A Pumping Lemma for
and Closure Properties of
Conte xt-Free Langua ges

Martin Franzle

Informatics and Mathematical Modelling

The Technical University of Denmark

Context-free languages Ill — p.1/20

What you'll learn

1. A pumping lemma for CFLs:

* The lemma

* [|ts use In proving languages non-CFL
~ |nsight in the limits of CFLs

2. Closure properties of CFLs:
* The operation of substitution — generalizing
homomorphisms

~s Closure under union, concatenation, Kleene closure,
homomorphism

* Non-closure under intersection, complement, difference
* Closure under intersection with a regular language
* Closure under inverse homomorphism

Context-free languages Il — p.2/20

A pumping lemma for CFLs

Context-free languages Il — p.3/20

Rationale

* As CFGs build strings of arbitrary length — if the language
defined is not finite — from a finite set of rules, it is reasonable

to expect that all sufficiently long words of the language have
some kind of repeatable pattern.

* Obviously, this pattern can be more complex than that occurring
In regular languages (why?)

Context-free languages Il — p.4/20

Rationale

* As CFGs build strings of arbitrary length — if the language
defined is not finite — from a finite set of rules, it is reasonable

to expect that all sufficiently long words of the language have
some kind of repeatable pattern.

* Obviously, this pattern can be more complex than that occurring
In regular languages (why?)

Program:
1. ldentify the kind of pattern;

2. derive a method for proving languages non-contextfree.

Context-free languages Il — p.4/20

|dea

Any parse-tree deeper than the number of variables in the CFG must

have some variable occur at least twice on its deepest path:
S

Context-free languages Il — p.5/20

|dea

Any parse-tree deeper than the number of variables in the CFG must

have some variable occur at least twice on its deepest path:
S

This provides “pluggable” subtrees!

Context-free languages Ill — p.5/20

|dea

Any parse-tree deeper than the number of variables in the CFG must

have some variable occur at least twice on its deepest path:
S

A
This provides “pluggable” subtrees!

Context-free languages Ill — p.5/20

Pumping It

Parse tree
S

Context-free languages Il — p.6/20

Pumping It

Parse tree can be shrunk
S S

Context-free languages Ill — p.6/20

Pumping It

Parse tree can be shrunk
S S

Caution: To really change yield of the parse tree, we have to
make sure thatv # ¢ or x # ¢.

Context-free languages Ill — p.6/20

Pumping It

Parse tree
S

Context-free languages Il — p.7/20

Pumping It

Parse tree can be expanded. ..
S

Context-free languages Ill — p.7/20

Pumping It

Parse tree can be expanded. ..
S

Again, change of yield depends on vx # ¢.

Context-free languages Ill — p.7/20

Ensuring v #e¢o0r x # ¢

can be done by using Chomsky-normal-form (CNF) grammars:
* they don’t contain nullable symbols,

* the production used for the upper V in the parse tree must be of
the form

V — V] Vz
as it did not directly derive a terminal

— the lower V must be derived from either V; or V;
* in the first case, x # ¢ as V, is non-nullable,
* in the second case, v # ¢ as V; is non-nullable.

Context-free languages Il — p.8/20

The pumping lemma for CFLs

Thm: For any CFL L there is constant n € N such that any string
z € L with |z| > n can be split into z = uvwxy with
1. [vwx| <n,

2. VX # €,

3. Vi € Neuvtwxly € L,

Context-free languages Il — p.9/20

The pumping lemma for CFLs

Thm: For any CFL L there is constant n € N such that any string
z € L with |z| > n can be split into z = uvwxy with

1. [vwx| <n,
l.e. we find the pumpable portion in a “short” substring,

2. VX # €,
l.e. at least one of v and x IS non-trivial,

3. Vi e Neuwvtwxly € L,
l.e. v and x can be simultaneously “pumped”.

Context-free languages Il — p.9/20

An auxiliar y lemma on CNF grammar s

Lem: IfG=(V,T,P,S)isaCNF grammar and w € T* is the yield of a
parse tree of G of depth n then jw| < 2™,

Context-free languages Il — p.10/20

An auxiliar y lemma on CNF grammar s

Lem: IfG=(V,T,P,S)isaCNF grammar and w € T* is the yield of a
parse tree of G of depth n then jw| < 2™,

Prf: By complete induction on n:

Context-free languages Il — p.10/20

An auxiliar y lemma on CNF grammar s

Lem: IfG=(V,T,P,S)isaCNF grammar and w € T* is the yield of a
parse tree of G of depth n then jw| < 2™,

Prf: By complete induction on n:

Induction hypothesis: For all n < k it is true that the yield w of any parse
tree of depth n satisfies [w| < 2™, if w is terminal.

Context-free languages Il — p.10/20

An auxiliar y lemma on CNF grammar s

Lem: IfG=(V,T,P,S)isaCNF grammar and w € T* is the yield of a

Prf:

parse tree of G of depth n then jw| < 2™ 1.

By complete induction on n:

Induction hypothesis: For all n < k it is true that the yield w of any parse
tree of depth n satisfies [w| < 2™, if w is terminal.

Induction step: Parse tree depth n = k. We deduce from the induction
hypothesis that jw| < 2%=! for all terminal yields of parse trees of depth k.

Context-free languages Il — p.10/20

An auxiliar y lemma on CNF grammar s

Lem: IfG=(V,T,P,S)isaCNF grammar and w € T* is the yield of a

Prf:

parse tree of G of depth n then jw| < 2™ 1.

By complete induction on n:

Induction hypothesis: For all n < k it is true that the yield w of any parse
tree of depth n satisfies [w| < 2™, if w is terminal.

Induction step: Parse tree depth n = k. We deduce from the induction
hypothesis that jw| < 2%=! for all terminal yields of parse trees of depth k.

® Case 1: k =0. There is no parse tree of depth 0 having a terminal yield.
Thus, the conjecture is trivially true.

Context-free languages Il — p.10/20

An auxiliar y lemma on CNF grammar s

Lem: IfG=(V,T,P,S)isaCNF grammar and w € T* is the yield of a
parse tree of G of depth n then jw| < 2™ 1.

Prf: By complete induction on n:
Induction hypothesis: For all n < k it is true that the yield w of any parse
tree of depth n satisfies [w| < 2™, if w is terminal.
Induction step: Parse tree depth n = k. We deduce from the induction
hypothesis that jw| < 2%=! for all terminal yields of parse trees of depth k.

® Case 1: k =0. There is no parse tree of depth 0 having a terminal yield.
Thus, the conjecture is trivially true.

® Case 2: k=1. As G is of CNF and w Is terminal, w can only be derived
by a production S — a with a € T. Hence, w| =1 =20 = 2k-1,

Context-free languages Il — p.10/20

An auxiliar y lemma on CNF grammar s

Lem: IfG=(V,T,P,S)isaCNF grammar and w € T* is the yield of a

Prf:

parse tree of G of depth n then jw| < 2™ 1.

By complete induction on n:

Induction hypothesis: For all n < k it is true that the yield w of any parse
tree of depth n satisfies [w| < 2™, if w is terminal.

Induction step: Parse tree depth n = k. We deduce from the induction
hypothesis that jw| < 2%=! for all terminal yields of parse trees of depth k.
® Case 1: k =0. There is no parse tree of depth 0 having a terminal yield.
Thus, the conjecture is trivially true.
® Case 2: k=1. As G is of CNF and w Is terminal, w can only be derived
by a production S — a with a € T. Hence, w| =1 =20 = 2k-1,
® Case 3: k > 1. As tree depth k > 1, the root of the parse tree uses a
production, which is of the form S — V;V, because G is of CNF. As the
overall tree depth is k, the subtrees rooted at V; and V, have depth < k,
s.t. the induction hypothesis applies to them.
Thus, [wi| < 22 > |w;| holds for the yields w; of these subtrees. Now,

w = w;w; such that [w| = [wq| 4+ [wy| < 2k=2 4 2k=2 — pk=1

Context-free languages Il — p.10/20

Pumping lemma as a proof scheme

Given a language L deemed to be non-CFL, proceed as follows:

1. Take arbitrary n € N,
2. provide a construction of z depending on n,

3. arbitrarily break z into uvwxy subject to the constraints
(@) [vwx| < n,

(b) vx # ¢,

4. pick 1 € N depending on u, v, w,x,y and n such that
uvtwxly € L.

This constitutes a proof of L being not context-free.

Context-free languages Il — p.11/20

Pumping lemma as a proof scheme

Given a language L deemed to be non-CFL, proceed as follows:

1. Take arbitrary n € N,
(Selection of n is not under your control — you have to accept any n.)

2. provide a construction of z depending on n,
(You select z.)
3. arbitrarily break z into uvwxy subject to the constraints
(@) vwx| <,
(b) vx # ¢,
(Selection of u, v, w, x,y Is not under your control — you have to accept any
split that satisfies the two constraints.)
4. pick 1 € N depending on u,v,w,x,y and n such that
uvtwxly € L.
(You select i.)

This constitutes a proof of L being not context-free.

Context-free languages Il — p.11/20

Closure properties of CFLs

Context-free languages Il — p.12/20

Substitutions

Idea: Generalize the notion of homomorphism by substituting a full
CFL (instead of just a word) for each terminal symbol.

Def: Given a set T of terminals, a substitution for T is a mapping
s: T — CFL.

Given w € T* and a substitution son T,

s(w) d:ef{wvz oV | Vi € s(wy) foralli < (wl}

l.e. s(w) is the concatenation of the languages s(w;), s(ws),

Given L C T* and a substitution son T,

s(L) = U s(w) .

weL

Context-free languages Il — p.13/20

Closure under substitution

Thm: If Lis a CFL over alphabet T and s Is a substitution for T then
s(L) is a CFL.

Prf: Essentially, we take a CFG G for L and replace each terminal a by the start
symbols of a CFG for s(a).

Context-free languages Il — p.14/20

Closure under substitution

Thm: If Lis a CFL over alphabet T and s Is a substitution for T then
s(L) is a CFL.

Prf: Essentially, we take a CFG G for L and replace each terminal a by the start
symbols of a CFG for s(a).
Let G = (V,T,P,S)and G, = (Vg, Ta, Pa, Sa) be a CFG for s(a) for each
acT.Then G’ = (V/,T’,P’' S) generates s(L), where
® V'is the disjoint union of V and all V’s,
* T = UaET Ta’
® P’ consists of

1. the productions from P, but with each terminal a € T being replaced
by S, (actually a homomorphism on the productions),

2. Uyer Pa.

Context-free languages Il — p.14/20

Implications of substitution closure

Cor: The CFLs are closed under
® union,
* concatenation,
e Kleene closure (*) and positive closure (),
* homomorphism.

Context-free languages Ill — p.15/20

Implications of substitution closure

Cor: The CFLs are closed under
® union,
* concatenation,
e Kleene closure (*) and positive closure (*),
* homomorphism.

Prf: For the first three items, we state regular (and thus context-free) languages
plus a substitution that maps them into the desired language:

1. a+ b,

2. ab,

3. a* and aa*, respectively.

Applying the substitution s(a) = L and s(b) = M to these RLs, we obtain
1. LUM,

2. LM,

3. [*and L.

Context-free languages Ill — p.15/20

Implications of substitution closure

Cor: The CFLs are closed under
® union,
* concatenation,
e Kleene closure (*) and positive closure (*),
* homomorphism.

Prf: For the first three items, we state regular (and thus context-free) languages
plus a substitution that maps them into the desired language:

1. a+ b,

2. ab,

3. a* and aa*, respectively.

Applying the substitution s(a) = L and s(b) = M to these RLs, we obtain
1. LUM,

2. LM,

3. [*and L.

Homomorphism, finally, is a special case of substitution.

Hence, substitution closure implies all these closure properties.

Context-free languages Ill — p.15/20

Non-closure under Inter section

Thm: The CFLs are not closed under intersection.

N.B.: This Is in contrast to the RLs, which are closed under
Intersection.

Prf: By contraposition:

M ={a"b"c™ [n,m e N;and N ={a™b™c™ | n, m € N} are CFLs. If the
CFLs were closed under intersection then {a"b™c™ | n € N} = M N N were
a CFL, which it is not.

Context-free languages Il — p.16/20

Implications of non-closure under Inter section

Cor: The CFLs are not closed under
* complement,
e difference.

Prf: By contraposition:
If the CFLs were closed under complement, then they were also closed

under intersection,as MNN = M U N.

If the CFLs were closed under difference, then they were also closed under
complement, as T*isaCFLand L =T*\ L.

Context-free languages Il — p.17/20

Closure under reversal

Thm: The CFLs are closed under reversal of words.

Prf: Take a CFG for the language and reverse the bodies of all productions.

Context-free languages Il — p.18/20

Closure under Inter section with RL

Thm: The CFLs are closed under intersection with a regular
language.
l.,e, LNRisaCFLIifLisa CFL and R is an RL.

Prf. LetP = (Qp, X, T, 0p,qp,Zo, Fp) be a PDA accepting L by final state and let
A=(QqX,0a,9a,Fa) be a DFA for R.
The PDA Q’ — (QP X Qa)zar)6> (qP> qA))Z())FP X Fa) with

A\

6(((],?),(1,)()(@{((q,,T/),Y) /SQ(T' (l)

(q’>Y) S 6P(q,(l,X) }
=

then accepts L N R by final state.

Context-free languages Il — p.19/20

Closure under Inter section with RL

Thm: The CFLs are closed under intersection with a regular
language.
l.,e, LNRisaCFLIifLisa CFL and R is an RL.

Prf. LetP = (Qp, X, T, 0p,qp,Zo, Fp) be a PDA accepting L by final state and let
A=(QqX,0a,9a,Fa) be a DFA for R.
The PDA Q’ — (QP X Qa)zar)6> (qP> qA))Z())FP X Fa) with

(q’>Y) S 6P(q,(l,X) }
=

6(((],1‘),(1,)()@{((q,,T/),Y) /6\Q(T' (l)

A\

then accepts L N R by final state.

Cor: IfLisaCFLandRisanRL,thenL \ Ris a CFL.

Prf: L\R=LNR. Thus, L\ Ris a CFL because of closure of the CFLs under
Intersection with RLs and because of closure of the RLs under complement.

Context-free languages Il — p.19/20

Closure under inverse homomorphism

Thm: The CFLs are closed under reverse homomorphism.

Prf: We add a length max{|h(a)| | a € T} buffer to a PDA for the CFL.:

Buffer is part of finite state set,

whenever it is empty, it can be
filled with h(next input), thereby
keeping the stack and the
original PDA's state,

when buffer is not empty, the
original PDA’s non-¢ moves can
be performed on the frontmost
element of the buffer, thereby
removing that element from the
buffer,

the original PDA’'s ¢ moves can
always be performed, leaving the
buffer intact.

Context-free languages Ill — p.20/20

	What you'll learn
	
	Rationale
	Idea
	Pumping it
	Pumping it
	Ensuring $v
eq varepsilon $ or $x
eq varepsilon $
	The pumping lemma for CFLs
	An auxiliary lemma on CNF grammars
	Pumping lemma as a proof scheme
	
	Substitutions
	Closure under substitution
	Implications of substitution closure
	Non-closure under intersection
	Implications of non-closure under intersection
	Closure under reversal
	Closure under intersection with RL
	Closure under inverse homomorphism

