
A Programmable Parallel Accelerator for Learning and
Classification

Srihari Cadambi Abhinandan Majumdar Michela Becchi
Srimat Chakradhar Hans Peter Graf

NEC Laboratories America, Inc.
4 Independence Way, Princeton NJ 08540. USA.

{cadambi, abhi, mbecchi, chak, hpg}@nec-labs.com
ABSTRACT
For learning and classification workloads that operate on large
amounts of unstructured data with stringent performance
constraints, general purpose processor performance scales poorly
with data size. In this paper, we present a programmable
accelerator for this workload domain. To architect the
accelerator, we profile five representative workloads, and find
that their computationally intensive portions can be formulated
as matrix or vector operations generating large amounts of
intermediate data, which are then reduced by a secondary
operation such as array ranking, finding max/min and
aggregation. The proposed accelerator, called MAPLE, has
hundreds of simple processing elements (PEs) laid out in a two-
dimensional grid, with two key features. First, it uses in-memory
processing where on-chip memory blocks perform the secondary
reduction operations. By doing so, the intermediate data are
dynamically processed and never stored or sent off-chip. Second,
MAPLE uses banked off-chip memory, and organizes its PEs into
independent groups each with its own off-chip memory bank.
These two features together allow MAPLE to scale its
performance with data size. This paper describes the MAPLE
architecture, explores its design space with a simulator, and
illustrates how to automatically map application kernels to the
hardware. We also implement a 512-PE FPGA prototype of
MAPLE and find that it is 1.5-10x faster than a 2.5 GHz quad-
core Xeon processor despite running at a modest 125 MHz.

Categories and Subject Descriptors
C.3 [Computer Systems Organization]: Special-purpose and
Application-based Systems – Microprocessor/microcomputer
applications.

General Terms
Design, Experimentation, Measurement, Performance.

Keywords
Accelerator-based systems, parallel computing, heterogeneous
computing, machine learning

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
PACT’10, September 11-15, 2010, Vienna, Austria.
Copyright 2010 ACM 978-1-4503-0178-7/10/09...$10.00.

1. INTRODUCTION
Applications that examine raw, unstructured data in order to
draw conclusions and make decisions are becoming ubiquitous.
Banks and credit cards companies, for instance, analyze
withdrawal and spending patterns to prevent fraud or identity
theft. Online retailers study website traffic patterns in order to
predict customer interest in products and services based upon
prior purchases and viewing trends. Semantic querying of text
and images, which has wide-ranging, mass market uses such as
advertisement placement [1] and content-based image retrieval
[2], is another fast growing application domain.

Such applications extensively use learning and classification
techniques. With increasing amounts of data, the computational
load imposed by these techniques becomes severe as they must
be executed under stringent performance constraints. Scaling
application performance with data assumes importance. As an
example, for semantic text search, a server using a learning
algorithm such as Supervised Semantic Indexing [3] must search
millions of documents at a few milliseconds per query. Another
example is face and object recognition in high resolution video
that is often done with Convolutional Neural Networks (CNNs)
[4]. A server performing this task must search VGA (640x480) or
higher resolution images at rates of 24 or more frames per
second. Often, economic considerations dictate that multiple
video streams be processed simultaneously on one server. Our
fastest parallelized software implementation on a quad-core 2.5
GHz Xeon server processes about 7 VGA frames per second,
while GPU implementations [11] can reach 10 frames per
second, both falling far short of requirements. Other similar
workloads include digital pathology [15], automotive applications
to predict failures and reduce recalls, financial analytics and
cognitive databases.

Motivated by this gap between workloads and state-of-the-
art computing platforms, we investigate a parallel accelerator for
learning and classification applications, and an accompanying
tool to automatically map application kernels to the accelerator
hardware. To design the accelerator, we profile five
representative workloads: Supervised Semantic Indexing [3],
Convolutional Neural Networks [4], K-means [5], Support Vector
Machines [6] and Generalized Learning Vector Quantization [7],
and find that their computational kernels exhibit two common
characteristics. First, they can be formulated as matrix or vector
operations producing large intermediate data (potentially leading
to many off-chip memory accesses), that are then reduced by a
secondary operation such as array ranking, finding min/max and
aggregation. Second, they exhibit coarse-grained as well as fine-
grained parallelism, i.e., the computations can be partitioned into

273

parallel streams with little communication between them, with
each stream processed by hundreds of simple parallel processing
elements.

With this in mind, we architect MAPLE (MAssively
Parallel Learning/Classification Engine), an accelerator with
hundreds of simple vector processing elements (PEs) and two
key features that directly address the above workload
characteristics. First, MAPLE’s on-chip memories are capable of
in-memory processing which allows the large intermediate data
to be processed on-the-fly thereby reducing off-chip memory
accesses. Second, MAPLE uses banked off-chip memories with
each memory bank serving a separate group of PEs, thereby
creating processor-memory channels that can process the coarse-
grained, independent computation streams. These two features
make MAPLE’s performance scale more easily with problem and
data size.

While several prior efforts have developed FPGA and GPU
implementations of individual algorithms such as SVMs [8][9],
CNNs [10][11] and K-means [14], to the best of our knowledge,
a more general, programmable architecture that is optimized
across a range of learning and classification workloads has not
yet been published. We believe the study and development of
accelerators for this domain will become necessary as learning
and classification techniques become ubiquitous.

To this end, we make the following contributions in this
paper. We present the architecture of MAPLE, a parallel
accelerator for learning and classification, and evaluate the use of
in-memory processing for learning and classification
applications. We present a strategy to automatically map
application kernels to MAPLE. Using an FPGA prototype, we
compare MAPLE’s performance against parallel, optimized

software implementations of learning and classification
algorithms on multi-cores and GPUs.

The rest of the document is organized as follows. We
discuss related work in Section 2, and describe our workloads in
Section 3. In Section 4, we describe the MAPLE architecture,
explore its design space and present a compilation strategy. In
Section 5, we present our FPGA prototype and performance
measurements. We conclude in Section 6.

2. RELATED WORK
Prior work in accelerating learning and classification workloads
can be classified broadly into four categories: (i) optimized,
parallel libraries for multi-core CPUs, (ii) optimized
implementations on graphics processors (GPUs) [9][10][11][14],
(iii) algorithm-specific accelerators on FPGAs [8] and (iv) other
embedded and analog hardware implementations.

Multi-core CPUs and many-core GPUs [18][21]
accommodate diverse learning and classification workloads
through programmability. However multi-cores cannot avail of
the fine-grained data parallelism inherent in these workloads due
to thread synchronization overheads and inadequate memory
bandwidth. In addition, GPUs do not have banked memory-
processor channels, and require multiple independent parallel
streams to be coalesced and synchronized. Neither CPUs nor
GPUs have enough on-chip storage to handle the large
intermediate data generated by these applications. In this paper,
we quantitatively compare MAPLE to both CPU and GPU

implementations, using optimized software libraries such as Intel
MKL BLAS and NVIDIA’s CUBLAS.

Several prior efforts have developed algorithm-specific
implementations of SVMs [27], CNNs [23] and deep learning
[26]. There are also architectures [19] and FPGA
implementations that accelerate matrix computations [24][25].
MAPLE is not algorithm-specific, not restricted to matrix
operations, and can be programmed for different learning and
classification algorithms. We compare MAPLE’s performance

with published algorithm-specific numbers from [23] and [27].

3. WORKLOAD ANALYSIS
We use five learning and classification workloads to help
architect MAPLE. In this section we (i) profile these workloads
to identify computational bottlenecks and make the case for an
accelerator, (ii) study the nature of the computational bottlenecks
(compute or memory bound), (iii) reformulate the computational
bottlenecks using a set of common primitives and (iv) identify
broader characteristics common to all the reformulated
computational bottlenecks that the accelerator architecture must
support.

The five algorithms we use are Supervised Semantic
Indexing (SSI) [3], Convolutional Neural Networks (CNNs) [4],
K-means [5], Support Vector Machines (SVMs) [6] and
Generalized Learning Vector Quantization (GLVQ) [7]. SSI
ranks a large number of documents based on their semantic
similarity to the queries. CNNs are 2-dimensional neural
networks used for pattern recognition in applications such as
object and face detection [10][11], and recently even semantic
text search [12]. K-means clusters points into K clusters, and is
commonly used in computer vision for image segmentation. SVM
training finds support vectors that separate given training data
into distinct classes indicated by the training data labels. GLVQ
is a supervised learning algorithm to classify an input into one of
several classes.

We profile each algorithm using typical data set sizes (Table
1, column 3), and summarize the characteristics in Figure 1. The
table shows the core computations in each workload and the
fraction of the total running time they are responsible for. The
execution profiles were measured on a 2.5 GHz quad core Xeon.
It is clear that significant speedups are achievable by accelerating
the core computations. The table also shows whether the
workload is compute or memory bound, and the number of
computations per memory operation. A memory bound workload
performs one or fewer computations per memory load or store.
MAPLE targets these core computations, providing adequate
processing and I/O resources for both compute and memory
bound workloads.

We now examine the computational bottlenecks of these
workloads in more detail to find common characteristics and a
set of primitives that may be used to design the accelerator.
Figure 1 shows the five workloads, their typical parameters and
how the computational bottleneck may be transformed into a
common set of primitives.

In SSI [3], given D documents, we find K semantic best
matches for each of Q concurrent queries. This amounts to a
series of dot-products between the document and query vectors,
followed by a ranking process to extract the top K matches.
These operations may be transformed into matrix multiplications

274

(by reorganizing the document and query vectors into matrices)
which produces a large intermediate result matrix, and array
ranking to rank each column of the intermediate matrix and
produce the final result.

CNN [4] convolves images with “kernels”, which are small

weight matrices that are part of a given CNN network. We
express convolutions as matrix operations by creating matrices
out of different parts of the input images, multiplying with the
kernels and using the result matrices to update different portions
of the output image. This requires specialized memory access
patterns that mimic a convolution operation.

In K-means, the computational bottleneck is finding the
closest of mean for N points. This can also be expressed as a
matrix multiplication followed by a procedure to find the
minimum element in each row of the intermediate result matrix.
SVM’s core computation is a large matrix-vector multiplication,
where the matrix is typically too large for on-chip caches.
Finally, GVLQ requires a matrix-vector multiplication followed
by a minimum finding operation.

From Figure 1 we note that: (i) matrix operations are a
common primitive, but matrix sizes vary from very small (CNN
kernels) to very large (SVM), (ii) one matrix operand is constant
while the other changes, (iii) a large intermediate result is
produced before being reduced to a relatively small final output,
(iv) the primitives used to reduce the intermediate result (array
rank, find minimum) can be implemented using in-memory
processing and (v) specialized memory access patterns are
required (e.g., CNN). We architect MAPLE with these
requirements in mind.

4. MAPLE ARCHITECTURE AND
COMPILATION SCHEME
In this section, we present the MAPLE architecture, explore its
design space and sensitivities with a simulator and present ways
of automatically mapping application kernels to the hardware.

Table 1: Workload characteristics

Workload Core computations % time
(profile) Characteristic Compute ops per

memory operation

SSI Series of dot products, array
rank > 99% Dot prod: compute bound

Array rank: memory bound
Dotprods: 25-50

Array rank: 0.001

CNN 1D, 2D, 3D convolutions > 99% Compute bound 16-100

K-means Minimum Euclidean dist. ~96% Marginally compute bound 1-3

SVM Large matrix-vector mult. 85-95% [27] Memory bound 1

GLVQ Minimum Euclidean dist. > 99% Memory bound <1

WORK
LOAD

Problem
Description

Typical
Params

Computational Bottleneck (after transformation)

SSI

For each of Q
queries, find K out
of D documents
that are semantic
best matches

D : few
millions
Q : 32 - 128
K : 64 – 128

CNN
Extract features
from streaming
images

Image:
640x480
CNN: 100s of
5x5 to 10x10
“kernels”

Repeated image-kernel
convolutions. Reformulated
as matrix operations.

K-
means

Given N points of
dimension d and K
means, find the
closest mean for
each point

N : 100,000s
d : 3 to 5
K : 8-64

SVM

Repeatedly multiply
N training vectors
of dimension d by 1
vector

N : 1-4 million
d : 500-5000

GLVQ

Class of input
vector = class of
closest of N
reference vectors

N : 100-1000s
Vector Dim d:
100s

DOC
MATRIX
(D x c)

QUERY
MATRIX
(c x Q)

X
INTERM.
RESULT
(D x Q)

FINAL
(K x Q)MATMUL ARRAY

RANK

IMAGE
MATRICES

KERNEL
MATRICES

X

O
U

TP
U

T
M

AT
R

IC
ES

POINTS
MATRIX
(N x d)

MEANS
MATRIX
(d x K)X

MATMUL

MATMUL
DIST.

MATRIX
(N x K) FIND

MIN

TRAINING
DATA

MATRIX
(N x d)

X MATVEC
MUL

d
x

1

N x 1

REF
VECTORS

(N x d)
X MATVEC

MUL
FIND
MIN

N
 x

1

TEST
VECTOR

d
x

1

N
 x

 1

Figure 1: Transforming each workload’s bottlenecks to a common set of primitives

275

4.1 Architecture
From the workload analysis, we find the architecture must
support matrix and vector operations (both large and small
matrices), handle large intermediate data and perform reduction
operations such as array ranking, finding max/min and
aggregation. These requirements lead us to the following design
decisions.

First, matrix and vector operations are implemented by
streaming data through a two-dimensional array of fine-grained
vector processing elements (PEs). This allows minimizing
instruction overhead and accelerating operations involving small
matrices as well large matrices. Second, we use in-memory
processing to handle the intermediate data on-the-fly. By
performing reduction operations using on-chip memory blocks,
we obviate the need for off-chip accesses to store and reload
intermediate data.

We spatially lay out the PEs so that each PE produces a few
elements of the output matrix. Each PE has its own local storage.
By distributing the columns of one matrix across all PEs and
streaming the rows of the other matrix through each PE, matrix
multiplication is performed naturally (with each PE performing a
multiply-accumulate of the streaming row and its stored column).
PEs stream results into “smart memories” that perform in-
memory processing of the intermediate data (e.g., finding
minimums, ranking arrays, etc). Finally, to support complex

access patterns that may result when applications such as CNN
are cast as matrix operations, we provide an input buffer that
may be addressed by the processing fabric and a memory
controller that can support custom access patterns from off-chip.

Figure 2 shows the details of the core architecture of
MAPLE. A core has P vector PEs organized as H processing
chains of M PEs each (P=H*M). Each chain has a bi-directional
nearest neighbor interconnect (“intra-chain”) along which inputs

are propagated from left to right and outputs from right to left.
The first PE in every chain accepts inputs from an input buffer
(labeled input local store). Each PE also has a private local store
which can be written with data from off-chip. A PE chain sends
its outputs to the smart memory block, one of which is available
to each processing chain, which performs in-memory processing
like array ranking, finding min/max or aggregation. Each PE
takes two vector operands as inputs, one from its local store, and
the other streaming from the input buffer.

MAPLE (Figure 3) has C processing cores each connected
to two off-chip memory banks. It is connected to a general-
purpose host computer via a communication interface such as
PCI. A high bandwidth bus connects each memory bank to its
corresponding core. A switch enables the core to alternate
between memory banks for inputs and outputs, or use both banks
for inputs or outputs. Each core also has a separate instruction
memory bank that is written by the host. The host can also write
to the data memory banks via a slower bank-to-bank
interconnection network. The architecture is tailored to
applications that can be parallelized into separate memory-
processor core “channels”, with infrequent communications

across the channels. The memory architecture can scale by
increasing the number of banks.

 Processing Elements and their Interconnection: The PEs,
shown in Figure 4(A), perform standard ALU, multiply and
multiply-accumulate operations in a single cycle. A PE is a
simple vector processor with two operands - one from the PE on
its left via the intra-chain interconnect, and the other from its
private local store. The intra-chain interconnect bus is M words
wide and matches the number of PEs in the chain. Thus the PE
chain can perform up to M vector operations at a time. A PE can
select any word from its intra-chain interconnect bus, leading to

INPUT
LOCAL
STORE

PE
LOCAL
STORE

PE
LOCAL
STORE

PE
LOCAL
STORE

PE PE PE SMART
MEMORY
BLOCK

PIPELINED
INTRA-CHAIN

INTERCONNECT

PE
LOCAL
STORE

PE
LOCAL
STORE

PE
LOCAL
STORE

PE PE PE SMART
MEMORY
BLOCK

PIPELINED
INTRA-CHAIN

INTERCONNECT

PE
LOCAL
STORE

PE
LOCAL
STORE

PE
LOCAL
STORE

PE PE PE SMART
MEMORY
BLOCK

PIPELINED
INTRA-CHAIN

INTERCONNECT

FROM
OFF-CHIP

BANK

REDUCE

Pipelined
Input

Broadcast

TO
OFF-CHIP

BANK

H

M
Figure 2: Architecture of a MAPLE processing core

CORE
1

BANK
1

BANK
2

SWITCH
MAPLE
PROCESSOR

CORE
2

BANK
3

BANK
4

SWITCH

CORE
3

BANK
5

BANK
6

SWITCH

OFF-CHIP
DATA MEMORY
BANKS

INST
BANK

1

INST
BANK

2

INST
BANK

3

OFF-CHIP
INST MEMORY
BANKS

LOW BANDWIDTH BANK-TO-BANK COMMUNICATION
High bandwidth bank-core
communicationHOST

FROM
HOST

Figure 3: The MAPLE processor architecture

276

different parallelization modes for the chain: the M PEs in a
chain can operate on M different streaming words as well as on
the same word. The PE stores outputs to its smart memory block
and can continue processing the next vector in the next cycle.
Unless the smart memory block issues a stall, a store takes M
cycles. This latency can be hidden by the next vector operation if
the vector size is large enough. To facilitate indexing of results (a
feature required for K-means and GVLQ), a PE also sends its ID
along with the results to be stored.

Smart Memory Blocks: Each chain in a MAPLE core has a
memory block capable of two atomic store operations. The first is
a variable latency store for selection and ranking operations in
large arrays, and the second a read-modify-write. The memory
block can be written to only by the processing chain, and is read
by the reduce network. Figure 4(B) shows relevant architectural
components of the smart memory architecture for selecting the
top k elements in an array given a function to compare two
elements: (i) a filter with the programmed compare function
(CMP), a threshold value (VAL) and threshold address (ADDR),
(ii) a list of k elements (LIST) and (iii) a hardware list scanner.
The array elements are streamed in and compared with threshold
VAL. If the comparison succeeds for an array element, it replaces
VAL located at ADDR in LIST. The scanner then scans LIST to
find a new threshold value and address and updates the filter. If
the comparison fails, the element is discarded. When k is small

compared to the array size, there are more discards than
insertions. In the event of an insertion, the store operation stalls
the processor in order to scan LIST and update the filter.

4.2 Mapping applications onto MAPLE
In order to program MAPLE, the user expresses application
kernels in terms of a primary operation (i.e., matrix
multiplication) and a reduction function (e.g., finding max/min
for K-means and GLVQ, ranking arrays for SSI). At a low level,
MAPLE is programmed using specialized assembly. In order to
free the programmer from low level programming issues, we
provide a tool that, given the input matrices and the reduction
function: (i) maps the data onto input- and PE- local stores, (ii)
maps data and reduction operations onto the smart memory
blocks, and (iii) generates the assembly used to program
MAPLE.

MAPLE’s design goals are to handle matrices of various

sizes, and minimize intermediate data by performing reduction
operations using smart memory blocks. Data placement and
smart memory configuration are key aspects. The mapping
algorithm determines the data placement by analyzing the sizes
of input matrices A and B. Assuming that A is streamed from the
input local store and B is stored in the PE local stores, a
fundamental output of the mapping process is the parallelism
mode parameter that determines how B is split across PEs.

STREAMING
DATA

(A) (B)

CMP

VAL

ADDR

TH
RE

SH
O

LD

FILTER

k

SCAN

CMP

UPDATE

LIST

O(ADDR)

PE
LOCAL STORE

REG

VECTOR
FU

M words M words

REG

Parallelization
Mode

REG

To PE i+1From PE i-1

From PE i+1To PE i-1

Figure 4: The MAPLE (A) PE and (B) smart memory block

Ai AiAi+1 Ai+1

B1 B1 B2 B2

PE2 PE3 PE4PE1

AiY AiYAiX AiX

B1X B1Y B2X B2Y

PE2 PE3 PE4PE1

A1

X Y

X

Y

A2

A3

A4

B1 B2 B3 B4

A1X

A2X

A3X

A4X

A1Y

A2Y

A3Y

A4Y

B1XB2XB3XB4X

B1YB2YB3YB4Y

parallelism mode = 2 parallelism mode = ⅟₂

Input LS Input LS

(a) (c)

Ai AiAi Ai

B1 B2 B3 B4

PE2 PE3 PE4PE1

A1

A2

A3

A4

B1 B2 B3 B4

parallelism mode = 1

Input LS

(b)

Figure 5: Mapping matrices to MAPLE with different parallelism modes: (a) each column of B duplicated across 2 PEs
(parallelism doubled), (b) 1 column of B per PE and (c) columns of B split into X and Y to fit the PE local stores (parallelism
halved).

277

Figure 5 illustrates how the parallelism mode pm affects the
mapping. If pm is greater than one, each column of the matrix B
is replicated on pm PEs. Those PEs will process different rows of
matrix A concurrently, and the results will relate to different
rows of the output matrix. If pm is less than one, each column of
B is split into 1/pm portions stored on different PEs. Rows of A
are split as well and properly distributed to the PEs. In this case,
the smart memory will need to accumulate results from the
different PEs processing the same column before performing the
reduction operation. Therefore, the parallelism modes affects: (i)
the data placement in the PE local stores, (ii) the data
distribution from the input local store to the PEs, (iii) the smart
memory configuration.

Figure 6 shows how two matrices are mapped onto MAPLE.
The mechanism can be generalized to multiple matrices. It is
based on the larger matrix (A) streaming row-wise from the input
local store, and the smaller matrix (B) mapped column-wise onto
the PE local stores. Either matrix may be blocked if it is too large
to fit its memory. For matrix B, each local store will potentially
accommodate one or more columns. If B is small, the same
column is mapped onto different PEs (pm > 1). In this case, PEs
containing the same column of B will process different rows of A
concurrently. If the columns of B are too large to fit in a single
PE local store, they are split over multiple PEs (pm < 1). During
operation, the rows of A will be split and directed to the correct
PE.

Input: matrixes M1(m,k) and M2(k,n)

m*k >k*n

A(AR,BR) = M1

B(BR,BC)= M2

A(AR,BR) = M2
T

B(BR,BC)= M1
T

Column Bi fits PE_LS

Each PE_LS will be assigned
one or more columns Bi

Does whole
B fit on-chip PE_LS

parallelism_mode=1
B_blocks = BC /(col_per_PE*num_PE)

parallelism mode = 2X

(maximum amount of
replication of columns Bi

across different PEs allowing
B to fit on-chip LS)
B_blocks = 1

Each column Bi will be split
across different PE_LS

Does Bi fit a
PE chain

parallelism mode = 1 /
(PE_per_chain * chain_per_col)

parallelism mode = 1 / 2X (2X being
min number of PE_LS that store Bi)

B_blocks = BC/(parallelism_mode*num_PE)

T F

T

T T

F

F
F

Matrix A will be streamed
from input-LS, matrix B
will be loaded onto PE_LS

Figure 6: Block diagram showing the mapping of matrices M1 and M2 onto the accelerator

SET_PARALLEL_MODE parallelism_mode ; sets the parallelism mode
SET_SM_REDUCTION reduction_operation ; configures the reduction performed by smart memories
SET_A_NUM_ROWS a_num_rows ; sets number of A rows present in each A_block
SET_B_COL_SZ b_col_size ; sets the size of the portion of B column fitting a PE local store
SET_B_NUM_COLS b_num_cols ; sets the number of B columns stored in each PE local store
for each A_block { ; A_blocks consist of A rows

WRITE_A A_block ; transfers an A_block from DRAM into input local store
for each B_block { ; B_blocks consist of B columns

WRITE_B B_block ; transfers a B_block from DRAM into input local store
SET_INPUT_LS_ADDR 0 ; resets the active address in input local store
for each A_row_group { ; A_row_group consists of A rows processed concurrently
 for b_col: 0..b_num_cols {
 SET_PE_LS_ADDR b_col*b_col_size ; sets the address in PE_mem to load the B data from

SET_SM_ADDR result_addr ; sets the address in smart memory for partial results
 MULT_ACC_DUMP b_col_size ; performs b_col_size MACC and sends result to smart mem

 }
 INC_INPUT_LS_ADDR sz(A_row_group) ; increments the address in input local store to read from
 }
}
DUMP_SM ; dumps the content of smart memory

}

278

The pseudo-code above shows the assembly code

generation. Bold keywords represent generated assembly

directives, and italicized keywords represent configuration

variables provided by the user or parameters produced by the

mapping tool. A_blocks and B_blocks are row-wise and column-

wise portions of A and B matrixes fitting the input- and the PE-

local stores, respectively. The example assumes partial results

computed on A-blocks fit the smart memory.

SET_PARALLEL_MODE affects how B is mapped onto the PE

local stores, potentially with column replication (pm > 1) or

splitting (pm < 1). It also affects how the rows of A are

distributed to the PEs, as well as the smart memory

configuration. SET_SM_ADDR instructs the first PE of each

chain; the remaining PEs are automatically configured based on

pm. If B is a (BR,BC) matrix, b_col_size is equal to BR if pm is

greater than one, and to BR*pm otherwise.

Taking SSI as an example, the user may provide the

following inputs: document matrix of size 2M document x 64

categories, query matrix of size 64 categories x 64 queries, and

reduction operation equal to top-64 ranking. The mapping phase

will set matrix A to be document matrix, and matrix B to be the

query matrix. Additionally, assuming 4B data, 32 chains of 8 PEs

each, 2KB PE local stores and 64KB input local stores, the

mapping algorithm will produce the following parameters to

configure the assembly generator code: pm = 8, B_block = 1,

A_block = 7813, a_num_rows = 256 (zero-padding is performed

in the last A_block), b_col_size = 64 and b_num_cols = 2. Figure

7 summarizes the outcome of the mapping process on the

considered workloads.

4.3 Architectural exploration
We developed a C++ cycle-accurate simulator that takes as input

assembly code for applications mapped to MAPLE and an

architectural configuration file that specifies the off-chip memory

architecture (banks and bandwidth) and processor layout, and

produces an estimate of MAPLE’s execution time.

Table 2 shows the different parameters of MAPLE. We seek

to find, given an off-chip memory organization and processor

budget, the processor layout (chain size and number of chains)

that maximizes performance for different applications. We use

different instances of SSI, CNN and K-means as examples to

explore the architectural design space.

We used an SSI instance of 2M documents, each expressed

as a vector of size 100, and extracted the top 32, 64 and 128 best

matches (i.e., K=32, 64, 128). We simulated this for 1024

queries across various chain lengths (Figure 8(A)). Because of

MAPLE’s smart memories that rank arrays dynamically, the

number of cycles was largely insensitive to K. The processor

layout with the best performance was when the chain size was 6-

8 processors. This is because in our SSI mapping, each PE chain

compares the same set of documents with a different query. Since

the documents are broadcast from the off-chip memory bank, the

WORK
LOAD

Off-chip
Data

On-chip
Data

Computational Bottleneck (after transformation)

SSI
D documents
stored as

D x C matrix

Q queries
stored as

C x Q matrix

• Distribute query matrix: 1 column per PE chain
• Stream document matrix through all PE chains

• Each PE chain computes distance between query and all documents
• Each PE chain streams results into its smart memory

• Smart memory extracts top K on-the-fly

CNN Input images CNN kernels
• Distribute kernels column-wise across PEs
• Stream images through all PEs

• Program smart memory to aggregate results in-place

K-
means

N points
stored as

N x D matrix

K means
stored as

D x K matrix

• Distribute means: 1 mean per PE chain
• Stream points matrix through all PE chains

• Each PE chain streams distance of mean to all points into its smart memory
• Smart memory identifies closest mean to each point

SVM

N training
vectors stored

as N x D
matrix

1 vector of
size D

• Vector stored in all PEs
• Training vector streamed / broadcast to all PEs

• Each PE computes one result of the output vector
• Smart memory collects results in batches and sends off-chip

GLVQ

N reference
vectors stored

as N x D
matrix

T test vectors
stored as

T x D matrix

• Distribute test vectors: 1 test vector per PE chain
• Stream reference vectors through all PE chains

• Each PE chain computes distance between test vector and all reference vectors
• Smart memory identifies closest and farthest reference vector to each point

Figure 7: Mapping our workloads onto MAPLE.

Table 2: Architectural exploration setup

Type Parameter Value

Off-chip Memory

Organization

Number of banks 4

Bandwidth per bank 8 words/cycle

Processor

PE budget 512

Cores (C) 2

Chains (H) Variable

Processors/chain (M) Variable

279

performance is best when the chain can consume as many
documents as the memory can provide.

Figure 8(B) shows MAPLE’s performance for 4 CNN

networks. The best performer ranges between M=4 to M=16.
This is due to the fact that CNNs are compute-bound, and the
amount of parallelism across networks. For instance, networks
with many kernels can be converted into a large matrix-matrix
multiplication, for which a larger chain is better.

We present K-means in Figure 8(C). The best chain sizes
ranges from 64 down to 16 as K varies from 32 to 128. This is
because when we map K-means to MAPLE, the number of points
that can be multiplied with the means in parallel decreases as the
number of means increases. Therefore a “tall, skinny”

configuration with small chain sizes suits large values of K.

4.4 Effect of in-memory processing
The primary advantage of in-memory processing is reduced off-
chip accesses and, as a consequence, improved performance.
Using the simulator, we evaluate the extent of off-chip accesses
reduced, as well as the performance boost this provides MAPLE.
Table 3 shows the number of bytes loaded and stored to off-chip
memory with and without in-memory processing (i.e., with and
without the smart memory). It also shows the number of bus
transactions. We consider SSI, CNN and K-means, and average
the results across different instances of each application. For SSI,
the smart memory performs array ranking, while for CNN it
performs aggregation and for K-means, it computes the

minimum. The reduction in the number of off-chip accesses
ranges from 1.6x to 76x.

We also use the simulator to compute the actual execution
time of SSI and K-means with and without in-memory
processing. Table 4 shows that without performing in-memory
processing for array ranking, the SSI execution time on MAPLE
increases by a factor of 17. For K-means, if the minimum
computation is not performed in-memory, the execution time
increases by almost 2.5x. The speedups can be attributed to
reducing off-chip memory accesses as well as to overlapping the
secondary and primary operations.

5. PROTOTYPE AND EXPERIMENTAL
RESULTS
In this section, we present the MAPLE prototype and its
measured performance. We built the prototype using an off-the-
shelf FPGA board from AlphaData. Our architectural design
space exploration, along with FPGA constraints, determined the
specific prototype architecture. We implemented each of the five
workloads on the prototype.

We compare the prototype to (i) optimized parallel software
implementations, (ii) available and published GPU
implementations of SSI, CNN and SVM from [11] and [9] and
(iii) FPGA-based algorithm-specific implementations of CNN
and SVM from [23] and [27]. Table 5 shows the experimental
setup.

0

0.2

0.4

0.6

0.8

1

1.2

1 2 4 8 16 32 64 128 256

Processors per chain (M)

CNN
Industry 1

Industry 2

Digit Recognition [11]

Face Recognition [12]

0

2

4

6

8

10

12

14

1 2 4 8 16 32 64 128 256

B
il

li
o

n
s
 o

f
C

y
c
le

s

SSI: K = 32, 64, 128

0.0

0.1

0.2

0.3

0.4

0.5

0.6

1 2 4 8 16 32 64 128 256

K-means

K=32

K=64

K=128

(A) (B) (C)

Figure 8: MAPLE architectural exploration for SSI, CNN and K-means.

Table 3: Effect of MAPLE's in-memory processing on off-chip load/stores

Workload Parameters
Off-chip Accesses

(Bytes)
Off-chip Bus
Transactions Reduction

No SM With SM No SM With SM
SSI 2M docs, 64 queries, 32-128 top K 687M 419M 42M 26M 1.64x

CNN 5 networks (Figure 9(B)) 993M 12.9M 62M 0.81M 76x
K-means 200K points, 32-128 means 64.7M 25.2M 40.5M 1.57M 25.7x

Table 4: Speedup due to in-memory processing

Workload Parameters Execution Time (sec) Speedup No SM With SM
SSI 2M docs, 64 queries, 32-128 top K 4.12 0.24 17.2x

K-means 200K points, 32-128 means 1.52 0.61 2.46x

280

5.1 SSI and CNN
We implemented SSI in software using BLAS for matrix
multiplication, and an optimized multi-threaded implementation
for array ranking. We compared this to a MAPLE
implementation of SSI. Figure 9(A) shows the performance in
ms/query for document database sizes ranging from 256K to
10M, and for K=32 and K=128. For each, the 2 bars show
optimized software speed and measured prototype speed to
process 64 text queries. We find the MAPLE prototype to be up
to 50% faster than the optimized software, We also used the
prototype to search 1.8 million Wikipedia documents, a dataset
from [3], and obtained a speed of 4.63 to 4.88 ms/query for K=32
and K=128 respectively.

We measured speeds of five CNNs performing face and
digit recognition, surveillance and automotive safety for 640x480
images. Figure 9 (B) shows the speed in milliseconds per frame
measured with the parallel software and the MAPLE prototype.

Now we compare MAPLE’s performance with available
GPU implementations of SSI and CNN. Table 6 compares
software, GPU and the MAPLE prototype. For SSI, we used
NVIDIA’s CUBLAS library and array rank routines, while for
CNN, we use GPU numbers from [11]. Compared to the GPU,
the MAPLE prototype is 3x faster for SSI and about 50% faster
for CNN.

5.2 K-means
Figure 10 shows data for K-means. MAPLE finds the closest
mean for every point and transfers that information to the host,
which averages all the closest points to each mean. Since
successive iterations cannot be overlapped, we consider the data
transfer time and the host component to compute the effective
speedup. Figure 10(A) breaks down the running time of K-means
on MAPLE into the core MAPLE execution, data transfer and
host execution. The data transfer time increases with the number
of points, but the host execution is larger and responsible for
reducing speedups. Figure 10 (B) shows speedups of the
prototype over parallel software. The data shows that MAPLE’s

speedup is largely independent of the number of points (and that
is due to the fact that K-means can be easily parallelized by
partitioning the points), but increases with the number of means.

5.3 GLVQ
We implemented GLVQ [7] training and testing on the prototype,
and used it for eye detection in images. The data had 128 images
each represented as reference vectors of dimension 512. 64
vectors represented different eye images and 64 non-eye images.
The training data set had 5400 images, and the testing data 240
images. Training images are processed sequentially, as each
incrementally modifies the model. This also means considerable
host-accelerator communication. Table 7 shows the performance
for the eye detection data. Considering the substantial transfer
time, the projected speedup for training is 3x, but is much higher
(9.5x) for testing where data may be transferred in bulk.

Table 5: Experimental setup

MAPLE
FPGA

Prototype

PEs (total)
512 organized as 2 cores, 32
chains/core, 8 PEs/chain

Clock speed 125 MHz

Memory 4 banks DDR2, bandwidth 8
words per bank (8GB/s total)

FPGA Xilinx Virtex 5 SX240T
Host interface 64-bit, 66MHz PCI

Software 2.5 GHz quad-core Xeon, Intel MKL library

GPU NVIDIA Tesla C870, 1.3GHz, 128 cores,
CUDA 2.3 with CUBLAS library

Table 6: SSI and CNN performance comparisons
Workload Details Software GPU MAPLE

Prototype
SSI: 2M docs, 32
queries, 128 top K

52.8
ms/query

11.4
ms/query

3.76
ms/query

CNN: Face
Recognition [11]

5 fps 9.5 fps
([11])

13 fps

256K 512K 1M

0

2

4

6

8

10

12

14

16

256K 512K 1M

M
il

li
se

co
n

d
s

p
e
r

Q
u

e
ry

2.5 GHz quad-core Xeon,

4 threads

MAPLE Prototype

(125MHz)

(A) (B)
Number of Documents

Ranking top 32 Ranking top 128

0

50

100

150

200

250

300

M
il

li
se

co
n

d
s

p
e

r
fr

a
m

e

2.5 GHz quad-core Xeon,

4 threads

MAPLE Prototype (125

MHz)

Figure 9: MAPLE prototype performance vs optimized software for (A) SSI and (B) CNN

281

5.4 SVM
In SVM, the “kernel computation”, which involves multiplication
of test or training vectors with the large training or support vector
matrix, is mapped to MAPLE. We compare MAPLE with a
recent GPU implementation of SVM [9] as well as an FPGA
implementation [27]. An iteration involves multiplying the
training set matrix with 2 training vectors; typically tens of
thousands of iterations are required to complete training. Table 8
shows SVM training performance in milliseconds per iteration
for six data sets [9]. The large size of the training matrix renders
this problem memory bound. While the prototype underperforms
the GPU implementation, we note the GPU data sets from [9] are
small. For instance, MNIST uses only 60K training vectors. As
we show in the next section, MAPLE’s performance scales well

for MNIST with 2M training vectors. Further, compared to the
FPGA prototype, the GPU has a higher memory bandwidth and
faster, custom circuitry. If a custom MAPLE processor were
built, it could benefit from similar considerations.

5.5 Algorithm Specific Implementations
We compare the MAPLE prototype performance with algorithm-
specific FPGA-based implementations of SVM and CNN from
[27] and [23] (Table 9). For SVM, [27] reports 9.3 billion MACs
per second for the MNIST dataset with 2M training vectors. The
MAPLE prototype achieves nearly half that speed. For CNN, the
MAPLE prototype matches the speed reported in [23].

6. CONCLUSION
We described a programmable parallel accelerator that can
handle several learning and classification algorithms. We profile
and analyze five representative workloads to identify their
computational bottlenecks. We find the core computations of
these workloads can be transformed into a matrix or vector
operation producing large intermediate data which is then
reduced by a secondary operation. We architect the accelerator to
leverage this characteristic by provisioning many simple, parallel
PEs and in-memory processing. The in-memory processing
obviates the need for off-chip memory loads and stores. We also
present a compilation scheme to automatically map application
kernels to the accelerator. An FPGA-based prototype of the

Table 8: SVM training performance (millisec / iteration)
Data Set Training

Set Size
Dim MAPLE

Prototype
[9]

Adult 32,561 123 3.2 0.76
Web 49,749 300 9.27 3.56
MNST 60,000 784 25.69 12.76
USPS 7,291 256 1.22 0.15
Forest 561,012 54 35.26 6.09
Face 6,977 381 1.6 0.27

Table 7: GLVQ training and testing performance (in seconds) for the eye-detection data set

Vectors Vector
Size Classes

Vectors
per

Class

Software
Time (s)

MAPLE Prototype
512 PEs, 125 MHz

Data Xfer SW HW Speedup
Training 5400 512 2 64 1.7304 0.5196 0.03 0.55 2.97

Testing 230 512 2 64 0.2357 0.0118 0 0.01 9.58

Table 9: MAPLE prototype vs algorithm specific
accelerators
 Algorithm specific MAPLE Proto.
SVM: MNIST 9.3 GMACs/sec

[27]
4 GMACS/sec

CNN: Face
Recog.

10 frames / sec [23] 10.5 frames / sec

(A) (B)

0

100

200

300

400

500

600

700

800

900

256K 512K 1M 2M 4M

M
ill

is
ec

o
n

d
s

p
er

 I
te

ra
ti

o
n

Points to Cluster

Host Execution

Data Transfer

MAPLE Execution

0

0.5

1

1.5

2

2.5

S
p

e
e

d
u

p
256K points 512K points 1M points 2M points 4M points

Figure 10: K-means performance on MAPLE prototype

282

accelerator demonstrates measured speedups over optimized,
parallel software implementations as well as GPU
implementations of some of our learning and classification
workloads.

REFERENCES
[1] Mei, T., Hua, X., Yang, L., Li, S., “VideoSense: towards

effective online video advertising,” Proc. 15th International
Conference on Multimedia 2007, pp 1075-1084.

[2] Datta, R., et al.,“Image retrieval: Ideas, influences, and

trends of the new age,” ACM Comput. Surv. 40,2,Apr 08.
[3] Bai, B., Weston, J., Grangier, D., Collobert, R., Sadamasa,

K., Qi, Y., Chapelle, O., Weinberge, K., “Learning to Rank

with (a lot of) word features,” Special Issue: Learning to
Rank for Information Retrieval. Information Retrieval,
2009.

[4] Lecun, Y., Bottou, L., Bengio, Y., Haffner, P., "Gradient-
based learning applied to document recognition," Proc. of
the IEEE, vol.86, no.11, pp.2278-2324, Nov 1998.

[5] MacQueen, J. B., “Some methods for classification and

analysis of multivariate observation,” Proc. Berkeley Symp.
on Math. Stat. and Prob., pages 281–297.

[6] Platt, J., “Fast Training of Support Vector Machines Using

Sequential Minimal Optimization,” in Advances in Kernel
Methods – Support Vector Learning, MIT Press 1999.

[7] Sato, A., Yamada, K., “Generalized learning vector

quantization”, Neural Information Processing Systems,
pp.423-429, 1995.

[8] Graf, H. P., Cadambi, S., Durdanovic, I., Jakkula, V.,
Sankaradass, M., Cosatto, E., Chakradhar, S. T., “A

Massively Parallel Digital Learning Processor,” Neural
Information Processing. Systems, Dec. 2008.

[9] Catanzaro, B., Sundaram, N., Keutzer, K., “Fast Support

Vector Training and Classification on Graphics Processors,”

Machine Learning, 25th International Conference on,
(ICML 2008), Jul. 2008.

[10] Chellapilla, K., Puri, S., Simard, P., “High Performance

Convolutional Neural Networks for Document Processing,”

Tenth International Workshop on Frontiers in Handwriting
Recognition (2006).

[11] Nasse, F., Thurau, C., Fink, G. A., “Face Detection Using
GPU-Based Convolutional Neural Networks,” Computer
Analysis of Images and Patterns, 13th International
Conference, CAIP 2009, Proc.. LNCS 2009.

[12] Collobert, R., Weston, J., “A unified architecture for natural

language processing: deep neural networks with multitask
learning,” Proc. of the 25th International Conference on
Machine Learning, vol. 307, pp.160-167, Jul 2008.

[13] Lloyd, S.P., "Least squares quantization in PCM," IEEE
Transactions on Information Theory 28 (2): pp 129–137.

[14] Hall, J. D., Hart, J. C., “GPU Acceleration of Iterative

Clustering,” The ACM Workshop on General Purpose
Computing on Graphics Processors and SIGGRAPH 2004
poster, Aug 2004.

[15] Cosatto, E., Miller, M., Graf, H. P., Meyer, J., “Grading
Nuclear Pleomorphism on Histological Micrographs,” Proc.
Int. Conf. Pattern Recognition, 2008.

[16] Lawrence, S., Giles, C.L., Ah Chung Tsoi, Back, A.D.,
"Face recognition: a convolutional neural-network
approach," Neural Networks, IEEE Transactions on, vol.8,
no.1, pp.98-113, Jan 1997.

[17] M D Taylor et al, "The Raw Microprocessor: A
Computational Fabric for Software Circuits and General-
Purpose Programs," IEEE Micro, vol. 22, no. 2, pp. 25-35,
Mar./Apr. 2002.

[18] Owens, J.D., Luebke, D., Govindaraju, N., Harris, M,,
Krueger, J., Lefohn, A.E., Purcell, T.J., “A survey of

general-purpose computation on graphics hardware,”

Computer Graphics Forum, 26(1):80–113, 2007.
[19] Burger, D, et al. "Scaling to the End of Silicon with EDGE

Architectures," IEEE Computer, 37(7), pp. 44-55, July
2004.

[20] Diamond, J. R., Robatmili, B., Keckler, S. W., van de
Geijn, R., Goto, K., and Burger, D. 2008. “High

performance dense linear algebra on a spatially distributed
processor,” Proc. 13th ACM SIGPLAN PPoPP 2008.

[21] Seiler, L., et al., “Larrabee: a many-core x86 architecture for
visual computing,” In ACM SIGGRAPH 2008.

[22] Kapasi, U.J., Rixner, S., Dally, W.J., Khailany, B., Jung Ho
Ahn, Mattson, P., Owens, J.D., "Programmable stream
processors," IEEE Computer, vol.36, no.8, pp. 54-62, Aug.
2003.

[23] Sankaradas, M., et al, “A Massively Parallel Coprocessor

for Convolution Neural Networks”, In Proc. 20th IEEE
International Conference on Application-specific Systems,
Architectures and Processors (ASAP), 2009, Boston, MA.

[24] Zhuo, L., Prasanna, V. K., “High Performance Linear

Algebra Operations on Reconfigurable Systems”, in

ACM/IEEE Conference on Supercomputing, Proc. of the
2005, November 2005.

[25] Rousseaux, S., Hubaux, D., Guisset, P., Legat, J., “A High
Performance FPGA-Based Accelerator for BLAS Library
Implementation,” Proc. of the Third Annual Reconfigurable
Systems Summer Institute (RSSI'07).

[26] Raina, R., Madhavan, A., Ng, A. Y., “Large-scale deep
unsupervised learning using graphics processors,” Proc.
26th Annual international Conference on Machine Learning
2009.

[27] Cadambi, S., et al, “A Massively Parallel FPGA-based
Coprocessor for Support Vector Machines”, Proc. IEEE
Symposium on FCCM 2009, Napa, CA.

283

http://www.cs.toronto.edu/~roweis/csc2515-2006/readings/lloyd57.pdf
http://en.wikipedia.org/wiki/IEEE_Transactions_on_Information_Theory
http://en.wikipedia.org/wiki/IEEE_Transactions_on_Information_Theory

