A Pumping Lemma for and Closure Properties of Context-Free Languages

Martin Fränzle

Informatics and Mathematical Modelling

The Technical University of Denmark

What you'll learn

1. A pumping lemma for CFLs:

- The lemma
- Its use in proving languages non-CFL
- → Insight in the limits of CFLs

2. Closure properties of CFLs:

- The operation of substitution generalizing homomorphisms
- → Closure under union, concatenation, Kleene closure, homomorphism
 - Non-closure under intersection, complement, difference
 - Closure under intersection with a regular language
 - Closure under inverse homomorphism

A pumping lemma for CFLs

Rationale

- As CFGs build strings of arbitrary length if the language defined is not finite — from a finite set of rules, it is reasonable to expect that all sufficiently long words of the language have some kind of repeatable pattern.
- Obviously, this pattern can be more complex than that occurring in regular languages (why?)

Rationale

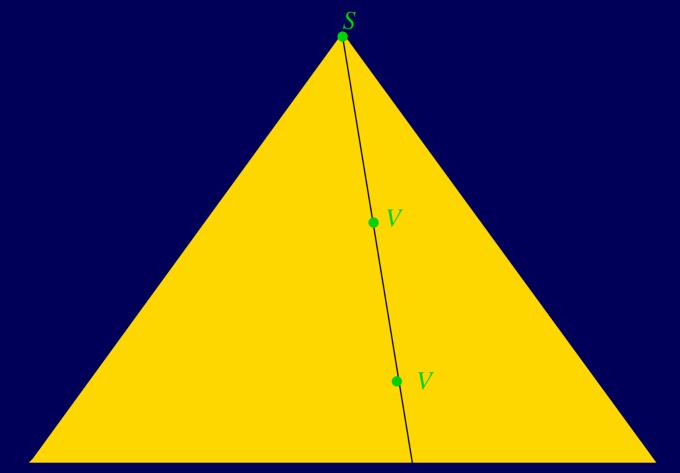
- As CFGs build strings of arbitrary length if the language defined is not finite — from a finite set of rules, it is reasonable to expect that all sufficiently long words of the language have some kind of repeatable pattern.
- Obviously, this pattern can be more complex than that occurring in regular languages (why?)

Program:

- 1. Identify the kind of pattern;
- 2. derive a method for proving languages non-contextfree.

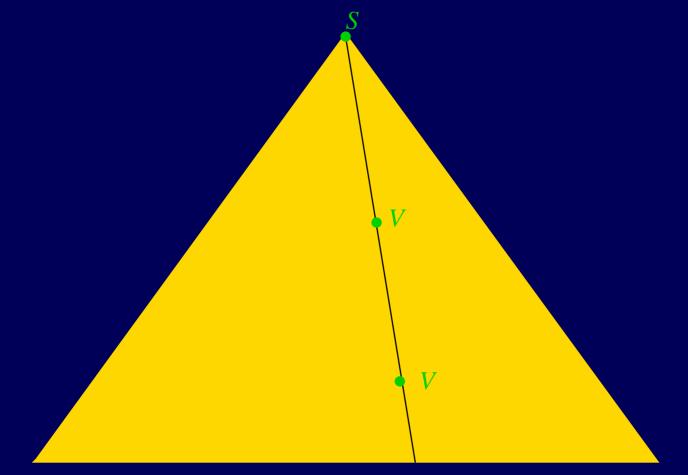
Idea

Any parse-tree deeper than the number of variables in the CFG must have some variable occur at least twice on its deepest path:



Idea

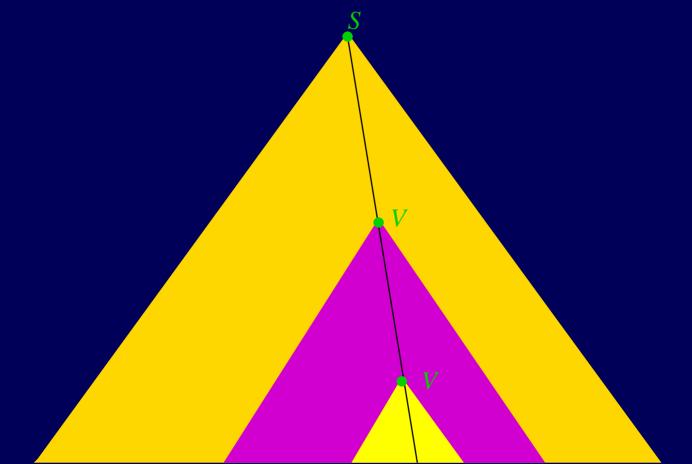
Any parse-tree deeper than the number of variables in the CFG must have some variable occur at least twice on its deepest path:



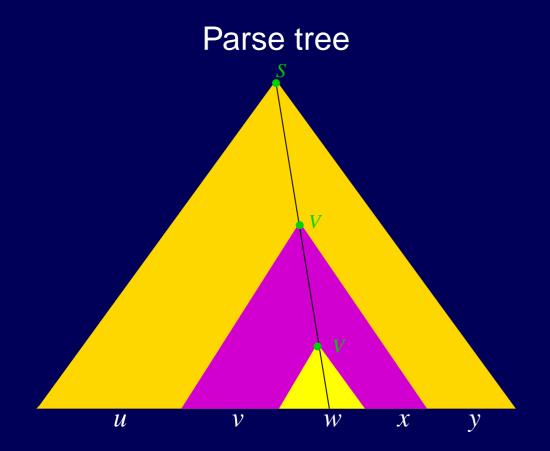
This provides "pluggable" subtrees!

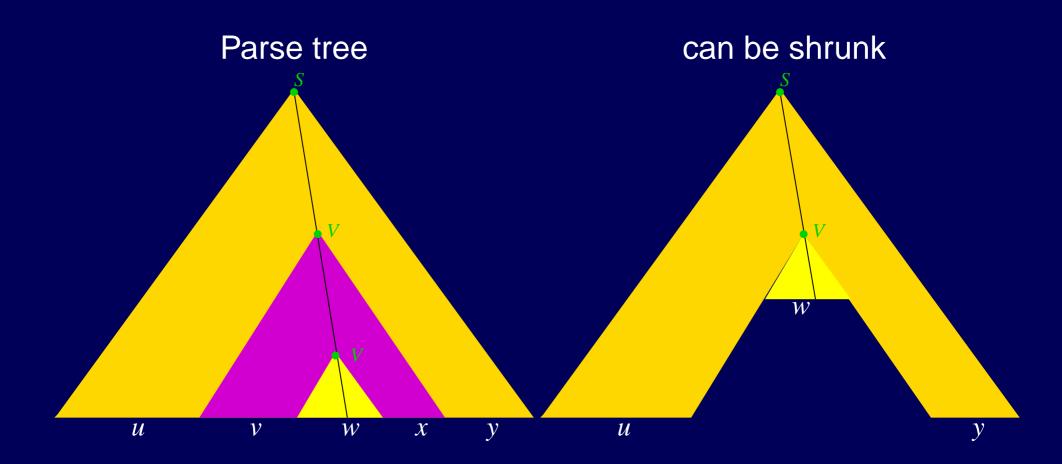
Idea

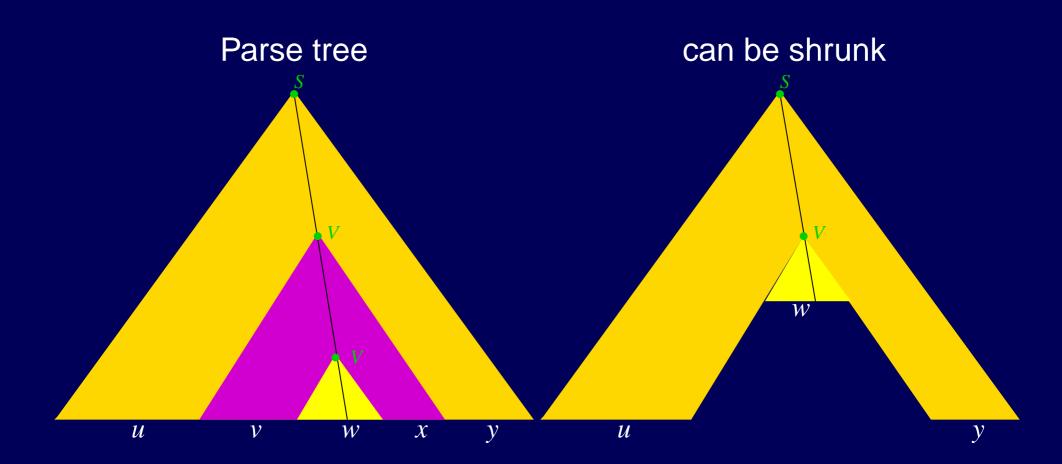
Any parse-tree deeper than the number of variables in the CFG must have some variable occur at least twice on its deepest path:



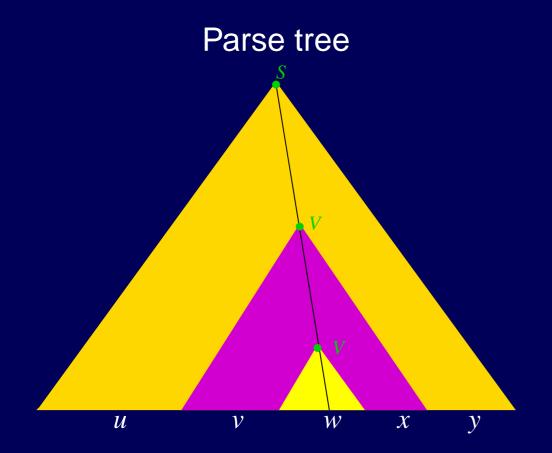
This provides "pluggable" subtrees!

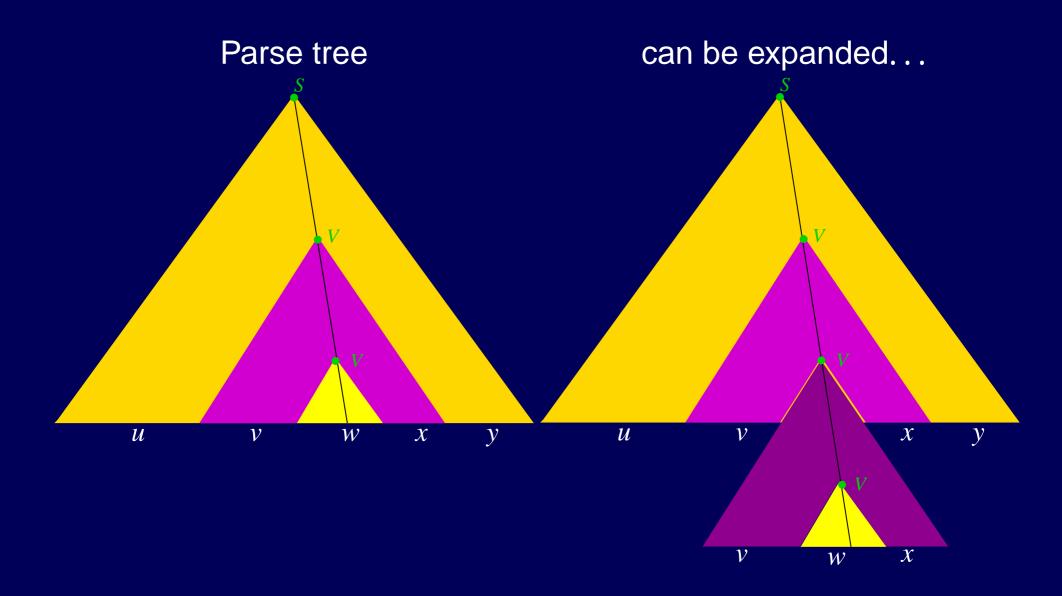


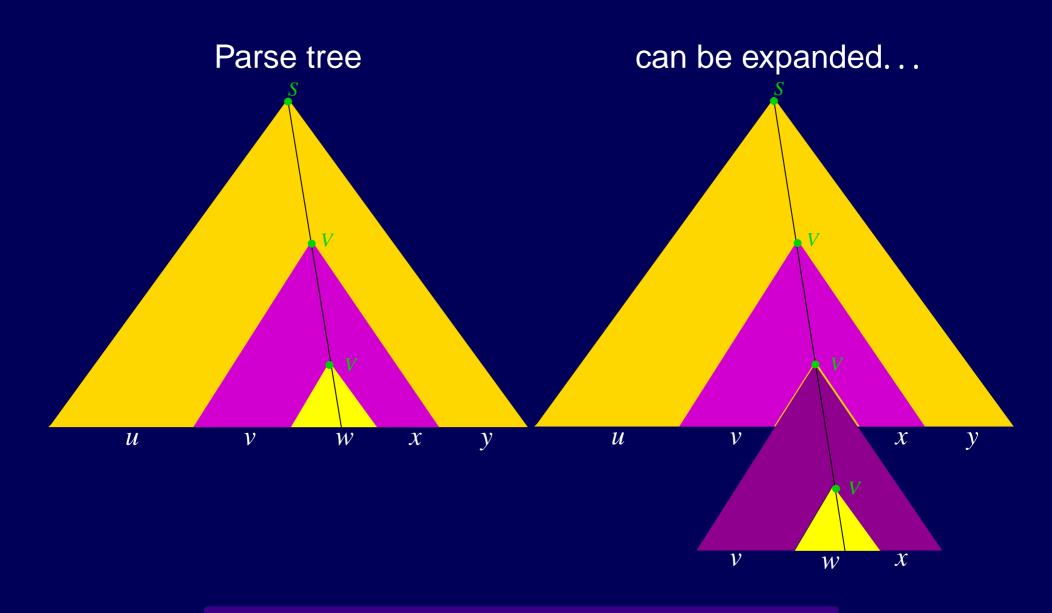




Caution: To really change yield of the parse tree, we have to make sure that $v \neq \varepsilon$ or $x \neq \varepsilon$.







Again, change of yield depends on $vx \neq \varepsilon$.

Ensuring $v \neq \varepsilon$ or $x \neq \varepsilon$

can be done by using Chomsky-normal-form (CNF) grammars:

- they don't contain nullable symbols,
- the production used for the upper V in the parse tree must be of the form

$$V \rightarrow V_1 V_2$$

as it did not directly derive a terminal

- \Rightarrow the lower V must be derived from either V₁ or V₂
 - in the first case, $x \neq \varepsilon$ as V₂ is non-nullable,
 - in the second case, $v \neq \varepsilon$ as V_1 is non-nullable.

The pumping lemma for CFLs

Thm: For any CFL L there is constant $n \in N$ such that any string $z \in L$ with $|z| \ge n$ can be split into z = uvwxy with

- 1. $|vwx| \le n$,
- 2. $vx \neq \varepsilon$,
- 3. $\forall i \in N \bullet uv^i w x^i y \in L$,

The pumping lemma for CFLs

Thm: For any CFL L there is constant $n \in N$ such that any string $z \in L$ with $|z| \ge n$ can be split into z = uvwxy with

1. $|vwx| \leq n$,

i.e. we find the pumpable portion in a "short" substring,

2. $vx \neq \varepsilon$,

i.e. at least one of v and x is non-trivial,

3. $\forall i \in N \bullet uv^i w x^i y \in L$,

i.e. v and x can be simultaneously "pumped".

Lem: If G = (V, T, P, S) is a CNF grammar and $w \in T^*$ is the yield of a parse tree of G of depth n then $|w| \le 2^{n-1}$.

Lem: If G = (V, T, P, S) is a CNF grammar and $w \in T^*$ is the yield of a parse tree of G of depth n then $|w| \le 2^{n-1}$.

Prf: By *complete* induction on n:

- Lem: If G = (V, T, P, S) is a CNF grammar and $w \in T^*$ is the yield of a parse tree of G of depth n then $|w| \le 2^{n-1}$.
- **Prf:** By *complete* induction on n:

Induction hypothesis: For all n < k it is true that the yield w of any parse tree of depth n satisfies $|w| \le 2^{n-1}$, if w is terminal.

- Lem: If G = (V, T, P, S) is a CNF grammar and $w \in T^*$ is the yield of a parse tree of G of depth n then $|w| \le 2^{n-1}$.
- **Prf:** By *complete* induction on n:
 - **Induction hypothesis:** For all n < k it is true that the yield w of any parse tree of depth n satisfies $|w| \le 2^{n-1}$, if w is terminal.
 - **Induction step: Parse tree depth** n = k. We deduce from the induction hypothesis that $|w| \le 2^{k-1}$ for all terminal yields of parse trees of depth k.

Lem: If G = (V, T, P, S) is a CNF grammar and $w \in T^*$ is the yield of a parse tree of G of depth n then $|w| \le 2^{n-1}$.

Prf: By *complete* induction on n:

Induction hypothesis: For all n < k it is true that the yield w of any parse tree of depth n satisfies $|w| \le 2^{n-1}$, if w is terminal.

Induction step: Parse tree depth n = k. We deduce from the induction hypothesis that $|w| \le 2^{k-1}$ for all terminal yields of parse trees of depth k.

 Case 1: k = 0. There is no parse tree of depth 0 having a terminal yield. Thus, the conjecture is trivially true.

Lem: If G = (V, T, P, S) is a CNF grammar and $w \in T^*$ is the yield of a parse tree of G of depth n then $|w| \le 2^{n-1}$.

Prf: By *complete* induction on n:

Induction hypothesis: For all n < k it is true that the yield w of any parse tree of depth n satisfies $|w| \le 2^{n-1}$, if w is terminal.

Induction step: Parse tree depth n = k. We deduce from the induction hypothesis that $|w| \le 2^{k-1}$ for all terminal yields of parse trees of depth k.

- Case 1: k = 0. There is no parse tree of depth 0 having a terminal yield. Thus, the conjecture is trivially true.
- Case 2: k = 1. As G is of CNF and w is terminal, w can only be derived by a production $S \rightarrow a$ with $a \in T$. Hence, $|w| = 1 = 2^0 = 2^{k-1}$.

Lem: If G = (V, T, P, S) is a CNF grammar and $w \in T^*$ is the yield of a parse tree of G of depth n then $|w| \le 2^{n-1}$.

Prf: By *complete* induction on n:

Induction hypothesis: For all n < k it is true that the yield w of any parse tree of depth n satisfies $|w| \le 2^{n-1}$, if w is terminal.

Induction step: Parse tree depth n = k. We deduce from the induction hypothesis that $|w| \le 2^{k-1}$ for all terminal yields of parse trees of depth k.

- Case 1: k = 0. There is no parse tree of depth 0 having a terminal yield. Thus, the conjecture is trivially true.
- Case 2: k = 1. As G is of CNF and w is terminal, w can only be derived by a production $S \rightarrow a$ with $a \in T$. Hence, $|w| = 1 = 2^0 = 2^{k-1}$.
- **Case 3:** k > 1. As tree depth k > 1, the root of the parse tree uses a production, which is of the form $S \rightarrow V_1V_2$ because G is of CNF. As the overall tree depth is k, the subtrees rooted at V_1 and V_2 have depth < k, s.t. the induction hypothesis applies to them. Thus, $|w_1| \le 2^{k-2} \ge |w_2|$ holds for the yields w_i of these subtrees. Now, $w = w_1w_2$ such that $|w| = |w_1| + |w_2| \le 2^{k-2} + 2^{k-2} = 2^{k-1}$.

Pumping lemma as a proof scheme

Given a language L deemed to be non-CFL, proceed as follows:

- 1. Take arbitrary $n \in N$,
- 2. provide a construction of z depending on n,
- 3. arbitrarily break z into uvwxy subject to the constraints
 (a) |vwx| ≤ n,
 (b) vx ≠ ε,

4. pick $i \in N$ depending on u, v, w, x, y and n such that $uv^iwx^iy \notin L$.

This constitutes a proof of L being not context-free.

Pumping lemma as a proof scheme

Given a language L deemed to be non-CFL, proceed as follows:

- Take arbitrary n ∈ N,
 (Selection of n is *not* under your control you have to accept any n.)
- provide a construction of z depending on n, (*You* select z.)
- 3. arbitrarily break z into uvwxy subject to the constraints
 - (a) $|vwx| \leq n$,

(b) $vx \neq \varepsilon$,

(Selection of u, v, w, x, y is *not* under your control — you have to accept any split that satisfies the two constraints.)

4. pick $i \in N$ depending on u, v, w, x, y and n such that $uv^iwx^iy \notin L$. (You select i.)

This constitutes a proof of L being not context-free.

Closure properties of CFLs

Substitutions

Idea: Generalize the notion of *homomorphism* by substituting a full CFL (instead of just a word) for each terminal symbol.

Def: Given a set T of terminals, a substitution for T is a mapping $s: T \rightarrow CFL$.

Given $w \in T^*$ and a substitution *s* on T,

$$s(w) \stackrel{\scriptscriptstyle{\mathsf{def}}}{=} \{ v_1 v_2 \dots v_{|w|} \mid v_i \in s(w_i) ext{ for all } i \leq |w| \}$$
 ,

i.e. s(w) is the concatenation of the languages $s(w_1), s(w_2), \ldots$

Given $L \subseteq T^*$ and a substitution *s* on T,

$$s(L) \stackrel{\text{def}}{=} \bigcup_{w \in L} s(w)$$
 .

Closure under substitution

Thm: If L is a CFL over alphabet T and s is a substitution for T then s(L) is a CFL.

Prf: Essentially, we take a CFG G for L and replace each terminal a by the start symbols of a CFG for s(a).

Closure under substitution

Thm: If L is a CFL over alphabet T and s is a substitution for T then s(L) is a CFL.

Prf: Essentially, we take a CFG G for L and replace each terminal a by the start symbols of a CFG for s(a).

Let G = (V, T, P, S) and $G_a = (V_a, T_a, P_a, S_a)$ be a CFG for s(a) for each $a \in T$. Then G' = (V', T', P', S) generates s(L), where

- V' is the *disjoint* union of V and all V_a 's,
- $T' = \bigcup_{a \in T} T_a$,
- P' consists of
 - 1. the productions from P, but with each terminal $a \in T$ being replaced by S_a (actually a homomorphism on the productions),
 - 2. $\bigcup_{a\in T} P_a$.

Implications of substitution closure

Cor: The CFLs are closed under

- union,
- concatenation,
- Kleene closure (*) and positive closure (+),
- homomorphism.

Implications of substitution closure

Cor: The CFLs are closed under

- union,
- concatenation,
- Kleene closure (*) and positive closure (+),
- homomorphism.
- **Prf:** For the first three items, we state regular (and thus context-free) languages plus a substitution that maps them into the desired language:
 - 1. a + b,
 - 2. ab,
 - 3. a^* and aa^* , respectively.

Applying the substitution s(a) = L and s(b) = M to these RLs, we obtain

- 1. $L \cup M$,
- 2. LM,
- 3. L^* and L^+ .

Implications of substitution closure

Cor: The CFLs are closed under

- union,
- concatenation,
- Kleene closure (*) and positive closure (+),
- homomorphism.
- **Prf:** For the first three items, we state regular (and thus context-free) languages plus a substitution that maps them into the desired language:
 - 1. a + b,
 - 2. ab,
 - 3. a^* and aa^* , respectively.

Applying the substitution s(a) = L and s(b) = M to these RLs, we obtain

- 1. $L \cup M$,
- 2. LM,
- 3. L^* and L^+ .

Homomorphism, finally, is a special case of substitution. Hence, substitution closure implies all these closure properties.

Non-closure under intersection

Thm: The CFLs are not closed under intersection.

- **N.B.:** This is in contrast to the RLs, which are closed under intersection.
- **Prf:** By contraposition:

 $M = \{a^n b^n c^m \mid n, m \in N\}$ and $N = \{a^n b^m c^m \mid n, m \in N\}$ are CFLs. If the CFLs were closed under intersection then $\{a^n b^n c^n \mid n \in N\} = M \cap N$ were a CFL, which it is not.

Implications of non-closure under intersection

Cor: The CFLs are not closed under

- complement,
- difference.
- **Prf:** By contraposition:

If the CFLs were closed under complement, then they were also closed under intersection, as $M \cap N = \overline{\overline{M} \cup \overline{N}}$.

If the CFLs were closed under difference, then they were also closed under complement, as T* is a CFL and $\overline{L} = T^* \setminus L$.

Closure under reversal

Thm: The CFLs are closed under reversal of words.

Prf: Take a CFG for the language and reverse the bodies of all productions.

Closure under intersection with RL

Thm: The CFLs are closed under intersection with a regular language. I.e., $L \cap R$ is a CFL if L is a CFL and R is an RL.

Prf: Let $P = (Q_P, \Sigma, \Gamma, \delta_P, q_P, Z_0, F_P)$ be a PDA accepting L by final state and let $A = (Q_a, \Sigma, \delta_A, q_A, F_A)$ be a DFA for R. The PDA $Q' = (Q_P \times Q_a, \Sigma, \Gamma, \delta, (q_P, q_A), Z_0, F_P \times F_a)$ with

$$\delta((q,r),a,X) \stackrel{\text{def}}{=} \left\{ ((q',r'),\gamma) \middle| \begin{array}{c} (q',\gamma) \in \delta_{P}(q,a,X) \\ \wedge r' = \widehat{\delta}_{Q}(r,a) \end{array} \right\}$$

then accepts $L \cap R$ by final state.

Closure under intersection with RL

Thm: The CFLs are closed under intersection with a regular language. I.e., $L \cap R$ is a CFL if L is a CFL and R is an RL.

Prf: Let $P = (Q_P, \Sigma, \Gamma, \delta_P, q_P, Z_0, F_P)$ be a PDA accepting L by final state and let $A = (Q_a, \Sigma, \delta_A, q_A, F_A)$ be a DFA for R. The PDA $Q' = (Q_P \times Q_a, \Sigma, \Gamma, \delta, (q_P, q_A), Z_0, F_P \times F_a)$ with

$$\delta((q,r),a,X) \stackrel{\text{def}}{=} \left\{ ((q',r'),\gamma) \middle| \begin{array}{c} (q',\gamma) \in \delta_{P}(q,a,X) \\ \wedge r' = \widehat{\delta}_{Q}(r,a) \end{array} \right\}$$

then accepts $L \cap R$ by final state.

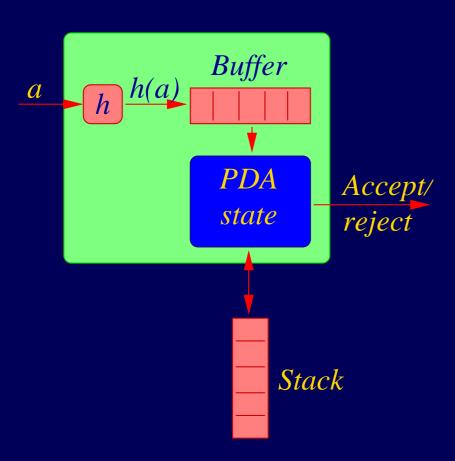
Cor: If L is a CFL and R is an RL, then $L \setminus R$ is a CFL.

Prf: $L \setminus R = L \cap \overline{R}$. Thus, $L \setminus R$ is a CFL because of closure of the CFLs under intersection with RLs and because of closure of the RLs under complement.

Closure under inverse homomorphism

Thm: The CFLs are closed under reverse homomorphism.

Prf: We add a length $max\{|h(a)| \mid a \in T\}$ buffer to a PDA for the CFL:



- Buffer is part of finite state set,
- whenever it is empty, it can be filled with h(next input), thereby keeping the stack and the original PDA's state,
- when buffer is not empty, the original PDA's non-ε moves can be performed on the frontmost element of the buffer, thereby removing that element from the buffer,
- the original PDA's ε moves can always be performed, leaving the buffer intact.