate of ultimate claims. First recall 
that what we are simulating is the prior estimate of the ultimate claims that will be used at the end 
of the next period. How this will be selected at the end of the period is a decision of the reserving 
actuary. Therefore, answers to the questions we raise below must necessarily come from outwith 
the model, and can only be answered by considering the processes the reserving actuary will follow 
when deciding on the prior estimate of the ultimate claims. This is the reason for Ohlsson and 
Lauzeningks’ opinion that the Bornhuetter-Ferguson is not suitable for use with the actuary-in-the-
box procedure. However, we believe that in a well-run company, with a reserving actuary following 
good practice, there is likely to be sufficient regularity to allow this to be modelled, to an acceptable 
degree of accuracy.  

The first question to consider is whether the prior estimate of ultimate claims will change at all. If it 
is believed that the prior estimate of ultimate claims will not change over the period then the closing 
prior estimate of ultimate claims should be set to the opening prior estimate of ultimate claims. 

If it is believed that the prior estimate of the ultimate claims will change over the period, then the 
next question is what distribution it should have, including what the mean and CoV should be. Two 



possible answers for what the mean should be are the following. It could either be equal to the 
mean of the prior estimate of ultimate claims used for the ultimate view bootstrap, or it could be 
equal to the simulated value of the prior estimate of ultimate claims used for the ultimate view 
bootstrap. 

It is less clear what the CoV should be. The variability of the prior estimate of ultimate claims over a 
single period used in the actuary-in-the-box is fundamentally different from the variability of the 
prior estimate of the ultimate claims used in an ultimate view model. In the ultimate view model the 
variability is essentially parameter error in a prior estimation of the mean of the ultimate claims. In 
the actuary-in-the-box the variability is due to a combination of the process followed by the 
reserving actuary in setting the prior estimate of the ultimate claims, changes in the information 
considered by the actuary, and changes in the actuary’s judgement. 

A further choice that needs to be made is the distribution used. Possible choices are normal, gamma, 
or lognormal. 

The lack of clarity over how to simulate the closing prior estimate of ultimate claims is an 
unsatisfactory feature of the AMW-BF model. How it should be done can only be answered by 
considering the processes that are likely to be followed by the reserving actuary in selecting what 
the prior estimates will be. The simplest and most easily communicated assumption is that the prior 
estimates will not change, and so in the absence of any strong reason to make a different 
assumption this is perhaps the assumption that should be used. 

The AMW-BF model assumes that the prior estimates of ultimate claims are independent of each 
other and of the data in the claims triangle. This is a very strong assumption, and likely does not hold 
in reality. In particular if the prior estimates used in the Bornhuetter-Ferguson method are 
periodically reviewed then it seems unlikely that they will be completely independent of each other 
or of the data in the claims triangle. If the model is being bootstrapped this is not a fatal problem as 
dependence assumptions can be built into the bootstrap and the actuary-in-the-box process. 
However, the problem then becomes to specify and parameterise the dependence structure used. 
This cannot be done without considering the processes that are likely to be followed by the 
reserving actuary in selecting the prior estimates. This is another consideration when deciding how 
to model the closing prior estimates, and another unsatisfactory feature of the AMW-BF model. 

3.2.5 DISCUSSION OF METHOD 

The actuary-in-the-box method is a very general procedure with a wide range of applicability. It can 
be applied to a wide variety of models, and it is important not to ascribe the limitations of those 
models to the actuary-in-the-box method. However, the actuary-in-the-box method does have its 
limitations. 

A fundamental limitation of the actuary-in-the-box method is that it cannot adequately capture the 
judgement used by a real-world actuary in setting reserves, or many of the other subtle aspects of a 
complex reserving process. This is particularly a problem with volatile classes of business or classes 
where there is little claims data and so where the reserving actuary is likely to apply a lot of 
judgement, and where the actuary-in-the-box can sometimes give completely unreasonable results. 
Unfortunately, this is a limitation that cannot be overcome by any method of estimating the one-
year risk, short of developing an artificial intelligence capable of replacing a human actuary – 
discussion of whether this is possible or not is beyond the scope of this paper. 



Another fundamental limitation is that the actuary-in-the-box method cannot make use of 
information not contained in the claims data used by the underlying model, which the reserving 
actuary would likely consider when setting reserves. Such information would include, for example 
losses which have not yet breached the layer of cover, or information about claims other than the 
case reserves which are included in the incurred claims data. It also includes information arising 
from changes in the claims environment, such as changes in claims inflation. These are likely to give 
rise to the largest changes in the claims estimate. The actuary-in-the-box might therefore 
underestimate the potential extent of changes in the reserves over one-year. 

In some situations, it might be necessary to output, the closing reserve or claims paid during the 
year. For example, if projecting the balance sheet in a capital model. If the actuary-in-the-box is 
based on a Mack, ODP or AMW-BF model then this means that the underlying model has to use paid 
claims triangles. Whereas the reserving actuary might use incurred claims triangles when setting the 
reserves. This is particularly likely to be the case with long-tailed lines of business. Alternative 
models which use both paid and incurred claims data, such as the DCL or MCL, are not widely used 
when setting reserves. The use of paid claims data, when incurred data is used in setting the 
reserves means that, first, a different model is being used by the actuary-in-the-box and the real-
world actuary, and second that information in the incurred claims data is not used by the actuary-in-
the-box, when the information is being used by the real-world actuary. 

The actuary-in-the-box method is computationally relatively expensive, and is relatively complex to 
implement. However, the actuary-in-the-box is often used on top of a bootstrapped model, and it is 
relatively less computationally expensive than the underlying bootstrap, and also relatively straight-
forward to build on top of a bootstrapped model. Although it does require coding skills, and cannot 
easily be built in a spreadsheet. The method is also available in several popular reserving software 
products. 

The relatively high computational cost, together with the fact that the actuary-in-the-box can 
sometimes give unreasonable results means that it is often not suitable for use in the main part of 
the calculation kernel of a capital model. Instead the actuary-in-the-box is usually run outside the 
main part of the calculation kernel to estimate parameters which are then fed into the main 
calculation kernel. These parameters can be reviewed for reasonableness before being fed into the 
main calculation kernel. Emergence patterns are one of the possible ways to feed this information 
into the main calculation kernel. 

The actuary-in-the-box method cannot be applied to models where claims development is not 
modelled, for example if the reserves are modelled in aggregate, as there is no way to produce the 
claims paid during the year (without extending the model). 

The actuary-in-the-box method cannot be applied to a model that has parameters that are 
calculated outwith the model. For example, if the reserves are modelled in aggregate with the mean 
and standard deviation set using an external benchmark, then there is no way to meaningfully re-fit 
the model as step 3 of Ohlsson and Lauzeningks method requires. 

Frequency-severity models are sometimes used to model reserves for large claims. However, in their 
usual form, these models do not consider information about claims development. This is in contrast 
to models of triangles of claims data which inherently contain information about claims 
development. Furthermore, the parameters come from outwith the model, unlike the Mack, or ODP 



where the parameters are fitted using a definite algorithm to a defined set of data. Because of this it 
is not possible to apply an actuary-in-the-box procedure without extending the model. The model 
would have to be extended to include claims development data and include a definite algorithm for 
fitting the parameters to that data. A model for large claims which considers claims development 
information is the Murphy-McLennan model (Murphy, et al., 2006). However, while this model is 
sometimes used, it is not the most commonly used model. 

The actuary-in-the-box method can contribute to the calculation of premium risk. However, its uses 
are limited, and it is rarely used in practice for this purpose. 

As we discussed in section 2.3 if the claims reserves are set on a best estimate basis, then the 
sequence of estimates of the ultimate claims is unbiased. This implies that the expected value of the 
claims development result is zero. However, there are some situations in which this does not 
happen. In particular if the actuary-in-the-box method is applied to the AMW-BF model then the 
expected value of the claims development result is not zero. The reason for this is that the AWM-BF 
model assumes an ODP model for the triangle of observed claims, but then via the prior estimate of 
ultimate claims, assumes a mean for the future incremental claims different from that implied by the 
chain ladder. This difference means that the expected value of the claims development result is not 
zero. Specifically, if the prior estimate of ultimate claims is greater than the chain ladder estimate of 
the ultimate claims then the expected value of the claims development result is negative, as the loss 
relative to the chain ladder implied by the greater prior estimate of ultimate claims emerges. 
Similarly, if the prior estimate of the ultimate claims is less than the chain ladder estimate then the 
expected value of the claims development result is positive. For similar reasons, in the Mack or ODP 
model, if a curve is fitted to the chain ladder development factors, then the expected value of the 
claims development result is not zero. 

The sequence of estimates of the ultimate claims in the AMW-BF model and a Mack or ODP model 
with a curve fit, fails to have the martingale property because the model of the past and future 
claims is not the same. We say that these models are not “time-symmetric”. More generally, if there 
is no bias in the claims reserving algorithm, the algorithm is time-symmetric, and the new year is 
simulated consistently with the algorithm, then the expected value of the claims development result 
will be zero. 

One very nice feature of the actuary-in-the-box method is that it can be iterated to calculate the 
distribution of the claims development result over several periods, and indeed all the way to 
ultimate. This can be used to show how the ultimate risk emerges over time, which can give valuable 
insight into the risk. For long tail classes it is sometimes the case that very little risk emerges over the 
first years of development, instead most of the risk emerges over the middle years of development. 
This can lead to the paradoxical result that on a one-year basis the most recent cohorts are 
apparently not very risky, whereas on an ultimate basis they are very risky. This is sometimes called 
the Time Horizon Paradox. 

One nice feature of the claims development result is that the sum of the variances of the claims 
development results up to ultimate is equal to the variance of the distribution of the ultimate view 
of the risk. This result is quite general and follows because the time series of estimates of the 
ultimate claims forms a martingale, and in any martingale the sequence of differences has this 
property. See section 9 appendix A for the technical details of this result. Note this does not hold if 
the expected value of the claims development result is zero, as happens with the AMW-BF model. 



3.3 EMERGENCE PATTERNS 

3.3.1 METHOD INTRODUCTION 

“Emergence Patterns” are a family of methods rather than a single method. All the different versions 
are based on the simple idea of applying a scaling factor to the ultimate risk to derive the one-year 
risk. Emergence patterns can be applied in cases where the actuary-in-the-box cannot be applied, or 
does not give reasonable results. However, the problem then becomes how to parameterise the 
emergence patterns, and which version of the family to apply. Unfortunately, it is not always clear 
how to solve these problems, and usually a degree of judgement is required. 

The scaling of the distribution of the ultimate view of risk should only affect the volatility, not the 
mean. This is because, as discussed in section 2.3, the sequence of best estimates is unbiased, so the 
expected value of future best estimates is equal to the current best estimate, which is the mean of 
the distribution of the ultimate view of risk. The general formula applying emergence factors 
therefore has the form 

𝑋𝑋� =  𝛼𝛼(𝑋𝑋 − 𝐸𝐸[𝑋𝑋]) + 𝐸𝐸[𝑋𝑋] 

Where 𝑋𝑋 denotes the distribution of the ultimate view of risk, 𝛼𝛼 denotes the emergence factor 
applied, and 𝑋𝑋� denotes the one-year distribution. The emergence factor 𝛼𝛼 takes a value between 
zero and one. It is easy to see that 𝐸𝐸�𝑋𝑋�� = 𝐸𝐸[𝑋𝑋] and 𝜎𝜎�𝑋𝑋�� =  𝛼𝛼𝜎𝜎(𝑋𝑋). The graph in Figure 3-13 gives 
a visual representation of this formula. The red line shows the PDF of 𝑋𝑋 and the grey line shows the 
PDF of 𝑋𝑋�. As can be seen the one-year distribution is less spread out than the distribution of the 
ultimate view of risk. The emergence factor 𝛼𝛼 controls how spread out the one-year distribution is, 
relative to the distribution of the ultimate view of risk. The closer 𝛼𝛼 gets to one, the closer the one-
year distribution gets to the distribution of the ultimate view of risk. As 𝛼𝛼 gets closer to zero, the 
one-year distribution becomes more tightly concentrated around the mean. The means of the two 
distributions are identical, although because of the positive skew the mode of the one-year 
distribution is slightly greater than the mode of the distribution of the ultimate view of risk. Compare 
the graph in Figure 3-13 with the graph in Figure 3-8 at the end of section 3.2.3. 

 

FIGURE 3-13 
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There are different varieties of emergence pattern. The first difference is determined by which 
distribution of the ultimate view of risk is used. Either the distribution of the ultimate claims can be 
used, or the distribution of the claims outstanding at time 1 (so not including the claims paid during 
the year). The second difference is determined by whether the pattern is expressed as a risk decay 
pattern or as a life-time risk emergence pattern. The difference between these is that a risk decay 
pattern is an answer to the question: of the risk remaining how much will emerge over the next 
year? Whereas a life-time risk emergence pattern is an answer to the question: what proportion of 
the life-time risk (i.e. the total risk from the start of the relevant origin period to the final claim 
payment) will emerge during the nth development year? We explain this in more detail in the 
sections below, and in section 10 appendix B. Different origin period bases could be used (either 
accident periods, underwriting periods, or reporting periods), and these will give rise to different 
emergence patterns. 

Another possible variation in emergence patterns is the level of granularity that they are applied at, 
in particular they can be applied to reserves by origin year (with a different emergence factor 
applied to each origin year), or they can be applied to reserves aggregated over origin years. 

Yet another possible variation in emergence patterns is the statistic to which the scaling factor is 
applied. The natural statistic to apply the scaling factor to is the standard deviation, and this is what 
we consider in what follows. However, in principle it is possible to apply the scaling factor to another 
statistic, such as a specified percentile. We discuss this briefly in section 10 appendix B. 

One of the biggest challenges with emergence patterns is calibration. A common way to do this is to 
use the actuary-in-the-box. Emergence patterns are often used in cases where the actuary-in-the-
box method cannot be applied. In this case the actuary-in-the-box can be used to calibrate 
benchmark emergence patterns, which can then be used as the basis for emergence patterns to be 
applied, or can be applied directly. In section 3.2.5 above we made the point that, due to the fact 
that it is relatively computationally expensive, the actuary-in-the-box is not suitable for use in the 
main part of the calculation kernel of a capital model. Instead the actuary-in-the-box is run to create 
parameters for input into the calculation kernel. The form of these inputs is often an emergence 
pattern. 

In principle emergence patterns could be stochastic. However, there are problems with stochastic 
emergence patterns, and so we do not consider them in the main body of the paper. We briefly 
discuss them, and the problems with them in section 10 appendix B. 

3.3.2 DIFFERENT VARIETIES OF EMERGENCE PATTERN 

In this section we attempt to give an intuitive description of the different varieties of emergence 
pattern that we introduced in the previous section, and of the relationships between them. Very 
little material on emergence patterns has appeared in the literature. We therefore develop this 
material in more detail in section 10 appendix B. 

The first case we consider is perhaps the most intuitive way to consider risk emergence.  In this case 
we consider a single origin period from its start to the final payment, the risk over this whole period 
we call the “life-time risk”. As we move through time, we learn more about the total amount to be 
paid, and more of the claims are actually paid. The risk therefore emerges as the origin period 
develops. At the start of the origin period none of the risk has emerged, by the time of the final 
payment all of the risk has emerged. We can consider the proportion of the total risk that has 



emerged at each point in time between start of the origin period and the final payment. This starts 
at zero, and increases until it takes the value one by the time of the final payment, as shown in the 
graph in Figure 3-14. 

 

FIGURE 3-14 

We call this the “Cumulative ultimate life-time risk emergence”. We denote these emergence factors 
by 𝛼𝛼𝑘𝑘 where 𝑘𝑘 is the number of periods of development (i.e. the horizontal axis of the graph). So 
0 =  𝛼𝛼0  ≤  𝛼𝛼1  ≤ ⋯  ≤  𝛼𝛼𝑠𝑠 = 1. 

However, in practice, if we are applying emergence factors to individual origin periods then we will 
be applying them to partially developed periods, and therefore need to consider not the life-time 
ultimate risk, but the remaining ultimate risk. We therefore consider how, for a partially developed 
origin period, the remaining risk emerges between the current time (which is after the start of the 
origin period) and the time of the final payment. As in the case of the life-time risk emergence as we 
move through time, we learn more about the total amount remaining to be paid. The proportion of 
the remaining risk that has emerged at each point in time therefore increases from zero to one as 
shown in the graph in Figure 3-15. 

 

FIGURE 3-15 
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We call this the “Conditional cumulative ultimate emergence”. We denote these emergence factors 
by 𝛼𝛼𝑡𝑡,𝑘𝑘 where 𝑡𝑡 is the number of periods of prior development, and 𝑘𝑘 is the number of periods of 
future development. So the graph above shows the values of 𝛼𝛼2,0,𝛼𝛼2,1, … ,𝛼𝛼2,7. More generally 0 =
 𝛼𝛼𝑡𝑡,0  ≤  𝛼𝛼𝑡𝑡,1  ≤ ⋯  ≤  𝛼𝛼𝑡𝑡,𝑠𝑠−𝑡𝑡 = 1. 

However, we would like to apply emergence factors to estimate the one–period risk. We are 
therefore interested in the proportion of remaining risk that will emerge over the next year for a 
succession of origin periods. We therefore need to consider the succession of conditional cumulative 
ultimate emergence graphs as shown in Figure 3-16. 

 

FIGURE 3-16 

The emergence pattern to apply to the successive origin periods to get the one-period view of risk is 
that shown by the black line. In this case the emergence factors do not need to form an increasing 
sequence, although the final value does need to be one. We call this the “ultimate one-period risk-
decay pattern”. Using the notation from above the emergence pattern indicated by the black line on 
the graph consists of the factors �𝛼𝛼0,1 ,𝛼𝛼1,1 , … , 𝛼𝛼𝑠𝑠,1�. 

So far, we have discussed emergence factors applied to the distribution of ultimate claims. We now 
discuss an issue with this, and introduce another interpretation of emergence factors to address the 
issue. At time 𝑡𝑡 the remaining risk includes risk stemming from claims paid between time 𝑡𝑡 and time 
𝑡𝑡 + 1, but by time 𝑡𝑡 + 1 these claims will have been paid, and so the amount paid will be known 
with certainty – all the risk associated with payments between time 𝑡𝑡 and time 𝑡𝑡 + 1 will have 
emerged by time 𝑡𝑡 + 1. However if we apply an emergence factor to the distribution of ultimate 
claims then we are applying an emergence factor to these payments, and we are assuming that only 
a proportion of the risk emerges before time 𝑡𝑡 + 1. The diagram in Figure 3-17 shows this. 
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We therefore need to adjust the definition of the emergence factors that we apply, so that we take 
account of this. Emergence factors should be applied to the distribution of the ultimate view of risk 
of claims paid after time 𝑡𝑡 + 1, and no adjustment should be made to the distribution of claims paid 
between time 𝑡𝑡 and time 𝑡𝑡 + 1. We call this the “conditional outstanding emergence pattern”. 

As with the ultimate emergence factors we would like to use them to estimate the one-period risk. 
We therefore need to consider the succession of conditional outstanding emergence patterns for 
accident years with successive periods of prior development. Doing so, in exactly the same way as 
with the ultimate emergence factors, gives us an “outstanding one-period risk-decay pattern”. 

We use 𝛽𝛽 to denote outstanding emergence factors, and we use subscripts in the same way and 
with the same meaning as for the ultimate emergence factors denoted by 𝛼𝛼. So 𝛽𝛽𝑘𝑘 denotes the 
outstanding life-time emergence factor to apply to estimate the distribution of closing claims 
reserves after 𝑘𝑘 years of development. And 𝛽𝛽𝑡𝑡,𝑘𝑘 denotes the conditional outstanding emergence 
factor to apply to an origin year that has already seen 𝑡𝑡 years of prior development to estimate the 
distribution of closing claims reserves after a further 𝑘𝑘 years of development. Similarly to the 
ultimate emergence factors, the emergence pattern to apply to successive accident years to 
estimate the one-year risk would be �𝛽𝛽0,1 ,𝛽𝛽1,1, … ,𝛽𝛽𝑠𝑠−2,1�. Note that 𝛽𝛽𝑠𝑠−1,1 is not defined as there 
are no outstanding claims at time point 𝑛𝑛. 

We now collect the different varieties of emergence pattern discussed above into a more systematic 
framework. The three main characteristics that differ are the following: 

1. Which distribution of the ultimate view of risk is used 

2. Whether there has been any prior development 

3. Whether expressed on a life-time or risk-decay basis 

There are two possibilities for each characteristic, but as we will see some combinations are not 
possible, and there are in total six possibilities. We now describe these. 

For the first question, the distribution of the ultimate view of risk used can either be the distribution 
of ultimate claims, or the distribution of the claims outstanding at the end of the period. We 
describe the first case with “Ultimate”, and the second case with “Outstanding”. 

For the second question we can either have no prior development, or some prior development. We 
describe the first case with “Unconditional”, and the second case with “Conditional”. This is because 
if there has been some development then the emergence factors are conditional on the 
development so far. 

 

FIGURE 3-17 



For the third question we can either have “Life-time”, or “Risk-decay”. This makes no difference to 
the emergence factors calculated, the difference is in how the emergence factors are collected to 
form emergence patterns. 

This gives us eight possibilities, which we list in Table 3-3. We have already seen five of these, and 
two do not make sense. 

 1 2 3 Emergence Factor Emergence Pattern 
1 Ultimate Unconditional Life-time 𝛼𝛼𝑘𝑘 (𝛼𝛼0, … ,𝛼𝛼𝑠𝑠) 
2 Ultimate Unconditional Risk-

decay 
Does not make sense 

3 Ultimate Conditional Life-time 𝛼𝛼𝑡𝑡,𝑘𝑘 �𝛼𝛼𝑡𝑡,0, … ,𝛼𝛼𝑡𝑡,𝑠𝑠−𝑡𝑡� 
4 Ultimate Conditional Risk-

decay 
𝛼𝛼𝑡𝑡,𝑘𝑘 �𝛼𝛼0,1,𝛼𝛼1,1, … ,𝛼𝛼𝑠𝑠−1,1� 

5 Outstanding Unconditional Life-time 𝛽𝛽𝑘𝑘 (𝛽𝛽0, … ,𝛽𝛽𝑠𝑠−1) 
6 Outstanding Unconditional Risk-

decay 
Does not make sense 

7 Outstanding Conditional Life-time 𝛽𝛽𝑡𝑡,𝑘𝑘 �𝛽𝛽𝑡𝑡,0, … ,𝛽𝛽𝑡𝑡,𝑠𝑠−𝑡𝑡−1� 
8 Outstanding Conditional Risk-

decay 
𝛽𝛽𝑡𝑡,𝑘𝑘 �𝛽𝛽0,1,𝛽𝛽1,1 , … ,𝛽𝛽𝑠𝑠−2,1� 

TABLE 3-3 

Note that the emergence factors for lines 3 and 4, and lines 7 and 8, are the same. The difference is 
in how they are combined to form the emergence pattern. Also note that unconditional emergence 
factors can be considered as a special case of conditional emergence factors, as 𝛼𝛼𝑘𝑘 =  𝛼𝛼0,𝑘𝑘 and 𝛽𝛽𝑘𝑘 =
 𝛽𝛽0,𝑘𝑘. Unconditional Risk-decay emergence patterns do not make sense, so number 2 and 6 on the 
list are not filled in. 

In the above exposition we have discussed the emergence factors as representing a proportion of 
the ultimate risk without specifying how the risk was measured. As discussed in section 3.3.1 above 
applying an emergence factor scales the standard deviation of the ultimate risk down by that factor. 
Because of this standard deviation is the natural risk measure to use for emergence factors, and this 
is what we use when we develop the theory in section 10 appendix B. In this case we define an 
emergence factor to be the ratio of the standard deviations of the relevant distributions. It is 
possible to use other risk measures, and we briefly discuss this in section 10 appendix B. 

In general, the emergence factors discussed above vary by origin year. We can ensure that 
emergence factors are constant across origin years by assuming that corresponding ultimate risk and 
one-period distributions vary in the same proportion to the same function of the mean across origin 
periods. This works as the ultimate risk and one-period distributions have the same mean, and the 
emergence factor is defined as the ratio of the two standard deviations. For example, if the ultimate 
risk distributions had the same coefficient of variation (CoV) across origin years, and the one-period 
distributions had the same CoV across origin periods then the emergence factor would be the ratio 
of the one-period CoV to the ultimate risk CoV. This is discussed in more detail in section 10 
appendix B. 

In general, the emergence factors discussed above are stochastic. We discuss this more in section 10 
appendix B. If we assume that the ultimate emergence factors are deterministic then we can derive 
the following relationship among them 



1 − 𝛼𝛼𝑡𝑡+𝑘𝑘1,𝑘𝑘2
2 =

1 − 𝛼𝛼𝑡𝑡,𝑘𝑘1+𝑘𝑘2
2

1 − 𝛼𝛼𝑡𝑡,𝑘𝑘1
2  

Intuitively this formula can be understood as showing how to calculate “forward” emergence 
factors, in a way similar to how forward interest rates are calculated. The equation shows a 
relationship between the factors 1 − 𝛼𝛼∗ because it expresses a relationship between the risk which 
remains at various time periods. The formula says that the risk which emerges between time 𝑡𝑡 + 𝑘𝑘1 
and time 𝑡𝑡 + 𝑘𝑘1 + 𝑘𝑘2 (given by 𝛼𝛼𝑡𝑡+𝑘𝑘1,𝑘𝑘2) can be calculated by taking the risk which emerges between 
time 𝑡𝑡 and time 𝑡𝑡 + 𝑘𝑘1 + 𝑘𝑘2 (given by 𝛼𝛼𝑡𝑡,𝑘𝑘1+𝑘𝑘2) and “factoring out” the risk which emerges between 
time time 𝑡𝑡 and time 𝑡𝑡 + 𝑘𝑘1 (given by 𝛼𝛼𝑡𝑡,𝑘𝑘1). This is illustrated in the diagram in Figure 3-19. 

 

 

 

No similarly elegant relationship exists among the outstanding emergence factors, due to the 
complicating need to consider the claims payments. 

So far in this sub-section we have discussed emergence factors which are applied to reserves by 
origin year. It is also possible to consider emergence factors applied to reserves aggregated over 
origin years. Similar to above we can consider ultimate emergence factors or outstanding emergence 
factors. However, a significant problem with aggregate emergence factors is that they confound risk 
emergence with claims run-off. 

3.3.3 PARAMETERISATION OF EMERGENCE PATTERNS 

In this section we discuss how one might parameterise emergence factors and emergence patterns. 
This is not an easy thing to do, and there is no generally accepted way of doing it. We describe two 
methods of parameterising emergence patterns, we discuss the limitations of these methods, and 
we discuss some general reasons why parameterising emergence patterns is difficult. 

Recall that there are different varieties of emergence factors and emergence patterns. In this section 
we discuss parameterising risk-decay emergence patterns (ultimate and outstanding). We also 
discuss parameterising aggregate emergence factors.  

The first method is to use the actuary-in-the-box. In section 3.3.1 we said that emergence patterns 
can be applied in cases where the actuary-in-the-box cannot be applied, or does not give reasonable 
results. It might therefore seem pointless to use the actuary-in-the-box to parameterise an 
emergence pattern. There are however two cases where it might make sense. In section 3.2.5 we 
made the point that, due to the relatively high computational cost of the actuary-in-the-box, and the 
fact that it sometimes gives unreasonable results, it is often not suitable for use in the main part of 
the calculation kernel of a capital model. The actuary-in-the-box is usually run outside the main part 
of the calculation kernel to estimate parameters which are then fed into the main calculation kernel. 
These parameters can be reviewed for reasonableness before being fed into the main calculation 
kernel. Emergence patterns are one of the possible ways to feed this information into the main 
calculation kernel. It also might make sense to use the actuary-in-the-box to parameterise an 
emergence pattern for a similar class where we have enough data to use the actuary-in-the-box, and 
then appropriately adjust the pattern for the class we wish to apply it to. This latter approach was 

t+k1 t+k1+k2 t 

αt,k1+k2 

αt,k1 αt+k1,k2 
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explored in (England, et al., 2012) with a view to finding some general behaviour that could be used 
to guide the process, but with limited success. 

We now describe how to parameterise risk-decay emergence patterns using the actuary-in-the-box. 
In this section we try to do this with minimal use of equations, and also to make the discussion more 
concrete we describe the method in the context of the actuary-in-the-box applied to a bootstrapped 
chain-ladder model (either Mack, or ODP). A detailed discussion of the calculations can be found in 
appendix B in section 10. 

First consider the ultimate one-year emergence factors, 𝛼𝛼𝑡𝑡,1. These are defined as the proportion of 
the ultimate risk for an origin year with 𝑡𝑡 years of development that will emerge over the next year. 
Bootstrapping the model gives us the distributions we need to calculate the ultimate risk for all prior 
origin years. The actuary-in-the-box gives us the distribution of the closing estimate of ultimate 
claims that we need to calculate the one-year risk for all prior origin years. The ultimate one-year 
emergence factors are then the ratio of the one-year risk to the ultimate risk for each origin year. 

More precisely suppose we have 𝑛𝑛 origin years 𝑖𝑖 = 1, … ,𝑛𝑛. Let 𝑈𝑈𝑖𝑖  denote the ultimate risk 
distribution of ultimate claims for origin year 𝑖𝑖, and let 𝑈𝑈1𝑖𝑖

  denote the distribution of the closing 
estimate of ultimate claims. Then, if we’re using standard deviation as our risk measure, the ratio of 
the standard deviation of 𝑈𝑈1𝑖𝑖

  to the standard deviation of 𝑈𝑈𝑖𝑖  gives the ultimate one-year emergence 
factor 𝛼𝛼𝑠𝑠−𝑖𝑖+1,1, where 𝑖𝑖 = 2, … ,𝑛𝑛. This then gives us the ultimate one-year risk decay emergence 
pattern 

�𝛼𝛼1,1, … ,𝛼𝛼𝑠𝑠−1,1� 

In a similar way we can use a combination of Mack’s model and the Merz-Wüthrich formula to 
parameterise the ultimate one-year risk decay emergence pattern. Mack gives us a formula for the 
standard error of the estimate of the claims reserve for each origin year. This corresponds to the 
standard deviation of 𝑈𝑈𝑖𝑖  described above. The Merz-Wüthrich formula can be used to calculate the 
standard error of the claims development result over the next year for each origin period. This 
corresponds to the standard deviation of 𝑈𝑈1𝑖𝑖

  described above. We can therefore take the ratio of 
the Merz-Wüthrich formula to Mack’s formula for origin year 𝑖𝑖 to calculate the emergence factor 
𝛼𝛼𝑠𝑠−𝑖𝑖+1,1, where 𝑖𝑖 = 2, … ,𝑛𝑛. As above this then gives us the ultimate one-year risk decay emergence 
pattern. 

Now consider the outstanding one-year emergence factors, 𝛽𝛽𝑡𝑡,1. These are defined as the proportion 
of the ultimate risk of claims paid after the first future year for an origin year with 𝑡𝑡 years of 
development that will emerge over the next year. The bootstrapped model gives us the distributions 
we need to calculate the ultimate risk for all prior origin years. The actuary-in-the-box gives us the 
distribution of the closing reserves that we need to calculate the one-year risk for all prior origin 
years. The outstanding one-year emergence factors are then the ratio of the one-year risk 
(calculated from the closing reserves) to the ultimate risk of claims paid after the first future year for 
each origin year. 

More precisely suppose we have 𝑛𝑛 origin years 𝑖𝑖 = 1, … ,𝑛𝑛. Let 𝑂𝑂𝐶𝐶𝑖𝑖
  denote the ultimate risk 

distribution of claims paid after the first future year for origin year 𝑖𝑖, and let 𝐶𝐶1𝑖𝑖
  denote the 

distribution of the closing reserves. Then, if we’re using standard deviation as our risk measure, the 
ratio of the standard deviation of 𝐶𝐶1𝑖𝑖

  to the standard deviation of 𝑂𝑂𝐶𝐶𝑖𝑖
  gives the outstanding one-



year emergence factor 𝛽𝛽𝑠𝑠−𝑖𝑖+1,1, where 𝑖𝑖 = 3, … ,𝑛𝑛. This then gives us the ultimate one-year risk 
decay emergence pattern 

�𝛽𝛽1,1, … ,𝛽𝛽𝑠𝑠−2,1� 

Note that for both the ultimate and outstanding risk-decay emergence pattern we are missing the 
first emergence factor, 𝛼𝛼0,1 and 𝛽𝛽0,1 respectively. This is unavoidable as the most recent origin year 
in a claims triangle has already seen one year of development. 

There is a further issue, when we apply the emergence factors we apply them to ultimate risk 
distributions to get estimates of one-year distributions. As a result of doing this the correlations 
between the estimated one-year distributions is the same as the correlation between the 
corresponding ultimate risk distributions used to derive them. In general, this is not the same 
correlation as that between the one-year distributions got from the actuary-in-the-box. Therefore, 
the standard deviation of the claims development result totalled over all origin years will be 
different from that got from the actuary-in-the-box. We might therefore want to adjust the 
emergence factors got using the above method of allow for this. 

Aggregate emergence factors can be calibrated in a similar way. However, instead of using random 
variables split by origin periods, you would use the corresponding random variables aggregated over 
origin periods. So, for example, if parameterising ultimate one-year aggregate emergence factors, 
then you would consider the ultimate risk distribution of aggregate ultimate claims, 𝑈𝑈 =  𝑈𝑈1 + ⋯+
 𝑈𝑈𝑠𝑠 , and the distribution of the closing estimate of aggregate ultimate claims, 𝑈𝑈1 =  𝑈𝑈11

 + ⋯+
 𝑈𝑈1𝑠𝑠

 , and calculate the emergence factor as the ratio of the standard deviations. 

We now describe another method for estimating emergence factors. This method depends only on 
having ultimate risk distributions for ultimate claims for several consecutive origin years, and does 
not depend on the actuary-in-the-box. The basic idea is to compare the ultimate risk for adjacent 
origin years, and assuming a degree of similarity between the years, back-out the one-year risk 
emergence implied by the two ultimate risks. This method is less used in practice than the one 
described above based on the actuary-in-the-box, but it is nonetheless an interesting approach. 

Suppose that we have 𝑛𝑛 origin years 𝑖𝑖 = 1, … ,𝑛𝑛, and we have already estimated ultimate risk 
distributions for the ultimate claims 𝑈𝑈𝑖𝑖  for each origin year. We estimate the ultimate one-year 
emergence factors using the coefficient of variation (CoV) of the ultimate distributions. The CoV is 
the ratio of the standard deviation to the mean 

𝐶𝐶𝐶𝐶𝑉𝑉𝑡𝑡( 𝑈𝑈𝑖𝑖 ) =
𝜎𝜎𝑡𝑡( 𝑈𝑈𝑖𝑖 )
𝐸𝐸𝑡𝑡� 𝑈𝑈𝑖𝑖 �

 

We then estimate the ultimate one-year emergence factors using 

𝛼𝛼𝑠𝑠−𝑖𝑖+1,1 = �1 − �
𝐶𝐶𝐶𝐶𝑉𝑉𝑡𝑡� 𝑈𝑈𝑖𝑖−1

 �
𝐶𝐶𝐶𝐶𝑉𝑉𝑡𝑡� 𝑈𝑈𝑖𝑖 �

�
2

 

The full derivation of this equation is in appendix B (section 10.7). The key assumption in deriving it 
is that the CoV of origin year 𝑖𝑖 − 1 is good estimate for the ultimate risk CoV of origin year 𝑖𝑖 in one 
year’s time. We also discuss a slight generalisation of the formula in section 10 appendix B. 



We now discuss why, in general, parameterising emergence factors is difficult, and the consequent 
limitations of the above methods of parameterisation. 

All three methods described above depend on other methods. The first method depends on the 
actuary-in-the-box, the second method depends on Mack and Merz-Wüthrich, and the third method 
requires a method for estimating ultimate risk. In all three cases if no appropriate method can be 
applied to the claims data then no emergence factors can be calculated. An alternative is to apply 
the methods to claims data from a class which is believed to have similar characteristics to the class 
to which the emergence patterns will be applied. Another similar alternative is to use benchmark 
emergence patterns. However, there are issues with this, as we discuss below. 

There are more fundamental problems with the methods described above for parameterising 
emergence factors. We first describe these in the context of using the actuary-in-the-box, we then 
discuss the implications of this for any method which attempts to parameterise emergence factors. 

When using the actuary-in-the-box to parameterise emergence factors the calculation done is to 
take the ratio of two standard deviations. One such calculation is done for each origin period 
comprising the claims triangle. Each origin period has undergone a number of periods of 
development and there is a one-to-one relationship between the origin periods and the 
development periods. This gives us an emergence factor 𝛼𝛼𝑖𝑖,1 for each of the development periods 
𝑖𝑖 = 1, … ,𝑛𝑛 − 1. The problem here is that, as described in the appendices, emergence factors are 
stochastic, and in the method described above we have made exactly one observation of each 
emergence factor, and have used that single observation as the estimate of the emergence factor. 

This is ok when the emergence factors are calculated for a specific claims triangle at a specific point 
in time outside of a capital calculation kernel and then fed into the calculation kernel and applied to 
the same claims data as they were calculated from. In this case all that has been done is that 
information about the risk emergence has been compressed into the emergence factor. However, if 
the method is used to calculate emergence factors that are then applied to a different class or at a 
different point in time then we are at best using a single observation of a stochastic variable made at 
a different time. 

To overcome this problem we need to be able to make multiple observations of each emergence 
factor, to find some way of combining the observations in a way that gives an unbiased estimator of 
the expected value and variance of the emergence factor and to understand how these might 
change from data set to data set so that appropriate adjustments can be made to allow emergence 
factors to be applied to data sets from which they cannot be calculated. 

We can make multiple observations of emergence factors as follows. As discussed in section 3.2.5 
the actuary-in-the-box can be iterated all the way to ultimate to get estimates of the one-year risk 
for each future year for each origin year, all the way to ultimate. This gives the emergence factors 
𝛼𝛼𝑡𝑡𝑘𝑘 where 𝑡𝑡 = 1, … ,𝑛𝑛 − 1 and 𝑘𝑘 = 1, … ,𝑛𝑛 − 𝑡𝑡. The equation at the end of section 3.3.2 above can 
then be used to calculate multiple values of each one-year emergence factor. 

However, the equation from section 3.3.2 only applies in the restricted case that emergence factors 
are deterministic. Furthermore, it is not clear how to combine the factors so derived to get an 
unbiased estimate of the expected value or variance of the emergence factors. 



The problems outlined above for the actuary-in-the-box method of parameterising emergence 
factors also apply to the Mack/Merz-Wüthrich method. For the CoV method multiple observations 
of the emergence factors can be got by comparing origin periods more than one period apart, but 
the same problems still apply. In general, any method proposed must show how to make multiple 
observations of emergence factors, and how to combine them to get unbiased estimates of the 
expected value and variance of the emergence factors. 

3.3.4 DISCUSSION OF METHOD 

Emergence factors are an apparently simple method, which can easily be explained. However, as the 
above discussion shows there are many hidden complexities. Furthermore, there is no widely 
accepted method of parameterising emergence factors and the methods which have been proposed 
all have significant limitations. 

The main advantage of using emergence factors is that the calculations are quick and easy to 
perform, and are significantly simpler than those needed for the actuary-in-the-box method or the 
Merz-Wüthrich formula. This makes them suitable to use in situations where speed is important, for 
example inside the calculation kernel of a capital model. Emergence factors can be used in 
combination with another method (for example the actuary-in-the-box), where the emergence 
factors can be calculated outside the calculation kernel and reviewed for reasonableness before 
being applied. However as discussed in section 3.3.3 above there are limitations to doing this. 

The biggest drawback to using emergence factors is the difficulty of parameterising them. 
Emergence factors are stochastic, and all methods of parameterising emergence factors proposed so 
far, essentially rely on just a single observation of the emergence factor, taking that as the estimate. 
A satisfactory method would have to make use of multiple observations of emergence factors, and 
provide a way of combining them to get an unbiased estimate of the expected value and variance of 
the emergence factors. No proposed method has come close to doing this, and it is not at all clear 
how it might be achieved. 

The simplicity of emergence factors is an advantage in cases where we have an estimate of ultimate 
risk, but where other methods of estimating one-year risk cannot be applied. As discussed above it is 
difficult to parameterise emergence factors, however their simplicity makes it possible to use 
judgement to select values for the emergence factors to apply. The selection can incorporate the 
expert judgement of those outside the capital modelling and reserving teams. Because emergence 
factors can be explained in a straight-forward non-technical way, these experts can meaningfully 
contribute to a discussion on what values should be selected, and can confidently challenge values 
proposed by capital modelling actuaries. 

There are multiple different interpretations of the idea of emergence factors. The main difference is 
whether the claims payments during the future period(s) are included or not. If the claims payments 
are included, we call the emergence factors “ultimate emergence factors”, and denote the factor 
with 𝛼𝛼, whereas if the claims payments are not included, we call the emergence factors “outstanding 
emergence factors”, and denote the factor with 𝛽𝛽. The distinction matters if we are interested in 
getting a distribution of the closing reserves, as we would be if projecting the balance sheet in a 
capital model. In this case applying an ultimate emergence factor will scale down the variance of the 
claims paid during the year. This is not correct, as the claims paid during the year will be known with 
certainty at the end of the year, and so the full variance needs to be included. This can be achieved 



using outstanding emergence factors. However outstanding emergence factors are less tractable 
than ultimate emergence factors, and are consequently even harder to parameterise. 

An issue with emergence factors to be aware of is how they affect dependence. Because of the way 
emergence factors are applied the resultant one-year distributions inherit the ultimate dependence. 
That is the correlations between the one-year distributions between different origin periods will be 
the same as the correlations between the corresponding ultimate distributions. In general, however 
these dependencies are different. This then affects the standard deviation of the total one-year 
distribution. As discussed in section 3.3.3 above the emergence factors can be adjusted so that the 
total distribution is more correct, there is always however a trade-off, and it is not possible for both 
the origin period one-year distributions, and the total one-year distribution to be correct. 

The simplest version of emergence factors is probably aggregate emergence factors. These have the 
great advantage of simplicity. However, as they are applied to the aggregate over multiple origin 
periods, they confound risk emergence with claims run-off. This might not be a big problem with a 
static book of business, however if this approach is used with a growing or shrinking book of 
business this might be a problem. In this case the emergence factor applied would need to be 
carefully reviewed and probably changed regularly to reflect changes in the book of business. 

One further criticism of emergence factors is that they approach the problem back-to-front. 
Emergence factors are applied to the ultimate distribution to derive the corresponding one-year 
distribution – that is the direction is from the ultimate distribution to the one-year distribution. 
However, it could be argued that it is easier to validate a one-year movement than an ultimate 
movement. To validate a one-year movement, you can look back at history, and see how reserves 
(or estimates of ultimate claims) have moved from one year to the next. It would also be easier to 
apply experience and judgement to assess whether the one-year distribution is reasonable; it is 
much harder to do this for ultimate risk. This is a reasonable criticism. However, in part for historical 
reasons, the usual practice is to estimate the ultimate distribution and then the one-year 
distribution. It would be interesting to discuss further how one might reverse this, but it is beyond 
the scope of this paper. 

3.4 OTHER METHODS 

3.4.1 INTRODUCTION 

The three sections above discuss the three most commonly used methods for estimating one-year 
reserve risk. However, several other methods have also been used or proposed. In this section we 
briefly describe some of these.  

3.4.2 SOLVENCY II UNDERTAKING SPECIFIC PARAMETERS  

In the technical specifications of the Quantitative Impact Studies 5 (QIS5 – see (CEIOPS, 2010b)) 
three standardized methods are specified for calculating Undertaking Specific Parameters (USP) for 
reserve risk. For each of the three methods a closed, analytic formula is used to calculate the USPs. 
The strengths and weaknesses of the QIS5 approaches are discussed in (Bulmer, 2012). In (CEIOPS, 
2010a) a comprehensive revision of the calibration of the premium and reserve risk factors in the 
Non-Life and Health underwriting risk module of the standard formula was carried out.  Annex XVII 
of the European Commission’s Solvency II Delegated Act (European Commission, 2014) contains only 
two calibration methods. The loss reserving method underlying method 2 is the Merz-Wüthrich 



formula (see section 3.1 and (Cerchiara, et al., 2016) for discussions of the strengths and weaknesses 
of this method). 

In the Delegated Act EIOPA proposed another formula for calculating the reserve risk USPs. This 
formula is also a closed, analytic formula, and requires only claims data as an input. The theoretical 
method underlying this approach is one of the four methods tested by the “Joint Working Group – 
JWG - on Non-Life and Health NSLT Calibration” in (EIOPA, 2011) in the subsection Lognormal 
Models with Second Variance Parametrisation. The strengths and weaknesses of this method are 
also discussed in (Cerchiara, et al., 2016). 

3.4.3 SIMULATION BASED APPROACHES 

In this sub-section we discuss some simulation-based approaches. In (Wacek, 2007) Wacek 
presented a framework for stochastically modelling the path of the ultimate loss ratio estimate 
through time from the inception of exposure to the payment of all claims. The author showed how 
to use information implicit in Hayne's lognormal model (Hayne, 1985) to determine the distribution 
of future estimates derived from stochastic versions of the chain ladder and Bornhuetter-Ferguson 
methods, with particular attention to the loss ratio estimate one year out. Wacek adjusted Hayne's 
model to allow for parameter uncertainty, and illustrated the effect. Because the adjusted 
distribution does not have the multiplicative properties of the lognormal distribution, Wacek 
illustrated the use of Monte Carlo simulation to model the distribution of future ultimate loss ratio 
estimates.   

Other simulation approaches, based on collective risk theory (and simulation) have been discussed. 
In (Ricotta, et al., 2016), Ricotta and Clemente extended a proposal of the International Actuarial 
Association Insurer Solvency Assessment Working Party (International Actuarial Association, 2004), 
which assumes a collective risk model to analyse outstanding claims reserve with the goal of 
assessing the capital required for the one year reserve risk. Ricotta and Clemente assume that the 
incremental payments are a compound mixed Poisson process where the uncertainty in the claim 
size is measured via a multiplicative structure variable. Two structure variables, on claim count and 
average cost, are considered in order to describe parameter uncertainty on both random variables. 
By adapting the “re-reserving” method they estimated both the variability of the claims 
development result, and the extreme quantiles of its simulated probability distribution. The main 
advantage of this proposal is that it directly considers the parameter uncertainty of the claim size 
estimation which is neglected by other models.  

In (Dal Moro, et al., 2014) the authors point out that for several common methods, including the 
Bornhuetter-Ferguson, Cape-Cod, and Benktander-Hovinen methods, there are no closed-form 
formulas for the one-year volatility, and that the only alternative is to use simulation methods. In 
section 3.2.4 above we showed how to use the actuary-in-the-box method to get the one-year 
volatility (within the AMW-BF model) for the Bornhuetter-Ferguson method. It is possible to adapt 
the AMW-BF model and apply the bootstrap and actuary-in-the-box to get the ultimate and one-
year volatility for the Cape-Cod and Benktander-Hovinen methods. 

In some simulation approaches the ultimate risk is determined first, and then the one-year risk is 
determined from the ultimate risk. This approach might be preferred for portfolios where 
information from outwith the claims triangle is significant, for example: changes in the external 
environment, non-proportional claims below a threshold, or complex reinsurance programs. In such 
cases it is better to focus first on getting the ultimate risk right, and then using a simple approach to 



get the one-year risk. This was discussed in (Möhr, et al., 2013) (slide 21). Emergence patterns can 
be considered a simple method used to derive the one-year risk from the ultimate risk. In (White, et 
al., 2010) other methods of deriving the one-year risk from the ultimate risk are discussed. 

3.4.4 BAYESIAN METHODS 

In (Mack, 1993) Mack showed how to estimate the (deterministic) chain ladder parameters from the 
claims triangle data. In a Bayesian approach we would assume that the unknown parameters follow 
a (specified) prior distribution, and then using the claims triangle data and the prior distribution 
calculate the posterior distribution of the parameters, and the future claims amounts. In (Bühlmann, 
et al., 2009) the authors present a recursive credibility formula for the calculation of the Bayesian 
estimators and derive formulas for the conditional MSEP of the one-year claims development result. 
In most of the cases the calculation of Bayesian estimators can’t be done via analytic formula and so 
numerical methods like Markov Chain Monte Carlo method must be used instead (see (Verrall, 2004) 
in the framework of generalized linear models). 

3.4.5 ROBBIN’S METHOD 

In (Robbin, 2012) Robbin proposed a new and relatively simple way to calculate one-year reserve 
risk. The method is practical and robust; it does not need claims triangles, or stochastic simulations. 
Instead it uses estimates of the mean and ultimate CoV of the reserves, payment patterns, and 
reporting patterns. The method could be considered as an emergence factor (Robbin calls them 
“recognition factors”) approach with a systematic way of deriving emergence factors based on the 
reserve run-off. 

The key idea behind Robbin’s method is that IBNR and case reserves have different levels of 
volatility, and that the CoVs for these two types of reserve remains the same throughout the run-off, 
but that as the mix between them changes, the CoV of the total reserve changes correspondingly. 
The method therefore assumes that projections of the run off of the IBNR and case reserves are 
available. The method first projects the ultimate CoVs of the reserves in future calendar years as 
they run-off, and from these calculates the one-year CoVs over each future calendar year. 

Robbin then assumes that the one-year distribution of the unpaid claims are lognormally distributed, 
and from the mean and CoV previously calculated, calculates the 99.5th percentile of the one-year 
distribution to get the SCR, and then the risk margin. 

A further important assumption that the method makes is that the IBNR and case reserves are 
uncorrelated. 

The assumption that the CoVs of the IBNR and case reserves remain constant throughout the run-off 
is open to question. Instead the CoV might increase as the reserve decreases – this is often seen in 
practice with claims reserves. The assumption that the IBNR and case reserves are uncorrelated is 
also open to question. In particular since there is a natural progression from IBNR to case reserves, a 
reduction in IBNR might be more likely to occur alongside an increase in the case reserve than the 
opposite. 

Robbin’s method is a pragmatic way to calculate one-year reserve risk, and the risk margin. It has 
low data requirements, and for many of the inputs, estimates or benchmarks figures could be used. 
It is therefore a method that can be used in cases where there is little reliable data. It could also be 
used to validate more sophisticated methods. 



3.4.6 HINDSIGHT RE-ESTIMATION 

The Hindsight re-estimation method was proposed by Andrew Houltram in 2005 (Houltram, 2005). 
One of the main aims of this method is to allow for the impact of actuarial judgement on the 
volatility of reserve estimates. The basic idea is to use previous best estimates of the ultimate claims 
to estimate how volatile the current best estimate is. First a triangle of previous best estimates for 
each origin year is formed. These are then adjusted for exposure. Hindsight development factors are 
calculated, as ratio of one best estimate to the previous one. A bootstrap process is then used to get 
a distribution of the next year’s best estimate. 

The hindsight re-estimate method is widely used in the Australian market (see (Bruce, et al., 2008) 
section 4.2.4). 

The method relies on there being several prior years of consistent best estimates available. This is 
unlikely to be the case if there have been recent changes to the business such as mergers or take-
overs, changes in the volume or mix of business written, or changes to the level of granularity that 
the reserves are analysed at. It also assumes that past patterns of deviation will be repeated in 
future. This is quite a strong assumption as over several years, different individuals, and different 
methods are likely to be used.  

3.4.7 COMPLEMENTARY LOSS RATIO METHOD 

In (Quarg, et al., 2008) Quarg and Mack proposed a method, called the Munich Chain Ladder, which 
combines incurred and paid claims data to get a best estimate for the ultimate claims amount. 
However, this method is deterministic, and there is no known analytic formula for the prediction 
error within it. In (Dahms, 2007) Dahms extended the complementary loss ratio method (CLRM) 
which derives predictions for the ultimate claims by combining incurred and paid claims data. For 
this extended model Dahms presents an unbiased estimator for the reserves, and the corresponding 
conditional mean squared error. This work is built on in (Dahms, et al., 2009) where they consider 
the CDR in Dahms’ extended CLRM, and derive formulas for the MSEP of the CDR. 

3.4.8 PERFECT FORESIGHT 

The final method we discuss is the simplest. In this method it is assumed that the one-year risk is 
equal to the ultimate risk. This is equivalent to assuming that the closing estimate of ultimate claims 
will be exactly equal to the ultimate claims payment, in other words the closing estimate of ultimate 
claims will show “perfect foresight” of the ultimate claims payment. This method has the advantage 
of simplicity. In some situations, it might be suitable to use for short-tailed classes of business, 
where almost all the risk is expected to emerge over the one-year time-horizon (for example, natural 
catastrophe claims). It might also be suitable for mature origin years which do not make a material 
contribution to the total risk for the class. It would not be suitable for longer-tailed classes, or for 
more recent origin years where a material amount of the risk emerges after one-year.  

 

  



4 VALIDATION 

4.1 INTRODUCTION 

Before applying the results of any model, or using that model for further inference, it is essential to 
check that the model provides a reasonable description of the data. Failure to do so leaves the 
modeller at risk of using an ill-fitting model. In the specific example of stochastic reserving with a 
one-year time-horizon, consequences could include materially incorrect estimates of the reserve 
uncertainty over the one-year time-horizon, which would lead to a material misestimate of the 
capital required for the relevant book of business. This in turn can lead to misinformed management 
decisions. For example, an overestimate of capital might lead to writing a less than optimal amount 
of a profitable line, whereas an underestimate of capital might lead to writing a more than optimal 
amount of a line that is riskier than believed. Such misallocation of capital can lead to the insurer 
being less profitable than its competitors. More straight-forwardly an underestimate of capital can 
increase the chance of regulatory intervention or insolvency.  

Validating the model used to analyse the one-year risk has a lot of overlap with validating the model 
for the corresponding ultimate risk. However, the modeller needs to remain aware that using a 
model for estimating one-year risk is different from using the same model with the same data for 
estimating ultimate risk, and so further validation is needed to check that the model remains 
suitable for estimating one-year risk. In this paper we discuss only the further validation needed. 
Validation of the models for ultimate risk is discussed in section 5 of (Carrato, et al., 2016), and the 
reader should read that section alongside this one. 

4.2 COMPARING MEASURES OF UNCERTAINTY 

A key validation is to compare the one-year risk with the ultimate risk. To do this we need to 
compare the same measure of uncertainty from the corresponding one-year and ultimate 
distributions, calculated in a consistent way. 

The following comparison is common and useful. For each origin period, the two distributions 
compared are the ultimate distribution of ultimate claims, and the distribution of the one-year 
claims development result. For both of these distributions, calculate the standard deviation. There 
are two different means that can be used to divide the standard deviation. These are the opening 
estimate of the ultimate claims, and the ultimate estimate of the claims reserve. In general, using 
the opening estimate of the ultimate claims gives results that are more stable and easier to 
interpret. 

These statistics are the coefficient of variation of the distribution of the ultimate claims, and of the 
closing reserves plus the claims paid in the year. They are therefore sometimes called the “ultimate 
CoV”, and the “reserve CoV”. Although note that the name “reserve CoV” is potentially slightly 
misleading as it is not the CoV of the closing reserve, but the CoV of the closing reserve plus the 
claims paid during the year. We need to include the claims paid during the year to get a distribution 
that can be consistently compared with the ultimate distribution. 

Once these statistics have been calculated they can be graphed. Three key things to look at are: 

• The general level of the CoVs 



• The pattern of the CoVs across origin periods 

• The relative level of the CoVs for the one-year CDR and the ultimate claims 

The graph in Figure 4-1 shows ultimate CoVs. This graph is typical of a short-tail class of business. 
The general level of the CoVs is quite low – 3.5% is the highest value. This reflects the low volatility 
of the class. The ultimate CoV is highest for the most recent origin periods, and drops rapidly to zero 
as the origin periods age. The CoV of the one-year CDR is slightly lower than the CoV of the ultimate 
risk. Both these features reflect the rapid emergence of the risk in a short-tailed class. 

 

FIGURE 4-1 

For comparison the graph in Figure 4-2 shows the same statistics, but for a long-tailed and more 
volatile class of business. The general level of the CoVs is much higher than the class above – several 
are over 20%. This reflects the higher volatility of the class. The ultimate CoV is highest for the most 
recent origin periods, but it declines much more slowly than the short-tail class as the origin periods 
age. Also, the gap between the CoV of the one-year CDR and the CoV of the ultimate risk is larger, 
particularly for the most recent origin periods. Both these features reflect the slower emergence of 
the risk in a long-tailed class. 



 

FIGURE 4-2 

When calculating the ultimate CoV and reserve CoV, the standard deviations used are the same, the 
CoVs are different because the means are different. The two CoVs are therefore related as follows 

Reserve CoV = Ultimate CoV x Mean Ultimate / Mean Reserve 

The CoV measure of uncertainty focuses the validation on the variation of the distributions around 
the mean. An analysis similar to the above can be done with other measures of uncertainty, targeted 
at other parts of features of the distribution. For example, TVaR and TVaR-contribution could be 
used, which would focus the validation on the tail of the distribution. 

4.3 VALIDATION OF RISK EMERGENCE 

Another key validation is to calculate and graph the one-year risk as a proportion of the ultimate 
risk. As in the previous section, the two measures must be consistent. For example, we can calculate 
the proportion of risk emerging for each origin period as the standard deviation of the one-year CDR 
divided by the standard deviation of the ultimate claims. The proportion of risk emerging should 
always be between 0% and 100%. The risk emergence percentage can be graphed as shown in Figure 
4-3. 



 

FIGURE 4-3 

In the graph in Figure 4-3 the risk emergence is high in the most recent origin periods and the oldest 
origin periods, and lowest in the middle-aged origin periods. This is sometimes called the “smile 
curve”. It is fairly typical if a chain ladder model (e.g. the Mack or ODP) is used. The reason we might 
expect a higher proportion of the outstanding risk to emerge in the most recent years when using a 
chain ladder is that most of the development happens in the first few development periods, and the 
chain ladder, in contrast to the Bornhuetter-Ferguson model, is fully responsive to the movements in 
this early development. See (England, et al., 2012) for some more discussion of this. 

The Bornhuetter-Ferguson model, on the other hand, explicitly gives the movements in the early 
development less weight than the prior estimates, and so the risk emergence in the most recent 
origin periods, is often less than the risk emergence of older origin periods. The Bornhuetter-
Ferguson model will typically be applied to a long-tailed class of business. In this case very little 
weight will be given to the most recent origin periods, and so there can be almost no risk emergence 
for these cohorts over the first year of development. However, as the claims develop, the middle-
aged origin periods see more volatility in the claims development, and the Bornhuetter-Ferguson 
model gives more weight to the claims experience, so the one-year risk is a larger proportion of the 
ultimate risk. For the oldest origin periods, the claims are almost fully developed so the proportion 
of risk emerging is lower again. The shape of the risk emergence graph is therefore peaked in the 
middle, and lower for the oldest and youngest origin periods. See (Scarth, 2015) for further 
discussion of this. 

The shape of the risk emergence graph therefore depends on both the underlying claims data and 
the model used. The following characteristics will affect the shape of the risk emergence, and should 
be considered when carrying out validation. However, they will interact with one another, and so 
the validator must carefully think through exactly what reasonable results would look like. A key 
thing is to remember that the risk emergence proportion shows the proportion of the remaining risk 
– not the total life-time risk – that will emerge over the coming year. 

• Length of tail – the risk will emerge more quickly for a short tail class than a long tail class. 

• Volatility of class – how the risk emerges depends on how the volatility interacts with the 

length of tail, and the model used. For short tail volatile classes like terrorism, we would 



expect the risk to emerge quickly. For long tail volatile classes like casualty modelled using a 

Bornhuetter-Ferguson model we might expect a higher risk emergence proportion for the 

middle-aged origin periods. 

• Origin period – both the age and relative size of the claims experience of an origin period will 

affect the risk emergence. 

• Volume of business – a smaller volume will be more volatile, and we might expect the claims 

emergence to be slower, although this will also depend on other features of the business. 

• Model used – as discussed above whether a chain-ladder or Bornhuetter-Ferguson model is 

used will affect the speed of risk emergence. 

In addition to looking at the emergence percentages, we can also look at the whole distribution. This 
would be available if the model is bootstrapped. A graph of the PDFs of the one-year CDR and the 
mean-centered ultimate claims can be examined. We need to use the mean-centered ultimate 
claims so that it has a mean of zero, like the CDR, and so can be more easily visually compared. The 
graph in Figure 4-4 shows an example of this. This shows that the one-year risk (the blue line) is 
more tightly concentrated around the mean than the ultimate risk (the red line), and more extreme 
values are less likely. This is what we would expect to see. 

 

FIGURE 4-4 

4.4 BENCHMARKING 

The ultimate CoVs, reserve CoVs, and emergence percentages can be compared against suitable 
benchmarks. It is important when doing this that the benchmarks are an appropriate comparison to 
the business being validated. In particular they should be expected to be similar in terms of length of 
tail, volatility of business, measure of uncertainty used, and the model used should at least have 
similar behavior to that used for the class being benchmarked. 

Different classes of business can also be compared to one another to check whether any are out of 
line. Again, the main features to consider when doing this are the length of tail, volatility, measure of 
uncertainty, and the model used. 



Premium risk CoVs can also be compared against reserve risk CoVs. The premium risk CoV can be 
decayed out using a pattern for back years. The pattern should be representative of how we believe 
risk emerges over its lifetime. 

4.5 SCENARIO TESTING 

Scenario testing is another technique which can help calibrate the reserve uncertainty distribution 
thereby validating it. For example, a worst case one-year forward scenario, say, at a 1 in 200 level 
can be deterministically worked out and then be compared with the 99.5th percentile of the one-
year reserve risk distribution. Other return periods could also be considered. 

4.6 BACKTESTING 

If historic loss ratios are available, then the following backtesting exercise can be performed. 
Suppose that we have historic loss ratios for each origin period as shown in Table 4-1 

 

TABLE 4-1 

The idea of the method is to assume that for each origin period, the loss ratio at each development 
period is sampled from a distribution with mean equal to the loss ratio of the previous development 
period, and CoV given by the one-year CoV for the origin period having seen the same amount of 
development. 

For example, for origin period 2013, development period 1, we assume that the loss ratio is sampled 
from a distribution with mean 68% (i.e. the 2013 loss ratio at development period 0), and CoV given 
by the origin period with one-year of development – in this case 2014. Note the 2014 CoV will be 
used for development period 1 for all the origin periods. 

Any reasonable distribution can be assumed, but a typically and appropriate choice would be the 
lognormal distribution. 

Given the distributional assumptions we can then calculate the percentile of the actual observed loss 
ratios. We do this for all origin periods and development periods except for development period 0. 
We expect the percentiles to be uniformly distributed between 0 and 1, and to show no trends with 
respect to origin period, development period, or calendar period. Table 4-2 shows an example of 
this. 

0 1 2 3 4 5 6 7 8 9
2005 89% 90% 90% 90% 90% 90% 90% 90% 90% 89%
2006 88% 87% 87% 86% 86% 85% 85% 85% 85%
2007 85% 85% 86% 86% 85% 85% 85% 85%
2008 77% 76% 77% 77% 78% 78% 78%
2009 80% 79% 79% 79% 79% 79%
2010 76% 78% 79% 80% 81%
2011 78% 78% 77% 77%
2012 68% 69% 70%
2013 68% 70%
2014 77%

Accident 
Year

Historical Loss Ratios



 

TABLE 4-2 

To check that the percentiles are uniformly distributed we can plot the empirical CDF against the 
expected straight-line CDF for the uniform distribution. The graph in Figure 4-7 shows an example of 
this. 

 

FIGURE 4-5 

The shortcoming of this method is that it requires consistent historic ultimate loss ratios to have 
been recorded and to be available. It also does not work well if there have been material changes in 
the volume of business between origin periods, as higher volume origin periods would be expected 
to have lower CoVs than those with lower volume. 

  

0 1 2 3 4 5 6 7 8 9
2005 0.674 0.517 0.566 0.547 0.256 0.871 0.057 0.070 0.031
2006 0.302 0.631 0.114 0.273 0.027 0.212 0.928 0.706
2007 0.514 0.819 0.525 0.195 0.728 0.315 0.582
2008 0.311 0.891 0.602 0.852 0.258 0.925
2009 0.407 0.636 0.465 0.315 0.318
2010 0.776 0.797 0.950 0.958
2011 0.433 0.163 0.262
2012 0.689 0.805
2013 0.735
2014

Accident 
Year

Percentile of Historical Loss Ratios



5 NUMERICAL EXAMPLES 

We now apply the methods discussed in this paper to some real-life data sets to help illustrate their 
use in practice. We use exactly the same data sets and models as in the working party’s first paper 
(Carrato, et al., 2016), and extend the analysis to the one-year case. This section therefore builds on 
the numerical examples from the first paper, and to gain a full understanding of the application of 
the methods to these data sets the reader should read section 7 of the first paper before reading 
this section. Note that some of the results in this paper may differ slightly from those in the first 
paper due to simulation error. 

5.1 EXAMPLE 1 

The first dataset is taken from (Alai, et al., 2009) and (Alai, et al., 2011). This is a reasonably well-
behaved claims triangle, with a relatively short tail, and no unusual features immediately apparent. 
The data is presented in Table 5-1 as a triangle of incremental claim amounts. 

 

TABLE 5-1 

5.1.1 ANALYSIS OF DATA SET 1 

In (Carrato, et al., 2016) this data set was analysed and a model validation carried out for the Mack 
and ODP models. The conclusion was the ODP model is preferable to Mack’s model for this data set. 
We now want to extend the analysis to the case of one-year risk, which is a different model use than 
analysing ultimate risk. We therefore now carry out additional validation to check that the ODP 
model is suitable for this new use. 

First, we compare one-year results with corresponding ultimate results. Table 5-2 shows, for each 
accident period, the opening estimates of the ultimate claims and reserves, the ultimate RMSEP, the 
RMSEP of the one-year CDR, and the risk emergence percentage, which is calculated as the one-year 
RMSEP divided by the ultimate RMSEP. The graphs in Figure 5-3 and Figure 5-4 are based on same 
numbers as in Table 5-2. These show, for each accident year, the one-year and ultimate RMSEP as a 
% of the opening ultimate, the risk emergence %. The graph in Figure 5-5 shows the distributions of 
the one-year claims development result, and the mean-centred ultimate claims distribution from the 
bootstrap output of the model. 

The claims data is for a short-tail low volatility class of claims. In light of this, the emergence % 
figures all look reasonable – they are all less than 100% (excepting the oldest accident year), range 
from 60% to 90%, and the total emergence percent is about 84%. The graph of risk emergence by 

0 1 2 3 4 5 6 7 8 9
2005 5,947 9,668 10,564 10,772 10,978 11,041 11,106 11,121 11,132 11,148
2006 6,347 9,593 10,316 10,468 10,536 10,573 10,625 10,637 10,648
2007 6,269 9,245 10,092 10,355 10,508 10,573 10,627 10,636
2008 5,863 8,546 9,269 9,459 9,592 9,681 9,724
2009 5,779 8,524 9,178 9,451 9,682 9,787
2010 6,185 9,013 9,586 9,831 9,936
2011 5,600 8,493 9,057 9,282
2012 5,288 7,728 8,256
2013 5,291 7,649
2014 5,676

Accident 
Year

Cumulative claim payments in development year (£000)



origin period shows the “smile curve” that is typical for chain-ladder models. The graph of RMSEP as 
a percentage of the opening ultimate shows that risk declines quickly as accident years mature, and 
that the one-year risk follows the same pattern, but is slightly lower than the ultimate risk. The 
graph of the CDR and ultimate risk distributions shows that the one-year risk is less than the ultimate 
risk (as more of the probability is in the centre of the distribution), although the difference is not 
large.  All this is reasonable for a short-tail, low volatility class. 

 

TABLE 5-2 

 

FIGURE 5-1 

2005 11,148 0
2006 10,663 15 22 22 100.0%
2007 10,662 26 27 20 72.1%
2008 9,759 34 30 18 61.4%
2009 9,872 85 43 33 76.8%
2010 10,092 156 57 38 67.5%
2011 9,568 286 74 53 71.0%
2012 8,705 449 93 61 65.8%
2013 8,692 1,043 144 111 76.9%
2014 9,626 3,951 337 303 89.8%

Total 98,787 6,046 440 369 83.9%

Accident 
Year Ultimate Reserve

Ultimate 
Risk RMSEP

One-Year 
CDR RMSEP

Emergence 
%
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FIGURE 5-3 

Next we back test the one-year results using historical loss ratios for this triangle of claims. The 
original data set in (Alai, et al., 2009) and (Alai, et al., 2011) did not contain historical loss ratios, so 
we have created some fictional loss ratios to illustrate the method, these are shown in Table 5-3. 

 

TABLE 5-3 

0 1 2 3 4 5 6 7 8 9
2005 89% 90% 90% 90% 90% 90% 90% 90% 90% 89%
2006 88% 87% 87% 86% 86% 85% 85% 85% 85%
2007 85% 85% 86% 86% 85% 85% 85% 85%
2008 77% 76% 77% 77% 78% 78% 78%
2009 80% 79% 79% 79% 79% 79%
2010 76% 78% 79% 80% 81%
2011 78% 78% 77% 77%
2012 68% 69% 70%
2013 68% 70%
2014 77%

Accident 
Year

Historical Loss Ratios



As described in section 4.6, we assume that loss ratios have a lognormal distribution with mean 
given by the previous year’s loss ratio, and CoV implied by the one-year CDR RMSEP. We then 
calculate the percentiles of the historic loss ratios. These are shown in Table 5-4. 

 

TABLE 5-4 

There is no obvious calendar year, development year, or accident year trend in the percentiles. We 
expect the percentiles to be uniformly distributed. The graph in Figure 5-8 shows the empirical CDF 
of the percentiles. This shows that the percentiles are uniformly distributed. 

 

FIGURE 5-4 

The initial validation concluded that the ODP model should be preferred for this data set. The above 
validation has found no issues with extending the analysis done with this model to the one-year 
case. 

5.1.2 COMPARISON OF METHODS 

In this subsection we compare the results of the ODP presented in the previous section with the 
Mack model and the AMW-BF model. The tables in this subsection present the results; Table 5-5 
shows the results for Mack’s model, Table 5-6 for the AMW-BF model (with a constant scale 
parameter). 

0 1 2 3 4 5 6 7 8 9
2005 0.674 0.517 0.566 0.547 0.256 0.871 0.057 0.070 0.031
2006 0.302 0.631 0.114 0.273 0.027 0.212 0.928 0.706
2007 0.514 0.819 0.525 0.195 0.728 0.315 0.582
2008 0.311 0.891 0.602 0.852 0.258 0.925
2009 0.407 0.636 0.465 0.315 0.318
2010 0.776 0.797 0.950 0.958
2011 0.433 0.163 0.262
2012 0.689 0.805
2013 0.735
2014

Accident 
Year

Percentile of Historical Loss Ratios



 

TABLE 5-5 

 

TABLE 5-6 

Mack’s model gives the same central estimates as the ODP, but makes different distributional 
assumptions. For this data set, Mack’s model gives a total ultimate RMSEP similar to the ODP model, 
however, more of the uncertainty is in the most recent accident periods, and less in the older 
accident periods – so it appears to have the risk emerging quicker. Consistent with this, the 
emergence percentages are higher for Mack’s model. 

The AMW-BF model is based on the ODP model, but gives the same central estimate as the 
Bornhuetter-Ferguson model. For this data set the Bornhuetter-Ferguson estimate for the reserve is 
higher than the chain-ladder estimate. The ultimate and one-year RMSEPs are therefore a little 
higher than for the ODP model, but the distribution between the accident periods, and the 
emergence percentages are similar. This reflects the fact that the underlying distribution 
assumptions are the same, and the assumption that the prior ultimates have low volatility. 

5.2 EXAMPLE 2 

The second dataset is taken from (Liu, et al., 2008). It is an aggregate data set from Lloyd’s 
syndicates. It is long tail, and much more volatile that the first dataset. The data consists of triangles 

2005 11,148 0
2006 10,663 15 0 0 100.0%
2007 10,662 26 1 1 100.0%
2008 9,759 35 3 3 96.5%
2009 9,872 85 8 7 91.8%
2010 10,092 156 34 33 97.2%
2011 9,568 286 74 66 89.5%
2012 8,705 449 84 50 59.4%
2013 8,692 1,043 134 104 77.8%
2014 9,626 3,950 411 386 93.9%

Total 98,787 6,045 461 420 91.1%

Emergence 
%

Accident 
Year Ultimate Reserve

Ultimate 
Risk RMSEP

One-Year 
CDR RMSEP

2005 11,148 0
2006 10,664 16 23 23 100.0%
2007 10,663 27 28 21 73.2%
2008 9,762 37 31 20 62.9%
2009 9,882 95 47 36 77.4%
2010 10,114 178 62 42 68.6%
2011 9,623 341 83 60 72.6%
2012 8,830 574 107 73 68.4%
2013 8,968 1,319 166 133 80.4%
2014 10,441 4,765 367 337 91.6%

Total 100,094 7,352 478 412 86.0%

Ultimate 
Risk RMSEP

One-Year 
CDR RMSEP

Emergence 
%

Accident 
Year Ultimate Reserve



of paid and incurred claims. These are presented below, Table 5-7 shows the paid claims, Table 5-8 
the incurred claims. 

 

TABLE 5-7 

 

TABLE 5-8 

5.2.1 ANALYSIS OF DATA SET 2 

In (Carrato, et al., 2016) this data set was analysed and a model validation carried out for the Mack, 
ODP, and AMW-BF models. The conclusion was the Mack and ODP models are not suitable for this 
data set, and that the AMW-BF model gives more reasonable results. This is because of the long-
tailed and volatile nature of the claims data. We now want to extend the analysis to the case of one-
year risk, which is a different model use than analysing ultimate risk. We therefore now carry out 
additional validation to check whether the AMW-BF model is suitable for this new use. 

First, we compare one-year results with corresponding ultimate results. Table 5-9 shows, for each 
accident period, the opening estimates of the ultimate claims and reserves, the ultimate RMSEP, the 
RMSEP of the one-year CDR, and the risk emergence percentage, which is calculated as the one-year 
RMSEP divided by the ultimate RMSEP. The graphs in Figure 5-14 and Figure 5-15 show some of the 
figures in the table. These show, for each accident year, the one-year and ultimate RMSEP as a % of 
the opening ultimate, the risk emergence %. The graph in Figure 5-16 shows the distributions of the 
one-year claims development result, and the mean-centred ultimate claims distribution from the 
bootstrap output of the model. 

The claims data is for a long-tail high volatility class of claims. In light of this, the emergence % 
figures all look reasonable – they are all less than 100% (excepting the oldest accident year), range 
from 50% to 70% (except for the second oldest accident year), and the total emergence percent is 
about 73%. The four most recent accident years contain three quarters of the reserves, and the 

0 1 2 3 4 5 6 7 8 9
2005 184 1,845 3,748 5,400 6,231 9,006 9,699 10,008 10,035 10,068
2006 155 1,483 3,768 7,899 8,858 13,795 15,360 15,895 19,333
2007 676 2,287 10,635 16,102 22,177 28,825 29,828 30,700
2008 67 367 2,038 2,879 6,329 14,366 16,201
2009 922 1,693 3,523 4,641 6,431 8,325
2010 22 488 3,424 5,649 7,813
2011 76 435 1,980 5,062
2012 24 1,782 3,881
2013 39 745
2014 306

Accident 
Year

Cumulative claim payments in development year (£)

0 1 2 3 4 5 6 7 8 9
2005 1,530 8,238 10,564 12,332 12,173 10,576 10,630 10,316 10,325 10,280
2006 1,505 6,247 8,728 10,500 15,241 16,720 16,845 16,829 19,675
2007 2,505 6,150 17,937 22,143 29,511 33,336 32,162 31,500
2008 204 2,748 9,984 13,167 16,523 17,807 18,959
2009 2,285 4,361 6,432 8,834 12,092 15,309
2010 269 5,549 7,214 12,422 13,581
2011 1,271 2,657 6,187 11,004
2012 298 3,533 6,423
2013 2,023 5,415
2014 1,779

Accident 
Year

Cumulative incurred claims in development year (£)



emergence percentage for all of them is about 70%. The graph of RMSEP as a percentage of the 
opening ultimate shows that risk declines much more slowly as accident years mature than in 
example 1 (reflecting the long-tail nature of the triangle), and the one-year risk follows the same 
pattern, but is slightly lower than the ultimate risk. The graph of the CDR and ultimate risk 
distributions in Figure 5-16 shows that the one-year risk is less than the ultimate risk (as more of the 
probability is in the centre of the distribution). This is not unreasonable for a long-tail, high volatility 
class. 

 

TABLE 5-9 

 

FIGURE 5-5 

2005 10,068
2006 19,404 71 491 491 100.0%
2007 33,138 2,438 1,647 1,616 98.1%
2008 19,182 2,981 1,772 916 51.7%
2009 12,548 4,223 2,035 1,214 59.7%
2010 17,201 9,388 2,943 2,366 80.4%
2011 17,276 12,214 3,373 2,332 69.1%
2012 19,175 15,294 3,900 2,720 69.7%
2013 19,363 18,618 4,430 3,193 72.1%
2014 20,095 19,789 4,593 3,090 67.3%

Total 187,450 85,016 10,241 7,462 72.9%

Emergence 
%

Accident 
Year Ultimate Reserve

Ultimate 
Risk RMSEP

One-Year 
CDR RMSEP



 

FIGURE 5-6 

 

FIGURE 5-7 

Next, we back test the one-year results using historical loss ratios for this triangle of claims. The 
original data set in (Alai, et al., 2009) and (Alai, et al., 2011) did not contain historical loss ratios, so 
we have created some fictional loss ratios to illustrate the method, these are shown in Table 5-10. 

 

TABLE 5-10 

0 1 2 3 4 5 6 7 8 9
2005 112% 102% 105% 81% 84% 95% 95% 92% 86% 89%
2006 109% 113% 117% 123% 99% 89% 77% 84% 88%
2007 116% 132% 137% 181% 139% 136% 152% 151%
2008 94% 88% 109% 84% 81% 88% 87%
2009 104% 112% 101% 74% 60% 57%
2010 116% 96% 107% 92% 78%
2011 54% 70% 80% 79%
2012 109% 85% 87%
2013 78% 88%
2014 91%

Historical Loss RatiosAccident 
Year



As described in section 4.6, we assume that loss ratios have a lognormal distribution with mean 
given by the previous year’s loss ratio, and CoV implied by the one-year CDR RMSEP. We then 
calculate the percentiles of the historic loss ratios. These are shown in Table 5-11. 

 

TABLE 5-11 

There is no obvious calendar year, development year, or accident year trend in the percentiles. We 
expect the percentiles to be uniformly distributed. The graph in Figure 5-19 shows the empirical CDF 
of the percentiles. This shows that the percentiles are uniformly distributed. 

 

FIGURE 5-8 

The initial validation concluded that neither the Mack nor ODP models were appropriate, and was 
somewhat ambivalent about the AMW-BF model, concluding that “the actuary should then consider 
whether an additional loading for model error is required.” The above validation has found no 
further issues with extending the analysis done with this model to the one-year case, however the 
caveat from the ultimate analysis still applies to the one-year analysis. 

5.2.2 COMPARISON OF METHODS 

In this subsection we compare the results of the AMW-BF presented in the previous section with the 
Mack and ODP models. The ODP model gives completely unreasonable results, and Mack’s model 
gives much higher RMSEP than the AMW-BF model. This gives further reason for rejecting the use of 
these models. Since the AMW-BF model is based on the ODP model, the unreasonable results for 
this model cast doubt on whether the AMW-BF is a suitable model for this data set. 

0 1 2 3 4 5 6 7 8 9
2005 0.297 0.593 0.040 0.644 0.832 0.487 0.328 0.078 0.913
2006 0.633 0.615 0.672 0.054 0.253 0.075 0.955 0.868
2007 0.827 0.617 0.979 0.028 0.463 0.891 0.434
2008 0.370 0.914 0.038 0.406 0.761 0.478
2009 0.726 0.291 0.016 0.073 0.366
2010 0.121 0.777 0.157 0.126
2011 0.963 0.798 0.493
2012 0.061 0.585
2013 0.808
2014

Accident 
Year

Percentile of Historical Loss Ratios



The tables below present the results; Table 5-12 shows the results for Mack’s model, Table 5-13 for 
the ODP model (with a constant scale parameter). 

 

TABLE 5-12 

 

TABLE 5-13 

  

2005 10,068 0
2006 19,421 88 94 94 100%
2007 36,339 5,639 4,302 4,300 100%
2008 19,906 3,705 2,741 1,274 46%
2009 11,309 2,984 2,010 995 50%
2010 17,082 9,269 5,129 4,441 87%
2011 16,273 11,211 6,182 3,546 57%
2012 21,677 17,796 8,542 4,323 51%
2013 16,221 15,476 11,104 6,970 63%
2014 46,906 46,600 50,353 35,657 71%

Total 215,201 112,767 56,881 39,971 70%

Ultimate 
Risk RMSEP

One-Year 
CDR RMSEP

Emergence 
%

Accident 
Year Ultimate Reserve

2005 10,068
2006 19,408 75 493 493 100%
2007 35,074 4,374 2,697 2,666 99%
2008 19,117 2,916 1,891 1,114 59%
2009 10,617 2,292 1,533 949 62%
2010 14,872 7,059 3,165 2,623 83%
2011 13,158 8,096 3,865 2,607 67%
2012 16,689 12,808 6,362 4,519 71%
2013 10,772 10,027 10,282 8,750 85%
2014 102,034 101,728 6,240,351 6,371,840 102%

Total 251,810 149,376 6,240,613 6,372,058 102%

Ultimate 
Risk RMSEP

Emergence 
%

Accident 
Year Ultimate Reserve

One-Year 
CDR RMSEP



6 CONCLUSION 

The aim of this paper has been to build on the working party’s first paper, by presenting an 
introduction to common methods used to estimate one-year reserve risk. For two of the methods 
described – the Merz-Wüthrich formula, and the Actuary-in-the-Box – it is intended as a guide to the 
existing literature. For the third method – Emergence Patterns – the intention is to present, for the 
first time, a unified systematic treatment of the topic. Much of this has been developed in practice, 
but what has appeared to date has been piecemeal and scattered across various conference 
presentations. 

The working party has also developed implementations of some of the methods described in this 
paper, and the working party’s first paper. These are available in the working party’s repository in 
GitHub. 
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8 GLOSSARY 

For convenience, a list of common acronyms or abbreviations used in the paper is presented here. 

AMW-
BF 

Alai, Merz, Wüthrich, Bornhuetter-Ferguson stochastic model 

BF Bornhuetter-Ferguson model 

CL Chain Ladder 

CDF Cumulative Distribution Function 

CDR Claims Development Result 

CLRM Complementary Loss Ratio Method 

CoC Cost of Capital 

CoV Coefficient of Variation 

CY Calendar Year 

DA Delegated Act 

DCL Double Chain Ladder model 

DY Development Year 

EIOPA European Insurance and Occupational Pensions Authority 

IBNR Incurred But Not Reported 

IBNER Incurred But Not Enough Reported 

ICAS Individual Capital Adequacy Standards 

LoB Line of Business 

MCL Munich Chain Ladder model 

MSEP Mean Square Error of Prediction 

ODP usually refers to the Over-dispersed Poisson model, but may occasionally refer to 
the Over-Dispersed Poisson probability distribution. 

PDF Probability Density Function 

QIS Quantitative Impact Study 

RMSEP Root Mean Square Error of Prediction (i.e. the square root of the MSEP) 

SCR Solvency Capital Requirement 



SST Swiss Solvency Test 

USP Undertaking Specific Parameters 

 

  



9 APPENDIX A – ONE-YEAR RESERVE RISK 

9.1 INTRODUCTION 

In this appendix we develop in detail the concepts and notation needed to discuss one-year reserve 
risk. There are two further subsections, the first contains the main part of the discussion, and the 
other contains supporting results. 

9.2 MAIN RESULTS 

For 𝑡𝑡 = 1, 2, 3, … by the time period 𝑡𝑡 we mean the interval (𝑡𝑡 − 1, 𝑡𝑡], so the time period 𝑡𝑡 includes 
all times 𝑠𝑠 where 𝑡𝑡 − 1 < 𝑠𝑠 ≤ 𝑡𝑡. By the time point 𝑡𝑡 we mean precisely the instant at time 𝑡𝑡, so the 
time point 𝑡𝑡 is the very last instant of the time period 𝑡𝑡. 

In what follows we will discuss conditional expectation and conditional variance. We use the 
following notation for this. First let 𝐼𝐼𝑡𝑡 denote the information known at time point 𝑡𝑡. For a random 
variable 𝑋𝑋 the expectation of 𝑋𝑋, conditional on the information known at time point 𝑡𝑡 is denoted 
𝐸𝐸[𝑈𝑈 | 𝐼𝐼𝑡𝑡], and we usually abbreviate this to 𝐸𝐸𝑡𝑡[𝑈𝑈]. Similarly, we denote the variance of 𝑋𝑋, conditional 
on the information known at time point 𝑡𝑡 by 𝑉𝑉𝑉𝑉𝑉𝑉𝑡𝑡(𝑋𝑋). 

We denote the claims paid during time period 𝑡𝑡 by 𝑃𝑃𝑡𝑡. We also suppose that all claims are paid by 
time point 𝑛𝑛, so if 𝑡𝑡 > 𝑛𝑛 then 𝑃𝑃𝑡𝑡 = 0. Since we do not know the amount of claims that will be paid 
during future time periods, the 𝑃𝑃𝑡𝑡 are random variables. The ultimate claims paid is given by 

𝑈𝑈 =  �𝑃𝑃𝑡𝑡

𝑠𝑠

𝑡𝑡=1

 

The distribution of 𝑈𝑈 gives us the ultimate risk of the ultimate claims. However, we need to take 
account of the time point that the estimate of the ultimate risk is made at. For example, if the risk 
measure we are using is variance then the ultimate risk of the ultimate claims at time point 𝑡𝑡 is the 
variance of 𝑈𝑈 conditional on the information known at time point 𝑡𝑡 i.e. 𝑉𝑉𝑉𝑉𝑉𝑉𝑡𝑡(𝑈𝑈). 

At each time point 𝑡𝑡 = 1, … ,𝑛𝑛 an estimate will be made of the value of the ultimate claims. The 
estimate of the ultimate claims at time point 𝑡𝑡 is denoted by 𝑈𝑈𝑡𝑡  and is given by the conditional 
expectation 

𝑈𝑈𝑡𝑡 = 𝐸𝐸[𝑈𝑈 | 𝐼𝐼𝑡𝑡] =  𝐸𝐸𝑡𝑡[𝑈𝑈] 

The sequence of estimates of the ultimate claims is 𝑈𝑈1, … ,𝑈𝑈𝑠𝑠. The successive estimates are unbiased 
as the current value is the best estimate of any future value i.e. 𝐸𝐸𝑡𝑡[ 𝑈𝑈𝑡𝑡+1 ] =  𝑈𝑈𝑡𝑡, or more generally if 
𝑠𝑠 < 𝑡𝑡 then 𝐸𝐸𝑠𝑠[ 𝑈𝑈𝑡𝑡  ] =  𝑈𝑈𝑠𝑠. In other words, the sequence forms a martingale. This has some 
interesting consequences as we will shortly see. 

For one-year risk we need to consider the movement from one estimate of the ultimate claims to 
the next. This movement is called the claims development result, or CDR, and is given by 

𝐶𝐶𝐶𝐶𝐶𝐶𝑡𝑡,1 =  𝑈𝑈𝑡𝑡 −  𝑈𝑈𝑡𝑡+1 



We can extend this to consider the movement in the estimate of ultimate claims over any period of 
time to get 

𝐶𝐶𝐶𝐶𝐶𝐶𝑡𝑡,𝑘𝑘 =  𝑈𝑈𝑡𝑡 −  𝑈𝑈𝑡𝑡+𝑘𝑘 

We sometimes denote 𝐶𝐶𝐶𝐶𝐶𝐶𝑡𝑡,1 by 𝐶𝐶𝐶𝐶𝐶𝐶𝑡𝑡. Because the sequence 𝑈𝑈1, … ,𝑈𝑈𝑠𝑠 forms a martingale the 
expected value of the claims development result is zero 

𝐸𝐸𝑡𝑡�𝐶𝐶𝐶𝐶𝐶𝐶𝑡𝑡,𝑘𝑘� = 𝐸𝐸𝑡𝑡[𝑈𝑈𝑡𝑡] − 𝐸𝐸𝑡𝑡[𝑈𝑈𝑡𝑡+𝑘𝑘] =  𝑈𝑈𝑡𝑡 −  𝑈𝑈𝑡𝑡  = 0 

And then 

𝐸𝐸�𝐶𝐶𝐶𝐶𝐶𝐶𝑡𝑡,𝑘𝑘� = 𝐸𝐸 �𝐸𝐸𝑡𝑡�𝐶𝐶𝐶𝐶𝐶𝐶𝑡𝑡,𝑘𝑘�� = 0 

A further consequence is that the linear correlation between non-overlapping CDRs is also zero. 
Specifically if 𝑡𝑡1 +  𝑘𝑘1  ≤  𝑡𝑡2 then the linear correlation between 𝐶𝐶𝐶𝐶𝐶𝐶𝑡𝑡1,𝑘𝑘1 and 𝐶𝐶𝐶𝐶𝐶𝐶𝑡𝑡2,𝑘𝑘2 is zero. This 
result is proved in general in section 9.3 below. 

Following from this we get the nice fact that the variance of the ultimate risk decomposes as the 
sum of the variances of the claims development results. More precisely 

𝑉𝑉𝑉𝑉𝑉𝑉𝑡𝑡(𝑈𝑈) =  � 𝑉𝑉𝑉𝑉𝑉𝑉𝑡𝑡(𝐶𝐶𝐶𝐶𝐶𝐶𝑡𝑡+𝑘𝑘)
𝑠𝑠−𝑡𝑡−1

𝑘𝑘=0

 

This follows easily from the observation that 

𝑈𝑈 = 𝑈𝑈𝑡𝑡  −  � 𝐶𝐶𝐶𝐶𝐶𝐶𝑡𝑡+𝑘𝑘

𝑠𝑠−𝑡𝑡−1

𝑘𝑘=0

 

and the fact that the linear correlation between the CDRs is zero, and that 𝑈𝑈𝑡𝑡  is known with certainty 
at time 𝑡𝑡. It further follows that 𝑉𝑉𝑉𝑉𝑉𝑉𝑡𝑡(𝐶𝐶𝐶𝐶𝐶𝐶𝑡𝑡) ≤ 𝑉𝑉𝑉𝑉𝑉𝑉𝑡𝑡(𝑈𝑈) and so the one-year risk is less than or 
equal to the ultimate risk when variance is used as the risk measure. 

In fact, we can generalize the above a little. If 𝑠𝑠 < 𝑡𝑡 then 

𝑈𝑈𝑡𝑡 = 𝑈𝑈𝑠𝑠  −  � 𝐶𝐶𝐶𝐶𝐶𝐶𝑠𝑠+𝑘𝑘

𝑡𝑡−𝑠𝑠−1

𝑘𝑘=0

 

and so 

𝑉𝑉𝑉𝑉𝑉𝑉𝑠𝑠(𝑈𝑈𝑡𝑡) =  � 𝑉𝑉𝑉𝑉𝑉𝑉𝑠𝑠(𝐶𝐶𝐶𝐶𝐶𝐶𝑠𝑠+𝑘𝑘)
𝑡𝑡−𝑠𝑠−1

𝑘𝑘=0

 

From this it is easy to see that if 𝑠𝑠 < 𝑙𝑙 < 𝑡𝑡 then 𝑉𝑉𝑉𝑉𝑉𝑉𝑠𝑠(𝑈𝑈𝑙𝑙) ≤ 𝑉𝑉𝑉𝑉𝑉𝑉𝑠𝑠(𝑈𝑈𝑡𝑡). This is just saying that if we 
extend our time horizon further into the future then the risk does not reduce. 

Note that we can use the law of total variance (see section 9.3 below) together with the fact that the 
expected value of the CDR is zero to see that for 𝑠𝑠 ≤ 𝑙𝑙 ≤ 𝑡𝑡 we have 𝐸𝐸𝑠𝑠[𝑉𝑉𝑉𝑉𝑉𝑉𝑙𝑙(𝐶𝐶𝐶𝐶𝐶𝐶𝑡𝑡)] =  𝑉𝑉𝑉𝑉𝑉𝑉𝑠𝑠(𝐶𝐶𝐶𝐶𝐶𝐶𝑡𝑡). 



Similarly we can show that 𝐸𝐸𝑠𝑠[𝑉𝑉𝑉𝑉𝑉𝑉𝑙𝑙(𝑈𝑈𝑡𝑡)] =  ∑ 𝑉𝑉𝑉𝑉𝑉𝑉𝑠𝑠(𝐶𝐶𝐶𝐶𝐶𝐶𝑙𝑙+𝑘𝑘)𝑡𝑡−𝑙𝑙−1
𝑘𝑘=0 . The current estimates of the 

ultimate risk are therefore best estimates of future estimates of ultimate risk. 

We can also derive results similar to those above about the covariance between the ultimate risks 
for different classes or origin periods, and the component claims development results. Let 𝑖𝑖 and 𝑗𝑗 
denote two different classes or origin periods, and use the bottom left sub-script to denote this in 
the relevant quantities. Then, if 𝑠𝑠 < 𝑡𝑡 

𝐶𝐶𝐶𝐶𝐶𝐶𝑠𝑠� 𝑈𝑈𝑡𝑡𝑖𝑖
 , 𝑈𝑈𝑡𝑡𝑖𝑖

 � =  � 𝐶𝐶𝐶𝐶𝐶𝐶𝑠𝑠� 𝐶𝐶𝐶𝐶𝐶𝐶𝑠𝑠+𝑘𝑘𝑖𝑖
 , 𝐶𝐶𝐶𝐶𝐶𝐶𝑠𝑠+𝑘𝑘𝑖𝑖

 �
𝑡𝑡−𝑠𝑠−1

𝑘𝑘=0

 

We can prove this as follows. First 

𝐶𝐶𝐶𝐶𝐶𝐶𝑠𝑠� 𝑈𝑈𝑡𝑡𝑖𝑖
 , 𝑈𝑈𝑡𝑡𝑖𝑖

 � =  𝐶𝐶𝐶𝐶𝐶𝐶𝑠𝑠 � 𝑈𝑈𝑠𝑠 −� 𝐶𝐶𝐶𝐶𝐶𝐶𝑠𝑠+𝑘𝑘𝑖𝑖
 

𝑘𝑘
𝑖𝑖
 , 𝑈𝑈𝑠𝑠 −� 𝐶𝐶𝐶𝐶𝐶𝐶𝑠𝑠+𝑘𝑘𝑖𝑖

 

𝑘𝑘
𝑖𝑖
 � 

 Since 𝑈𝑈𝑠𝑠𝑖𝑖
  and 𝑈𝑈𝑠𝑠𝑖𝑖

  are known with certainty at time 𝑠𝑠, the above simplifies to 

𝐶𝐶𝐶𝐶𝐶𝐶𝑠𝑠� 𝑈𝑈𝑡𝑡𝑖𝑖
 , 𝑈𝑈𝑡𝑡𝑖𝑖

 � =  𝐶𝐶𝐶𝐶𝐶𝐶𝑠𝑠 �� 𝐶𝐶𝐶𝐶𝐶𝐶𝑠𝑠+𝑘𝑘𝑖𝑖
 

𝑘𝑘
,� 𝐶𝐶𝐶𝐶𝐶𝐶𝑠𝑠+𝑘𝑘𝑖𝑖

 

𝑘𝑘
� 

Since covariance is linear in both arguments this becomes 

𝐶𝐶𝐶𝐶𝐶𝐶𝑠𝑠� 𝑈𝑈𝑡𝑡𝑖𝑖
 , 𝑈𝑈𝑡𝑡𝑖𝑖

 � = � � 𝐶𝐶𝐶𝐶𝐶𝐶𝑠𝑠� 𝐶𝐶𝐶𝐶𝐶𝐶𝑠𝑠+𝑘𝑘 , 𝐶𝐶𝐶𝐶𝐶𝐶𝑠𝑠+𝑙𝑙𝑖𝑖
 

𝑖𝑖
 �

𝑙𝑙𝑘𝑘
 

We then apply theorem 9.3.2, from section 9.3 below to see that 𝐶𝐶𝐶𝐶𝐶𝐶𝑠𝑠� 𝐶𝐶𝐶𝐶𝐶𝐶𝑠𝑠+𝑘𝑘 , 𝐶𝐶𝐶𝐶𝐶𝐶𝑠𝑠+𝑙𝑙𝑖𝑖
 

𝑖𝑖
 � = 0 

unless 𝑘𝑘 = 𝑙𝑙, which gives us the result. 

We can also express the claims development result as a movement in the reserves, in which case we 
also need to consider the claims paid over the period. To make this more precise we first need to 
make a couple more definitions. 

The outstanding claims at time point 𝑡𝑡 is the sum of claims paid after time point 𝑡𝑡 and is therefore 
given by the sum 

𝑂𝑂𝐶𝐶𝑡𝑡 =  � 𝑃𝑃𝑠𝑠

𝑠𝑠

𝑠𝑠=𝑡𝑡+1

 

The claims reserve at time point 𝑡𝑡 is denoted by 𝐶𝐶𝑡𝑡 and is given by 

𝐶𝐶𝑡𝑡 = 𝐸𝐸𝑡𝑡[𝑂𝑂𝐶𝐶𝑡𝑡] =  𝑈𝑈𝑡𝑡 −  �𝑃𝑃𝑠𝑠

𝑡𝑡

𝑠𝑠=1

 

The one-year claims development result can then be expressed 

𝐶𝐶𝐶𝐶𝐶𝐶𝑡𝑡 =  𝐶𝐶𝑡𝑡 −  𝑃𝑃𝑡𝑡+1 −  𝐶𝐶𝑡𝑡+1 

To extend this a multi-period claims development result, first define for 𝑘𝑘 = 0, 1, 2, … 𝑃𝑃𝑡𝑡,𝑘𝑘 =
 ∑ 𝑃𝑃𝑠𝑠𝑡𝑡+𝑘𝑘−1

𝑠𝑠=𝑡𝑡  then we can express the claims development result over more than one period, as follows 

𝐶𝐶𝐶𝐶𝐶𝐶𝑡𝑡,𝑘𝑘 =  𝐶𝐶𝑡𝑡 −  𝑃𝑃𝑡𝑡+1,𝑘𝑘 −  𝐶𝐶𝑡𝑡+𝑘𝑘 



It is a straight-forward application of the definitions above to show that the two different ways of 
expressing the CDR are the same. 

9.3 SUPPORTING RESULTS 

In this sub-section we state and prove a few results used in the appendices. These results are well 
known and we prove them here for completeness. The results are that the linear correlation of non-
overlapping claims development results is zero, and the “Law of Total Variance”. 

A time series of random variables {𝑋𝑋𝑡𝑡 ∶ 𝑡𝑡 = 0, 1, 2, … } is a martingale if for all  𝑡𝑡 = 1, 2, … 
𝐸𝐸[𝑋𝑋𝑡𝑡  | 𝐼𝐼𝑡𝑡−1] =  𝑋𝑋𝑡𝑡−1, where 𝐼𝐼𝑡𝑡 denotes the information known at time 𝑡𝑡. It then follows that for s< 𝑡𝑡 
𝐸𝐸[𝑋𝑋𝑡𝑡  | 𝐼𝐼𝑠𝑠] =  𝑋𝑋𝑠𝑠, since 𝐸𝐸[𝑋𝑋𝑡𝑡−1 | 𝐼𝐼𝑠𝑠] =  𝐸𝐸[𝐸𝐸[𝑋𝑋𝑡𝑡  | 𝐼𝐼𝑡𝑡−1] | 𝐼𝐼𝑠𝑠] =  𝐸𝐸[𝑋𝑋𝑡𝑡  | 𝐼𝐼𝑠𝑠]. 

Define the difference between terms of the time series by Δ𝑋𝑋𝑠𝑠,𝑡𝑡 =  𝑋𝑋𝑡𝑡 −  𝑋𝑋𝑠𝑠. Then for a martingale 

𝐸𝐸�Δ𝑋𝑋𝑠𝑠,𝑡𝑡� = 0. The expectation is unconditional since 𝐸𝐸�Δ𝑋𝑋𝑠𝑠,𝑡𝑡� = 𝐸𝐸 �𝐸𝐸�Δ𝑋𝑋𝑠𝑠,𝑡𝑡  | 𝐼𝐼𝑠𝑠�� = 𝐸𝐸�𝐸𝐸[𝑋𝑋𝑡𝑡 −

 𝑋𝑋𝑠𝑠 | 𝐼𝐼𝑠𝑠]� = 𝐸𝐸[𝐸𝐸[𝑋𝑋𝑡𝑡  | 𝐼𝐼𝑠𝑠] −  𝑋𝑋𝑠𝑠] = 𝐸𝐸[𝑋𝑋𝑠𝑠 −  𝑋𝑋𝑠𝑠] = 0. 

We then have the following. 

Theorem 9.3.1. If {𝑋𝑋𝑡𝑡 ∶ 𝑡𝑡 = 0, 1, 2, … } is a martingale, and 𝑠𝑠1 <  𝑡𝑡1 ≤  𝑠𝑠2 <  𝑡𝑡2 then the linear 
correlation between Δ𝑋𝑋𝑠𝑠1,𝑡𝑡1 and Δ𝑋𝑋𝑠𝑠2,𝑡𝑡2 is zero. 

Proof. We show that the covariance is zero, from this it follows that the correlation is zero. The 
covariance between Δ𝑋𝑋𝑠𝑠1,𝑡𝑡1 and Δ𝑋𝑋𝑠𝑠2,𝑡𝑡2 is given by 

𝐶𝐶𝐶𝐶𝐶𝐶�Δ𝑋𝑋𝑠𝑠1,𝑡𝑡1  ,Δ𝑋𝑋𝑠𝑠2,𝑡𝑡2� = 𝐸𝐸�Δ𝑋𝑋𝑠𝑠1,𝑡𝑡1Δ𝑋𝑋𝑠𝑠2,𝑡𝑡2� − 𝐸𝐸�Δ𝑋𝑋𝑠𝑠1,𝑡𝑡1�𝐸𝐸�Δ𝑋𝑋𝑠𝑠2,𝑡𝑡2� 

Since 𝐸𝐸�Δ𝑋𝑋𝑠𝑠1,𝑡𝑡1� = 𝐸𝐸�Δ𝑋𝑋𝑠𝑠2,𝑡𝑡2� = 0, we consider 𝐸𝐸�Δ𝑋𝑋𝑠𝑠1,𝑡𝑡1Δ𝑋𝑋𝑠𝑠2,𝑡𝑡2�. Now 𝐸𝐸�Δ𝑋𝑋𝑠𝑠1,𝑡𝑡1Δ𝑋𝑋𝑠𝑠2,𝑡𝑡2� =

 𝐸𝐸 �𝐸𝐸�Δ𝑋𝑋𝑠𝑠1,𝑡𝑡1Δ𝑋𝑋𝑠𝑠2,𝑡𝑡2  | 𝐼𝐼𝑠𝑠2�� = 𝐸𝐸 �Δ𝑋𝑋𝑠𝑠1,𝑡𝑡1𝐸𝐸�Δ𝑋𝑋𝑠𝑠2,𝑡𝑡2  | 𝐼𝐼𝑠𝑠2�� = 𝐸𝐸�Δ𝑋𝑋𝑠𝑠1,𝑡𝑡10� = 0 . Hence the covariance, 

and so the correlation is zero. QED. 

We can apply the above argument to get a similar result between two different martingales: 

Theorem 9.3.2. If {𝑋𝑋𝑡𝑡 ∶ 𝑡𝑡 = 0, 1, 2, … } and {𝑌𝑌𝑡𝑡 ∶ 𝑡𝑡 = 0, 1, 2, … } are martingales, and 𝑠𝑠1 <  𝑡𝑡1 ≤
 𝑠𝑠2 <  𝑡𝑡2 then the linear correlation between Δ𝑋𝑋𝑠𝑠1,𝑡𝑡1 and Δ𝑌𝑌𝑠𝑠2,𝑡𝑡2 is zero. 

Proof. We show that the covariance is zero, from this it follows that the correlation is zero. The 
covariance between Δ𝑋𝑋𝑠𝑠1,𝑡𝑡1 and Δ𝑌𝑌𝑠𝑠2,𝑡𝑡2 is given by 

𝐶𝐶𝐶𝐶𝐶𝐶�Δ𝑋𝑋𝑠𝑠1,𝑡𝑡1  ,Δ𝑌𝑌𝑠𝑠2,𝑡𝑡2� = 𝐸𝐸�Δ𝑋𝑋𝑠𝑠1,𝑡𝑡1Δ𝑌𝑌𝑠𝑠2,𝑡𝑡2� − 𝐸𝐸�Δ𝑋𝑋𝑠𝑠1,𝑡𝑡1�𝐸𝐸�Δ𝑌𝑌𝑠𝑠2,𝑡𝑡2� 

Since 𝐸𝐸�Δ𝑋𝑋𝑠𝑠1,𝑡𝑡1� = 𝐸𝐸�Δ𝑌𝑌𝑠𝑠2,𝑡𝑡2� = 0, we consider 𝐸𝐸�Δ𝑋𝑋𝑠𝑠1,𝑡𝑡1Δ𝑌𝑌𝑠𝑠2,𝑡𝑡2�. Now 𝐸𝐸�Δ𝑋𝑋𝑠𝑠1,𝑡𝑡1Δ𝑌𝑌𝑠𝑠2,𝑡𝑡2� =

 𝐸𝐸 �𝐸𝐸�Δ𝑋𝑋𝑠𝑠1,𝑡𝑡1Δ𝑌𝑌𝑠𝑠2,𝑡𝑡2 | 𝐼𝐼𝑠𝑠2�� = 𝐸𝐸 �Δ𝑋𝑋𝑠𝑠1,𝑡𝑡1𝐸𝐸�Δ𝑌𝑌𝑠𝑠2,𝑡𝑡2 | 𝐼𝐼𝑠𝑠2�� = 𝐸𝐸�Δ𝑋𝑋𝑠𝑠1,𝑡𝑡10� = 0 . Hence the covariance, 

and so the correlation is zero. QED. 

The “Law of Total Variance” is the following: 

Theorem 9.3.3. Suppose that 𝑠𝑠 > 𝑡𝑡 then 

𝑉𝑉𝑉𝑉𝑉𝑉𝑡𝑡(𝑋𝑋) = 𝐸𝐸𝑡𝑡[𝑉𝑉𝑉𝑉𝑉𝑉𝑠𝑠(𝑋𝑋)] + 𝑉𝑉𝑉𝑉𝑉𝑉𝑡𝑡(𝐸𝐸𝑠𝑠[𝑋𝑋]) 



Proof. Recall that for any random variable 𝑍𝑍, 𝑉𝑉𝑉𝑉𝑉𝑉(𝑍𝑍) = 𝐸𝐸[𝑍𝑍2] −  𝐸𝐸[𝑍𝑍]2. So 

𝐸𝐸𝑡𝑡[𝑉𝑉𝑉𝑉𝑉𝑉𝑠𝑠(𝑋𝑋)] =  𝐸𝐸𝑡𝑡[𝐸𝐸𝑠𝑠[𝑋𝑋2] −  𝐸𝐸𝑠𝑠[𝑋𝑋]2] =  𝐸𝐸𝑡𝑡[𝑋𝑋2] −  𝐸𝐸𝑡𝑡[𝐸𝐸𝑠𝑠[𝑋𝑋]2] 

and 

𝑉𝑉𝑉𝑉𝑉𝑉𝑡𝑡(𝐸𝐸𝑠𝑠[𝑋𝑋]) =  𝐸𝐸𝑡𝑡[𝐸𝐸𝑠𝑠[𝑋𝑋]2] −  𝐸𝐸𝑡𝑡�𝐸𝐸𝑠𝑠[𝑋𝑋]�2 =  𝐸𝐸𝑡𝑡[𝐸𝐸𝑠𝑠[𝑋𝑋]2] −  𝐸𝐸𝑡𝑡[𝑋𝑋]2 

Adding the two above expressions together gives 

𝐸𝐸𝑡𝑡[𝑋𝑋2] −  𝐸𝐸𝑡𝑡[𝐸𝐸𝑠𝑠[𝑋𝑋]2] +  𝐸𝐸𝑡𝑡[𝐸𝐸𝑠𝑠[𝑋𝑋]2] −  𝐸𝐸𝑡𝑡[𝑋𝑋]2 =  𝐸𝐸𝑡𝑡[𝑋𝑋2] −  𝐸𝐸𝑡𝑡[𝑋𝑋]2 =  𝑉𝑉𝑉𝑉𝑉𝑉𝑡𝑡(𝑋𝑋) 

Which gives the result. 

 

  



10 APPENDIX B – EMERGENCE FACTORS AND EMERGENCE PATTERNS 

10.1 INTRODUCTION 

In this appendix we develop in technical detail the ideas about emergence factors and emergence 
patterns discussed in section 3.3 above. To do this we build on the concepts and notation from 
section 9 appendix A. We assume that the reader of this appendix has read section 3.3. 

As discussed in section 3.3.1 the scaling of the ultimate risk distribution should only affect the 
volatility, not the mean. The general formula applying emergence factors therefore has the form: 

𝑋𝑋� =  𝛼𝛼(𝑋𝑋 − 𝐸𝐸[𝑋𝑋]) + 𝐸𝐸[𝑋𝑋] 

Where 𝑋𝑋 denotes the ultimate risk distribution, 𝛼𝛼 denotes the emergence factor applied, and 𝑋𝑋� 
denotes the one-year distribution. The emergence factor scales down the standard deviation, it is 
therefore natural to develop the theory of emergence patterns using standard deviation as the risk 
measure, and to define an emergence factor as a ratio of two standard deviations. We use the 
notation 𝜎𝜎(𝑋𝑋) to denote the standard deviation of a random variable 𝑋𝑋, and 𝜎𝜎𝑡𝑡(𝑋𝑋) to denote the 
standard deviation of 𝑋𝑋 conditional on 𝐼𝐼𝑡𝑡. 

The title of this appendix is “Emergence Factors and Emergence Patterns” we now describe what is 
meant by “factor” and “pattern”. In the formula above the symbol 𝛼𝛼 denotes an emergence factor. 
This is a single variable. As we discussed in section 3.3 there are several different types of 
emergence factor. An emergence pattern is a list of emergence factors. As we saw in section 3.3 
there are different ways to list emergence factors, and so different emergence patterns. In particular 
the same emergence factors can be listed in different ways to give different emergence patterns. We 
discuss this in more detail below. 

10.2 DIFFERENT VARIETIES OF EMERGENCE FACTORS AND EMERGENCE PATTERNS 

In this subsection we state the definition of the various different types of emergence factors and 
emergence patterns introduced in section 3.3.2, and we also describe some of their properties. We 
do this in more technical detail than was appropriate for section 3.3.2 

  



Table 10-1 was first presented in section 3.3.2 as Table 3-3 

 1 2 3 Emergence Factor Emergence Pattern 
1 Ultimate Unconditional Life-time 𝛼𝛼𝑘𝑘 (𝛼𝛼0, … ,𝛼𝛼𝑠𝑠) 
2 Ultimate Unconditional Risk-

decay 
Does not make sense 

3 Ultimate Conditional Life-time 𝛼𝛼𝑡𝑡,𝑘𝑘 �𝛼𝛼𝑡𝑡,0, … ,𝛼𝛼𝑡𝑡,𝑠𝑠−𝑡𝑡� 
4 Ultimate Conditional Risk-

decay 
𝛼𝛼𝑡𝑡,𝑘𝑘 �𝛼𝛼0,1,𝛼𝛼1,1, … ,𝛼𝛼𝑠𝑠−1,1� 

5 Outstanding Unconditional Life-time 𝛽𝛽𝑘𝑘 (𝛽𝛽0, … ,𝛽𝛽𝑠𝑠−1) 
6 Outstanding Unconditional Risk-

decay 
Does not make sense 

7 Outstanding Conditional Life-time 𝛽𝛽𝑡𝑡,𝑘𝑘 �𝛽𝛽𝑡𝑡,0, … ,𝛽𝛽𝑡𝑡,𝑠𝑠−𝑡𝑡−1� 
8 Outstanding Conditional Risk-

decay 
𝛽𝛽𝑡𝑡,𝑘𝑘 �𝛽𝛽0,1,𝛽𝛽1,1 , … ,𝛽𝛽𝑠𝑠−2,1� 

TABLE 10-1 

We now give precise definitions of each of the emergence factors. First, we discuss the ultimate 
factors then we discuss the outstanding factors. 

10.2.1 THE ULTIMATE EMERGENCE FACTORS 

The ultimate unconditional emergence factor 𝛼𝛼𝑘𝑘 is defined as the ratio of the standard deviation of 
the estimate of the ultimate claims at  time point 𝑘𝑘 to the standard deviation of the ultimate claims 

𝛼𝛼𝑘𝑘 =  
𝜎𝜎(𝑈𝑈𝑘𝑘)
𝜎𝜎(𝑈𝑈)  

The factor 𝛼𝛼𝑘𝑘 can be interpreted as the cumulative proportion of the total life-time risk which will 
have emerged by time point 𝑘𝑘. All 𝛼𝛼𝑘𝑘 are deterministic, and since standard deviations are all positive 
𝛼𝛼𝑘𝑘  > 0. We can show that 𝛼𝛼0 = 0, 𝛼𝛼𝑠𝑠 = 1, and 0 ≤ 𝛼𝛼𝑘𝑘  ≤ 1. We can also show that if 𝑙𝑙 < 𝑘𝑘 then 
𝛼𝛼𝑙𝑙  ≤  𝛼𝛼𝑘𝑘. These results are proved below. 

The ultimate conditional emergence factor 𝛼𝛼𝑡𝑡,𝑘𝑘 is defined as the ratio of the conditional standard 
deviation of the estimate of the ultimate claims at time point 𝑡𝑡 to the conditional standard deviation 
of the ultimate claims; the standard deviations are conditional on the information known at time 
point 𝑡𝑡 

𝛼𝛼𝑡𝑡,𝑘𝑘 =  
𝜎𝜎𝑡𝑡(𝑈𝑈𝑡𝑡+𝑘𝑘)
𝜎𝜎𝑡𝑡(𝑈𝑈)  

for 𝑘𝑘 = 0, 1, … ,𝑛𝑛 − 𝑡𝑡. The factor 𝛼𝛼𝑡𝑡,𝑘𝑘 can be interpreted as the cumulative proportion of the total 
life-time risk remaining at time point 𝑡𝑡 which will have emerged by time point 𝑡𝑡 + 𝑘𝑘. The factors 𝛼𝛼𝑡𝑡,𝑘𝑘 
are not known with certainty until time point 𝑡𝑡. Similarly, to the unconditional patterns above we 
can show that 0 =  𝛼𝛼𝑡𝑡,0  ≤  𝛼𝛼𝑡𝑡,1  ≤ ⋯  ≤  𝛼𝛼𝑡𝑡,𝑠𝑠−𝑡𝑡 = 1. 

It is clear that the ultimate unconditional emergence factors are a special case of the ultimate 
conditional emergence factors as 𝛼𝛼𝑘𝑘 =  𝛼𝛼0,𝑘𝑘. 

We now show that 0 =  𝛼𝛼𝑡𝑡,0  ≤  𝛼𝛼𝑡𝑡,1  ≤ ⋯  ≤  𝛼𝛼𝑡𝑡,𝑠𝑠−𝑡𝑡 = 1. By definition the ultimate conditional 
emergence factors are 



𝛼𝛼𝑡𝑡,𝑘𝑘 =  
𝜎𝜎𝑡𝑡(𝑈𝑈𝑡𝑡+𝑘𝑘)
𝜎𝜎𝑡𝑡(𝑈𝑈)  

Since 𝑈𝑈𝑡𝑡  is known with certainty at time point 𝑡𝑡 we have 𝜎𝜎𝑡𝑡(𝑈𝑈𝑡𝑡) = 0 and so 𝛼𝛼𝑡𝑡,0 = 0. Since standard 
deviations are positive it is clear that 𝛼𝛼𝑡𝑡,𝑘𝑘 ≥ 0. Now  

𝛼𝛼𝑡𝑡,𝑘𝑘
2 =  

𝑉𝑉𝑉𝑉𝑉𝑉𝑡𝑡(𝑈𝑈𝑡𝑡+𝑘𝑘)
𝑉𝑉𝑉𝑉𝑉𝑉𝑡𝑡(𝑈𝑈)  

and recall from subsection 9.2 that if 𝑠𝑠 < 𝑡𝑡 then 

𝑉𝑉𝑉𝑉𝑉𝑉𝑠𝑠(𝑈𝑈𝑡𝑡) =  � 𝑉𝑉𝑉𝑉𝑉𝑉𝑠𝑠(𝐶𝐶𝐶𝐶𝐶𝐶𝑠𝑠+𝑘𝑘)
𝑡𝑡−𝑠𝑠−1

𝑘𝑘=0

 

Therefore 

𝛼𝛼𝑡𝑡,𝑘𝑘
2 =  

∑ 𝑉𝑉𝑉𝑉𝑉𝑉𝑡𝑡(𝐶𝐶𝐶𝐶𝐶𝐶𝑡𝑡+𝑙𝑙)𝑘𝑘−1
𝑙𝑙=0

∑ 𝑉𝑉𝑉𝑉𝑉𝑉𝑡𝑡(𝐶𝐶𝐶𝐶𝐶𝐶𝑡𝑡+𝑙𝑙)𝑠𝑠−𝑡𝑡−1
𝑙𝑙=0

 

From which it is clear that 𝛼𝛼𝑡𝑡,𝑘𝑘 ≤ 1, that if 𝑘𝑘1 < 𝑘𝑘2 then 𝛼𝛼𝑡𝑡,𝑘𝑘1 ≤ 𝛼𝛼𝑡𝑡,𝑘𝑘2, and that 𝛼𝛼𝑡𝑡,𝑠𝑠−𝑡𝑡 = 1. 

10.2.2 THE ULTIMATE EMERGENCE PATTERNS 

An emergence pattern is a list of emergence factors. The ultimate unconditional life-time emergence 
pattern is a list of the ultimate unconditional emergence factors 

(𝛼𝛼0 , … ,𝛼𝛼𝑠𝑠) 

This pattern expresses how the life-time risk emerges. The values start at 𝛼𝛼0 = 0 and increase to 
𝛼𝛼𝑠𝑠 = 1. It can also be expressed as a graph as shown in Figure 10-2 

 

FIGURE 10-1 

The ultimate conditional life-time emergence pattern is a list of the ultimate conditional emergence 
factors, arranged so that it expresses how the remaining risk of a partially developed cohort emerges 
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from the current time point 𝑡𝑡 until it is fully run off by time point 𝑛𝑛. There are 𝑛𝑛 − 𝑡𝑡 future periods, 
and so the pattern contains 𝑛𝑛 − 𝑡𝑡 + 1 factors 

�𝛼𝛼𝑡𝑡,0 , … ,𝛼𝛼𝑡𝑡,𝑠𝑠−𝑡𝑡� 

The values start at 𝛼𝛼𝑡𝑡,0 = 0 and increase to 𝛼𝛼𝑡𝑡,𝑠𝑠−𝑡𝑡 = 1. It can also be expressed in a graph as in 
Figure 10-3  

 

FIGURE 10-2 

The ultimate conditional risk-decay emergence pattern is a list of the ultimate conditional 
emergence factors, arranged so that it expresses, for a sequence of origin periods, the proportion of 
the remaining risk that will emerge over the next period 

�𝛼𝛼0,1 , … ,𝛼𝛼𝑠𝑠−1,1� 

There is no reason to suppose that 𝛼𝛼0,1 = 0, 𝛼𝛼𝑠𝑠−1,1 = 1, or that the sequence is increasing. It can be 
thought of as a cross-section of the ultimate conditional life-time emergence patterns. This is shown 
in the graph Figure 10-4 where the black line shows the risk-decay emergence pattern, and the red 
lines show the life-time emergence patterns. 
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FIGURE 10-3 

10.2.3 THE OUTSTANDING EMERGENCE FACTORS 

The outstanding unconditional emergence factor 𝛽𝛽𝑘𝑘 is defined for 𝑘𝑘 = 0, … ,𝑛𝑛 − 1  as the ratio of 
the standard deviation of the claims reserve at time point 𝑘𝑘 to the standard deviation of the claims 
outstanding at time point 𝑘𝑘 

𝛽𝛽𝑘𝑘 =  
𝜎𝜎(𝐶𝐶𝑘𝑘)
𝜎𝜎(𝑂𝑂𝐶𝐶𝑘𝑘) 

The factor 𝛽𝛽𝑘𝑘 can be interpreted as the proportion of the life-time risk in the claims outstanding at 
time point 𝑘𝑘 that will emerge by time point 𝑘𝑘. All the 𝛽𝛽𝑘𝑘 are deterministic, and since standard 
deviations are all positive 𝛽𝛽𝑘𝑘 ≥ 0. As a consequence of the law of total variance (see section 9.3) 
𝛽𝛽𝑘𝑘 ≤ 1. We can also show that 𝛽𝛽0 = 0. However, it is not the case in general that (𝛽𝛽0 , … ,𝛽𝛽𝑠𝑠−1) is 
an increasing sequence, since the denominator varies from factor to factor. 

The outstanding conditional emergence factor 𝛽𝛽𝑡𝑡,𝑘𝑘 is defined for 𝑡𝑡 = 0, … ,𝑛𝑛 − 1 and 𝑘𝑘 = 0, … ,𝑛𝑛 −
𝑡𝑡 − 1 as the ratio of the conditional standard deviation of the claims reserve at time point 𝑡𝑡 + 𝑘𝑘 to 
the conditional standard deviation of the claims outstanding at time point 𝑡𝑡 + 𝑘𝑘; the standard 
deviations are conditional on the information known at time point 𝑡𝑡 

𝛽𝛽𝑡𝑡,𝑘𝑘 =  
𝜎𝜎𝑡𝑡(𝐶𝐶𝑡𝑡+𝑘𝑘)
𝜎𝜎𝑡𝑡(𝑂𝑂𝐶𝐶𝑡𝑡+𝑘𝑘) 

The factor 𝛽𝛽𝑡𝑡,𝑘𝑘  can be interpreted as the proportion of the risk at time point 𝑡𝑡 in the claims 
outstanding at time point 𝑡𝑡 + 𝑘𝑘 that will emerge between time point 𝑡𝑡 and time point 𝑡𝑡 + 𝑘𝑘. The 
factors 𝛽𝛽𝑡𝑡,𝑘𝑘 are not known with certainty until time point 𝑡𝑡. We can show that 𝛽𝛽𝑡𝑡,0 = 0, and that 0 ≤
 𝛽𝛽𝑡𝑡,𝑘𝑘  ≤ 1 (see below). However, it is not the case in general that �𝛽𝛽𝑡𝑡,0 , … ,𝛽𝛽𝑡𝑡,𝑠𝑠−𝑡𝑡−1� is an increasing 
sequence, since the denominator varies from factor to factor. 

It is clear that the outstanding unconditional emergence factors are a special case of the outstanding 
conditional emergence factors as 𝛽𝛽𝑘𝑘 = 𝛽𝛽0,𝑘𝑘. 
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We now show that that 𝛽𝛽𝑡𝑡,0 = 0, and that 0 ≤  𝛽𝛽𝑡𝑡,𝑘𝑘  ≤ 1. We use the Law of Total Variance, which is 
stated in subsection 9.3 above. By definition the conditional cumulative ultimate emergence factors 
are 

𝛽𝛽𝑡𝑡,𝑘𝑘 =  
𝜎𝜎𝑡𝑡(𝐶𝐶𝑡𝑡+𝑘𝑘)
𝜎𝜎𝑡𝑡(𝑂𝑂𝐶𝐶𝑡𝑡+𝑘𝑘) 

Since standard deviations are positive, we immediately have that 𝛽𝛽𝑡𝑡,𝑘𝑘 ≥ 0. Now 

𝛽𝛽𝑡𝑡,𝑘𝑘
2 =  

𝑉𝑉𝑉𝑉𝑉𝑉𝑡𝑡(𝐶𝐶𝑡𝑡+𝑘𝑘)
𝑉𝑉𝑉𝑉𝑉𝑉𝑡𝑡(𝑂𝑂𝐶𝐶𝑡𝑡+𝑘𝑘) =  

𝑉𝑉𝑉𝑉𝑉𝑉𝑡𝑡(𝐸𝐸𝑡𝑡+𝑘𝑘[𝑂𝑂𝐶𝐶𝑡𝑡+𝑘𝑘])
𝑉𝑉𝑉𝑉𝑉𝑉𝑡𝑡(𝑂𝑂𝐶𝐶𝑡𝑡+𝑘𝑘)  

Since 𝑉𝑉𝑉𝑉𝑉𝑉𝑡𝑡(𝐸𝐸𝑡𝑡+𝑘𝑘[𝑂𝑂𝐶𝐶𝑡𝑡+𝑘𝑘]) > 0 and, by the law of total variance, 𝑉𝑉𝑉𝑉𝑉𝑉𝑡𝑡(𝐸𝐸𝑡𝑡+𝑘𝑘[𝑂𝑂𝐶𝐶𝑡𝑡+𝑘𝑘]) =
 𝑉𝑉𝑉𝑉𝑉𝑉𝑡𝑡(𝑂𝑂𝐶𝐶𝑡𝑡+𝑘𝑘) − 𝐸𝐸𝑡𝑡[𝑉𝑉𝑉𝑉𝑉𝑉𝑡𝑡+𝑘𝑘(𝑂𝑂𝐶𝐶𝑡𝑡+𝑘𝑘)], it follows that 𝛽𝛽𝑡𝑡,𝑘𝑘 ≤ 1. 

10.2.4 THE OUTSTANDING EMERGENCE PATTERNS 

An emergence pattern is a list of emergence factors. The outstanding unconditional life-time 
emergence pattern is a list of the outstanding unconditional emergence factors 

(𝛽𝛽0, … ,𝛽𝛽𝑠𝑠−1) 

The pattern expresses how outstanding life-time risk emerges. The values start at 𝛽𝛽0 = 0, however 
as discussed in section 10.2.3 above the sequence is not necessarily increasing, and does not end at 
one. 

The outstanding conditional life-time emergence pattern is a list of the outstanding conditional 
emergence factors, arranged so that it expresses how the remaining outstanding risk of a partially 
developed cohort emerges from the from the current time point 𝑡𝑡 until it is fully run off by time 
point 𝑛𝑛. There are 𝑛𝑛 − 𝑡𝑡 future periods, and so the pattern contains 𝑛𝑛 − 𝑡𝑡 factors, one fewer than 
the corresponding ultimate emergence pattern 

�𝛽𝛽𝑡𝑡,0, … ,𝛽𝛽𝑡𝑡,𝑠𝑠−𝑡𝑡−1� 

The values start at 𝛽𝛽𝑡𝑡,0 = 0, however as discussed in section 10.2.3 above the sequence is not 
necessarily increasing, and does not end at one. 

The outstanding conditional risk-decay emergence pattern is a list of the outstanding conditional 
emergence factors, arranged so that it expresses, for a sequence of origin periods, the proportion of 
the remaining outstanding risk that will emerge over the next period 

�𝛽𝛽0,1, … ,𝛽𝛽𝑠𝑠−2,1� 

There is no reason to suppose that 𝛽𝛽0,1 = 0, 𝛽𝛽𝑠𝑠−2,1 = 1, or that the sequence is increasing. It can be 
thought of as a cross-section of the outstanding conditional life-time emergence patterns. 

10.3 CALCULATING THE CLAIMS DEVELOPMENT RESULT 

In this subsection we discuss some issues that arise when using emergence factors to calculate the 
Claims Development Result. We consider how to use emergence patterns to calculate the CDR by 
origin period, and then some of the issues with aggregating these to get the total CDR. For the CDR 



the appropriate emergence patterns to consider are the risk-decay emergence patterns. For ease of 
exposition we consider only the one-year CDR in this section. 

First consider the ultimate emergence patterns. Suppose we have 𝑛𝑛 origin periods 𝑖𝑖 = 1, … ,𝑛𝑛. Let 𝑈𝑈𝑖𝑖  
denote the ultimate risk distribution of the ultimate claims for origin period 𝑖𝑖. Suppose that at the 
current time origin period 𝑖𝑖 has undergone 𝑛𝑛 − 𝑖𝑖 + 1 periods of development. So the current, or 
opening, best estimate for the ultimate claims for origin period 𝑖𝑖 is 𝑈𝑈𝑖𝑖 𝑠𝑠−𝑖𝑖+1, and the closing best 
estimate of the ultimate claims is 𝑈𝑈𝑖𝑖 𝑠𝑠−𝑖𝑖+2. We use the ultimate conditional risk-decay emergence 
pattern to estimate the closing best estimate. The ultimate conditional risk-decay emergence 
pattern is 

�𝛼𝛼0,1, … ,𝛼𝛼𝑠𝑠−1,1� 

The closing best estimate of ultimate claims for origin period 𝑖𝑖 is then estimated using the following 
formula 

𝑈𝑈�𝑖𝑖 𝑠𝑠−𝑖𝑖+2 =  𝛼𝛼𝑠𝑠−𝑖𝑖+1,1( 𝑈𝑈𝑖𝑖 −  𝑈𝑈𝑖𝑖 𝑠𝑠−𝑖𝑖+1) +  𝑈𝑈𝑖𝑖 𝑠𝑠−𝑖𝑖+1 

We can then calculate the CDR for origin period 𝑖𝑖 using the formula 

𝐶𝐶𝐶𝐶𝐶𝐶�𝑖𝑖 𝑠𝑠−𝑖𝑖+1 =  𝑈𝑈𝑖𝑖 𝑠𝑠−𝑖𝑖+1 −  𝑈𝑈�𝑖𝑖 𝑠𝑠−𝑖𝑖+2 

Now consider the outstanding emergence patterns. Again suppose that we have 𝑛𝑛 origin periods 𝑖𝑖 =
1, … ,𝑛𝑛, and that at the current time origin period 𝑖𝑖 has undergone 𝑛𝑛 − 𝑖𝑖 + 1 periods of 
development. The current, or opening, best estimate reserve for origin period 𝑖𝑖 is therefore 𝐶𝐶𝑖𝑖 𝑠𝑠−𝑖𝑖+1, 
and the closing best estimate reserve is 𝐶𝐶𝑖𝑖 𝑠𝑠−𝑖𝑖+2. We use the outstanding conditional risk-decay 
emergence pattern to estimate the closing best estimate reserve. The outstanding conditional risk-
decay emergence pattern is 

�𝛽𝛽0,1, … ,𝛽𝛽𝑠𝑠−2,1� 

To estimate the closing best estimate reserve, we apply these emergence factors to the closing 
outstanding claims. For origin period 𝑖𝑖 this is 𝑂𝑂𝐶𝐶𝑠𝑠−𝑖𝑖+2𝑖𝑖

 . The closing best estimate reserve for origin 
period 𝑖𝑖 is then estimated using the following formula 

𝐶𝐶�𝑖𝑖 𝑠𝑠−𝑖𝑖+2 =  𝛽𝛽𝑖𝑖 𝑠𝑠−𝑖𝑖+1,1( 𝑂𝑂𝐶𝐶𝑠𝑠−𝑖𝑖+2𝑖𝑖
 −  𝐸𝐸𝑠𝑠−𝑖𝑖+1[ 𝑂𝑂𝐶𝐶𝑠𝑠−𝑖𝑖+2𝑖𝑖

 ]) +  𝐸𝐸𝑠𝑠−𝑖𝑖+1[ 𝑂𝑂𝐶𝐶𝑠𝑠−𝑖𝑖+2𝑖𝑖
 ] 

We can then calculate the CDR for origin period 𝑖𝑖 using the formula 

𝐶𝐶𝐶𝐶𝐶𝐶�𝑖𝑖 𝑠𝑠−𝑖𝑖+1 =  𝐶𝐶𝑖𝑖 𝑠𝑠−𝑖𝑖+1 −  𝑃𝑃𝑖𝑖 𝑠𝑠−𝑖𝑖+2 −  𝐶𝐶�𝑖𝑖 𝑠𝑠−𝑖𝑖+2 

Note that the distinction between the two approaches is that the CDR calculated using the 
outstanding emergence factors includes the full risk of the claims paid over the next period, where 
as in the CDR calculated using the ultimate emergence factors the risk from the claims paid over the 
next period is scaled down by the emergence factor applied. This is a reason for preferring the 
outstanding emergence factors over the ultimate emergence factors. 

However, there is another issue with the CDR calculated using the outstanding emergence factors. 
The emergence factor is defined so that the standard deviation of 𝐶𝐶�𝑖𝑖 𝑠𝑠−𝑖𝑖+2 is equal to the standard 
deviation of 𝐶𝐶𝑖𝑖 𝑠𝑠−𝑖𝑖+2. However as 𝐶𝐶�𝑖𝑖 𝑠𝑠−𝑖𝑖+2 is a rescaling of the distribution of 𝑂𝑂𝐶𝐶𝑠𝑠−𝑖𝑖+2𝑖𝑖

 , the linear 
correlation between 𝐶𝐶�𝑖𝑖 𝑠𝑠−𝑖𝑖+2 and 𝑃𝑃𝑖𝑖 𝑠𝑠−𝑖𝑖+2 is equal to the linear correlation between 𝑂𝑂𝐶𝐶𝑠𝑠−𝑖𝑖+2𝑖𝑖

  and 



𝑃𝑃𝑖𝑖 𝑠𝑠−𝑖𝑖+2. In general, this will be different from the linear correlation between 𝐶𝐶𝑖𝑖 𝑠𝑠−𝑖𝑖+2 and 𝑃𝑃𝑖𝑖 𝑠𝑠−𝑖𝑖+2. 
The standard deviation of 𝐶𝐶𝐶𝐶𝐶𝐶�𝑖𝑖 𝑠𝑠−𝑖𝑖+1 will therefore in general be different from the standard 
deviation of 𝐶𝐶𝐶𝐶𝐶𝐶𝑖𝑖

 
𝑠𝑠−𝑖𝑖+1. This is not desirable, and the problem does not arise with the CDR 

calculated using the ultimate emergence factors. However, in practice the difference in the standard 
deviations is usually small, and it is possible to parameterise the outstanding emergence factors so 
that the standard deviations of the CDRs agree. This is discussed further in subsection 10.7 below. 

A similar problem occurs when we aggregate the CDRs over different origin periods. In this case the 
problem affects both the ultimate emergence factors and the outstanding emergence factors. In the 
case of the CDR calculated using the ultimate emergence factors, because 𝑈𝑈�𝑖𝑖 𝑠𝑠−𝑖𝑖+2 is a rescaling of 
𝑈𝑈𝑖𝑖  the linear correlation between the 𝐶𝐶𝐶𝐶𝐶𝐶�𝑖𝑖 𝑠𝑠−𝑖𝑖+1 for different origin periods 𝑖𝑖 is equal to the linear 

correlation between the 𝑈𝑈𝑖𝑖 , conditional on the information currently known. This is different in 
general from the linear correlation between the 𝐶𝐶𝐶𝐶𝐶𝐶𝑖𝑖

 
𝑠𝑠−𝑖𝑖+1 for different origin period 𝑖𝑖 and so the 

standard deviation of the total CDR will be different. However, in practice the difference in the 
standard deviations is usually small, and it is possible to adjust the emergence factors so that the 
standard deviations of the total CDRs agree. This is discussed further in subsection 10.7 below. 

10.4 EMERGENCE FACTORS AND ORIGIN PERIODS 

The emergence patterns described above in general vary by origin period. Ideally, we would like the 
emergence factors to not vary by origin period. We now discuss assumptions which ensure that this 
happens. 

All the emergence factors defined above are the ratio of the standard deviation of two random 
variables, which have the same mean. So, if the relevant standard deviations vary in the same way 
with the mean across origin periods, then the emergence factor won’t vary across origin periods. For 
example, consider the ultimate conditional emergence factors (where the left subscript 𝑖𝑖 denotes 
the origin period as in section 10.3 above) 

𝛼𝛼𝑖𝑖 𝑡𝑡,𝑘𝑘  =  
𝜎𝜎𝑡𝑡( 𝑈𝑈𝑖𝑖 𝑡𝑡+𝑘𝑘)
𝜎𝜎𝑡𝑡� 𝑈𝑈𝑖𝑖 �

 

If both standard deviations vary with the mean in the same proportion across origin periods i.e. for 
all origin periods 𝑖𝑖, 𝜎𝜎𝑡𝑡( 𝑈𝑈𝑖𝑖 𝑡𝑡+𝑘𝑘) =  𝐶𝐶𝑉𝑉𝑡𝑡,𝑘𝑘  𝐸𝐸𝑡𝑡[ 𝑈𝑈𝑖𝑖 𝑡𝑡+𝑘𝑘] and 𝜎𝜎𝑡𝑡( 𝑈𝑈𝑖𝑖 ) =  𝐶𝐶𝑉𝑉𝑡𝑡𝐸𝐸𝑡𝑡[ 𝑈𝑈𝑖𝑖 ], then since 𝐸𝐸𝑡𝑡[ 𝑈𝑈𝑖𝑖 𝑡𝑡+𝑘𝑘] =
 𝐸𝐸𝑡𝑡[ 𝑈𝑈𝑖𝑖 ] we get 

𝛼𝛼𝑖𝑖 𝑡𝑡,𝑘𝑘  =  
𝐶𝐶𝑉𝑉𝑡𝑡,𝑘𝑘

𝐶𝐶𝑉𝑉𝑡𝑡
 

Which does not vary by origin period. In this example the coefficient of variation is constant across 
origin periods, however it is clear that other assumptions are possible. For example, we could 
suppose that the standard deviation varies with the square root of the mean in the same proportion 
across origin periods. In general, all we need to assume is that the standard deviation varies in the 
same proportion to the same function of the mean across origin periods. 

10.5 DETERMINISTIC EMERGENCE FACTORS 

The emergence patterns described above are in general stochastic, as they are defined as the ratio 
of two conditional standard deviations, and in general are not known with certainty until the start of 



the period over which they apply. Ideally, we would like the emergence factors to be unconditionally 
deterministic. We now discuss assumptions which ensure that this happens. 

By the Law of Total Variance (see subsection 9.3 above) 𝐸𝐸[𝑉𝑉𝑉𝑉𝑉𝑉𝑠𝑠(𝐶𝐶𝐶𝐶𝐶𝐶𝑡𝑡)] = 𝑉𝑉𝑉𝑉𝑉𝑉(𝐶𝐶𝐶𝐶𝐶𝐶𝑡𝑡). It is 
therefore not unreasonable to make the assumption that the conditional variances of the CDR are 
deterministic, and so that 𝑉𝑉𝑉𝑉𝑉𝑉𝑠𝑠(𝐶𝐶𝐶𝐶𝐶𝐶𝑡𝑡) = 𝑉𝑉𝑉𝑉𝑉𝑉(𝐶𝐶𝐶𝐶𝐶𝐶𝑡𝑡) =  𝜎𝜎𝑡𝑡2. Recall from subsection 10.2.1 above 
that 

𝛼𝛼𝑡𝑡,𝑘𝑘
2 =  

∑ 𝑉𝑉𝑉𝑉𝑉𝑉𝑡𝑡(𝐶𝐶𝐶𝐶𝐶𝐶𝑡𝑡+𝑙𝑙)𝑘𝑘−1
𝑙𝑙=0

∑ 𝑉𝑉𝑉𝑉𝑉𝑉𝑡𝑡(𝐶𝐶𝐶𝐶𝐶𝐶𝑡𝑡+𝑙𝑙)𝑠𝑠−𝑡𝑡−1
𝑙𝑙=0

 

Therefore, if 𝑉𝑉𝑉𝑉𝑉𝑉𝑠𝑠(𝐶𝐶𝐶𝐶𝐶𝐶𝑡𝑡) is deterministic for all 𝑠𝑠 and 𝑡𝑡 then the ultimate emergence factors 𝛼𝛼𝑡𝑡,𝑘𝑘 are 
also deterministic. 

A more general assumption leading to the same conclusion is to assume that 𝑉𝑉𝑉𝑉𝑉𝑉𝑠𝑠(𝐶𝐶𝐶𝐶𝐶𝐶𝑡𝑡) vary in 
deterministic proportion to the same random variable. Specifically suppose for some random 
variables 𝑋𝑋𝑠𝑠 and positive real numbers 𝜎𝜎𝑠𝑠,𝑡𝑡

2  we have  𝑉𝑉𝑉𝑉𝑉𝑉𝑠𝑠(𝐶𝐶𝐶𝐶𝐶𝐶𝑡𝑡) =  𝜎𝜎𝑠𝑠,𝑡𝑡
2 𝑋𝑋𝑠𝑠 then 

𝛼𝛼𝑡𝑡,𝑘𝑘
2 =  

𝜎𝜎𝑡𝑡𝑡𝑡2𝑋𝑋𝑡𝑡 + ⋯+  𝜎𝜎𝑡𝑡,𝑡𝑡+𝑘𝑘−1
2 𝑋𝑋𝑡𝑡

𝜎𝜎𝑡𝑡𝑡𝑡2𝑋𝑋𝑡𝑡 + ⋯+  𝜎𝜎𝑡𝑡,𝑠𝑠−1
2 𝑋𝑋𝑡𝑡

=  
𝜎𝜎𝑡𝑡𝑡𝑡2 + ⋯+ 𝜎𝜎𝑡𝑡,𝑡𝑡+𝑘𝑘−1

2

𝜎𝜎𝑡𝑡𝑡𝑡2 + ⋯+  𝜎𝜎𝑡𝑡,𝑠𝑠−1
2  

In fact, this latter condition is both necessary and sufficient for the ultimate emergence factors to be 
deterministic, and furthermore we can take 𝑋𝑋𝑠𝑠 =  𝑉𝑉𝑉𝑉𝑉𝑉𝑠𝑠(𝐶𝐶𝐶𝐶𝐶𝐶𝑠𝑠). The above argument proves that the 
condition is sufficient, we now prove that it is necessary. 

First, to make the notation less cumbersome, write 𝑉𝑉𝑠𝑠,𝑡𝑡 for 𝑉𝑉𝑉𝑉𝑉𝑉𝑠𝑠(𝐶𝐶𝐶𝐶𝐶𝐶𝑡𝑡). Then 

𝛼𝛼𝑡𝑡,𝑘𝑘
2 =  

∑ 𝑉𝑉𝑡𝑡,𝑡𝑡+𝑙𝑙
𝑘𝑘−1
𝑙𝑙=0

∑ 𝑉𝑉𝑡𝑡,𝑡𝑡+𝑙𝑙
𝑠𝑠−𝑡𝑡−1
𝑙𝑙=0

=  
𝑉𝑉𝑡𝑡𝑡𝑡 + ⋯+ 𝑉𝑉𝑡𝑡,𝑡𝑡+𝑘𝑘−1

𝑉𝑉𝑡𝑡𝑡𝑡 + ⋯+  𝑉𝑉𝑡𝑡,𝑠𝑠−1
 

Now suppose that all the ultimate emergence factors 𝛼𝛼𝑡𝑡,𝑘𝑘 are deterministic. First divide the 
numerator and denominator of the above expression for 𝛼𝛼𝑡𝑡,𝑘𝑘

2  by the numerator to get 

𝛼𝛼𝑡𝑡,𝑘𝑘
2 =  

1

1 + 
𝑉𝑉𝑡𝑡,𝑡𝑡+𝑘𝑘 + ⋯+  𝑉𝑉𝑡𝑡,𝑠𝑠−1
𝑉𝑉𝑡𝑡𝑡𝑡 + ⋯+ 𝑉𝑉𝑡𝑡,𝑡𝑡+𝑘𝑘−1

 

Thus 

𝑉𝑉𝑡𝑡,𝑡𝑡+𝑘𝑘 + ⋯+  𝑉𝑉𝑡𝑡,𝑠𝑠−1

𝑉𝑉𝑡𝑡𝑡𝑡 + ⋯+ 𝑉𝑉𝑡𝑡,𝑡𝑡+𝑘𝑘−1
=  𝐶𝐶𝑡𝑡𝑘𝑘 

For some real number 𝐶𝐶𝑡𝑡𝑘𝑘. Rearranging we get the following system of 𝑛𝑛 − 𝑡𝑡 − 1 equations (where 
𝑘𝑘 = 1, … ,𝑛𝑛 − 𝑡𝑡 − 1) 

𝑉𝑉𝑡𝑡,𝑡𝑡+𝑘𝑘 + ⋯+  𝑉𝑉𝑡𝑡,𝑠𝑠−1 =  𝐶𝐶𝑡𝑡𝑘𝑘�𝑉𝑉𝑡𝑡𝑡𝑡 + ⋯+  𝑉𝑉𝑡𝑡,𝑡𝑡+𝑘𝑘−1� 

Subtracting the (𝑘𝑘 + 1)𝑡𝑡ℎ equation from the 𝑘𝑘𝑡𝑡ℎ equation gives us the following 𝑛𝑛 − 𝑡𝑡 − 2 
equations (where 𝑘𝑘 = 1, … ,𝑛𝑛 − 𝑡𝑡 − 2) 

𝑉𝑉𝑡𝑡,𝑡𝑡+𝑘𝑘 =  �𝐶𝐶𝑡𝑡𝑘𝑘 −  𝐶𝐶𝑡𝑡,𝑘𝑘+1��𝑉𝑉𝑡𝑡𝑡𝑡 + ⋯+  𝑉𝑉𝑡𝑡,𝑡𝑡+𝑘𝑘−1� −  𝐶𝐶𝑡𝑡,𝑘𝑘+1𝑉𝑉𝑡𝑡,𝑡𝑡+𝑘𝑘 



Rearranging gives us 

𝑉𝑉𝑡𝑡,𝑡𝑡+𝑘𝑘 =  
𝐶𝐶𝑡𝑡𝑘𝑘 −  𝐶𝐶𝑡𝑡,𝑘𝑘+1

1 + 𝐶𝐶𝑡𝑡,𝑘𝑘+1
�𝑉𝑉𝑡𝑡𝑡𝑡 + ⋯+ 𝑉𝑉𝑡𝑡,𝑡𝑡+𝑘𝑘−1� 

We can then use induction to show that 𝑉𝑉𝑡𝑡,𝑡𝑡+𝑘𝑘 is a constant multiple of 𝑉𝑉𝑡𝑡𝑡𝑡 for all 𝑘𝑘 = 1, … ,𝑛𝑛 − 𝑡𝑡 −
2. Finally, the (𝑛𝑛 − 𝑡𝑡 − 1)𝑡𝑡ℎ equation from the first set of equations asserts that 

𝑉𝑉𝑡𝑡,𝑠𝑠−1 =  𝐶𝐶𝑡𝑡,𝑠𝑠−𝑡𝑡−1�𝑉𝑉𝑡𝑡𝑡𝑡 + ⋯+  𝑉𝑉𝑡𝑡,𝑠𝑠−2� 

And so 𝑉𝑉𝑡𝑡,𝑡𝑡+𝑘𝑘 is a constant multiple of 𝑉𝑉𝑡𝑡𝑡𝑡 for 𝑘𝑘 = 𝑛𝑛 − 𝑡𝑡 − 1 as well. 

10.6 RELATIONSHIPS BETWEEN EMERGENCE FACTORS 

In this subsection we state and prove some relationships among the different varieties of emergence 
factors. 

If the ultimate emergence factors are deterministic then 

1 − 𝛼𝛼𝑡𝑡,𝑘𝑘1+𝑘𝑘2
2 = �1 − 𝛼𝛼𝑡𝑡,𝑘𝑘1

2 ��1 − 𝛼𝛼𝑡𝑡+𝑘𝑘1,𝑘𝑘2
2 � 

Where 0 ≤ 𝑡𝑡 ≤ 𝑛𝑛 − 2, 1 ≤ 𝑘𝑘1 ≤ 𝑛𝑛 − 𝑡𝑡 − 1 and 1 ≤ 𝑘𝑘2 ≤ 𝑛𝑛 − 𝑡𝑡 − 𝑘𝑘1. This then allows us to 
calculate the conditional ultimate emergence factors from the unconditional ultimate emergence 
factors as rearranging 

1 − 𝛼𝛼0,𝑡𝑡+𝑘𝑘
2 = �1 − 𝛼𝛼0,𝑡𝑡

2 ��1− 𝛼𝛼𝑡𝑡,𝑘𝑘
2 � 

gives us 

1 −  𝛼𝛼𝑡𝑡,𝑘𝑘
2 =  

1 −  𝛼𝛼0,𝑡𝑡+𝑘𝑘
2

1 −  𝛼𝛼0,𝑡𝑡
2  

In fact, the first equation holds if and only if the ultimate emergence factors are deterministic. First 
we prove the “if” part. Suppose that all the ultimate emergence factors are deterministic, then the 
results from subsection 10.5 tell us that there are real numbers 𝜎𝜎𝑡𝑡𝑡𝑡2 , … ,𝜎𝜎𝑡𝑡,𝑠𝑠−1

2  such that 

𝛼𝛼𝑡𝑡,𝑘𝑘
2 =  

𝜎𝜎𝑡𝑡𝑡𝑡2 + ⋯+  𝜎𝜎𝑡𝑡,𝑡𝑡+𝑘𝑘−1
2

𝜎𝜎𝑡𝑡𝑡𝑡2 +⋯+  𝜎𝜎𝑡𝑡,𝑠𝑠−1
2  

and so 

1 −  𝛼𝛼𝑡𝑡,𝑘𝑘
2 =  

𝜎𝜎𝑡𝑡,𝑡𝑡+𝑘𝑘
2 + ⋯+  𝜎𝜎𝑡𝑡,𝑠𝑠−1

2

𝜎𝜎𝑡𝑡𝑡𝑡2 + ⋯+  𝜎𝜎𝑡𝑡,𝑠𝑠−1
2  

Thus 

1 − 𝛼𝛼𝑡𝑡,𝑘𝑘1
2 =  

𝜎𝜎𝑡𝑡,𝑡𝑡+𝑘𝑘1
2 + ⋯+  𝜎𝜎𝑡𝑡,𝑠𝑠−1

2

𝜎𝜎𝑡𝑡𝑡𝑡2 + ⋯+ 𝜎𝜎𝑡𝑡,𝑠𝑠−1
2  

1 − 𝛼𝛼𝑡𝑡,𝑘𝑘1+𝑘𝑘2
2 =  

𝜎𝜎𝑡𝑡,𝑡𝑡+𝑘𝑘1+𝑘𝑘2
2 +⋯+  𝜎𝜎𝑡𝑡,𝑠𝑠−1

2

𝜎𝜎𝑡𝑡𝑡𝑡2 + ⋯+ 𝜎𝜎𝑡𝑡,𝑠𝑠−1
2  



and 

1 − 𝛼𝛼𝑡𝑡+𝑘𝑘1,𝑘𝑘2
2 =  

𝜎𝜎𝑡𝑡+𝑘𝑘1,𝑡𝑡+𝑘𝑘1+𝑘𝑘2
2 +⋯+  𝜎𝜎𝑡𝑡+𝑘𝑘1,𝑠𝑠−1

2

𝜎𝜎𝑡𝑡+𝑘𝑘1,𝑡𝑡+𝑘𝑘1
2 +⋯+  𝜎𝜎𝑡𝑡+𝑘𝑘1,𝑠𝑠−1

2  

We can quickly see that 

1 −  𝛼𝛼𝑡𝑡,𝑘𝑘1+𝑘𝑘2
2

1 −  𝛼𝛼𝑡𝑡,𝑘𝑘1
2 =  

𝜎𝜎𝑡𝑡,𝑡𝑡+𝑘𝑘1+𝑘𝑘2
2 +⋯+  𝜎𝜎𝑡𝑡,𝑠𝑠−1

2

𝜎𝜎𝑡𝑡,𝑡𝑡+𝑘𝑘1
2 + ⋯+  𝜎𝜎𝑡𝑡,𝑠𝑠−1

2  

To prove that this is equal to 1 − 𝛼𝛼𝑡𝑡+𝑘𝑘1,𝑘𝑘2
2  we need the following result. 

If the emergence factors 𝛼𝛼𝑡𝑡𝑘𝑘 are all deterministic the for 𝑠𝑠 ≤ 𝑙𝑙 ≤ 𝑡𝑡 we have 𝜎𝜎𝑠𝑠𝑡𝑡2 =  𝜎𝜎𝑠𝑠𝑙𝑙2𝜎𝜎𝑙𝑙𝑡𝑡2 . To prove 
this, suppose that the emergence factors are all deterministic. Then 𝑉𝑉𝑠𝑠𝑡𝑡 = 𝜎𝜎𝑠𝑠𝑡𝑡2 𝑉𝑉𝑠𝑠𝑠𝑠 and 𝑉𝑉𝑙𝑙𝑡𝑡 = 𝜎𝜎𝑙𝑙𝑡𝑡2𝑉𝑉𝑙𝑙𝑙𝑙. 
Also 𝑉𝑉𝑠𝑠𝑡𝑡 = 𝐸𝐸𝑠𝑠[𝑉𝑉𝑙𝑙𝑡𝑡] =  𝐸𝐸𝑠𝑠�𝜎𝜎𝑙𝑙𝑡𝑡2𝑉𝑉𝑙𝑙𝑙𝑙� =  𝜎𝜎𝑙𝑙𝑡𝑡2𝐸𝐸𝑠𝑠[𝑉𝑉𝑙𝑙𝑙𝑙] = 𝜎𝜎𝑙𝑙𝑡𝑡2𝑉𝑉𝑠𝑠𝑙𝑙 = 𝜎𝜎𝑙𝑙𝑡𝑡2𝜎𝜎𝑠𝑠𝑙𝑙2𝑉𝑉𝑠𝑠𝑠𝑠. Dividing by 𝑉𝑉𝑠𝑠𝑠𝑠 gives the result.  

Applying this result gives, for 𝑠𝑠 = 0, … ,𝑛𝑛 − 𝑡𝑡 − 𝑘𝑘1 − 1 

𝜎𝜎𝑡𝑡+𝑘𝑘1,𝑡𝑡+𝑘𝑘1+𝑠𝑠
2 =  

𝜎𝜎𝑡𝑡,𝑡𝑡+𝑘𝑘1+𝑠𝑠
2

𝜎𝜎𝑡𝑡,𝑡𝑡+𝑘𝑘1
2  

Substituting this into the appropriate equation above we get 

1 − 𝛼𝛼𝑡𝑡+𝑘𝑘1,𝑘𝑘2
2 =  

𝜎𝜎𝑡𝑡,𝑡𝑡+𝑘𝑘1+𝑘𝑘2
2 + ⋯+  𝜎𝜎𝑡𝑡,𝑠𝑠−1

2

𝜎𝜎𝑡𝑡,𝑡𝑡+𝑘𝑘1
2 + ⋯+  𝜎𝜎𝑡𝑡,𝑠𝑠−1

2 =
1 −  𝛼𝛼𝑡𝑡,𝑘𝑘1+𝑘𝑘2

2

1 −  𝛼𝛼𝑡𝑡,𝑘𝑘1
2  

We now prove the “only if” part. Suppose that for all 𝑡𝑡, 𝑘𝑘1, and 𝑘𝑘2 where 0 ≤ 𝑡𝑡 ≤ 𝑛𝑛 − 2, 1 ≤ 𝑘𝑘1 ≤
𝑛𝑛 − 𝑡𝑡 − 1 and 1 ≤ 𝑘𝑘2 ≤ 𝑛𝑛 − 𝑡𝑡 − 𝑘𝑘1 the following equations hold 

1 − 𝛼𝛼𝑡𝑡,𝑘𝑘1+𝑘𝑘2
2 = �1 − 𝛼𝛼𝑡𝑡,𝑘𝑘1

2 ��1 − 𝛼𝛼𝑡𝑡+𝑘𝑘1,𝑘𝑘2
2 � 

Now recall from subsection 10.5 that 

𝛼𝛼𝑡𝑡,𝑘𝑘
2 =  

∑ 𝑉𝑉𝑡𝑡,𝑡𝑡+𝑙𝑙
𝑘𝑘−1
𝑙𝑙=0

∑ 𝑉𝑉𝑡𝑡,𝑡𝑡+𝑙𝑙
𝑠𝑠−𝑡𝑡−1
𝑙𝑙=0

=  
𝑉𝑉𝑡𝑡𝑡𝑡 + ⋯+ 𝑉𝑉𝑡𝑡,𝑡𝑡+𝑘𝑘−1

𝑉𝑉𝑡𝑡𝑡𝑡 + ⋯+  𝑉𝑉𝑡𝑡,𝑠𝑠−1
 

And so 

1 − 𝛼𝛼𝑡𝑡,𝑘𝑘
2 =  

𝑉𝑉𝑡𝑡,𝑡𝑡+𝑘𝑘 + ⋯+  𝑉𝑉𝑡𝑡,𝑠𝑠−1

𝑉𝑉𝑡𝑡𝑡𝑡 +⋯+  𝑉𝑉𝑡𝑡,𝑠𝑠−1
 

Therefore, if 

1 − 𝛼𝛼𝑡𝑡,𝑘𝑘1+𝑘𝑘2
2 = �1 − 𝛼𝛼𝑡𝑡,𝑘𝑘1

2 ��1 − 𝛼𝛼𝑡𝑡+𝑘𝑘1,𝑘𝑘2
2 � 

then 

𝑉𝑉𝑡𝑡,𝑡𝑡+𝑘𝑘1+𝑘𝑘2 + ⋯+ 𝑉𝑉𝑡𝑡,𝑠𝑠−1

𝑉𝑉𝑡𝑡𝑡𝑡 +⋯+  𝑉𝑉𝑡𝑡,𝑠𝑠−1
=
𝑉𝑉𝑡𝑡,𝑡𝑡+𝑘𝑘1 +⋯+  𝑉𝑉𝑡𝑡,𝑠𝑠−1

𝑉𝑉𝑡𝑡𝑡𝑡 + ⋯+ 𝑉𝑉𝑡𝑡,𝑠𝑠−1
 .
𝑉𝑉𝑡𝑡+𝑘𝑘1,𝑡𝑡+𝑘𝑘1+𝑘𝑘2 + ⋯+ 𝑉𝑉𝑡𝑡+𝑘𝑘1,𝑠𝑠−1

𝑉𝑉𝑡𝑡+𝑘𝑘1,𝑡𝑡+𝑘𝑘1 + ⋯+ 𝑉𝑉𝑡𝑡+𝑘𝑘1,𝑠𝑠−1
 

Simplifying and rearranging gives us 



𝑉𝑉𝑡𝑡,𝑡𝑡+𝑘𝑘1+𝑘𝑘2 + ⋯+  𝑉𝑉𝑡𝑡,𝑠𝑠−1

𝑉𝑉𝑡𝑡,𝑡𝑡+𝑘𝑘1 + ⋯+ 𝑉𝑉𝑡𝑡,𝑠𝑠−1
=  
𝑉𝑉𝑡𝑡+𝑘𝑘1,𝑡𝑡+𝑘𝑘1+𝑘𝑘2 + ⋯+ 𝑉𝑉𝑡𝑡+𝑘𝑘1,𝑠𝑠−1

𝑉𝑉𝑡𝑡+𝑘𝑘1,𝑡𝑡+𝑘𝑘1 + ⋯+  𝑉𝑉𝑡𝑡+𝑘𝑘1,𝑠𝑠−1
 

Notice that the LHS is known with certainty at time 𝑡𝑡 whereas the RHS is ostensibly known with 
certainly only at time 𝑡𝑡 + 𝑘𝑘1, although as it is equal to the LHS it must also be known with certainty 
at time 𝑡𝑡. Following this observation let 𝑡𝑡 = 0, 𝑠𝑠 = 𝑘𝑘1, and 𝑘𝑘 = 𝑘𝑘2. Then 1 ≤ 𝑠𝑠 ≤ 𝑛𝑛 − 1, and 1 ≤
𝑘𝑘 ≤ 𝑛𝑛 − 𝑠𝑠 and 

𝑉𝑉0,𝑠𝑠+𝑘𝑘 + ⋯+ 𝑉𝑉0,𝑠𝑠−1

𝑉𝑉0,𝑠𝑠 + ⋯+  𝑉𝑉0,𝑠𝑠−1
=  
𝑉𝑉𝑠𝑠,𝑠𝑠+𝑘𝑘 + ⋯+  𝑉𝑉𝑠𝑠,𝑠𝑠−1

𝑉𝑉𝑠𝑠𝑠𝑠 +⋯+  𝑉𝑉𝑠𝑠,𝑠𝑠−1
 

The LHS is known with certainty at time 0, and so is deterministic. Therefore, there is a real number 
𝐶𝐶𝑘𝑘 such that 

𝑉𝑉𝑠𝑠,𝑠𝑠+𝑘𝑘 + ⋯+  𝑉𝑉𝑠𝑠,𝑠𝑠−1 =  𝐶𝐶𝑘𝑘�𝑉𝑉𝑠𝑠𝑠𝑠 + ⋯+  𝑉𝑉𝑠𝑠,𝑠𝑠−1� 

From which it follows that there is a real number 𝐶𝐶𝑘𝑘 =  𝐶𝐶𝑘𝑘 (1 −𝐶𝐶𝑘𝑘)⁄  such that 

𝑉𝑉𝑠𝑠,𝑠𝑠+𝑘𝑘 + ⋯+  𝑉𝑉𝑠𝑠,𝑠𝑠−1 =  𝐶𝐶𝑘𝑘�𝑉𝑉𝑠𝑠𝑠𝑠 + ⋯+  𝑉𝑉𝑠𝑠,𝑠𝑠+𝑘𝑘−1� 

Where 1 ≤ 𝑠𝑠 ≤ 𝑛𝑛 − 1, and 1 ≤ 𝑘𝑘 ≤ 𝑛𝑛 − 𝑠𝑠 − 1. We found this exact same equation in subsection 
10.5, it therefore follows from this equation that 𝑉𝑉𝑠𝑠,𝑠𝑠+𝑘𝑘 is a constant multiple of 𝑉𝑉𝑠𝑠𝑠𝑠 and so that the 
ultimate emergence factors are deterministic. 

10.7 PARAMETERISATION OF EMERGENCE FACTORS AND EMERGENCE PATTERNS 

In this subsection we discuss the parameterisation of emergence factors and emergence patterns, 
stating and proving any results that we need. Calibrating emergence patterns is not easy, and there 
is no generally accepted way of doing it. In this section we describe and discuss two methods of 
calibrating emergence patterns. 

The first method is to use the actuary-in-the-box. In this section we consider the case of the actuary-
in-the-box applied to a bootstrapped triangle-based model such as the chain ladder. We describe in 
detail how to parameterise risk-decay emergence patterns using the actuary-in-the-box, we do this 
for both ultimate and outstanding patterns. These methods were outlined in section 3.3.3 above. For 
the ultimate patterns we can use a bootstrapped triangle of paid or incurred claims, as the 
calculations depend only on the ultimate claims, however for the outstanding patterns we need to 
use a bootstrapped triangle of paid claims. 

First consider the ultimate one-year emergence factors 𝛼𝛼𝑡𝑡,1. These are defined by 

𝛼𝛼𝑡𝑡,1 =  
𝜎𝜎𝑡𝑡(𝑈𝑈𝑡𝑡+1)
𝜎𝜎𝑡𝑡(𝑈𝑈)  

Suppose that the triangle of claims data has 𝑛𝑛 origin years 𝑖𝑖 = 1, … ,𝑛𝑛, and that each origin year is 
fully run off after 𝑛𝑛 development years. The bootstrapped model gives us the distribution of the 
ultimate claims for each origin year 𝑈𝑈𝑖𝑖 . In the above definition of 𝛼𝛼𝑡𝑡,1 the subscript 𝑡𝑡 denotes how 
many years of development the relevant origin year has undergone. For the claims triangle that has 
been bootstrapped origin year 𝑖𝑖 has undergone 𝑛𝑛 − 𝑖𝑖 + 1 years of development. The bootstrap 
output therefore allows us to calculate the standard deviations 𝜎𝜎𝑠𝑠−𝑖𝑖+1( 𝑈𝑈𝑖𝑖 ) for 𝑖𝑖 = 2, … ,𝑛𝑛. Applying 



the actuary-in-the-box to the bootstrapped model gives us the distribution of the closing estimate of 
ultimate claims for each origin year 𝑈𝑈𝑠𝑠−𝑖𝑖+2𝑖𝑖

 , from which we can calculate 𝜎𝜎𝑠𝑠−𝑖𝑖+1( 𝑈𝑈𝑠𝑠−𝑖𝑖+2𝑖𝑖
 ). It is then 

simple to calculate 

𝛼𝛼𝑠𝑠−𝑖𝑖+1,1 =
𝜎𝜎𝑠𝑠−𝑖𝑖+1( 𝑈𝑈𝑠𝑠−𝑖𝑖+2𝑖𝑖

 )
𝜎𝜎𝑠𝑠−𝑖𝑖+1� 𝑈𝑈𝑖𝑖 �

 

For 𝑖𝑖 = 2, … ,𝑛𝑛, which gives us the ultimate risk-decay emergence pattern 

�𝛼𝛼1,1, … ,𝛼𝛼𝑠𝑠−1,1� 

Calculating the outstanding risk-decay emergence pattern requires more calculations. The 
outstanding one-year emergence factors are defined by 

𝛽𝛽𝑡𝑡,1 =  
𝜎𝜎𝑡𝑡(𝐶𝐶𝑡𝑡+1)
𝜎𝜎𝑡𝑡(𝑂𝑂𝐶𝐶𝑡𝑡+1) 

Where 𝐶𝐶𝑡𝑡+1 denotes the closing claims reserve, and 𝑂𝑂𝐶𝐶𝑡𝑡+1 denotes the ultimate risk distribution of 
the claims paid after time 𝑡𝑡 + 1. (This means that 𝐶𝐶𝑡𝑡+1 =  𝐸𝐸𝑡𝑡+1[𝑂𝑂𝐶𝐶𝑡𝑡+1].) A bootstrapped triangle of 
paid claims gives us the ultimate risk distribution of the future incremental paid claims amounts for 
each origin year and each future development year, i.e. it gives us 𝑃𝑃𝑡𝑡𝑖𝑖

  for 𝑖𝑖 = 2, … ,𝑛𝑛 and 𝑡𝑡 = 𝑛𝑛 −
𝑖𝑖 + 2, … ,𝑛𝑛. We can then calculate 𝑂𝑂𝐶𝐶𝑠𝑠−𝑖𝑖+2𝑖𝑖

  for 𝑖𝑖 = 3, … ,𝑛𝑛 using 

𝑂𝑂𝐶𝐶𝑠𝑠−𝑖𝑖+2𝑖𝑖
 = � 𝑃𝑃𝑠𝑠−𝑖𝑖+𝑘𝑘𝑖𝑖

 
𝑖𝑖

𝑘𝑘=3

 

And then we can calculate 𝜎𝜎𝑠𝑠−𝑖𝑖+1( 𝑂𝑂𝐶𝐶𝑠𝑠−𝑖𝑖+2𝑖𝑖
 ) for 𝑖𝑖 = 3, … ,𝑛𝑛. Applying the actuary-in-the-box to the 

bootstrapped model gives us the distribution of the closing reserves 𝐶𝐶𝑠𝑠−𝑖𝑖+2𝑖𝑖
  for 𝑖𝑖 = 3, … ,𝑛𝑛, which 

allows us to calculate 𝜎𝜎𝑠𝑠−𝑖𝑖+1( 𝐶𝐶𝑠𝑠−𝑖𝑖+2𝑖𝑖
 ). It is then simple to calculate 

𝛽𝛽𝑠𝑠−𝑖𝑖+1,1 =
𝜎𝜎𝑠𝑠−𝑖𝑖+1( 𝐶𝐶𝑠𝑠−𝑖𝑖+2𝑖𝑖

 )
𝜎𝜎𝑠𝑠−𝑖𝑖+1� 𝑂𝑂𝐶𝐶𝑠𝑠−𝑖𝑖+2𝑖𝑖

 �
 

For 𝑖𝑖 = 3, … ,𝑛𝑛, which gives us the outstanding risk-decay emergence pattern 

�𝛽𝛽1,1, … ,𝛽𝛽𝑠𝑠−2,1� 

We now describe the CoV method. Suppose that we have 𝑛𝑛 origin years 𝑖𝑖 = 1, … ,𝑛𝑛, and we have 
already estimated ultimate risk distributions for the ultimate claims 𝑈𝑈𝑖𝑖  for each origin year. By 
definition, the ultimate one-year emergence factors are given by 

𝛼𝛼𝑠𝑠−𝑖𝑖+1,1
2 =

𝑉𝑉𝑉𝑉𝑉𝑉𝑠𝑠−𝑖𝑖+1( 𝑈𝑈𝑖𝑖 𝑠𝑠−𝑖𝑖+2)
𝑉𝑉𝑉𝑉𝑉𝑉𝑠𝑠−𝑖𝑖+1� 𝑈𝑈𝑖𝑖 �

 

By applying the law of total variance (section 9.3) we see that 

1 − 𝛼𝛼𝑠𝑠−𝑖𝑖+1,1
2 =

𝐸𝐸𝑠𝑠−𝑖𝑖+1[𝑉𝑉𝑉𝑉𝑉𝑉𝑠𝑠−𝑖𝑖+2( 𝑈𝑈𝑖𝑖 )]
𝑉𝑉𝑉𝑉𝑉𝑉𝑠𝑠−𝑖𝑖+1� 𝑈𝑈𝑖𝑖 �

 

Now consider the coefficient of variation (CoV) of the ultimate risk distributions. The CoV is the ratio 
of the standard deviation to the mean 



𝐶𝐶𝐶𝐶𝑉𝑉𝑠𝑠−𝑖𝑖+1( 𝑈𝑈𝑖𝑖 ) =
𝜎𝜎𝑠𝑠−𝑖𝑖+1( 𝑈𝑈𝑖𝑖 )
𝐸𝐸𝑠𝑠−𝑖𝑖+1� 𝑈𝑈𝑖𝑖 �

 

We suppose that 

𝐸𝐸𝑠𝑠−𝑖𝑖+1[𝑉𝑉𝑉𝑉𝑉𝑉𝑠𝑠−𝑖𝑖+2( 𝑈𝑈𝑖𝑖 )] =  (𝐶𝐶𝐶𝐶𝑉𝑉𝑠𝑠−𝑖𝑖+1( 𝑈𝑈𝑖𝑖−1
 )𝐸𝐸𝑠𝑠−𝑖𝑖+1[ 𝑈𝑈𝑖𝑖 ])2 

In words this assumption is saying that the current CoV of origin year 𝑖𝑖 − 1 is a good estimator of the 
CoV of origin year 𝑖𝑖 in one year’s time. We then substitute this assumption into the equation above 
to get 

1 − 𝛼𝛼𝑠𝑠−𝑖𝑖+1,1
2 =

(𝐶𝐶𝐶𝐶𝑉𝑉𝑠𝑠−𝑖𝑖+1( 𝑈𝑈𝑖𝑖−1
 )𝐸𝐸𝑠𝑠−𝑖𝑖+1[ 𝑈𝑈𝑖𝑖 ])2

𝑉𝑉𝑉𝑉𝑉𝑉𝑠𝑠−𝑖𝑖+1� 𝑈𝑈𝑖𝑖 �
 

Now observe that 𝑉𝑉𝑉𝑉𝑉𝑉𝑠𝑠−𝑖𝑖+1( 𝑈𝑈𝑖𝑖 ) = (𝐶𝐶𝐶𝐶𝑉𝑉𝑠𝑠−𝑖𝑖+1( 𝑈𝑈𝑖𝑖 )𝐸𝐸𝑠𝑠−𝑖𝑖+1[ 𝑈𝑈𝑖𝑖 ])2, and so cancelling and rearranging 
we get 

𝛼𝛼𝑠𝑠−𝑖𝑖+1,1 = �1 − �
𝐶𝐶𝐶𝐶𝑉𝑉𝑠𝑠−𝑖𝑖+1� 𝑈𝑈𝑖𝑖−1

 �
𝐶𝐶𝐶𝐶𝑉𝑉𝑠𝑠−𝑖𝑖+1� 𝑈𝑈𝑖𝑖 �

�
2

 

The key assumption in deriving the above is that 

𝐸𝐸𝑠𝑠−𝑖𝑖+1[𝑉𝑉𝑉𝑉𝑉𝑉𝑠𝑠−𝑖𝑖+2( 𝑈𝑈𝑖𝑖 )] =  (𝐶𝐶𝐶𝐶𝑉𝑉𝑠𝑠−𝑖𝑖+1( 𝑈𝑈𝑖𝑖−1
 )𝐸𝐸𝑠𝑠−𝑖𝑖+1[ 𝑈𝑈𝑖𝑖 ])2 

We can generalise the result by noting that it is not necessary to use the CoV in this assumption, we 
can make the more general assumption that the variance is a constant multiple of some function of 
the mean 

𝑉𝑉𝑉𝑉𝑉𝑉𝑠𝑠−𝑖𝑖+1( 𝑈𝑈𝑖𝑖 ) = 𝜂𝜂𝑖𝑖2𝑓𝑓(𝐸𝐸𝑠𝑠−𝑖𝑖+1[ 𝑈𝑈𝑖𝑖 ]) 

and then assume that 

𝐸𝐸𝑠𝑠−𝑖𝑖+1[𝑉𝑉𝑉𝑉𝑉𝑉𝑠𝑠−𝑖𝑖+2( 𝑈𝑈𝑖𝑖 )] =  �𝜂𝜂𝑖𝑖−1𝑓𝑓(𝐸𝐸𝑠𝑠−𝑖𝑖+1[ 𝑈𝑈𝑖𝑖 ])�2 

We then get 

𝛼𝛼𝑠𝑠−𝑖𝑖+1,1 = �1 − �
𝜂𝜂𝑖𝑖−1
𝜂𝜂𝑖𝑖

�
2

 

As an example, we might apply the above with 𝑓𝑓(𝑥𝑥) = √𝑥𝑥. 

In section 3.3.3 above we briefly described how to make multiple observations of emergence factors 
from the output of an iterated actuary-in-the-box. We now describe how to do this in detail by 
extending the calculations described above. We then describe how to extend the CoV method to get 
multiple observations of emergence factors. 

The actuary-in-the-box can be iterated and so used to get a distribution of the ultimate claims, and 
successive best estimate ultimate claims. If the underlying model includes paid claims amounts for 
each future period then we can also get successive best estimate reserves, and future claims 
payments. It is then straight-forward to calculate the relevant standard deviations, and so 



emergence factors. We need, however to be clear about exactly which emergence factors we are 
calculating. 

Suppose that there are 𝑛𝑛 origin periods 𝑖𝑖 = 1, … ,𝑛𝑛. In the following, the lower-left subscript is used 
to denote the origin period, and the lower right subscript denotes the development period within 
the origin period. The iterated actuary-in-the-box, applied to a triangle of paid claims, gives us 
simulated values for the following quantities for 𝑖𝑖 = 2, … ,𝑛𝑛 and 𝑡𝑡 = 𝑛𝑛 − 𝑖𝑖 + 2, … ,𝑛𝑛 

• The future paid claims amounts 𝑃𝑃𝑡𝑡𝑖𝑖
  

• The future best estimate reserves 𝐶𝐶𝑡𝑡𝑖𝑖
  

• The future best estimate ultimate claims 𝑈𝑈𝑡𝑡𝑖𝑖
  

We can then calculate the following ultimate emergence factors for 𝑖𝑖 = 2, … ,𝑛𝑛 and 𝑘𝑘 = 1, … , 𝑖𝑖 − 1 

𝛼𝛼𝑠𝑠−𝑖𝑖+1,𝑘𝑘𝑖𝑖
 =

𝜎𝜎𝑠𝑠−𝑖𝑖+1( 𝑈𝑈𝑠𝑠−𝑖𝑖+1+𝑘𝑘𝑖𝑖
 )

𝜎𝜎𝑠𝑠−𝑖𝑖+1� 𝑈𝑈𝑖𝑖 �
 

And the following outstanding emergence factors for 𝑖𝑖 = 3, … ,𝑛𝑛 and 𝑘𝑘 = 1, … , 𝑖𝑖 − 2 

𝛽𝛽𝑠𝑠−𝑖𝑖+1,𝑘𝑘 =
𝜎𝜎𝑠𝑠−𝑖𝑖+1( 𝐶𝐶𝑠𝑠−𝑖𝑖+1+𝑘𝑘𝑖𝑖

 )
𝜎𝜎𝑠𝑠−𝑖𝑖+1� 𝑂𝑂𝐶𝐶𝑠𝑠−𝑖𝑖+1+𝑘𝑘𝑖𝑖

 �𝑖𝑖
  

We can then form the emergence patterns as described in sections 10.2.2, and 10.2.4 above.  

We can also extend the CoV method described above to calculate multi-period emergence factors. 
By definition the ultimate multi-year emergence factors are given by 

𝛼𝛼𝑠𝑠−𝑖𝑖+1,𝑘𝑘
2 =

𝑉𝑉𝑉𝑉𝑉𝑉𝑠𝑠−𝑖𝑖+1( 𝑈𝑈𝑖𝑖 𝑠𝑠−𝑖𝑖+1+𝑘𝑘)
𝑉𝑉𝑉𝑉𝑉𝑉𝑠𝑠−𝑖𝑖+1� 𝑈𝑈𝑖𝑖 �

 

By applying the law of total variance (section 9.3) we see that 

1 − 𝛼𝛼𝑠𝑠−𝑖𝑖+1,𝑘𝑘
2 =

𝐸𝐸𝑠𝑠−𝑖𝑖+1[𝑉𝑉𝑉𝑉𝑉𝑉𝑠𝑠−𝑖𝑖+1+𝑘𝑘( 𝑈𝑈𝑖𝑖 )]
𝑉𝑉𝑉𝑉𝑉𝑉𝑠𝑠−𝑖𝑖+1� 𝑈𝑈𝑖𝑖 �

 

We then assume, exactly as before, that the variance is a constant multiple of some function of the 
mean 

𝑉𝑉𝑉𝑉𝑉𝑉𝑠𝑠−𝑖𝑖+1( 𝑈𝑈𝑖𝑖 ) = 𝜂𝜂𝑖𝑖2𝑓𝑓(𝐸𝐸𝑠𝑠−𝑖𝑖+1[ 𝑈𝑈𝑖𝑖 ]) 

and then adjust the key assumption to allow for the multi-period context, and assume that 

𝐸𝐸𝑠𝑠−𝑖𝑖+1[𝑉𝑉𝑉𝑉𝑉𝑉𝑠𝑠−𝑖𝑖+1+𝑘𝑘( 𝑈𝑈𝑖𝑖 )] =  �𝜂𝜂𝑖𝑖−𝑘𝑘𝑓𝑓(𝐸𝐸𝑠𝑠−𝑖𝑖+1[ 𝑈𝑈𝑖𝑖 ])�2 

We then get 

𝛼𝛼𝑠𝑠−𝑖𝑖+1,𝑘𝑘 = �1 − �
𝜂𝜂𝑖𝑖−𝑘𝑘
𝜂𝜂𝑖𝑖

�
2

 



Note the difference in the key assumption for multi-period emergence factors. In words the 
assumption in the one year case is saying that the current 𝜂𝜂-factor of origin year 𝑖𝑖 − 1 is a good 
estimator of the 𝜂𝜂-factor of origin year 𝑖𝑖 in one year’s time. The assumption in the multi-period case 
is saying that the current 𝜂𝜂-factor of origin year 𝑖𝑖 − 𝑘𝑘 is a good estimator of the 𝜂𝜂-factor of origin 
year 𝑖𝑖 in 𝑘𝑘 year’s time. 

10.8 EMERGENCE FACTORS AND OTHER RISK MEASURES 

Throughout this paper we’ve developed emergence patterns using standard deviation as the risk 
measure. This is natural, however it is possible to use other risk measures, and we briefly outline 
how one might do this in this subsection. 

For a risk measure 𝜌𝜌 define an ultimate emergence factor as above using 

𝛼𝛼𝑡𝑡,𝑘𝑘 =  
𝜌𝜌𝑡𝑡(𝑈𝑈𝑡𝑡+𝑘𝑘)
𝜌𝜌𝑡𝑡(𝑈𝑈)  

Where 𝜌𝜌𝑡𝑡 denotes the risk measure calculated conditional on the information known at time point 𝑡𝑡. 
We would then apply the emergence factor as follows 

𝑈𝑈�𝑡𝑡+𝑘𝑘 =  𝛼𝛼𝑡𝑡,𝑘𝑘(𝑈𝑈 −  𝑈𝑈𝑡𝑡) + 𝑈𝑈𝑡𝑡  

We would like 𝜌𝜌𝑡𝑡�𝑈𝑈�𝑡𝑡+𝑘𝑘� =  𝜌𝜌𝑡𝑡(𝑈𝑈𝑡𝑡+𝑘𝑘) =  𝛼𝛼𝑡𝑡,𝑘𝑘𝜌𝜌𝑡𝑡(𝑈𝑈). But 𝜌𝜌𝑡𝑡�𝑈𝑈�𝑡𝑡+𝑘𝑘� =  𝜌𝜌𝑡𝑡�𝛼𝛼𝑡𝑡,𝑘𝑘𝑈𝑈 +  �1 − 𝛼𝛼𝑡𝑡,𝑘𝑘�𝑈𝑈𝑡𝑡�. So 
we need to require that the risk measure obeys 𝜌𝜌𝑡𝑡(𝑋𝑋 + 𝑘𝑘) =  𝜌𝜌𝑡𝑡(𝑋𝑋) and 𝜌𝜌𝑡𝑡(𝑘𝑘𝑋𝑋) = 𝑘𝑘𝜌𝜌𝑡𝑡(𝑋𝑋), where 𝑋𝑋 
is a random variable and 𝑘𝑘 is known with certainty at time point 𝑡𝑡. In particular this means that we 
would need to use the mean-centred versions of VaR and TVaR. 

10.9 STOCHASTIC EMERGENCE FACTORS 

In this subsection we discuss what it might mean for emergence factors to be stochastic rather than 
deterministic. Note that as discussed above emergence factors defined using standard deviation are 
in general stochastic, but are always known with certainty at the time that they need to be applied. 
Here we consider emergence factors without any intermediating risk measure, which would then be 
stochastic when applied. 

Consider the ultimate emergence factors. We have the requirement that 𝐸𝐸𝑡𝑡[𝑈𝑈𝑡𝑡+𝑘𝑘] =  𝐸𝐸𝑡𝑡[𝑈𝑈], which 
suggests that we assume that 𝛼𝛼𝑡𝑡,𝑘𝑘 and 𝑈𝑈 are uncorrelated, and we should apply the stochastic 
emergence factor with the equation 

𝑈𝑈�𝑡𝑡+𝑘𝑘 =  𝛼𝛼𝑡𝑡,𝑘𝑘(𝑈𝑈 −  𝑈𝑈𝑡𝑡) + 𝑈𝑈𝑡𝑡  

Which suggests the following definition of a stochastic emergence factor 

𝛼𝛼𝑡𝑡,𝑘𝑘 =  
𝑈𝑈𝑡𝑡+𝑘𝑘 − 𝑈𝑈𝑡𝑡
𝑈𝑈 −  𝑈𝑈𝑡𝑡

 

However, the problem here is that as the distribution 𝑈𝑈 −  𝑈𝑈𝑡𝑡 is centred around zero, the 
distribution of 𝛼𝛼𝑡𝑡,𝑘𝑘 will be extremely heavy tailed, and can take values much greater than one. In 
simulation contexts this can completely swamp any useful information which might otherwise be 
contained in the distribution. The same issue arises with outstanding emergence factors. 



When applying emergence factors, it would be reasonable to consider stochastic emergence factors 
so as to allow for parameter error. Exactly how this should be done depends on the model used to 
parameterise the emergence factors. 
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