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Abstract

In this study, we consider a proof with respect to the Laplace transform of
the n-th derivative of any order by mathematical induction. The content
with respect to the Laplace transform of the n-th derivative is widely used
without a strict proof. Hence, we propose a proof by applying the rigor of
mathematical induction.
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1. INTRODUCTION

The Laplace transform method is a popular tool for solving linear ordinary differential
equations and finding analytical solutions of partial differential equations. Although the
Laplace transform method is fairly logical, there are some weaknesses in terms of the
integrability and existence as several hypotheses are required when using the method.
Therefore, this area should be further investigated. Moreover, the proof with respect to
the Laplace transform of the derivatives is not strict. Hence, in this study, we propose
a proof with respect to the Laplace transform of the n-th derivative by induction, and
the proposed proof is strict unlike the existing proofs. Additionally, this result can be
extended to a generalized integral transform or other transforms. This study is fairly
simple, and was conducted because of an academic interest.
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There are several Laplace-type integral transforms, and a generalized integral
transform[4, 11] can be expressed as follows;

GL(f) = u® / Tt (0,

where u = G(f). Most existing Laplace-type integral transforms[2, 10, 12] are
interpreted as variants of the Laplace transform, whereas the Mellin transform[1] can
be considered relatively reasonable. From a review of related studies, Jhanthanam
et al. studied the generalized solutions of a third-order Cauchy-Euler equation using
the Laplace transform[3], determined an application of the above generalized Laplace
transform in partial differential equations[7], and obtained the solution of a heat
equation without boundary conditions[6]. The solution of Laguerre’s equation was
studied using the Laplace-type transform[5], and generalized hypergeometric functions
have been obtained by considering a new class of the above Laplace-type integrals[8].

The following results are obtained using the induction.

(1) (Laplace transform of the n-th derivative of any order) Let f, f’, ---, f (n=1) pe
continuous for all ¢ > 0 and satisfy the growth restriction[9]. Furthermore, let f (n)
be piecewise continuous on every finite interval on the semi-axis ¢ > 0. Then, the
transform of f(™ satisfies the following equation;

£(70) = £(f) — 3 A0 0),
k=1

where (" is the n-th derivative of f.

(2) This theorem can be extended to the above generalized Laplace transform as follows;

F(z,u) . 1
T Y @0t gy

1 an—z an—l

+awf(x>0)+wf(%0)]7

where F(z,u) = G(z,t) and 9°/9 = 1.

Ga(f(”)) — (2,0) + - -

2. A PROOF WITH RESPECT TO LAPLACE TRANSFORM OF THE n-th
DERIVATIVE BY MATHEMATICAL INDUCTION

We consider a proof with respect to Laplace transform of the n-th derivative of any
order by mathematical induction.
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Lemma 1. (growth restriction[9]) A function f(t) satisfies the growth restriction if
[f(t)] < Me*

for all t > 0 and some constants M and k.

Theorem 2. (Laplace transform of the n-th derivative of any order) Let f, [, ---,
=1 be continuous for all t > 0 and satisfy the growth restriction[10]. Furthermore,
let f™ be piecewise continuous on every finite interval on the semi-axis t > 0. Then
the transform of f" satisfies

L£(F™) = s"£(f) — s"1F(0) — s"2f(0) — - - - — FD(0), (%)

where " is the n-th derivative of f.

Proof. Let us represent the equation (*) as a contracted form,;
(f(n — " Z " kf (k—1)

where f(") is the n-th derivative of f. Next, let us approach the proof by induction. In
case of n = 1,

£(f) = / TP dt = s£(f) — £(0)

and this is the same as the value of (*). Next, let us suppose that n = m is valid for
some m. Thus,

L(f™) = )= s ()
k=1
holds for f(™ is the m-th derivative of f. Let us show that
m+1

£(f(m+1)) _ Sm+1£(f> - Z Sm+1_kf(k_1)(0).

Differentiating (**), we have

L(FHD) = sL(f0) = f™(0)

= s[s™L(f) — s R FEED(0)] = £ (0)

WE

1

= s"TLL(f) = D SRR (0) = 1(0)

k=1

T

m+1

_ Sm+1£(f) _ Z Sm—H_kf(k_l)(O).
k=1

Hence, this theorem is valid at an arbitrary natural number n. O]
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This theorem can be extended to the above generalized transform as follows;

Galr) = e L)+ )+

unfl

un
o fO(0) 4 0 0),

where (™ is the n-th derivative of f. Of course, this equality can be extended to

functions of two variables as follows;

F 0
Golr™) = PO o L pw0) - 5 2 pa0) 4

1 o2 o1
worzd 00+ 5o (@ 0))

where F(z,u) = G(z,t) and 9°/0 = 1. In other hand, the above equality can be
represented as theorem 3.

Theorem 3. If a function f is an integrable, then the transform f™ satisfies

8”f(x,t)]:F(x,u) —uazn: 1 0" 1f(z,0)

otn un ur—k  otk-1 7
k=1

where u = G, (f) = F(u) and 3°/0 = 1 [7].

Gl

Table 1: Table of Laplace-typed integral transform G [4]

f(v) G(f)
1 1 uott
1 t uet?
3 tn n! . yntott
4 e =
5 sin at 1“5;;2
6 cos at 11(;2;2
7  sinh at lafg;z
8 cosh at lffzzg
9 ecosbt T a_(;“); -|C—Ll)72

. o

10 e*sinbt (%f’gw
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