
A Pumping Lemma for
and Closure Proper ties of
Conte xt-Free Langua ges

Martin Fränzle

Informatics and Mathematical Modelling

The Technical University of Denmark

Context-free languages III – p.1/20

What you’ ll learn

1. A pumping lemma for CFLs:

� The lemma� Its use in proving languages non-CFL

� Insight in the limits of CFLs

2. Closure proper ties of CFLs:

� The operation of substitution — generalizing
homomorphisms

� Closure under union, concatenation, Kleene closure,
homomorphism� Non-closure under intersection, complement, difference� Closure under intersection with a regular language� Closure under inverse homomorphism

Context-free languages III – p.2/20

A pumping lemma for CFLs

Context-free languages III – p.3/20

Rationale

� As CFGs build strings of arbitrary length – if the language
defined is not finite — from a finite set of rules, it is reasonable
to expect that all sufficiently long words of the language have
some kind of repeatable pattern.

� Obviously, this pattern can be more complex than that occurring
in regular languages (why?)

Program:

1. Identify the kind of pattern;

2. derive a method for proving languages non-contextfree.

Context-free languages III – p.4/20

Rationale

� As CFGs build strings of arbitrary length – if the language
defined is not finite — from a finite set of rules, it is reasonable
to expect that all sufficiently long words of the language have
some kind of repeatable pattern.

� Obviously, this pattern can be more complex than that occurring
in regular languages (why?)

Program:

1. Identify the kind of pattern;

2. derive a method for proving languages non-contextfree.

Context-free languages III – p.4/20

Idea

Any parse-tree deeper than the number of variables in the CFG must
have some variable occur at least twice on its deepest path:

S

V

V

S

V

V

S

V

V

This provides “pluggable” subtrees!

Context-free languages III – p.5/20

Idea

Any parse-tree deeper than the number of variables in the CFG must
have some variable occur at least twice on its deepest path:

S

V

V

S

V

V

S

V

V

This provides “pluggable” subtrees!

Context-free languages III – p.5/20

Idea

Any parse-tree deeper than the number of variables in the CFG must
have some variable occur at least twice on its deepest path:

S

V

V

S

V

V

S

V

V

This provides “pluggable” subtrees!

Context-free languages III – p.5/20

Pumping it

Parse tree

can be shrunk

u v w x y

S

V

V

y

w

u

S

V

Caution: To really change yield of the parse tree, we have to
make sure that or .

Context-free languages III – p.6/20

Pumping it

Parse tree can be shrunk

u v w x y

S

V

V

y

w

u

S

V

Caution: To really change yield of the parse tree, we have to
make sure that or .

Context-free languages III – p.6/20

Pumping it

Parse tree can be shrunk

u v w x y

S

V

V

y

w

u

S

V

Caution: To really change yield of the parse tree, we have to
make sure that � ��� � or � ��� �.

Context-free languages III – p.6/20

Pumping it

Parse tree

can be expanded

u v w x y

S

V

V

u v

v w x

x y

S

V

V

V

Again, change of yield depends on .

Context-free languages III – p.7/20

Pumping it

Parse tree can be expanded � � �

u v w x y

S

V

V

u v

v w x

x y

S

V

V

V

Again, change of yield depends on .

Context-free languages III – p.7/20

Pumping it

Parse tree can be expanded � � �

u v w x y

S

V

V

u v

v w x

x y

S

V

V

V

Again, change of yield depends on � � ��� �.
Context-free languages III – p.7/20

Ensuring 	
 � or �
 �

can be done by using Chomsky-normal-form (CNF) grammars:

� they don’t contain nullable symbols,

� the production used for the upper

in the parse tree must be of
the form
 �
��
��
as it did not directly derive a terminal

the lower

must be derived from either

�� or

 �

� in the first case, � ��� � as

 � is non-nullable,� in the second case, � ��� � as

� is non-nullable.

Context-free languages III – p.8/20

The pumping lemma for CFLs

Thm: For any CFL

�

there is constant � �

IN such that any string� � �

with

� � ��� � can be split into � � � �� � � with
1.

� � � � ��� �,

i.e. we find the pumpable portion in a “short” substring,

2. � � ��� �,

i.e. at least one of and is non-trivial,

3.

�� �

IN � � ! � � ! � � �

,

i.e. and can be simultaneously “pumped”.

Context-free languages III – p.9/20

The pumping lemma for CFLs

Thm: For any CFL

�

there is constant � �

IN such that any string� � �

with

� � ��� � can be split into � � � �� � � with
1.

� � � � ��� �,
i.e. we find the pumpable portion in a “short” substring,

2. � � ��� �,
i.e. at least one of � and � is non-trivial,

3.

�� �

IN � � ! � � ! � � �

,
i.e. � and � can be simultaneously “pumped”.

Context-free languages III – p.9/20

An auxiliar y lemma on CNF grammar s

Lem: If

" � #
%$ &$ ' $ ()

is a CNF grammar and � � &*

is the yield of a
parse tree of

"

of depth � then

� � ��� +,.- �

.

Prf: By complete induction on :

Induction hypothesis: For all it is true that the yield of any parse
tree of depth satisfies , if is terminal.

Induction step: Parse tree depth . We deduce from the induction
hypothesis that for all terminal yields of parse trees of depth .

Case 1: . There is no parse tree of depth having a terminal yield.
Thus, the conjecture is trivially true.
Case 2: . As is of CNF and is terminal, can only be derived
by a production with . Hence, .

Case 3: . As tree depth , the root of the parse tree uses a
production, which is of the form because is of CNF. As the
overall tree depth is , the subtrees rooted at and have depth ,
s.t. the induction hypothesis applies to them.
Thus, holds for the yields of these subtrees. Now,

such that .

Context-free languages III – p.10/20

An auxiliar y lemma on CNF grammar s

Lem: If

" � #
%$ &$ ' $ ()

is a CNF grammar and � � &*

is the yield of a
parse tree of

"

of depth � then

� � ��� +,.- �

.

Prf: By complete induction on /:

Induction hypothesis: For all it is true that the yield of any parse
tree of depth satisfies , if is terminal.

Induction step: Parse tree depth . We deduce from the induction
hypothesis that for all terminal yields of parse trees of depth .

Case 1: . There is no parse tree of depth having a terminal yield.
Thus, the conjecture is trivially true.
Case 2: . As is of CNF and is terminal, can only be derived
by a production with . Hence, .

Case 3: . As tree depth , the root of the parse tree uses a
production, which is of the form because is of CNF. As the
overall tree depth is , the subtrees rooted at and have depth ,
s.t. the induction hypothesis applies to them.
Thus, holds for the yields of these subtrees. Now,

such that .

Context-free languages III – p.10/20

An auxiliar y lemma on CNF grammar s

Lem: If

" � #
%$ &$ ' $ ()

is a CNF grammar and � � &*

is the yield of a
parse tree of

"

of depth � then

� � ��� +,.- �

.

Prf: By complete induction on /:
Induction hypothesis: For all / 0 1

it is true that the yield 2 of any parse
tree of depth / satisfies

3 2 34 5687 9

, if 2 is terminal.

Induction step: Parse tree depth . We deduce from the induction
hypothesis that for all terminal yields of parse trees of depth .

Case 1: . There is no parse tree of depth having a terminal yield.
Thus, the conjecture is trivially true.
Case 2: . As is of CNF and is terminal, can only be derived
by a production with . Hence, .

Case 3: . As tree depth , the root of the parse tree uses a
production, which is of the form because is of CNF. As the
overall tree depth is , the subtrees rooted at and have depth ,
s.t. the induction hypothesis applies to them.
Thus, holds for the yields of these subtrees. Now,

such that .

Context-free languages III – p.10/20

An auxiliar y lemma on CNF grammar s

Lem: If

" � #
%$ &$ ' $ ()

is a CNF grammar and � � &*

is the yield of a
parse tree of

"

of depth � then

� � ��� +,.- �

.

Prf: By complete induction on /:
Induction hypothesis: For all / 0 1

it is true that the yield 2 of any parse
tree of depth / satisfies

3 2 34 5687 9

, if 2 is terminal.

Induction step: Parse tree depth /: 1

. We deduce from the induction
hypothesis that

3 2 34 5 ;7 9

for all terminal yields of parse trees of depth

1

.

Case 1: . There is no parse tree of depth having a terminal yield.
Thus, the conjecture is trivially true.
Case 2: . As is of CNF and is terminal, can only be derived
by a production with . Hence, .

Case 3: . As tree depth , the root of the parse tree uses a
production, which is of the form because is of CNF. As the
overall tree depth is , the subtrees rooted at and have depth ,
s.t. the induction hypothesis applies to them.
Thus, holds for the yields of these subtrees. Now,

such that .

Context-free languages III – p.10/20

An auxiliar y lemma on CNF grammar s

Lem: If

" � #
%$ &$ ' $ ()

is a CNF grammar and � � &*

is the yield of a
parse tree of

"

of depth � then

� � ��� +,.- �

.

Prf: By complete induction on /:
Induction hypothesis: For all / 0 1

it is true that the yield 2 of any parse
tree of depth / satisfies

3 2 34 5687 9

, if 2 is terminal.

Induction step: Parse tree depth /: 1

. We deduce from the induction
hypothesis that

3 2 34 5 ;7 9

for all terminal yields of parse trees of depth

1

.�

Case 1:

1: <

. There is no parse tree of depth

<

having a terminal yield.
Thus, the conjecture is trivially true.

Case 2: . As is of CNF and is terminal, can only be derived
by a production with . Hence, .

Case 3: . As tree depth , the root of the parse tree uses a
production, which is of the form because is of CNF. As the
overall tree depth is , the subtrees rooted at and have depth ,
s.t. the induction hypothesis applies to them.
Thus, holds for the yields of these subtrees. Now,

such that .

Context-free languages III – p.10/20

An auxiliar y lemma on CNF grammar s

Lem: If

" � #
%$ &$ ' $ ()

is a CNF grammar and � � &*

is the yield of a
parse tree of

"

of depth � then

� � ��� +,.- �

.

Prf: By complete induction on /:
Induction hypothesis: For all / 0 1

it is true that the yield 2 of any parse
tree of depth / satisfies

3 2 34 5687 9

, if 2 is terminal.

Induction step: Parse tree depth /: 1

. We deduce from the induction
hypothesis that

3 2 34 5 ;7 9

for all terminal yields of parse trees of depth

1

.�

Case 1:

1: <

. There is no parse tree of depth

<

having a terminal yield.
Thus, the conjecture is trivially true.�

Case 2:

1: =

. As

>

is of CNF and 2 is terminal, 2 can only be derived
by a production

?A@ B with B C D
. Hence,

3 2 3 : = : 5 E : 5 ;7 9

.

Case 3: . As tree depth , the root of the parse tree uses a
production, which is of the form because is of CNF. As the
overall tree depth is , the subtrees rooted at and have depth ,
s.t. the induction hypothesis applies to them.
Thus, holds for the yields of these subtrees. Now,

such that .

Context-free languages III – p.10/20

An auxiliar y lemma on CNF grammar s

Lem: If

" � #
%$ &$ ' $ ()

is a CNF grammar and � � &*

is the yield of a
parse tree of

"

of depth � then

� � ��� +,.- �

.

Prf: By complete induction on /:
Induction hypothesis: For all / 0 1

it is true that the yield 2 of any parse
tree of depth / satisfies

3 2 34 5687 9

, if 2 is terminal.

Induction step: Parse tree depth /: 1

. We deduce from the induction
hypothesis that

3 2 34 5 ;7 9

for all terminal yields of parse trees of depth

1

.�

Case 1:

1: <

. There is no parse tree of depth

<

having a terminal yield.
Thus, the conjecture is trivially true.�

Case 2:

1: =

. As

>

is of CNF and 2 is terminal, 2 can only be derived
by a production

?A@ B with B C D
. Hence,

3 2 3 : = : 5 E : 5 ;7 9

.�

Case 3:

1GF =

. As tree depth
1F =

, the root of the parse tree uses a
production, which is of the form

?A@ H 9 HJI because

>

is of CNF. As the
overall tree depth is

1
, the subtrees rooted at

H 9 and

HI have depth 0 1

,
s.t. the induction hypothesis applies to them.
Thus,

3 2 9 34 5 ;7 ILK 3 2 I 3

holds for the yields 28M of these subtrees. Now,2 : 2 9 2 I such that

3 2 3 : 3 2 9 38N 3 2 I 34 5 ;7 I N 5 ;7 I : 5 ;7 9

.
Context-free languages III – p.10/20

Pumping lemma as a proof scheme
Given a language

�

deemed to be non-CFL, proceed as follows:

1. Take arbitrary � �

IN,

(Selection of is not under your control — you have to accept any .)

2. provide a construction of � depending on �,

(You select .)

3. arbitrarily break � into � �� � � subject to the constraints
(a)

� � � � ��� �,
(b) � � ��� �,

(Selection of is not under your control — you have to accept any
split that satisfies the two constraints.)

4. pick

� �

IN depending on � $ � $ � $ � $ � and � such that� � ! � � ! � �� �

.

(You select .)

This constitutes a proof of

�

being not context-free.
Context-free languages III – p.11/20

Pumping lemma as a proof scheme
Given a language

�

deemed to be non-CFL, proceed as follows:

1. Take arbitrary � �

IN,
(Selection of / is not under your control — you have to accept any /.)

2. provide a construction of � depending on �,
(You select O.)

3. arbitrarily break � into � �� � � subject to the constraints
(a)

� � � � ��� �,
(b) � � ��� �,
(Selection of PRQ S Q 2 Q T Q U is not under your control — you have to accept any
split that satisfies the two constraints.)

4. pick

� �

IN depending on � $ � $ � $ � $ � and � such that� � ! � � ! � �� �

.
(You select

V

.)

This constitutes a proof of

�

being not context-free.
Context-free languages III – p.11/20

Closure proper ties of CFLs

Context-free languages III – p.12/20

Substitutions

Idea: Generalize the notion of homomorphism by substituting a full
CFL (instead of just a word) for each terminal symbol.

Def: Given a set

&

of terminals, a substitution for

&
is a mappingWX & �

CFL.

Given � � &*

and a substitution W on

&
,

W # �) def� Y � � � � � � � �[Z]\ Z � � ! � W # � !) for all

� � � � �^ $

i.e. W # �)

is the concatenation of the languages W # � �) $ W # � �) $ � � � .
Given

�_ &*

and a substitution W on

&

,
W # �) def�

\ ` a
W # �) �

Context-free languages III – p.13/20

Closure under substitution

Thm: If

�

is a CFL over alphabet

&

and W is a substitution for
&

thenW # �)

is a CFL.

Prf: Essentially, we take a CFG

>

for

b

and replace each terminal B by the start
symbols of a CFG for c d B e .

Let and be a CFG for for each
. Then generates , where

is the disjoint union of and all ’s,

,

consists of
1. the productions from , but with each terminal being replaced

by (actually a homomorphism on the productions),

2. .

Context-free languages III – p.14/20

Closure under substitution

Thm: If

�

is a CFL over alphabet

&

and W is a substitution for
&

thenW # �)

is a CFL.

Prf: Essentially, we take a CFG

>

for

b

and replace each terminal B by the start
symbols of a CFG for c d B e .
Let

> : d HQ DQ fQ ? e

and

>hg : d Hg Q Dg Q fg Q ?g e

be a CFG for c d B e for eachB C D

. Then

> i : d H i Q D i Q f i Q ? e

generates c d b e
, where� H i

is the disjoint union of

H

and all

Hg ’s,� D i : jg k l Dg ,� f i

consists of
1. the productions from

f

, but with each terminal B C D

being replaced
by

?g (actually a homomorphism on the productions),

2.

jg k l fg .

Context-free languages III – p.14/20

Implications of substitution closure
Cor: The CFLs are closed under� union,� concatenation,� Kleene closure (

*

) and positive closure (

m

),� homomorphism.

Prf: For the first three items, we state regular (and thus context-free) languages
plus a substitution that maps them into the desired language:
1. ,
2. ,
3. and , respectively.

Applying the substitution and to these RLs, we obtain

1. ,
2. ,
3. and .
Homomorphism, finally, is a special case of substitution.
Hence, substitution closure implies all these closure properties.

Context-free languages III – p.15/20

Implications of substitution closure
Cor: The CFLs are closed under� union,� concatenation,� Kleene closure (

*

) and positive closure (

m

),� homomorphism.

Prf: For the first three items, we state regular (and thus context-free) languages
plus a substitution that maps them into the desired language:
1. BN n

,
2. B n

,
3. B o and B B o , respectively.

Applying the substitution c d B e : b
and c d n e : p

to these RLs, we obtain

1.

bq p

,
2.

b p

,
3.

b o

and

b r

.

Homomorphism, finally, is a special case of substitution.
Hence, substitution closure implies all these closure properties.

Context-free languages III – p.15/20

Implications of substitution closure
Cor: The CFLs are closed under� union,� concatenation,� Kleene closure (

*

) and positive closure (

m

),� homomorphism.

Prf: For the first three items, we state regular (and thus context-free) languages
plus a substitution that maps them into the desired language:
1. BN n

,
2. B n

,
3. B o and B B o , respectively.

Applying the substitution c d B e : b
and c d n e : p

to these RLs, we obtain

1.

bq p

,
2.

b p

,
3.

b o

and

b r

.
Homomorphism, finally, is a special case of substitution.
Hence, substitution closure implies all these closure properties.

Context-free languages III – p.15/20

Non-c losure under inter section

Thm: The CFLs are not closed under intersection.

N.B.: This is in contrast to the RLs, which are closed under
intersection.

Prf: By contraposition:p : s B6 n 6]t u 3 / Q v C

IN

w

and

x : s B6 n ut u 3 / Q v C
IN

w

are CFLs. If the
CFLs were closed under intersection then

s B6 n 6t 6 3 / C

IN

w: py x

were
a CFL, which it is not.

Context-free languages III – p.16/20

Implications of non-c losure under inter section

Cor: The CFLs are not closed under� complement,� difference.

Prf: By contraposition:

If the CFLs were closed under complement, then they were also closed

under intersection, as

py x : p q x

.

If the CFLs were closed under difference, then they were also closed under
complement, as

D o

is a CFL and

b : D o z b
.

Context-free languages III – p.17/20

Closure under reversal

Thm: The CFLs are closed under reversal of words.

Prf: Take a CFG for the language and reverse the bodies of all productions.

Context-free languages III – p.18/20

Closure under inter section with RL

Thm: The CFLs are closed under intersection with a regular
language.
I.e.,

�{ |

is a CFL if

�

is a CFL and

|

is an RL.

Prf: Let

f : d}R~ Q � Q �Q �~ Q �~ Q � E Q �~ e

be a PDA accepting
b

by final state and let� : d} g Q � Q �J� Q � � Q �� e

be a DFA for

�

.
The PDA

} i : d} ~ � } g Q � Q �Q � Q d �~ Q � � e Q � E Q �~ � �g e
with

� d d � Q � e Q B Q � e def: d d � i Q � i e Q � e
���������
d � i Q � e C �~ d � Q B Q � e

� � i : ���� d � Q B e

then accepts

by �

by final state.

Cor: If is a CFL and is an RL, then is a CFL.

Prf: . Thus, is a CFL because of closure of the CFLs under
intersection with RLs and because of closure of the RLs under complement.

Context-free languages III – p.19/20

Closure under inter section with RL

Thm: The CFLs are closed under intersection with a regular
language.
I.e.,

�{ |

is a CFL if

�

is a CFL and

|

is an RL.

Prf: Let

f : d}R~ Q � Q �Q �~ Q �~ Q � E Q �~ e

be a PDA accepting
b

by final state and let� : d} g Q � Q �J� Q � � Q �� e

be a DFA for

�

.
The PDA

} i : d} ~ � } g Q � Q �Q � Q d �~ Q � � e Q � E Q �~ � �g e
with

� d d � Q � e Q B Q � e def: d d � i Q � i e Q � e
���������
d � i Q � e C �~ d � Q B Q � e

� � i : ���� d � Q B e

then accepts

by �

by final state.

Cor: If

�

is a CFL and

|
is an RL, then

� � |

is a CFL.

Prf:

b z � : by �

. Thus,
b z �

is a CFL because of closure of the CFLs under
intersection with RLs and because of closure of the RLs under complement.

Context-free languages III – p.19/20

Closure under inverse homomorphism
Thm: The CFLs are closed under reverse homomorphism.

Prf: We add a length v B T s 3� d B e 3 3 B C D w

buffer to a PDA for the CFL:

Accept/
reject

Buffer
h(a)a h

state
PDA

Stack

�

Buffer is part of finite state set,�

whenever it is empty, it can be
filled with

� d
next input

e

, thereby
keeping the stack and the
original PDA’s state,�

when buffer is not empty, the
original PDA’s non- � moves can
be performed on the frontmost
element of the buffer, thereby
removing that element from the
buffer,�

the original PDA’s � moves can
always be performed, leaving the
buffer intact.

Context-free languages III – p.20/20

	What you'll learn
	
	Rationale
	Idea
	Pumping it
	Pumping it
	Ensuring $v
eq varepsilon $ or $x
eq varepsilon $
	The pumping lemma for CFLs
	An auxiliary lemma on CNF grammars
	Pumping lemma as a proof scheme
	
	Substitutions
	Closure under substitution
	Implications of substitution closure
	Non-closure under intersection
	Implications of non-closure under intersection
	Closure under reversal
	Closure under intersection with RL
	Closure under inverse homomorphism

