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Abstract.

Despite a large body of work on the serpentine-substrate effect on vascular plants, little work has been

undertaken to describe algal communities found on serpentine soils derived from peridotite and other ultramafic rocks. We
report a preliminary study describing the occurrence of algae and cyanoprokaryotes on mafic and ultramafic substrates
from South Africa. Results suggest that slope and aspect play a key role in species diversity and community composition
and, although low pH, nutrients and metal content do not reduce species richness, these edaphic features also influence
species composition. Further, typical soil genera such as Leptolyngbya, Microcoleus, Phormidium, Chlamydomonas,
Chlorococcum and Hantzschia were found at most sites. Chroococcus sp., Scytonema ocellatum, Nostoc linckia,
Chlorotetraedron sp., Hormotilopsis gelatinosa, Klebsormidium flaccidium, Pleurococcus sp. and Tetracystis elliptica
were unique to one serpentine site. The preliminary survey provides directions for future research on the serpentine-
substrate effect on algal and cyanoprokaryote diversity in South Africa.
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Introduction

A range of soils can develop from ultramafic rocks depending on
climate, time, relief, chemical composition of the parent materials
as well as biotic factors, especially plants and microbes (Proctor
and Woodell 1975; Cardace etal. 2014). Serpentine soil is derived
from serpentinite, a rock formed primarily by the hydration and
metamorphic transformation of the ultramafic rock, peridotite.
Ultramafic rocks can vary greatly in chemical and mineral
composition and can be composed of various combinations of
the minerals olivine, orthorhombic and monoclinic pyroxenes,
hornblende as well as the secondary products of these minerals
such as serpentine group minerals, including fibrous amphiboles
and talc (Alexander et al. 2007). Serpentine soils have elevated
levels of heavy metals such as nickel (Ni) and chromium (Cr),
near-neutral to alkaline pH values, and calcium : magnesium
(Ca:Mg) ratios <1 (Rajakaruna et al. 2009). Serpentine soils
are also generally characterised by nutrient deficiencies,
especially nitrogen (N), phosphorus (P) and potassium (K)
(Daghino et al. 2012). The distinctive chemistry of ultramafic
rocks and resulting serpentine soils restricts the growth of many
plants, making such sites refuges for those plants that can thrive
under the serpentine influence (Alexander et al. 2007). Serpentine
habitats are known to harbour high numbers of endemic plant
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species (Siebert et al. 2002; O’Dell and Rajakaruna 2011) and
are model settings for the study of plant ecology and evolution
(Harrison and Rajakaruna 2011). However, cryptogamic species
(i.e. such as lichens, bryophytes, algae, cyanoprokaryotes) show
low levels of edaphic endemism (Bramwell and Caujape-Castells
2011; Rajakaruna et al. 2012) and appear to be broadly tolerant of
substrate, resulting in wide geographic distributions and range
disjunctions that frequently span more than one continent
(Schuster 1983). Species with wide distributions sometimes
undergo environmental modification and exhibit habitat-
associated vagrant forms (i.e. morphotypes). For example,
Rosentreter and McCune (1992) documented how soil, biota
and climate can interact to produce partially or completely vagrant
life forms in several lichen genera.

According to Belnap and Lange (2001), algae and
cyanoprokaryotes can colonise almost all soil types. Terlizzi
and Karlander (1979) found members of the Cyanophyceae,
Chlorophyceaec and Bacillariophyceae in serpentine soil
samples collected at Soldiers Delight, Maryland, USA, but
concluded that the composition of the soil flora at the division
level is similar to that of more favourable soil types. Serpentine
soil environments are comparable to metal-enriched mine tailings
that include stressors such as nutrient deficiencies, unfavourable
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soil structure, water stress and toxic concentrations of metals
(Reddy et al. 2001; O’Dell and Rajakaruna 2011). Orlekowsky
et al. (2013) found that algae and cyanoprokaryotes are able
to colonise mine tailings despite the harsh conditions and
speculated that the presence of higher plants might have
provided a microenvironment for the establishment of these
organisms. Rosentreter and McCune (1992) found that vascular
plants create windbreaks and shade, influencing moisture content
and light intensity at the soil surface and creating suitable habitats
for microbes. Cabala et al. (2011) concluded that crust formation
in soils with a low pH and heavy-metal contamination is
possible, but an increase in moisture and pH promotes algal
development. According to Lukesova (2001), Bacillariophyceae
and Cyanophyceae are more characteristic of alkaline environments,
whereas species of Chlorophyceae can colonise more acidic soils.

Moisture is a key factor in the establishment of algae and
cyanoprokaryotes. The low plant cover often associated with
exposed and rocky serpentine outcrops contributes to hot and dry
soil surfaces (Kruckeberg 2002), making it uninhabitable for soil-
dwelling algae and cyanoprokaryotes. Surface temperature is also
important because it regulates many ecosystem functions such as
rates of N and carbon fixation, soil water evaporation and
microbial activity (Belnap 2003). Kruckeberg (2002) proposed
that the microbial biota of serpentine soil would be species poor,
paralleling the scanty vegetation, but admitted that very little is
known about the microbes of serpentine soils.

Since Kruckeberg (2002), numerous studies have documented
the diversity of bacteria (Oline 2006; Rajkumar et al. 2008), fungi
(DeGrood et al. 2005; Daghino et al. 2012; Southworth et al.
2014) and lichens (Favero-Longo et al. 2004; Rajakaruna et al.
2012) in serpentine soil, yet investigations of algae and
cyanoprokaryotes in ultramafic soil (Terlizzi and Karlander
1979; Couté et al. 1999; Hauer 2008) are still scarce. The aim
of the present study was to conduct a preliminary survey of the
algal and cyanoprokaryote composition in mafic- and ultramafic-
derived soil to improve our understanding of the microbial
diversity of serpentine and related soils.

Materials and methods

Sampling sites

Soil was sampled in February 2012 at different sampling
localities in Mpumalanga and Limpopo provinces of South
Africa (Fig. 1, Table 1). Ohrigstad sites (Sites 1 and 2, which
were siliciclastic rocks and Silverton Formation) were situated on
the metasediments of the Paleoproterozoic Transvaal Supergroup
that forms the floor to the mafic—ultramafic Rustenburg Layered
Suite of the Bushveld Igneous Complex (Clarke et al. 2009). The
Bushveld Complex was formed 2000 million years ago when
enormous volumes of magma intruded the upper levels of the
earth crust (Clarke et al. 2009). Steelpoort sites (Sites 3 and 4)
were situated on the ultramafic pyroxenite hills of the Vlakfontein
Subsuite of the Rustenburg Layered Suite and the Burgersfort
sites (Sites 5 and 6) on mafic hills of Kolobeng norite. The
vegetation of Sites 1-6 (Table 1) had an open to dense woody
layer, including woody and herbaceous shrubs, and an open to
closed grass layer (Mucina and Rutherford 2006). It was found on
moderate to steep mountainsides.
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Sites 7 and 8 were located on amphibolites and serpentinite
of the lower-most greenstone formations of the Barberton
Supergroup (Norman and Whitfield 2006). These lower
formations (Sites 7 and 8) are metamorphic and made up of
the volcano-sedimentary Onverwacht Group that consists of
ultramafic rocks that formed 3500 million years ago and minor
felsic volcanic and sedimentary rocks that were deposited in
an ancient marine environment (Hofmann et al. 2012). The
vegetation of Sites 7 and 8 is considered herbaceous savanna
with an open woody layer and dense forb and grass layer
(Mucina and Rutherford 2006). It is generally associated with
hilly terrain, with steep to moderate slopes.

Mean annual temperatures of the study area vary between
16.7°C and 18°C and a mean annual summer rainfall ranges from
518 to 1194 mm (Mucina and Rutherford 2006; see Table 1).

At each site, a disposable plastic teaspoon was used to scrape
soil up to a depth of 3 mm at three localities not more than 50 m
apart, namely, underneath low-growing vegetation (mostly
grasses), in bare soil and between rocks. A composite sample,
comprising nine subsamples (teaspoons), was made for each of
the eight sites and mixed thoroughly.

Identification

A combination of direct-determination and enrichment-culture
techniques were used to detect cyanoprokaryotes and eukaryotic
algae (Langhans er al. 2009). A direct investigation was
conducted according to the method described in Lund (1945).
Subsamples of 10 g of soil were wetted with distilled water in
Petri dishes and incubated at 20°C and a light intensity of
35umolm 2 s~'. Three sterile coverslips were placed on the
soil in each Petri dish after 24h. Algal communities that
established underneath the coverslips were examined and
enumerated using the semiquantitative scale of Starmach
(1963), which classifies algae and cyanoprokaryotes as
subdominant if 30-50 specimens are present on the coverslip
and dominant if more than 50 specimens are present.

The enrichment-culture techniques included the use of
agar plates and liquid cultures. For the agar plates, 10-g soil
subsamples were incubated on 1.5% agar plates enriched with
either Bold’s basal growth medium (BBM; Brown et al. 1964) as
described in Stein (1973) or GBG11 growth medium (Kriiger
1978), and incubated at 20°C and a light intensity of
35umolm™ s™'. For the liquid cultures, subsamples of 10g
of soil each were enriched with either 100 mL BBM (Stein
1973) or 100mL GBGI11 growth medium (Kriiger 1978) and
incubated at a temperature of 20°C and a continuous light
intensity of 15umolm > s™' to stimulate the growth of algae
and cyanoprokaryotes present in low concentrations. Two
different growth media were used because green algal growth
is enhanced by BBM (Stein 1973) and cyanoprokaryotes by
GBGI11 growth medium (Kriiger 1978). Cyanoprokaryotes
also prefer lower light intensities and this was implemented
during the incubation of the cultures.

The species were identified microscopically using a Nikon
801 microscope with differential interference contrast, ‘n 60X
Plan Apochromatic 1.4 numerical aperture (NA) oil violet-
corrected with a 1.4 NA oil condenser. Literature used for
identification included Ettl et al. (1999), Hindak (2008),
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Fig. 1.

Geology and locations of towns nearest to the sampling localities. Sites 1, 2 are near Ohrigstad, Sites 3, 4 are near Steelpoort, Sites 5, 6 are near

Burgersfort, Site 7 is near Malelane, and Site 8 is near Kaapschehoop. Sites 7 and 8 are serpentinite-derived.

Hiiber-Pestalozzi (1961), John et al. (2002), Komarek and
Anagnostidis (2005), Taylor et al. (2007) and Wehr and
Sheath (2003).

Soil analyses

At each site, the soil was randomly sampled from five of the
nine subsamples per locality (minimum one and maximum two
persite) and pooled to make a composite sample. The soil analysis
was performed in accordance with the standards set out by the
control schemes of the Agricultural Laboratory Association of
Southern Aftrica and the International Soil Analytical Exchange
(ISE), Wageningen, The Netherlands. Exchangeable Ca, Mg, K
and sodium (Na) were estimated by 1M ammonium acetate
(pH=7), P was estimated by P-Bray 1 extraction, pH was
estimated via 1:2.5 extraction and electrical conductivity (EC)
was determined with a saturated extraction. These methods
followed NSSSA (1990). All heavy metals, including aluminium
(Al), arsenic (As), cadmium (Cd), cobalt (Co), copper (Cu), Cr,
iron (Fe), mercury (Hg), manganese (Mn), molybdenum (Mo), Ni,
lead (Pb) and vanadium (V), as well as %N and %S were estimated
by EPA Method 3050b (US EPA 1996).

Data analysis

Statistica version 12 software (StatSoft Inc., Tulda, OK, USA)
was used to perform Student’s #-tests to determine whether the
data from one site differed significantly (P <0.5) from those from
another site. The algal composition of a site was compared with
the algal composition of another site and repeated until each site
was compared with all the other sites. The approach was also
repeated for the edaphic features of each site. Similarities among
the species compositions of the different sites were analysed by
using the Bray—Curtis dissimilarity index (Hahs and McDonnell
2006). This was performed with the software program Primer 5
(Clatke and Gorley 2001). CANOCO version 4.5 software
(Cambridge University Press, Cambridge, UK) was used to
perform principal component analysis (PCA) on the chemical
variables of the different sites. Canonical correspondence
analysis (CCA) was performed on the species data as well as
the chemical variables (Table 2), which included the Monte Carlo
permutation test for significance (Ter Braak and Smilauer 1998).
The species matrix for the analysis was compiled by allocating
values to the species that were absent (0), present (1) subdominant
(2) and dominant (3).
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Table 2. Chemical characteristics for composite soil samples collected from the eight sites
EC, electrical conductivity; CEC, cation exchange capacity
Soil characteristic Site 1 Site 2 Site 3 Site 4 Site 5 Site 6 Site 7 Site 8
pH (H,0) 6.27 5.54 6.46 6.36 6.86 6.31 7.61 591
pH (KCI) 5.31 4.81 5.21 5.49 6.15 5.38 6.8 5.34
EC (mSm ") 23 31 28 31 58 39 55 10
CEC (cmol(+) kg ™) 11.44 13.49 24.68 25.20 25.95 25.18 18.39 3.76
%Base saturation 66.25 48.01 54.36 67.84 93.17 72.14 109.4 46.9
Macronutrients
Calcium (Ca) (cmol(+) kg ™) 5.07 3.49 5.82 6.17 14.61 8.4 8.22 0.36
Magnesium (Mg) (cmol(+) kg ") 1.98 2.23 11.25 10.65 9.06 9.18 11.51 1.36
Ca: Mg ratio 2.56 1.57 0.52 0.58 1.61 0.92 0.71 0.26
Potassium (K) (mg kg ") 195.5 281 102.9 95 188.5 218 136.5 1.5
Sodium (Na) (mg kg ") 6 8 7 7 6 7 9 9
Phosphorus (P) (mg kg ') 3.6 43 21.2 10.8 3.9 37.7 42 1.7
%Nitrogen 0.46 0.44 0.52 0.49 0.58 0.63 0.47 0.4
Y%Sulfur 0.21 0 0.01 0.01 0 0.04 0 0.01
Micronutrients and heavy metals (mg kg’l)
Aluminium 2746 3514 826 921 1959 1514 1555 3021
Arsenic 0.08 0.1 0.1 0.08 0.07 0.15 0.43 4.06
Cadmium 0.001 0.001 0.01 0.001 0.0008 0.003 0.0008 0.0009
Cobalt 1.38 1.79 3.48 3.92 2.2 4.79 3.78 15.14
Copper 1.17 1.53 0.85 0.6 1.74 1.26 435 8.31
Chromium 6.26 7.94 85.29 93.97 3245 124.4 55.42 134.2
Iron 3098 3733 3832 3377 2271 4701 4274 8814
Mercury 0.0004 0.0007 0.0046 0.0005 0.0002 0.0004 0.0006 0.0004
Manganese 47.33 60.21 60.35 78.73 51.68 108.8 93.6 167
Molybdenum 0.02 0.03 0.03 0.02 0.02 0.04 0.02 0.04
Nickel 4.02 5.03 36.25 29.88 17.48 31.27 33.86 48.33
Palladium 0.01 0.02 0.01 0.01 0.01 0.02 0.02 0.03
Vanadium 8.51 10.11 4.24 3.39 4.63 5.21 7.96 20.62
Results to the other sites, likely resulting from low K concentrations

Soil analyses

All soils were slightly acidic, except for serpentine Site 7 where
a pH (H,O) of 7.61 was reported (Table 2). The highest
concentrations of K and Al were measured at the upper slope
of the siliciclastic soils at Ohrigstad (Site 2) and the highest
concentrations of Cd and Hg were measured at the foot-slope site
near Steelpoort (Site 3). Burgersfort mafic soils had the highest
concentrations of Ca (Site 5) and P (Site 6).

The first two axes of the PCA of the soil characteristics and
the sampling sites explained 71.6% of the total variance (Fig. 2).
It showed a clear association of heavy metals such as As, Co,
Cu, Cr, Fe, Mn, Mo, Ni, Pd and V with the serpentine site at
Kaapschehoop (Site 8) that also features other characteristics
of serpentine soils such as low concentrations of essential
nutrients, including a Ca:Mg ratio of <l. This was
substantially lower than for other ultramafic and mafic rocks
(Sites 3, 4, 6) with ratios <1. All mafic and ultramafic sites had
heavy-metal (mostly Ni) concentrations exceeding those of the
sedimentary rocks and comparable to concentrations found at
the two serpentine sites.

The cation exchange capacity (CEC) of the serpentine soil at
Site 8 was the lowest among the sites (3.76 cmol(+) kg ). This is
below the minimum standard of 8 cmol(+) kg™ proposed for
agricultural top soil in South Africa by the Soil Classification
Working Group (1991). The EC of Site 8 soil was low compared

present at this site.

A Student’s t-test indicated that the edaphic features (see
Table 2 for soil features tested) of the siliciclastic Site 2 and
the serpentine Site 8 differ significantly (P=0.001). Sites 1,2 and
8 had the highest concentrations of Al, a known soil toxin in
South Aftica, but the pH of Site 2 and Site 8 was lower (5.54
and 5.91, respectively) than the pH of Site 1 (6.27), which could
play arole in the bioavailability of heavy metals. For instance, at
an acidic pH, Al exists only in one oxidation state (+3) and can
react with other matter in the environment to form various
complexes (ATSDR 2008).

Algal diversity

Site 1 had the highest number of species (24), followed by
serpentine Sites 7 (22) and 8 (20) (Table 3). The lowest
number of species (6) was found on the pyroxenite-derived
soil at Site 3. Cyanophyceae diversity was highest at Sites 1,
4, 7 and 8 and dominated at all sites except at Site 3 where
Hantzschia amphioxys (Bacillariophyceae) was the dominant
algae. Leptolyngbya sp. was dominant at Sites 1, 4, 5, 7 and 8
and subdominant at Site 6. Phormidium was dominant at Sites 2,
4,5 and 7 and subdominantat Sites 3, 6 and 8. Microcoleus sp. was
subdominant in the siliciclastic sites near Burgersfort (Sites 1, 2)
as well as the serpentine sites (Sites 7 and 8), and dominant at the
mafic site near Burgersfort (Site 6). Leptolyngbya foveolarum,
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Fig. 2. Principal component analysis (PCA) to show the relationship between soil characteristics and the sampling sites.

Phormidium ambiguum and Hantzschia amphioxys were found
at all sites. Chlorophyceae was the most diverse group, with the
highest diversity at Site 1, whereas Bacillariophyceae diversity
was the highest at Sites 1, 4 and 5. The Cyanophyceae,
Chlorophyceae and Bacillariophyceae were represented at
every site. However, Eustigmatophyceae did not occur at Sites
3 and 4 and the Xantophyceae occurred only at Sites 2, 6 and 7.

Preliminary correlations between edaphic features
and algal diversity

Multivariate analysis confirms the strong association of heavy
metals with the serpentine soils at Site 8 (Figs 2, 3). The first two
axes of the CCA (Fig. 3) explained only 36.2% of the variance.
Variables with high inflation factors (Ca, Mg, P and N) were
removed to improve the analysis, but eigenvalues or the
explanation of the total variance did not change. The forward
selection of factors lowered the P-value; however, it was still
not significant, so we kept all the variables. Even with the low
values, the CCA helps to visualise the species distribution with
respect to the different sites, and presents preliminary information
on how different edaphic features are correlated with algal
diversity. Hormotilopsis gelatinosa, Klebsormidium flaccidum,
Pleurococcus species, Chlorotetraedron species and Tetracystis
elliptica belonging to the Chlorophyceae, and Chroococcus

species, Scytonema ocellatum, Nostoc linckia as well as an
unknown Nostoc species from the Cyanophyceae were closely
associated with Site 8 (Fig. 3). High concentrations of K were
associated with the upper slope of the sedimentary soils in Ohrigstad
(Site 2; Figs 2, 3) as well as the green algae Characiopsis minima,
Chlamydomonas macrostellata, Bumilleriopsis filiformis from the
Xanthophyceae and the cyanoprokaryote Oscillatoria raoi.
Calcium, Mg, S and N appear to play a role in the similarity in
species composition of Sites 1, 3, 4 and 5.

Bray—Curtis dissimilarity index (Hahs and McDonnell
2006) grouped samples from lower slopes (Sites 1, 6 and
7; indicated with black square in Fig. 3), whereas the other
sites were scattered (stress value 0.05). Cyanoprokaryotes
such as Leptolyngbya foveolarum, Microcoleus vaginatus and
Phormidium ambiguum, Chlorophyceae such as Chlamydomonas
and Chlorococcum species, Eustigmatophyceae such as
Eustigmatos magnus and Hantzschia amphioxys from
Bacillariophyceae occurred on all the lower-slope sites (Sites 1,
6 and 7), but were not unique to these sites. The cyanoprokaryote
Phormidium ambiguum was dominant in all the upper-slope sites
(Sites 2, 4 and 5). It was interesting that the serpentine sites
(Sites 7 and 8) did not form a group. Nor did the mafic and
ultramafic sites (Sites 3, 4, 5 and 6) or siliciclastic sites (Sites 1
and 2). This random pattern, with a lack of grouping for sites,
showed that slope position (upper vs lower) had a larger effect on
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Table 3. Algae and cyanoprokaryotes identified from the different soil samples collected from the eight sites
dom, dominant; s/dom, subdominant; +, present

Species

Abbreviations
used in Fig. 3

Siliciclastic rocks
Site 1 Site 2

Mafic and ultramafic rocks

Site 3 Site 4 Site 5

Serpentine
Site 6 Site 7 Site 8

Cyanophyceae

Chroococcus sp.

Komvophoron cf. schmidlei (Jaag)

Anagnostids et Komarek

Leptolyngbya foveolarum (Rabenhorst
ex Gomont) Anagnostidis
et Komarek

Lyngbya major Meneghini

Lyngbya cf. truncicola Ghose

Microcoleus vaginatus (Vauch.) Gom.

Nostoc commune Vauch. sensu Elenk.

Nostoc linckia (Roth.) Born. et Flah.
in sensu Elenk.

Nostoc punctiforme (Kiitz.) Hariot

Nostoc sp.

Oscillatoria limosa Ag.

Oscillatoria raoi De Toni

Phormidium ambiguum Gomont

Phormidium animale (Agardh ex
Gomont) Anagnostidis et Komarek

Phormidium cf. corium (Ag.) Kiitz.
ex Gomont

Phormidium cf. jenkelianum Schmid

Phormidium jadinianum Gomont

Phormidium mucicola Naum. et Hub.-
Pestalozzi

Pseudanabaena cf. minima (G.S.An)
Anagnostidis

Pseudanabaena frigida (Fritsch)
Anagnostidis

Pseudanabaena sp.

Scytonema myochrous (Dillw.) Ag.
ex Born. et Flah.

Scytonema ocellatum Born. et Flah.

Scytonema sp.

Synechocystis crassa Woronich.

Total Cyanophyceae

Chlorophyceae
Bracteacoccus cf. grandis Bischoff
et Bold
Bracteacoccus minor (Chod.) Petrova
Bracteacoccus sp.
Characiopsis minima Pascher
Chlamydomonas macrostellata Lund
Chlamydomonas sp.1
Chlamydomonas sp.2
Chlorella munitissima Fott et Novakova
Chlorella vulgaris Beijerinck
Chlorella sp.
Chlorococcum echinozygotum Starr
Chlorococcum infusionum (Schrank)
Meneghini
Chlorococcum oviforme Archibald
et Bold
Chlorococcum vacuolatum Starr
Chlorococcum sp.1
Chlorococcum sp.2

Chro
Kom

Lepto

Lynl
Lyn2
Micro
Nosl
Nos2

Nos3
Nos4
Oscl
Osc2
Phol
Pho2

Pho3

Pho4
Pho5
Pho6

Pseul
Pseu2
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Table 3. (continued)
Species Abbreviations Siliciclastic rocks Mafic and ultramafic rocks Serpentine
used in Fig. 3 Site 1 Site 2 Site 3 Site 4 Site 5 Site 6 Site 7 Site 8
Chlorosarcinopsis aggregata Arce Chlsl +
et Bold
Chlorosarcinopsis minor (Gerneck) Chls2 s/dom + +
Herndon
Chlorotetraedron sp. Chlt +
Hormotilopsis gelatinosa Trainor Hormo +
et Bold
Interfilum sp. Inter + +
Klebsormidium flaccidum (Kiitz.) Kleb +
P.C.Silva, Mattox et W.H.Blackwell
Myrmecia biatorellae (Tschermak- Myrm +
Woess) J.B.Petersen
Pleurococcus Pleur +
Scenedesmus sp. Scene +
Scotiellopsis rubescens Vinatzer Scotl +
Scotiellopsis terrestris (Reisigl) Scot2 + + +
Puncochar ova et Kalina
Spongiochloris sp.1 Spongl + +
Spongiochloris sp.2 Spong2 + + +
Tetracystis aggregata Brown et Bold Tetral + +
Tetracystis elliptica Nakano Tetra2 +
Tetracystis sp. Tetra3 + +
Total Chlorophyceae 12 7 1 7 5 8 10 9
Eustigmatophyceae
Eustigmatos magnus (J.B.Petersen) Eust + + + s/dom +
Hibberd
Monodopsis subterranea (J.B.Petersen) Mono + +
Hibberd
Total Eustigmatophyceae 1 1 0 0 1 1 1 2
Xantophyceae
Botrydiopsis arhiza Borzi Botryl s/dom
Botrydiopsis sp. Botry2 +
Bumilleriopsis filiformis Vischer Buml s/dom
Total Xantophyceae 0 1 0 0 0 1 1 0
Bacillariophyceae
Amphora veneta Kiitzing Amphl +
Pinnularia borealis Ehrenberg Pin + + s/dom
Navicula mutica Kiitzing Navl + +
Navicula pelliculosa (Kiitzing) Hilse Nav2 + +
Navicula veneta Kiitzing Nav3 +
Hantzschia amphioxys (Ehrenberg) Hant + s/dom dom s/dom s/dom + + +
Grunow
Total Bacillariophyceae 4 1 1 3 4 1 2 1
Total species richness 24 14 6 19 14 16 22 20

diversity. Cyanoprokaryote species were less associated with
the foot slope of pyroxenite-magnesium rich soil in Steelpoort
(Site 3), with a Student’s #-test supporting a significant difference
from those at Sites 1 (P=0.03), 4 (P=0.03), 7 (P=0.007) and 8
(P=0.01). The pattern also showed that the lithic class may be
less important than the slope position, in determining the algal
and cyanoprokayote species present at the sites.

Discussion

It is widely reported that cyanoprokaryotes are well adapted to
a wide range of environmental conditions and have an ability

to grow on a variety of substrates, such as mine tailings (Lukesova
2001; Orlekowsky et al. 2013), barren artic soils (Michaud et al.
2012), arid regions (Rehakova ef al. 2011; Miihlsteinova et al.
2014) and alkaline and serpentinising springs (Blank et al. 2009;
Suzuki et al. 2013). Our preliminary study documented that
cyanoprokaryotes and algae are found on mafic and ultramafic
soils in South Africa and that slope position plays arole in species
composition. Leptolyngbya foveolarum, Microcoleus vaginatus,
Phormidium ambiguum, Chlamydomonas, Chlorococcum,
Eustigmatos magnus as well as Hantzschia amphioxys were
present on all three foot-slope sites at Ohrigstad, Burgersfort
and Malelane (Sites 1, 6 and 7). Environmental conditions such as
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Fig. 3. Canonical correspondence analysis (CCA) of metal concentrations
Abbreviations of species are given in Table 3.

an increase in soil moisture as a result of runoff and the
accumulation of organic matter (Chen et al. 2007) could have
played arole in the assembly of certain species on foot slopes. The
cyanoprokaryotes Leptolyngbya foveolarum and Phormidium
ambiguum were also present at the foot slope of the Mg-rich
pyroxenite soil (Site 3), whereas Microcoleus vaginatus,
Chlamydomonas, Chlorococcum and Eustigmatos magnus did
not occur at this site. The absence of these algae as well as the low
diversity observed at Site 3 could be the result of the high
concentrations of Cd (0.01 mg kg ') and Hg (0.0046 mg kg ")
measured at this site. According to Fernandez-Pifias et al. (1995),
Cd induces progressive disorganisation and degradation of
thylakoid membranes as well as a decrease in the mobilisation
of the polyphosphate granules leading to phosphorus starvation.
Pinto et al. (2003) showed that Cd and Hg inhibit photosynthesis.
However, further experimentation is clearly needed to determine
whether Cd and Hg were responsible for the reduced diversity
observed at this site.

and algal and cyanoprokaryote species of the different sampling sites.

Most of the cyanoprokaryotes were represented by filamentous
species such as Leptolyngbya foveolarum, Microcoleus vaginatus
and Phormidium ambiquum, and were found at all eight sampling
sites. These filamentous cyanoprokaryotes can wind throughout
the uppermost soil layers, forming a net-like structure that binds
together soil particles (Rosentreter et al. 2007). This forms
soil aggregates that create pathways for water infiltration and
surfaces for nutrient transformations, while also increasing the
soil resistance to wind and water erosion. Once the filamentous
cyanoprokaryotes stabilise the soil, single-celled cyanoprokaryotes
such as Synechocystis sp. are able to colonise the substrate
(Rosentreter et al. 2007). The Chlorophyceae, represented
by mainly coccoid species such as Chlamydomonas and
Chlorococcum, were found on all the sites except at Site 3.
Chlorococcum echinozygotum and Chlamydomonas macrostella
were subdominant on the siliciclastic-derived soils of Sites 1 and 2,
respectively. Bacillariophyceae, such as Hantzschia amphioxys,
was found on all the sites and was subdominant at Sites 2, 4 and 5
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and dominant at Site 3. According to Metting (1981),
Leptolyngbya, Microcoleus, Phormidium, Chlamydomonas,
Chlorococcum and Hantzschia species are all typical
cosmopolitan soil algae.

Shields and Durell (1964) and Starks and Shubert (1982)
suggested that the species composition of soil algal populations
is affected less by the chemical nature of the substrate than by
certain physical properties that influence soil moisture levels.
During February 2012, when sampling took place, the study area
had received between 50 and 200 mm rain, which accounts for
more than 75% of the expected average summer rainfall for the
area (South African Weather Service 2012). Moisture was,
therefore, not a limiting factor and the chemical nature of the
soils, along with other abiotic habitat features, appear to have
influenced species richness and composition. In addition to
the abiotic conditions such as edaphic features, biotic factors,
especially the type of vegetation, can influence diversity and
community composition of cryptogamic biota. For example,
Rosentreter et al. (2007) documented that vagrant populations
of Dermatocarpon occur on poorly drained basalt flats dominated
by Artemisia rigida, A. papposa, Antennaria flagellaris and
Poa sandbergii. The ecological conditions found at such sites
can support completely or partially vagrant life forms in
Dermatocarpon and other lichen genera. The differences in
vegetation cover of the plant communities at the sampling sites
(Sites 1-8) could have created microenvironments that favour
specific algal and cyanoprokaryote species assemblages. Sites
1-7 had moderate cover, whereas Site 8§ was an open savanna
characterised by numerous bare soil patches (serpentine effect).

Twenty different species were identified at Site 8 (serpentine),
despite this site showing elevated concentrations of heavy metals,
including Co, Cr, Fe, Mn and Ni (Table 2). Chroococcus sp.,
Scytonema ocellatum, Nostoc linckia, Chlorotetraedron sp.,
Hormotilopsis  gelatinosa,  Klebsormidium  flaccidium,
Pleurococcus sp. and Tetracystis elliptica were unique to this
site. Metals can be divided into those that are required by
organisms in small quantities, such as Fe, Cu and Zn, which
are essential in some biochemical reactions (Raven ef al. 1999),
and non-essential metals such as As, Pb, and Hg, which may cause
severe harm to organisms even at very low concentrations
because they do not provide any known biochemical function
(Monteiro et al. 2012). However, the toxic effects of metallic
elements on microalgae are complex and differ markedly among
species, depending on the element itself and the prevailing
environmental conditions (Monteiro et al. 2012). Stark and
Shubert (1979) reported a positive correlation between Mn, N,
P, silica (Si), Al, zinc (Zn) and Pb concentrations and algal
abundance, and a negative correlation with Na, Cd, Cu,
lithium (Li), Mo and strontium (Sr). Cyanoprokaryotes have
developed efficient strategies for metal uptake and
accumulation (Shcolnick and Keren 2006). According to
Keren et al. (2002), cyanoprokaryotes are able to accumulate
high concentrations of Mn in the envelope layers of their cells.
Whether the high Mn supports the growth of cyanoprokaryotes or
reduces competition by other groups that are less tolerant of Mn
was unclear. Soil pH plays a critical role in the bioavailability of
heavy metals (Rajakaruna and Boyd 2008) and, although
serpentine Site 7 had high metal concentrations, the relatively
higher pH at this site may have made those metals less
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bioavailable (Neilson and Rajakaruna 2012). Hence, it was
unclear whether the higher algal diversity at this site resulted
from metal tolerance or reduced metal toxicity owing to lower
metal availability. However, algae are able to grow in the presence
of heavy metals as a result of a variety of tolerance mechanisms,
for example, binding to cell wall, precipitation in vacuole and
synthesis of heavy metal-binding compounds such as proteins,
organic acids and phenolic compounds (Metha and Gaur 2005).
Serpentine soils are renowned for low Ca: Mg ratio; however,
DeGrood et al. (2005) found that low Ca: Mg ratio does not
significantly explain variation in microbial community patterns;
also, our study did not show a strong correlation between algal
diversity and Ca: Mg. Microbes may, therefore, be responding
to increased soil organic matter concentrations, probably because
of the associated increases in nutrient availability and water-
holding capacity.

Algae as a group are physiologically heterogeneous, making
any generalisation about their soil relations difficult (O’Kelly
1974). However, favourable soil pH, moisture conditions and
nutrient content contribute to species diversity and community
composition (Shields and Durell 1964). The multivariate analyses
did not suggest a distinct species association for serpentine sites
(Sites 7 and 8). This was also true for the mafic and ultramafic sites
(Sites 3,4, 5 and 6) as well as the siliciclastic sites (Sites 1 and 2).
The lack of a strong correlation with lithic type and a stronger
correlation with slope position suggests that the type of slope
may be more important in influencing diversity. Site pairs 1 and 2,
3 and 4 as well as 5 and 6 were sampled at different slope
positions and, at times, shared similar species associations
based on slope position (Fig. 3).

Conclusions

It seems unlikely that soil chemistry alone was responsible
for determining species diversity and no unique algal flora
for serpentine soils was confirmed. However, the serpentine
soil at Kaapschehoop (Site 8) did have a unique species
assemblage, comprising Chroococcus sp., Chlorotetraedron
sp., Hormotilopsis gelatinosa, Klebsormidium flaccidium
Pleurococcus sp. and Tetracystis elliptica. However, this
requires further investigation to determine whether it was a
lithic or climatic effect.

Soil features, along with other biotic (vegetation composition)
and abiotic (slope, exposure) habitat characteristics, may
influence the presence and dominance of some algal and
cyanoprokaryote species in harsh edaphic settings. Our results
suggested that topography (i.e. slope position), rather than the
chemistry of'the lithic class (i.e. rock type), was most important in
influencing species diversity. However, high concentrations of
heavy metals also influenced species richness as well as
community composition.

The characterisation of microbial communities using an
isolation approach can be biased because this approach tends
to favour some groups of microbes over others. Therefore, in the
future, we plan to incorporate molecular approaches (Bjelland
et al. 2011; Daae et al. 2013) to characterise the diversity of
cyanoprokaryotes and soil algae at our sites. Additionally, the
ecological heterogeneity within each site should be taken into
consideration, because our sampling strategy (i.e. pooling of soil
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samples) did not allow for detecting species that may be
restricted to distinct microhabitats found within our sites. A
composite sample does not allow for a correlation with biotic
and abiotic factors, but gives a general and preliminary view on
the diversity at each site. Although our findings are preliminary,
the study sets the stage for detailed investigations on the relative
importance of edaphic versus other habitat features on algal and
cyanoprokaryote diversity and community assembly.
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