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ABSTRACT 
For learning and classification workloads that operate on large 
amounts of unstructured data with stringent performance 
constraints, general purpose processor performance scales poorly 
with data size. In this paper, we present a programmable 
accelerator for this workload domain. To architect the 
accelerator, we profile five representative workloads, and find 
that their computationally intensive portions can be formulated 
as matrix or vector operations generating large amounts of 
intermediate data, which are then reduced by a secondary 
operation such as array ranking, finding max/min and 
aggregation. The proposed accelerator, called MAPLE, has 
hundreds of simple processing elements (PEs) laid out in a two-
dimensional grid, with two key features. First, it uses in-memory 
processing where on-chip memory blocks perform the secondary 
reduction operations. By doing so, the intermediate data are 
dynamically processed and never stored or sent off-chip. Second, 
MAPLE uses banked off-chip memory, and organizes its PEs into 
independent groups each with its own off-chip memory bank. 
These two features together allow MAPLE to scale its 
performance with data size. This paper describes the MAPLE 
architecture, explores its design space with a simulator, and 
illustrates how to automatically map application kernels to the 
hardware. We also implement a 512-PE FPGA prototype of 
MAPLE and find that it is 1.5-10x faster than a 2.5 GHz quad-
core Xeon processor despite running at a modest 125 MHz.   

Categories and Subject Descriptors 
C.3 [Computer Systems Organization]: Special-purpose and 
Application-based Systems – Microprocessor/microcomputer 
applications.  

General Terms 
Design, Experimentation, Measurement, Performance. 

Keywords 
Accelerator-based systems, parallel computing, heterogeneous 
computing, machine learning 
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1. INTRODUCTION 
Applications that examine raw, unstructured data in order to 
draw conclusions and make decisions are becoming ubiquitous. 
Banks and credit cards companies, for instance, analyze 
withdrawal and spending patterns to prevent fraud or identity 
theft. Online retailers study website traffic patterns in order to 
predict customer interest in products and services based upon 
prior purchases and viewing trends. Semantic querying of text 
and images, which has wide-ranging, mass market uses such as 
advertisement placement [1] and content-based image retrieval 
[2], is another fast growing application domain.  

Such applications extensively use learning and classification 
techniques. With increasing amounts of data, the computational 
load imposed by these techniques becomes severe as they must 
be executed under stringent performance constraints. Scaling 
application performance with data assumes importance. As an 
example, for semantic text search, a server using a learning 
algorithm such as Supervised Semantic Indexing [3] must search 
millions of documents at a few milliseconds per query. Another 
example is face and object recognition in high resolution video 
that is often done with Convolutional Neural Networks (CNNs) 
[4]. A server performing this task must search VGA (640x480) or 
higher resolution images at rates of 24 or more frames per 
second. Often, economic considerations dictate that multiple 
video streams be processed simultaneously on one server. Our 
fastest parallelized software implementation on a quad-core 2.5 
GHz Xeon server processes about 7 VGA frames per second, 
while GPU implementations [11] can reach 10 frames per 
second, both falling far short of requirements. Other similar 
workloads include digital pathology [15], automotive applications 
to predict failures and reduce recalls, financial analytics and 
cognitive databases. 

Motivated by this gap between workloads and state-of-the-
art computing platforms, we investigate a parallel accelerator for 
learning and classification applications, and an accompanying 
tool to automatically map application kernels to the accelerator 
hardware. To design the accelerator, we profile five 
representative workloads: Supervised Semantic Indexing [3], 
Convolutional Neural Networks [4], K-means [5], Support Vector 
Machines [6] and Generalized Learning Vector Quantization [7], 
and find that their computational kernels exhibit two common 
characteristics. First, they can be formulated as matrix or vector 
operations producing large intermediate data (potentially leading 
to many off-chip memory accesses), that are then reduced by a 
secondary operation such as array ranking, finding min/max and 
aggregation. Second, they exhibit coarse-grained as well as fine-
grained parallelism, i.e., the computations can be partitioned into 
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parallel streams with little communication between them, with 
each stream processed by hundreds of simple parallel processing 
elements.  

With this in mind, we architect MAPLE (MAssively 
Parallel Learning/Classification Engine), an accelerator with 
hundreds of simple vector processing elements (PEs) and two 
key features that directly address the above workload 
characteristics. First, MAPLE’s on-chip memories are capable of 
in-memory processing which allows the large intermediate data 
to be processed on-the-fly thereby reducing off-chip memory 
accesses. Second, MAPLE uses banked off-chip memories with 
each memory bank serving a separate group of PEs, thereby 
creating processor-memory channels that can process the coarse-
grained, independent computation streams. These two features 
make MAPLE’s performance scale more easily with problem and 
data size. 

While several prior efforts have developed FPGA and GPU 
implementations of individual algorithms such as SVMs [8][9], 
CNNs [10][11] and K-means [14], to the best of our knowledge, 
a more general, programmable architecture that is optimized 
across a range of learning and classification workloads has not 
yet been published. We believe the study and development of 
accelerators for this domain will become necessary as learning 
and classification techniques become ubiquitous. 

To this end, we make the following contributions in this 
paper. We present the architecture of MAPLE, a parallel 
accelerator for learning and classification, and evaluate the use of 
in-memory processing for learning and classification 
applications. We present a strategy to automatically map 
application kernels to MAPLE. Using an FPGA prototype, we 
compare MAPLE’s performance against parallel, optimized 

software implementations of learning and classification 
algorithms on multi-cores and GPUs. 

The rest of the document is organized as follows. We 
discuss related work in Section 2, and describe our workloads in 
Section 3. In Section 4, we describe the MAPLE architecture, 
explore its design space and present a compilation strategy. In 
Section 5, we present our FPGA prototype and performance 
measurements. We conclude in Section 6. 

2. RELATED WORK 
Prior work in accelerating learning and classification workloads 
can be classified broadly into four categories: (i) optimized, 
parallel libraries for multi-core CPUs, (ii) optimized 
implementations on graphics processors (GPUs) [9][10][11][14], 
(iii) algorithm-specific accelerators on FPGAs [8] and (iv) other 
embedded and analog hardware implementations.  

Multi-core CPUs and many-core GPUs [18][21] 
accommodate diverse learning and classification workloads 
through programmability. However multi-cores cannot avail of 
the fine-grained data parallelism inherent in these workloads due 
to thread synchronization overheads and inadequate memory 
bandwidth. In addition, GPUs do not have banked memory-
processor channels, and require multiple independent parallel 
streams to be coalesced and synchronized. Neither CPUs nor 
GPUs have enough on-chip storage to handle the large 
intermediate data generated by these applications. In this paper, 
we quantitatively compare MAPLE to both CPU and GPU 

implementations, using optimized software libraries such as Intel 
MKL BLAS and NVIDIA’s CUBLAS.  

Several prior efforts have developed algorithm-specific 
implementations of SVMs [27], CNNs [23] and deep learning 
[26]. There are also architectures [19] and FPGA 
implementations that accelerate matrix computations [24][25]. 
MAPLE is not algorithm-specific, not restricted to matrix 
operations, and can be programmed for different learning and 
classification algorithms. We compare MAPLE’s performance 

with published algorithm-specific numbers from [23] and [27]. 

3. WORKLOAD ANALYSIS 
We use five learning and classification workloads to help 
architect MAPLE. In this section we (i) profile these workloads 
to identify computational bottlenecks and make the case for an 
accelerator, (ii) study the nature of the computational bottlenecks 
(compute or memory bound), (iii) reformulate the computational 
bottlenecks using a set of common primitives and (iv) identify 
broader characteristics common to all the reformulated 
computational bottlenecks that the accelerator architecture must 
support.  

The five algorithms we use are Supervised Semantic 
Indexing (SSI) [3], Convolutional Neural Networks (CNNs) [4], 
K-means [5], Support Vector Machines (SVMs) [6] and 
Generalized Learning Vector Quantization (GLVQ) [7]. SSI 
ranks a large number of documents based on their semantic 
similarity to the queries. CNNs are 2-dimensional neural 
networks used for pattern recognition in applications such as 
object and face detection [10][11], and recently even semantic 
text search [12]. K-means clusters points into K clusters, and is 
commonly used in computer vision for image segmentation. SVM 
training finds support vectors that separate given training data 
into distinct classes indicated by the training data labels. GLVQ 
is a supervised learning algorithm to classify an input into one of 
several classes.  

We profile each algorithm using typical data set sizes (Table 
1, column 3), and summarize the characteristics in Figure 1. The 
table shows the core computations in each workload and the 
fraction of the total running time they are responsible for. The 
execution profiles were measured on a 2.5 GHz quad core Xeon. 
It is clear that significant speedups are achievable by accelerating 
the core computations. The table also shows whether the 
workload is compute or memory bound, and the number of 
computations per memory operation. A memory bound workload 
performs one or fewer computations per memory load or store. 
MAPLE targets these core computations, providing adequate 
processing and I/O resources for both compute and memory 
bound workloads. 

We now examine the computational bottlenecks of these 
workloads in more detail to find common characteristics and a 
set of primitives that may be used to design the accelerator. 
Figure 1 shows the five workloads, their typical parameters and 
how the computational bottleneck may be transformed into a 
common set of primitives.  

In SSI [3], given D documents, we find K semantic best 
matches for each of Q concurrent queries. This amounts to a 
series of dot-products between the document and query vectors, 
followed by a ranking process to extract the top K matches. 
These operations may be transformed into matrix multiplications 
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(by reorganizing the document and query vectors into matrices) 
which produces a large intermediate result matrix, and array 
ranking to rank each column of the intermediate matrix and 
produce the final result.  

CNN [4] convolves images with “kernels”, which are small 

weight matrices that are part of a given CNN network. We 
express convolutions as matrix operations by creating matrices 
out of different parts of the input images, multiplying with the 
kernels and using the result matrices to update different portions 
of the output image. This requires specialized memory access 
patterns that mimic a convolution operation.  

In K-means, the computational bottleneck is finding the 
closest of mean for N points. This can also be expressed as a 
matrix multiplication followed by a procedure to find the 
minimum element in each row of the intermediate result matrix. 
SVM’s core computation is a large matrix-vector multiplication, 
where the matrix is typically too large for on-chip caches. 
Finally, GVLQ requires a matrix-vector multiplication followed 
by a minimum finding operation.  

From Figure 1 we note that: (i) matrix operations are a 
common primitive, but matrix sizes vary from very small (CNN 
kernels) to very large (SVM), (ii) one matrix operand is constant 
while the other changes, (iii) a large intermediate result is 
produced before being reduced to a relatively small final output, 
(iv) the primitives used to reduce the intermediate result (array 
rank, find minimum) can be implemented using in-memory 
processing and (v) specialized memory access patterns are 
required (e.g., CNN). We architect MAPLE with these 
requirements in mind. 

4. MAPLE ARCHITECTURE AND 
COMPILATION SCHEME 
In this section, we present the MAPLE architecture, explore its 
design space and sensitivities with a simulator and present ways 
of automatically mapping application kernels to the hardware. 

Table 1: Workload characteristics 

Workload Core computations % time 
(profile) Characteristic Compute ops per 

memory operation 

SSI Series of dot products, array 
rank > 99% Dot prod: compute bound             

Array rank: memory bound 
Dotprods: 25-50     

Array rank: 0.001 

CNN 1D, 2D, 3D convolutions             > 99% Compute bound 16-100 

K-means Minimum Euclidean dist. ~96% Marginally compute bound 1-3 

SVM Large matrix-vector mult. 85-95% [27] Memory bound 1 

GLVQ Minimum Euclidean dist.       > 99% Memory bound <1 

 

WORK
LOAD

Problem 
Description

Typical 
Params

Computational Bottleneck (after transformation)

SSI

For each of Q 
queries, find K out 
of D documents 
that are semantic
best matches

D : few 
millions
Q : 32 - 128
K :  64 – 128

CNN
Extract features 
from streaming
images

Image:
640x480
CNN:  100s of 
5x5 to 10x10 
“kernels”

Repeated image-kernel 
convolutions. Reformulated 
as matrix operations.

K-
means

Given N points of 
dimension d and K 
means, find the 
closest mean for 
each point

N : 100,000s
d : 3 to 5
K : 8-64

SVM

Repeatedly multiply
N training vectors 
of dimension d by 1 
vector

N : 1-4 million
d : 500-5000

GLVQ

Class of input 
vector = class of 
closest of N 
reference vectors

N : 100-1000s 
Vector Dim d: 
100s
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Figure 1: Transforming each workload’s bottlenecks to a common set of primitives 
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4.1 Architecture 
From the workload analysis, we find the architecture must 
support matrix and vector operations (both large and small 
matrices), handle large intermediate data and perform reduction 
operations such as array ranking, finding max/min and 
aggregation. These requirements lead us to the following design 
decisions. 

First, matrix and vector operations are implemented by 
streaming data through a two-dimensional array of fine-grained 
vector processing elements (PEs). This allows minimizing 
instruction overhead and accelerating operations involving small 
matrices as well large matrices. Second, we use in-memory 
processing to handle the intermediate data on-the-fly. By 
performing reduction operations using on-chip memory blocks, 
we obviate the need for off-chip accesses to store and reload 
intermediate data. 

We spatially lay out the PEs so that each PE produces a few 
elements of the output matrix. Each PE has its own local storage. 
By distributing the columns of one matrix across all PEs and 
streaming the rows of the other matrix through each PE, matrix 
multiplication is performed naturally (with each PE performing a 
multiply-accumulate of the streaming row and its stored column). 
PEs stream results into “smart memories” that perform in-
memory processing of the intermediate data (e.g., finding 
minimums, ranking arrays, etc). Finally, to support complex 

access patterns that may result when applications such as CNN 
are cast as matrix operations, we provide an input buffer that 
may be addressed by the processing fabric and a memory 
controller that can support custom access patterns from off-chip. 

Figure 2 shows the details of the core architecture of 
MAPLE. A core has P vector PEs organized as H processing 
chains of M PEs each (P=H*M). Each chain has a bi-directional 
nearest neighbor interconnect (“intra-chain”) along which inputs 

are propagated from left to right and outputs from right to left. 
The first PE in every chain accepts inputs from an input buffer 
(labeled input local store). Each PE also has a private local store 
which can be written with data from off-chip. A PE chain sends 
its outputs to the smart memory block, one of which is available 
to each processing chain, which performs in-memory processing 
like array ranking, finding min/max or aggregation. Each PE 
takes two vector operands as inputs, one from its local store, and 
the other streaming from the input buffer. 

MAPLE (Figure 3) has C processing cores each connected 
to two off-chip memory banks. It is connected to a general-
purpose host computer via a communication interface such as 
PCI. A high bandwidth bus connects each memory bank to its 
corresponding core. A switch enables the core to alternate 
between memory banks for inputs and outputs, or use both banks 
for inputs or outputs. Each core also has a separate instruction 
memory bank that is written by the host. The host can also write 
to the data memory banks via a slower bank-to-bank 
interconnection network. The architecture is tailored to 
applications that can be parallelized into separate memory-
processor core “channels”, with infrequent communications 

across the channels. The memory architecture can scale by 
increasing the number of banks. 

 Processing Elements and their Interconnection: The PEs, 
shown in Figure 4(A), perform standard ALU, multiply and 
multiply-accumulate operations in a single cycle. A PE is a 
simple vector processor with two operands - one from the PE on 
its left via the intra-chain interconnect, and the other from its 
private local store. The intra-chain interconnect bus is M words 
wide and matches the number of PEs in the chain. Thus the PE 
chain can perform up to M vector operations at a time. A PE can 
select any word from its intra-chain interconnect bus, leading to 
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Figure 2: Architecture of a MAPLE processing core 
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different parallelization modes for the chain: the M PEs in a 
chain can operate on M different streaming words as well as on 
the same word. The PE stores outputs to its smart memory block 
and can continue processing the next vector in the next cycle. 
Unless the smart memory block issues a stall, a store takes M 
cycles. This latency can be hidden by the next vector operation if 
the vector size is large enough. To facilitate indexing of results (a 
feature required for K-means and GVLQ), a PE also sends its ID 
along with the results to be stored. 

Smart Memory Blocks: Each chain in a MAPLE core has a 
memory block capable of two atomic store operations. The first is 
a variable latency store for selection and ranking operations in 
large arrays, and the second a read-modify-write. The memory 
block can be written to only by the processing chain, and is read 
by the reduce network. Figure 4(B) shows relevant architectural 
components of the smart memory architecture for selecting the 
top k elements in an array given a function to compare two 
elements: (i) a filter with the programmed compare function 
(CMP), a threshold value (VAL) and threshold address (ADDR), 
(ii) a list of k elements (LIST) and (iii) a hardware list scanner. 
The array elements are streamed in and compared with threshold 
VAL. If the comparison succeeds for an array element, it replaces 
VAL located at ADDR in LIST. The scanner then scans LIST to 
find a new threshold value and address and updates the filter. If 
the comparison fails, the element is discarded. When k is small 

compared to the array size, there are more discards than 
insertions. In the event of an insertion, the store operation stalls 
the processor in order to scan LIST and update the filter. 

4.2  Mapping applications onto MAPLE 
In order to program MAPLE, the user expresses application 
kernels in terms of a primary operation (i.e., matrix 
multiplication) and a reduction function (e.g., finding max/min 
for K-means and GLVQ, ranking arrays for SSI). At a low level, 
MAPLE is programmed using specialized assembly. In order to 
free the programmer from low level programming issues, we 
provide a tool that, given the input matrices and the reduction 
function: (i) maps the data onto input- and PE- local stores, (ii) 
maps data and reduction operations onto the smart memory 
blocks, and (iii) generates the assembly used to program 
MAPLE.  

MAPLE’s design goals are to handle matrices of various 

sizes, and minimize intermediate data by performing reduction 
operations using smart memory blocks. Data placement and 
smart memory configuration are key aspects. The mapping 
algorithm determines the data placement by analyzing the sizes 
of input matrices A and B. Assuming that A is streamed from the 
input local store and B is stored in the PE local stores, a 
fundamental output of the mapping process is the parallelism 
mode parameter that determines how B is split across PEs. 
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Figure 4: The MAPLE (A) PE and (B) smart memory block 
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Figure 5: Mapping matrices to MAPLE with different parallelism modes: (a) each column of B duplicated across 2 PEs 
(parallelism doubled), (b) 1 column of B per PE and (c) columns of B split into X and Y to fit the PE local stores (parallelism 
halved). 
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Figure 5 illustrates how the parallelism mode pm affects the 
mapping. If pm is greater than one, each column of the matrix B 
is replicated on pm PEs. Those PEs will process different rows of 
matrix A concurrently, and the results will relate to different 
rows of the output matrix. If pm is less than one, each column of 
B is split into 1/pm portions stored on different PEs. Rows of A 
are split as well and properly distributed to the PEs. In this case, 
the smart memory will need to accumulate results from the 
different PEs processing the same column before performing the 
reduction operation. Therefore, the parallelism modes affects: (i) 
the data placement in the PE local stores, (ii) the data 
distribution from the input local store to the PEs, (iii) the smart 
memory configuration. 

Figure 6 shows how two matrices are mapped onto MAPLE. 
The mechanism can be generalized to multiple matrices. It is 
based on the larger matrix (A) streaming row-wise from the input 
local store, and the smaller matrix (B) mapped column-wise onto 
the PE local stores. Either matrix may be blocked if it is too large 
to fit its memory. For matrix B, each local store will potentially 
accommodate one or more columns. If B is small, the same 
column is mapped onto different PEs (pm > 1). In this case, PEs 
containing the same column of B will process different rows of A 
concurrently. If the columns of B are too large to fit in a single 
PE local store, they are split over multiple PEs (pm < 1). During 
operation, the rows of A will be split and directed to the correct 
PE. 

Input: matrixes M1(m,k) and M2(k,n)

m*k >k*n

A(AR,BR) = M1

B(BR,BC)= M2

A(AR,BR) = M2
T

B(BR,BC)= M1
T

Column Bi fits PE_LS

Each PE_LS will be assigned 
one or more columns Bi

Does whole 
B fit on-chip PE_LS

parallelism_mode=1
B_blocks = BC /(col_per_PE*num_PE)

parallelism mode = 2X

(maximum amount of 
replication of columns Bi

across different PEs allowing 
B to fit on-chip LS)
B_blocks = 1

Each column Bi will be split 
across different PE_LS 

Does Bi fit a 
PE chain

parallelism mode = 1 / 
(PE_per_chain * chain_per_col)

parallelism mode  = 1 / 2X (2X being 
min number of PE_LS that store Bi)

B_blocks = BC/(parallelism_mode*num_PE) 

T F

T

T T

F

F
F

Matrix A will be streamed
from input-LS, matrix B
will be loaded onto PE_LS

 

Figure 6: Block diagram showing the mapping of matrices M1 and M2 onto the accelerator 

SET_PARALLEL_MODE parallelism_mode    ; sets the parallelism mode 
SET_SM_REDUCTION reduction_operation      ; configures the reduction performed by smart memories 
SET_A_NUM_ROWS a_num_rows                      ; sets number of A rows present in each A_block 
SET_B_COL_SZ b_col_size    ; sets the size of the portion of B column fitting a PE local store 
SET_B_NUM_COLS b_num_cols                         ; sets the number of B columns stored in each PE local store 
for each A_block {      ; A_blocks consist of A rows 

WRITE_A A_block     ; transfers an A_block from DRAM into input local store    
for each B_block {     ; B_blocks consist of B columns  

WRITE_B B_block     ; transfers a B_block from DRAM into input local store 
SET_INPUT_LS_ADDR 0    ; resets the active address in input local store 
for each A_row_group {                                  ; A_row_group consists of A rows processed concurrently  
    for b_col: 0..b_num_cols { 
      SET_PE_LS_ADDR b_col*b_col_size             ; sets the address in PE_mem to load the B data from 

SET_SM_ADDR result_addr  ; sets the address in smart memory for partial results  
         MULT_ACC_DUMP b_col_size                     ; performs b_col_size MACC and sends result to smart mem    

        } 
        INC_INPUT_LS_ADDR sz(A_row_group)  ; increments the address in input local store to read from   
    } 
} 
DUMP_SM                  ; dumps the content of smart memory                       

} 
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The pseudo-code above shows the assembly code 

generation. Bold keywords represent generated assembly 

directives, and italicized keywords represent configuration 

variables provided by the user or parameters produced by the 

mapping tool. A_blocks and B_blocks are row-wise and column-

wise portions of A and B matrixes fitting the input- and the PE-

local stores, respectively. The example assumes partial results 

computed on A-blocks fit the smart memory. 

SET_PARALLEL_MODE affects how B is mapped onto the PE 

local stores, potentially with column replication (pm > 1) or 

splitting (pm < 1). It also affects how the rows of A are 

distributed to the PEs, as well as the smart memory 

configuration. SET_SM_ADDR instructs the first PE of each 

chain; the remaining PEs are automatically configured based on 

pm. If B is a (BR,BC) matrix, b_col_size is equal to BR if pm is 

greater than one, and to BR*pm otherwise. 

Taking SSI as an example, the user may provide the 

following inputs: document matrix of size 2M document x 64 

categories, query matrix of size 64 categories x 64 queries, and 

reduction operation equal to top-64 ranking. The mapping phase 

will set matrix A to be document matrix, and matrix B to be the 

query matrix. Additionally, assuming 4B data, 32 chains of 8 PEs 

each, 2KB PE local stores and 64KB input local stores, the 

mapping algorithm will produce the following parameters to 

configure the assembly generator code: pm = 8, B_block = 1, 

A_block = 7813, a_num_rows = 256 (zero-padding is performed 

in the last A_block), b_col_size = 64 and b_num_cols = 2. Figure 

7 summarizes the outcome of the mapping process on the 

considered workloads. 

4.3 Architectural exploration 
We developed a C++ cycle-accurate simulator that takes as input 

assembly code for applications mapped to MAPLE and an 

architectural configuration file that specifies the off-chip memory 

architecture (banks and bandwidth) and processor layout, and 

produces an estimate of MAPLE’s execution time. 

Table 2 shows the different parameters of MAPLE. We seek 

to find, given an off-chip memory organization and processor 

budget, the processor layout (chain size and number of chains) 

that maximizes performance for different applications. We use 

different instances of SSI, CNN and K-means as examples to 

explore the architectural design space. 

We used an SSI instance of 2M documents, each expressed 

as a vector of size 100, and extracted the top 32, 64 and 128 best 

matches (i.e., K=32, 64, 128). We simulated this for 1024 

queries across various chain lengths (Figure 8(A)). Because of 

MAPLE’s smart memories that rank arrays dynamically, the 

number of cycles was largely insensitive to K. The processor 

layout with the best performance was when the chain size was 6-

8 processors. This is because in our SSI mapping, each PE chain 

compares the same set of documents with a different query. Since 

the documents are broadcast from the off-chip memory bank, the 

WORK
LOAD

Off-chip 
Data

On-chip 
Data

Computational Bottleneck (after transformation)

SSI
D documents
stored as       

D x C matrix

Q queries 
stored as        

C x Q matrix

• Distribute query matrix: 1 column per PE chain
• Stream document matrix through all PE chains

• Each PE chain computes distance between query and all documents
• Each PE chain streams results into its smart memory

• Smart memory extracts top K on-the-fly

CNN Input images CNN kernels
• Distribute kernels column-wise across PEs 
• Stream images through all PEs

• Program smart memory to aggregate results in-place 

K-
means

N points 
stored as      

N x D matrix

K means   
stored as       

D x K matrix

• Distribute means: 1 mean per PE chain
• Stream points matrix through all PE chains

• Each PE chain streams distance of mean to all points into its smart memory
• Smart memory identifies closest mean to each point

SVM

N training 
vectors stored

as N x D 
matrix

1 vector of  
size D

• Vector stored in all PEs
• Training vector streamed / broadcast to all PEs

• Each PE computes one result of the output vector
• Smart memory collects results in batches and sends off-chip

GLVQ

N reference
vectors stored 

as N x D 
matrix

T test vectors 
stored as        

T x D matrix

• Distribute test vectors: 1 test vector per PE chain
• Stream reference vectors through all PE chains

• Each PE chain computes distance between test vector and all reference vectors
• Smart memory identifies closest and farthest reference vector to each point

 

Figure 7: Mapping our workloads onto MAPLE. 

Table 2: Architectural exploration setup 

Type Parameter Value 

Off-chip Memory 

Organization 

Number of banks 4  

Bandwidth per bank 8 words/cycle 

Processor 

PE budget 512 

Cores (C) 2 

Chains (H) Variable 

Processors/chain (M) Variable 
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performance is best when the chain can consume as many 
documents as the memory can provide. 

Figure 8(B) shows MAPLE’s performance for 4 CNN 

networks. The best performer ranges between M=4 to M=16. 
This is due to the fact that CNNs are compute-bound, and the 
amount of parallelism across networks. For instance, networks 
with many kernels can be converted into a large matrix-matrix 
multiplication, for which a larger chain is better.  

We present K-means in Figure 8(C). The best chain sizes 
ranges from 64 down to 16 as K varies from 32 to 128. This is 
because when we map K-means to MAPLE, the number of points 
that can be multiplied with the means in parallel decreases as the 
number of means increases. Therefore a “tall, skinny” 

configuration with small chain sizes suits large values of K.  

4.4 Effect of in-memory processing  
The primary advantage of in-memory processing is reduced off-
chip accesses and, as a consequence, improved performance. 
Using the simulator, we evaluate the extent of off-chip accesses 
reduced, as well as the performance boost this provides MAPLE. 
Table 3 shows the number of bytes loaded and stored to off-chip 
memory with and without in-memory processing (i.e., with and 
without the smart memory). It also shows the number of bus 
transactions. We consider SSI, CNN and K-means, and average 
the results across different instances of each application. For SSI, 
the smart memory performs array ranking, while for CNN it 
performs aggregation and for K-means, it computes the 

minimum. The reduction in the number of off-chip accesses 
ranges from 1.6x to 76x. 

We also use the simulator to compute the actual execution 
time of SSI and K-means with and without in-memory 
processing. Table 4 shows that without performing in-memory 
processing for array ranking, the SSI execution time on MAPLE 
increases by a factor of 17. For K-means, if the minimum 
computation is not performed in-memory, the execution time 
increases by almost 2.5x. The speedups can be attributed to 
reducing off-chip memory accesses as well as to overlapping the 
secondary and primary operations. 

5. PROTOTYPE AND EXPERIMENTAL 
RESULTS 
In this section, we present the MAPLE prototype and its 
measured performance. We built the prototype using an off-the-
shelf FPGA board from AlphaData. Our architectural design 
space exploration, along with FPGA constraints, determined the 
specific prototype architecture. We implemented each of the five 
workloads on the prototype.  

We compare the prototype to (i) optimized parallel software 
implementations, (ii) available and published GPU 
implementations of SSI, CNN and SVM from [11] and [9] and 
(iii) FPGA-based algorithm-specific implementations of CNN 
and SVM from [23] and [27]. Table 5 shows the experimental 
setup. 
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Figure 8: MAPLE architectural exploration for SSI, CNN and K-means. 

Table 3: Effect of MAPLE's in-memory processing on off-chip load/stores 

Workload Parameters 
Off-chip Accesses 

(Bytes) 
Off-chip Bus 
Transactions Reduction 

No SM With SM No SM With SM 
SSI 2M docs, 64 queries, 32-128 top K 687M 419M 42M 26M 1.64x 

CNN 5 networks (Figure 9(B)) 993M 12.9M 62M 0.81M 76x 
K-means 200K points, 32-128 means 64.7M 25.2M 40.5M 1.57M 25.7x 
 

Table 4: Speedup due to in-memory processing 

Workload Parameters Execution Time (sec) Speedup No SM With SM 
SSI 2M docs, 64 queries, 32-128 top K  4.12 0.24 17.2x 

K-means 200K points, 32-128 means  1.52 0.61 2.46x 
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5.1 SSI and CNN 
We implemented SSI in software using BLAS for matrix 
multiplication, and an optimized multi-threaded implementation 
for array ranking. We compared this to a MAPLE 
implementation of SSI. Figure 9(A) shows the performance in 
ms/query for document database sizes ranging from 256K to 
10M, and for K=32 and K=128. For each, the 2 bars show 
optimized software speed and measured prototype speed to 
process 64 text queries.  We find the MAPLE prototype to be up 
to 50% faster than the optimized software, We also used the 
prototype to search 1.8 million Wikipedia documents, a dataset 
from [3], and obtained a speed of 4.63 to 4.88 ms/query for K=32 
and K=128 respectively. 

We measured speeds of five CNNs performing face and 
digit recognition, surveillance and automotive safety for 640x480 
images. Figure 9 (B) shows the speed in milliseconds per frame 
measured with the parallel software and the MAPLE prototype.  

Now we compare MAPLE’s performance with available 
GPU implementations of SSI and CNN. Table 6 compares 
software, GPU and the MAPLE prototype. For SSI, we used 
NVIDIA’s CUBLAS library and array rank routines, while for 
CNN, we use GPU numbers from [11]. Compared to the GPU, 
the MAPLE prototype is 3x faster for SSI and about 50% faster 
for CNN. 

5.2 K-means 
Figure 10 shows data for K-means. MAPLE finds the closest 
mean for every point and transfers that information to the host, 
which averages all the closest points to each mean. Since 
successive iterations cannot be overlapped, we consider the data 
transfer time and the host component to compute the effective 
speedup. Figure 10(A) breaks down the running time of K-means 
on MAPLE into the core MAPLE execution, data transfer and 
host execution. The data transfer time increases with the number 
of points, but the host execution is larger and responsible for 
reducing speedups. Figure 10 (B) shows speedups of the 
prototype over parallel software. The data shows that MAPLE’s 

speedup is largely independent of the number of points (and that 
is due to the fact that K-means can be easily parallelized by 
partitioning the points), but increases with the number of means. 

5.3 GLVQ 
We implemented GLVQ [7] training and testing on the prototype, 
and used it for eye detection in images. The data had 128 images 
each represented as reference vectors of dimension 512.  64 
vectors represented different eye images and 64 non-eye images. 
The training data set had 5400 images, and the testing data 240 
images. Training images are processed sequentially, as each 
incrementally modifies the model. This also means considerable 
host-accelerator communication. Table 7 shows the performance 
for the eye detection data. Considering the substantial transfer 
time, the projected speedup for training is 3x, but is much higher 
(9.5x) for testing where data may be transferred in bulk. 

Table 5: Experimental setup 

MAPLE 
FPGA 

Prototype 

PEs (total) 
512 organized as 2 cores, 32 
chains/core, 8 PEs/chain 

Clock speed 125 MHz 

Memory 4 banks DDR2, bandwidth 8 
words per bank (8GB/s total) 

FPGA Xilinx Virtex 5 SX240T 
Host interface 64-bit, 66MHz PCI 

Software 2.5 GHz quad-core Xeon, Intel MKL library 

GPU NVIDIA Tesla C870, 1.3GHz, 128 cores, 
CUDA 2.3 with CUBLAS library 

 

Table 6: SSI and CNN performance comparisons 
Workload Details Software GPU MAPLE 

Prototype 
SSI: 2M docs, 32 
queries, 128 top K 

52.8 
ms/query 

11.4 
ms/query 

3.76 
ms/query 

CNN: Face 
Recognition [11] 

5 fps 9.5 fps 
([11]) 

13 fps 
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Figure 9: MAPLE prototype performance vs optimized software for (A) SSI and (B) CNN 
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5.4  SVM  
In SVM, the “kernel computation”, which involves multiplication 
of test or training vectors with the large training or support vector 
matrix, is mapped to MAPLE. We compare MAPLE with a 
recent GPU implementation of SVM [9] as well as an FPGA 
implementation [27]. An iteration involves multiplying the 
training set matrix with 2 training vectors; typically tens of 
thousands of iterations are required to complete training. Table 8 
shows SVM training performance in milliseconds per iteration 
for six data sets [9]. The large size of the training matrix renders 
this problem memory bound. While the prototype underperforms 
the GPU implementation, we note the GPU data sets from [9] are 
small. For instance, MNIST uses only 60K training vectors. As 
we show in the next section, MAPLE’s performance scales well 

for MNIST with 2M training vectors. Further, compared to the 
FPGA prototype, the GPU has a higher memory bandwidth and 
faster, custom circuitry. If a custom MAPLE processor were 
built, it could benefit from similar considerations.  

 

5.5 Algorithm Specific Implementations 
We compare the MAPLE prototype performance with algorithm-
specific FPGA-based implementations of SVM and CNN from 
[27] and [23] (Table 9). For SVM, [27] reports 9.3 billion MACs 
per second for the MNIST dataset with 2M training vectors. The 
MAPLE prototype achieves nearly half that speed. For CNN, the 
MAPLE prototype matches the speed reported in [23]. 

6. CONCLUSION 
We described a programmable parallel accelerator that can 
handle several learning and classification algorithms. We profile 
and analyze five representative workloads to identify their 
computational bottlenecks. We find the core computations of 
these workloads can be transformed into a matrix or vector 
operation producing large intermediate data which is then 
reduced by a secondary operation. We architect the accelerator to 
leverage this characteristic by provisioning many simple, parallel 
PEs and in-memory processing. The in-memory processing 
obviates the need for off-chip memory loads and stores. We also 
present a compilation scheme to automatically map application 
kernels to the accelerator. An FPGA-based prototype of the 

Table 8: SVM training performance (millisec / iteration) 
Data Set Training 

Set Size 
Dim MAPLE 

Prototype 
[9] 

Adult 32,561 123 3.2 0.76 
Web 49,749 300 9.27 3.56 
MNST 60,000 784 25.69 12.76 
USPS 7,291 256 1.22 0.15 
Forest 561,012 54 35.26 6.09 
Face 6,977 381 1.6 0.27 

 

Table 7: GLVQ training and testing performance (in seconds) for the eye-detection data set 

 

# Vectors Vector 
Size Classes 

Vectors 
per 

Class 

Software 
Time (s) 

MAPLE Prototype 
512 PEs, 125 MHz 

Data Xfer SW HW Speedup 
Training 5400 512 2 64 1.7304 0.5196 0.03 0.55 2.97 

Testing 230 512 2 64 0.2357 0.0118 0 0.01 9.58 
 

Table 9: MAPLE prototype vs algorithm specific 
accelerators 
 Algorithm specific MAPLE Proto. 
SVM: MNIST 9.3 GMACs/sec 

[27] 
4 GMACS/sec 

CNN: Face 
Recog. 

10 frames / sec [23] 10.5 frames / sec 
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Figure 10: K-means performance on MAPLE prototype 
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accelerator demonstrates measured speedups over optimized, 
parallel software implementations as well as GPU 
implementations of some of our learning and classification 
workloads. 
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