

A Python Primer
for ArcGIS®

Workbook I

Nathan Jennings

Copyright © 2015 Nathan Jennings
All rights reserved.
ISBN: 1505893321

ISBN-13: 978-1505893328

ACKNOWLEDGEMENTS ... 7

INTRODUCTION ... 9
Objectives and Goals... 9
Structure of the Workbooks .. 11
Data and Demos ... 13
Accessing the Data, Demos, and Code .. 14
Required Software .. 14
Older Versions of ArcGIS and Python .. 15
Reporting Errata ... 15
Prerequisite Knowledge and Skill .. 16
Problem Solving .. 16
Developing Geoprocessing Workflows ... 18

WORKBOOK I: THE FUNDAMENTALS ... 21

Chapter 1 Python and ArcGIS .. 23
Overview ... 23
Python and ArcGIS Versions .. 24
How Python is used with ArcGIS ... 24
Python Development Environments.. 25
Relationship to ModelBuilder ... 27
Python Shell in ArcGIS ... 27
Use of Scripts with Geoprocessing Tools ... 29
Getting Help .. 30

ArcGIS ... 30
Python .. 31

Python and ArGIS Errors ... 31
Python Syntax Errors .. 31
ArcGIS Error Codes ... 32

Common Methods for Handling Errors ... 34

Chapter 2 ModelBuilder and Python ... 35
Overview of ModelBuilder .. 35
ModelBuilder Python Script Caveats ... 36

Chapter 2 Demos .. 39

Demo 2a: Using ModelBuilder to Create a Python Script: the Preferred Way 41

Demo 2b: Using ModelBuilder to Create a Python Script: the Non-Preferred Way 53

Exercise 2 - Create a New Feature Class and Add Fields ... 57

Chapter 2 Questions ... 59

Chapter 3 Python and ArcGIS Constructs .. 61
Overview ... 61
Using Python IDLE for Code Development .. 61
Using the Python Shell for Code Testing ... 63
Syntax ... 64

Case Sensitivity .. 64
Naming Conventions ... 64
Indentation .. 65
Comments ... 66
Creating and Using Variables ... 68
String and Number Variables ... 70
Strings, Data Path, and Workspace Conventions .. 71
Lists .. 74
Conditional Statements and Loops .. 75

import Modules .. 76
try: and except: Blocks .. 77
Special Considerations for Query Strings in Python .. 78

Single and Double Quotes ... 78
“Triple” Double Quotes ... 78

General Structure of a Useful Python Script ... 80
Title, Author, Date, and Script Comments ... 82
import Modules ... 82
Variable Definitions (and Python Function Definitions) .. 82
Code Body .. 82

Running a Python Script ... 83
Check Module .. 83
Run Module ... 84
Handling Errors .. 85

Summary .. 86

Exercise 3 - Write a Simple Python Script ... 87

Chapter 3 Questions ... 91

Chapter 4 Writing a Basic Geoprocessing Python Script .. 93
Overview ... 93
Getting Ready to Create an ArcGIS Geoprocessing Python Script .. 93
Using Pseudo-code to Outline Geoprocessing Tasks .. 93
arcpy Module Overview .. 95
Workspace Definitions and Data Path Variables.. 96
Alternative Method for Workspaces Definitions and Data Paths... 97
Define Variables ... 98
Hard Coded Parameters ... 98
Parameters Using Variables ... 99
Add and Modify Geoprocessing Functions ... 99
Search ArcGIS Help ... 100
ArcGIS Toolbox Aliases ... 100
Summary .. 101

Chapter 4 Demo Writing a Clip Features Script .. 103

Exercise 4 - Add the Buffer Routine to the Clip Features Script 111

Chapter 4 Questions ... 113

ACCESSING DATA, DEMOS, AND CODE ... 115

REFERENCES .. 116

INDEX ... 117

 Acknowledgements 7

Acknowledgements

A Python Primer for ArcGIS® Workbooks are a culmination of the author’s experiences and
relationships with a number of people and organizations and could not have been written
without them. The author would like to acknowledge the Environmental Systems Research
Institute (Esri®), the company that provides geographic information systems (GIS) software to
most of the world’s GIS users. This organization and software has made it possible for many
people and organizations to explore, analyze, and depict their world using geographic
information. Specific to this book, Esri has developed modules and objects that can be used
with the open source Python programming language. Doing so has allowed their software to
become more customized and expanded for specific geoprocessing tasks.

The author would also like to acknowledge the City of Sacramento and ICF International
(formerly, Jones and Stokes). These organizations provided the impetus for the author to
develop his own Python programming skills and knowledge and are sources for some of the
demonstrations and exercises in this book. In addition, the author would like to acknowledge
American River College in Sacramento, CA, the Geography and Science department, and
especially the students in the GIS Program. The author developed and teaches the on-line GIS
Programming course at American River College and the students have served as the “testers” of
the material in this book. Their feedback has been valuable for many of the edits that went into
this book.

The author acknowledges the full GIS staff at the City of Sacramento. These colleagues have
been some of the best to work with over the author’s career and represent some of the finest
GIS professionals in the community. Specifically, the author would like to mention Dan McCoy.
Dan has been a valuable resource to bounce ideas off of and to help clarify some of the coding
logic and geoprocesses that found its way into the text. In addition, the author would like to
thank the Central GIS team that the author works with. In addition to Dan, the team includes
Maria MacGunigal, David Wilcox, Rong Liu, and Carlos Porras. The author would like to
especially thank Dr. Este Geraghty who took her time as a student in the author’s class and with
her very busy schedule to review, comment, and make suggestions for A Python Primer for
ArcGIS. Her feedback is sincerely appreciated. The author sincerely appreciates the time and
efforts Ben Logan, Virginia Tech State University in Blacksburg, VA, spent providing significant
editorial feedback, comments, and suggestions for this edition. His input has made the book
better.

Cover design by Zach Jennings; digital media support by Josh Jennings, Urbandale Spatial.

8 Acknowledgements

Esri® ArcGIS® software graphical user interfaces, icons/buttons, splash screens, dialog boxes,
artwork, emblems, and associated materials are the intellectual property of Esri and are
reproduced herein by permission. Copyright © 2011 Esri. All rights reserved. Esri, ArcGIS,
ArcInfo, ArcEditor, ArcMap, ArcCatalog, ArcView, ArcSDE, ArcToolbox, 3D Analyst,
ModelBuilder, ArcPy, ArcGlobe, ArcScene, ArcUser, and www.esri.com are trademarks or
registered trademarks or service marks of Esri and are used herein by permission.

http://www.esri.com/

 Introduction 9

Introduction
For the last several years, Esri has supported the use of the 'open-source scripting language'
Python for many of its geoprocessing tools and functions within ArcGIS. Python is 'platform
independent', so it serves as a good single common scripting language for different operating
systems as well as for different versions of ArcGIS. As ArcGIS development moves forward,
organizations and individuals will not need to maintain geoprocesses using outdated multiple
scripting languages, such as Arc Macro Language (AMLTM) and AvenueTM, neither of which are
officially supported any longer.

Professionals in Geographic Information Systems (GIS) and newcomers to GIS will want, and
need, to learn Python. Knowing how to program in Python will be beneficial to their careers.
The same will be true of organizations that have a long history of scripting development and
that wish to transition to more current geoprocessing standards.

Objectives and Goals

A Python Primer for ArcGIS Workbook series is written for those who want an introduction to
using Python in the context of ArcGIS. A Python Primer for ArcGIS is not a detailed text on
Python. Others have already accomplished this task. References can be found throughout the
book. A Python Primer for ArcGIS will help newcomers to GIS and programming. It will also help
strong ArcGIS users who do not yet have a solid knowledge, or expertise, in writing scripts. For
those who have some background in programming, many of the concepts—such as variables,
loops, conditional statements, etc.--will be familiar and helpful in developing Python code. For
those who do not, Workbook I will serve as a starting point to develop code using some of the
basic programming structures commonly used in many of the ArcGIS geoprocessing tasks. A
Python Primer for ArcGIS Workbook series focuses on developing geoprocesses and Python
code toward the goal of standalone scripts that can be implemented both inside and outside of
ArcGIS.

10 Introduction

The workbooks accomplish the following objectives:

1. Provides a framework for code developers of different skill sets, to design logical
geoprocesses.

2. Teaches how to design logical coding structures that include proper constructs for

• error handling,

• troubleshooting processes,

• logic, and

• scripting problems.

3. Introduces common Python constructs, illustrating how they are implemented with
ArcGIS geoprocessing tools.

4. Teaches code developers how to obtain help with Python and ArcGIS geoprocessing
functions, in the process of building their own code writing skill.

5. Introduces some of the new functionality of Python and ArcGIS, such as the mapping
and data access modules.

6. Shows how to integrate custom-built scripts with the ArcToolboxTM
7. Shows how to make and auto-run custom scripts.

The common Python elements used in ArcGIS and a few of the most widely used geoprocessing
tasks will make up the majority of the book's content, and will serve the primary reason why
the author focuses on developing standalone scripts.

With a grounding in Python structure and syntax and common ArcGIS functions, readers will be
able to apply this new facility to more complex scripting and geoprocessing tasks (e.g. Python
dictionaries, arrays, functions or ArcGIS extensions, ArcSDE®, and specialized geoprocessing
methods). Readers should study the concepts in A Python Primer for ArcGIS workbooks,
perform the demonstrations and exercises, and answer the chapter questions. Upon
completion, readers should be able to design, develop, create, troubleshoot and successfully
run Python scripts with multiple steps and multiple ArcGIS geoprocessing functions and
methods.

Make sure to see the Accessing the Data, Demos, and Code section at the end of the book to
obtain the data and scripts that accompany the workbooks.

 Introduction 11

Structure of the Workbooks

A Python Primer for ArcGIS is divided into three separate workbooks so the newcomer to
Python and ArcGIS can begin with Workbook I and work through all of the material and obtain a
firm grounding in Python programming as well as become more familiar with the ArcGIS
geoprocessing structure. Those that already have a fundamental understanding of Python and
ArcGIS can begin with Workbook II to gain more insight into common geoprocessing tasks that
many GIS professionals encounter. Workbook III takes the fundamentals and the common
geoprocessing tasks a step further and provides some guidance to create custom Python script
tools and Add-ins and to learn how to “auto run” a functional Python script. The author hopes
that providing the material in several workbooks allows an economical and useful way for the
reader to learn and gain valuable experience in developing geoprocessing scripts using Python
and ArcGIS.

Workbook I introduces Python and augments the user's experience in ArcGIS toward writing
some simple geoprocessing scripts.

Chapter 1 introduces Python and briefly discusses its history, the relation of Python to past and
present versions of ArcGIS, the use of IDLE, and the all-important subject of “How to Get Help.”
The chapter introduces a very useful prototype for writing code that collects errors for the user
to examine in the de-bugging process.

Chapter 2 introduces ModelBuilder. ModelBuilder is extremely useful for the beginning
Python/ArcGIS user. Initially, the user builds a straightforward, simple geoprocessing model—a
runnable diagram—simply by dragging and dropping elements and connecting them with
arrows in a logical manner. After a successful model is run, the user can then export the model
as a Python script. The budding programmer can then study the basic elements and flow of this
script and how the method parameters are filled in—a particular problem for newbie and
experienced scripters alike.

Chapter 3 introduces some essential Python constructs and stresses strict adherence to their
syntax. Handled here are variables, lists, conditional statements and loops, modules, and try:
and except: blocks. These are some of the workhorses of Python scripting, without which
many processes would require hours of manual mouse-and-keyboard labor. Some bugaboos
discussed are strings with forward and backward slashes, and the mixing of single and double
quotes and triple double quotes.

Chapter 4 brings the user to the workstation to write the first basic geoprocessing Python
scripts from scratch. This chapter introduces such good user habits as writing pseudo-code as
comments within the draft of a Python script. The demo and exercises bring together the
concepts, best practices, and elements introduced in the first three chapters.

12 Introduction

Workbook II focuses on how to develop Python code for many of the commonly used GIS tasks.
These include developing queries, selecting and using data, reading and writing new data to
records, working with raw image data, and creating automated map production routines.

Chapter 5 introduces the topics of building and using queries as well as Feature Layers and
Table Views. These concepts are key elements to the Select Layer By Attribute and Select Layer
By Location geoprocessing routines. This chapter also includes a brief discussion on creating a
new data set and issues with data locks.

Chapter 6 focuses on cursors. Cursors are common database structures that allow the user to
uniquely interact with specific records or collections of records of data sets. This chapter also
discusses the implementation of the for loop to iterate through the records. The chapter ends
with an example of creating and using table joins with cursors.

Chapter 7 reviews the Describe routine to obtain useful information about data sets. In
addition, ArcGIS lists and raster data are discussed. The raster portion of the chapter shows
how individual bands of data from a multi-spectral data set can be accessed and a custom-built
algorithm implemented using Python syntax as well as the Spatial Analyst extension and sa

module.

Chapter 8 provides a brief discussion on handling errors and creating custom error handling
routines that can be useful for some scripting projects.

Chapter 9 introduces and provides an overview of the ArcGIS mapping module. The reader will
discover the different components of an ArcMap document that can be manipulated when
creating automated mapping routines (such as creating a map book or map atlas).

Workbook III covers some “next steps” a GIS coder can develop to enhance geoprocessing
Python scripts.

Chapter 10 shows how the code developer can tie a graphical user interface (GUI) to an ArcGIS
Python standalone script using a custom ArcTool or Python script tool. Python functions are
introduced.

Chapter 11 reviews the Python Add-in and show how code developers can create and add
functionality to some simple GUIs on a custom toolbar.

A Python Primer for ArcGIS Workbook III concludes with Chapter 12 briefly discussing how to set
up automation processes through Windows Scheduled Tasks so that Python scripts can run in a
completely automated and scheduled fashion.

 Introduction 13

Most chapters will have a demonstration program that the reader can work on and develop
using step by step examples. In addition, the author recommends the reader can work on the
chapter exercises to obtain more experience. Most chapters have questions that reinforce the
important concepts.

The author uses the following typeface conventions throughout the book:

Street_CL – bold type typically indicates a feature class or table explicitly used in the text,
demo, or exercise as well as references to data, files, and scripts provided with the book. Bold
is also used to highlight ArcGIS Help documentation topics so the reader can easily find
additional information provided by Esri.

StreetName – italics type typically indicates an attribute field. It will also be used to indicate a
published work.

arcpy.da.SearchCursor() – courier type indicates example Python syntax within the
text, demos, and exercises.

<required_parameter> - indicates a required parameter for an ArcGIS tool or routine
{optional_parameter} – indicates an optional parameter for an ArcGIS tool or routine

Data and Demos

All of the data and demo scripts can be found at the author’s website at the end of the book.
The supplemental material is organized as follows: \PythonPrimer\ChapterXX. Within each
chapter the Data folder contains the data files required for the demo and/or exercise. Data
files can be shapefiles, file geodatabase feature classes or tables, or standalone tables (e.g.
dBase format), or TIF or ERDAS (.img) images. ArcMap documents (.MXD) can be used as
referenced or renamed for readers to modify and save their own work. A MyData folder is also
provided so that readers can save their own work for demos and exercises. All of the data and
ArcMap documents will be in ArcGIS 10 or later format. NOTE: The ArcMap documents
reference the \PythonPrimer\ChapterXX structure above. If the reader changes this folder
structure, the ArcMap documents provided by the author may need to have the source files in
the Table of Contents revised to the new location. The scripts have been tested on Windows 7
32-bit and 64-bit operating systems. The reader may need to make some additional
adjustments to data paths on 64-bit Windows systems.

14 Introduction

The data sources exist on the one of the following web sites or organizations:

City of Sacramento – city related vector data and historical 1991 aerial photos
County of Sacramento – parcel and street subsets
CalAtlas – Landsat Thematic Mapper (TM) satellite imagery subset

Refer to the text file associated with the supplemental data as well as the websites in the
References at the end of the book for more information.

Accessing the Data, Demos, and Code

See the Accessing the Data, Demos, and Code section at the end of the Book.

Required Software

The user must have access to ArcGIS Basic, ArcGIS Standard, and ArcGIS Advanced, (aka ArcGIS
ArcView®, ArcEditor™, or ArcInfo®, respectively) version 10.0 or later and install the Python
version that comes with the ArcGIS media and not any other version. Exceptions: Chapter 6
and Chapter 9 use cursor syntax that supports ArcGIS 10.1 or later. Readers that only have
access to ArcGIS 10.0 can refer to the “legacy” syntax and material in the Chapter06\legacy and
Chapter09\legacy folders, respectively.

Students enrolled in the online Introduction to GIS Programming course (Geog 375) at
American River College (http://wserver.arc.losrios.edu/~earthscience/) can obtain a one-year
student license of ArcGIS. Contact the author to check enrollment and validate academic
status.

Alternatively, the reader can obtain a copy of ArcGIS for Home Use at
http://www.Esri.com/arcgis-for-home/index.html or from one of the ArcGIS books from Esri
that comes with a CD and DVD. The CD contains the data, demos, exercises, and solutions; the
DVD contains a 180 day fully functional copy of ArcView. Esri can be contacted to receive an
evaluation copy of ArcGIS that can be used with this book. Readers with access to ArcGIS only
need to copy the data referenced in the book to get started with A Python Primer for ArcGIS.
Readers are encouraged to review their own data or a company’s data collection and practice
writing additional scripts beyond the exercises and demonstrations provided in this text.

http://wserver.arc.losrios.edu/~earthscience/
http://www.esri.com/arcgis-for-home/index.html

 Introduction 15

Older Versions of ArcGIS and Python

As of the writing of this edition, ArcGIS 9.3 is officially in retired status; ArcGIS 10 is in mature
status (see http://support.esri.com/en/content/productlifecycles for more information). The
scripts and content in this edition work with ArcGIS 10.0 through the present version of ArcGIS.
The two exceptions are Chapter 6 which discusses cursors and the Chapter 9 exercise that uses
a search cursor. Chapter 6 and Chapter 9 use the 10.1 version of cursors and reference the
data access module which was introduced with ArcGIS 10.1. The older legacy cursor format is
provided in the Chapter06\legacy and Chapter09\legacy folder, however, the content of
Chapter 6 references the arcpyTM Data Access format for cursors. It is recommended that the
latest version of the software be installed to use the materials for A Python Primer for ArcGIS.

Reporting Errata

The author encourages readers to provide feedback on the text, demo scripts, examples, and
exercises so these improvements can be added to future editions. Feel free to email the author
at: nate.jennings@urbandalespatial.com.

http://support.esri.com/en/content/productlifecycles

16 Introduction

Prerequisite Knowledge and Skill

The reader diving into A Python Primer for ArcGIS should have a fundamental understanding of
GIS concepts such as geographic features (points, lines, and polygons), feature classes, GIS
geospatial data formats, data and attribute tables, relational databases, records, rows, fields,
columns, etc. As well, the reader should have a fundamental understanding of ArcGIS, how it is
structured, and how to use ArcMapTM, ArcCatalogTM, and ArcToolboxTM. She or he should also
know how to use some of the geoprocessing tools (e.g. Clip, Buffer, Select Layer by Attribute,
Select Layer by Location, etc.) within ArcToolbox. Familiarity with ModeBuilderTM is
recommended, but not required to use this book. One may also find requisite knowledge to get
started with A Python Primer for ArcGIS in some of the Esri courses or similar introductory
college GIS courses that use ArcGIS.

The reader does not need to know how to program or know Python or any other programming
language. This text will provide an introduction to Python and general Python programming
constructs that can be used with ArcGIS. For those who do have some Python and arcpy
experience, the reader can skip to Workbook I, Chapter 4 and can refer to Chapters 1-3 for basic
review. Make sure to look at the Accessing the Data, Demos, and Code section at the end of
the book to obtain the data, demo scripts, and supplemental scripts that are used and
referenced in the book.

Problem Solving

Problem solving is an important skill to develop in an analytical field such as GIS. As a GIS
professional and college instructor, the author has developed a variety of problem solving skills
that he uses every day in his work. The author uses and communicates these with colleagues
and clients. He teaches these to students in the classroom. In the author’s experience, the
workflow of these skills is roughly as follows:

 Introduction 17

1. Spend considerable time reading and studying documentation
2. Try out specific geoprocessing functions
3. Analyze data
4. Review and interpret intermediate and final results
5. Develop and test specific workflows, and
6. Build simple to complex geoprocesses.

Developing problem solving skill is not easy. It takes time and practice and hours of research to
create solutions to GIS problems and scripts. One can think of this casually as a “heuristic” or
modified “Scientific Method.” Readers are encouraged to

• consult ArcGIS help, on-line forums,

• study other developers’ code, and

• build a repository of scripts and samples for future reference.

Any or all of the above steps are used in code development. The proper result cannot be
achieved without writing the proper code (instructions) for the “computer” to implement the
script.

In addition, the author often creates written documentation (outside of in-line code
documentation). This additional documentation explains

• processes,

• methods,

• data input/output, and

• solutions to intermediate problems

in “plain English.” These descriptions are later referenced for developing more comprehensive
and formal documentation. The author encourages the reader to do the same. For those who
enroll in the author’s classes or training, the author provides the opportunity to learn and
develop problem solving skills. For those who refer to this book, consult the sources in the
chapters of this book or contact the author for more information.

18 Introduction

Developing Geoprocessing Workflows

Before a GIS person (or team) undertakes a geoprocessing problem, often a result, goal,
product, or service is needed, desired, required, etc. These can take the form of creating a new
data set, summarizing data to help make a decision, generating a set of maps to show results of
geospatial analyses, providing a web service, or developing a process to manage and update
data for a specific purpose. All of these tasks require some set of steps to generate the result
and often require some kind of interpretation, analysis, and evaluation of data, and
intermediate and final results.

It is beneficial to develop a geoprocessing workflow (e.g. a diagram) before a project starts.
This will outline or map out the data requirements, processing steps, intermediate results, and
final results. (Oftentimes, in practice, during the hard work of strategizing and coding, the
workflow is never developed or only developed afterward). If GIS analysts can develop an
outline or diagram a workflow before a project commences, they can operate within a
structured framework (i.e., the overall objectives and goals of the project). Having this larger
perspective on a project or task, teams can develop solid solutions, geoprocessing tasks,
products, and services. In addition, a team member can refer to an outline or workflow
diagram providing documentation to the process, because many projects can take a number of
weeks or months. A single person will likely not remember all of the specific tasks, data, and
products. The GIS coder will likely be working on multiple projects at any given time. These
outlines and workflows are also useful for internal documentation or in documents provided to
other staff members or clients.

The workflow can take many forms, such as an outline of steps or a workflow diagram
indicating the relationships between one step and another or how one step may be related to
many steps. For example, one source dataset may be used in multiple geoprocesses. This kind
of workflow is often seen when designing a geoprocessing model in ModelBuilder. The
workflow can be fairly simple, involving a small number of geoprocessing tasks. Conversely, it
can be complex, involving many data sources, processing steps, feedback (looping)
mechanisms, and many outputs (geospatial data, tables, maps, web services, etc.).
The following code represents an example of an actual outline and an actual script developed
by the author for a specific task. Notice the comments (marked with a # sign) that briefly
describe the specific geoprocessing task. The commented steps (sometimes referred to as
“pseudo-code”) provide the framework for the script. The comments were actually written first
before any specific ArcGIS geoprocesses were created. The author could outline the general set
of steps and thereafter, could determine if other geoprocessing steps were required. These,
then, could be researched for syntax, parameter, data, and data type requirements. The
development of the script through this iterative process then informs and modifies the outline.

 Introduction 19

#1. Access a table using a search cursor

sort the data in ascending order based

on the Code attribute

srows = arcpy.SearchCursor(parts_table, "", "", "", 'Code A')

irows = arcpy.InsertCursor(sorted_parts_table)

#2. Update the "sorted parts table with the sorted

records from the existing table

print "Sorting Parts Table..."

print >> log, "Sorting Parts Table..."

for srow in srows:

 irow = irows.NewRow()

 irow.Code = srow.Code

 irow.Description = srow.Description

 irows.InsertRow(irow)

#3. Remove existing attribute domain from field

print "Updating Domain for " + signs_fc + "..."

print >> log, "Updating Domain for " + signs_fc + "..."

As another example, the figure below shows a diagram developed for a geoprocessing
workflow to perform data maintenance on traffic signs for the City of Sacramento. This
workflow is used by GIS staff in the city's department of transportation. A GIS data
management document accompanies the workflow that provides specific GIS data processing
tasks that the staff uses to update and manage the city's traffic sign inventory. The city's GIS
staff uses this workflow to discuss similar activities for other departments. A full discussion of
the workflow and geoprocesses implementation can be found in the Winter 2009 issue of
ArcUserTM (http://www.Esri.com/news/arcuser/0109/streetsigns.html).

http://www.esri.com/news/arcuser/0109/streetsigns.html

20 Introduction

Both examples illustrate general processes for outlining and developing documentation. Get in
the habit of making one or the other—or both. Good commenting and diagrams can serve a
wide variety of purposes.

 Workbook I: The Fundamentals 21

Workbook I: The Fundamentals

Workbook I introduces the Python scripting language and how it relates to ArcGIS.

Chapter 1 focuses on how Python can be used with ArcGIS and its relationship with
ModelBuilder, since some readers may already have experience with ModelBuilder. Chapter 1
also introduces the Python script Interactive Development Environment (IDE), called IDLE, so
that the reader has a basic understanding of where to write actual Python script. The reader is
provided a high level overview of how to obtain help with both Python and ArcGIS as well
identifying errors that are likely to occur when developing Python code.

Chapter 2 focuses on ModelBuilder and provides a general overview of how ModelBuilder
operates and how it can be used to develop geoprocessing logic and can ultimately be exported
to Python script where it can be more fully developed.

Chapter 3 reviews the primary Python constructs that will be used throughout A Python Primer
for ArcGIS. This chapter introduces these concepts at a broad level where many of them will be
more fully discussed in the context of their use with ArcGIS geoprocessing tasks and functions.

Chapter 4 covers the fundamental concepts of writing a geoprocessing Python script using
ArcGIS. The chapter discusses the required Python and arcpy modules for developing a
geoprocessing script as well as reviewing some of the important topics as defining variables,
workspaces, and data paths. The author also provides some guidance to obtain additional help
so the programmer can become more self sufficient as a programmer as he or she continues to
develop their programming skills.

At the end of Chapters 3 and 4, the reader has a chance to write a simple Python script as well
as a simple geoprocessing script that will serve as the launch point to develop more complex
geoprocessing routines using Python and ArcGIS.

22 Workbook I: The Fundamentals

 Chapter 1 Python and ArcGIS 23

Chapter 1 Python and ArcGIS

Overview

ArcGIS uses Python in several ways.

1. Python Window - to write Python code and run geoprocessing routines from within
ArcMap or ArcCatalog

2. Custom or Python Script Tools – look and function similar to conventional
geoprocessing routines within ArcToolbox

3. Python Plugin – provides some simple tools and user interfaces to run Python code
4. Standalone Scripts – develop custom, multi-step geoprocessing functionality to

automate routine and iterative tasks.

A Python Primer for ArcGIS focuses on the last situation. Being able to understand the Python
fundamentals, processing logic, pre-requisite routines, trouble shooting, error handling, and
code refinement are keys to creating successful geoprocessing routines in any of the above
options. Without mastering the fundamentals, any of the Python methods will be difficult to
successfully develop. A Python Primer for ArcGIS covers many of the fundamental geprocessing
tasks that many GIS professionals and users of ArcGIS encounter. Many of the concepts and
examples discussed throughout this book can be applied and developed into more complex
Python scripts.

The ArcGIS Help makes specific reference to two different uses of Python scripts:

1. Python Script Tool – this is a script that is written with the intent to be used in a custom
ArcToolbox and used within an open instance of ArcMap or ArcCatalog.

2. Standalone Python Script - this is a script that is written with the intent to be run or
executed outside of an open instance of ArcMap or ArcCatalog and may be used in a
Windows scheduler program to have the script run automatically without user
involvement.

24 Chapter 1 Python and ArcGIS

The author makes reference of this distinction because it will impact how some Python scripts
are written and error handling is developed. Throughout the workbooks the reader will find
commentary on certain scripting methods that can be used to develop scripts for the ArcGIS
Toolbox. Workbook III, Chapter 10 is devoted to the development of a custom ArcToolbox,
developing a Python script to accept user input, binding the Python script to the custom tool,
and creating help documents for the custom tool. Creating standalone programs throughout
the book provides the opportunity for the developer to obtain the full experience of

• developing a geoprocessing task strategy,

• logically designing and writing the correct syntax to perform the geoprocessing routines
and tasks, and

• solving syntax and scripting logic problems that arise in almost any geoprocessing
workflow or script.

Python and ArcGIS Versions

Certain versions of Python work with certain versions of ArcGIS and may affect how Python
code is structured and implemented. Some of the methods are processed differently
depending on the version of Python and ArcGIS. Scripts developed for older versions of ArcGIS
can be run within ArcGIS 10.0 or later, provided the scripts are properly written, reference the
correct version of ArcGIS, and do not contain deprecated ArcGIS or Python functionality or
syntax. Some Python geoprocessing functionality (e.g. lists and cursors) has changed slightly
with newer versions of ArcGIS and Python as improvements are made. If the Python
programmer develops code for one version of ArcGIS, but the end user will likely use a different
version of ArcGIS, the scripts should be tested for that particular configuration and may require
a different version of Python to be installed on the system implanting the code.

How Python is used with ArcGIS

The author is often asked if Python can be used to change the look and feel of ArcGIS or create
a custom toolbar or “button” to perform a special function within ArcGIS. With ArcGIS 10.1 and
the introduction of the Python plugin, the answer is “yes.” A Python plugin can be created for a
select set of tools, buttons, menus, combo boxes, and application extensions. Other
programming languages, such as C# or VB, running on the .NET framework, handle more
comprehensive look and feel issues such as forms, grouped tools, etc. However, a more
common method to provide a user interface with ArcGIS is through creating a custom “tool” (or
script tool) stored within the a custom ArcToolbox and uses custom Python scripts. Often the
script tools have parameters that are filled in like other ArcToolbox tools. Workbook III,
Chapter 10 focuses on coupling Python scripts with a custom ArcToolbox tool.

 Chapter 1 Python and ArcGIS 25

Python is intended to help automate geoprocessing tasks that are often run in batch mode or
through a scheduled process. Long ago, in computer time, Arc Macro Language (AML) or Visual
Basic for Applications served this need. Currently, Visual .NET or cross-platform C++ is used to
create custom ArcGIS applications or toolsets that require a user to interact with the ArcGIS
interface (via ArcObjects® software development kits - SDKs) and the mapping environment.
Other resources are available to address these topics and are beyond the scope of this book.
See the following websites for more information resources.arcgis.com or support.esri.com.

Python Development Environments

Many scripting environments exist for developing Python code. One can develop code simply
by using a word processor or blank text file. Notepad, Notepad++, WordPad, Word, or other
word processor application can be used.

Integrated Development Environment (IDLE)*

When a developer installs the Python application from the ArcGIS install media or from the
python.org site, a Python editor space, Integrated Development Environment (IDE) - (IDLE), is
available that allows for color coding of key words and some simple tools to assist the
developer create and edit code. Often, when an existing script is opened with Python IDLE, two
windows appear:

1. IDLE - the script editor to develop code

2. Python Shell - which reports back print statements and error messages when the script
is run from within IDLE. The Python Shell can also be used to write simple snippets of
code for testing, but it is not intended to write fully functional Python scripts.

These elements pop up by default when pressing the Python development environment icon.
This development space also offers some basic error checking such as proper indentation and
end of line statements. A user can change some of the look and feel of the application;
however, this is limited. The IDLE script editing environment is easy to use and does not
require additional software or configuration of the editing environment to write code. The
following screen shot shows both the Python Shell and IDLE that contains a sample of a script.

http://resources.arcgis.com/
http://support.esri.com/

26 Chapter 1 Python and ArcGIS

It is recommended that the Python IDLE interface be used for working through the
demonstrations and exercises in this book. There are many much more robust script editing
environments available on the Internet, but many are not free and almost all require some
finessing of the settings to work well with ArcGIS. A short review of different IDEs can be found
here.

http://wiki.python.org/moin/IntegratedDevelopmentEnvironments

http://wiki.python.org/moin/IntegratedDevelopmentEnvironments

 Chapter 1 Python and ArcGIS 27

In his professional career, the author has used PythonWin and Eclipse, but almost exclusively
uses the standard IDLE interface for the purposes of this text.

*From Learning Python, 4th edition, pg. 58 a footnote indicates IDLE is named after Eric Idle, from Monty Python.

Relationship to ModelBuilder

Python closely relates to Esri’s ModelBuilder at least in the generation of simple
straightforward scripts that do not use loops or conditional statements. A developer can use
the ModelBuilder to develop portions of workflows and generate some process logic based on
the ArcGIS Tools. A developer can actually spend a lot of time working in ModelBuilder until a
proper set of geoprocesses, inputs, outputs, and intermediates are developed. Caveat:
ModelBuilder is not an environment for developing loops and conditionals that the user would
wish to export to Python.

Once a developer is satisfied with the workflow, a Python script can be exported from
ModelBuilder where the developer can continue to work on and refine the scripting process.
Chapter 2 describes how ModelBuilder can be used to develop Python scripts and some caveats
when using ModelBuilder for code development.

Python Shell in ArcGIS

In addition to opening the Python Shell on its own, it is also available from within ArcGIS. The
user can click the Python window button to load the Python shell where Python syntax can be
written and processed, including ArcGIS geoprocessing functions. Writing ArcGIS processes
within this environment also provides some auto-completion of code and provides some help
content for the specific geoprocessing function. Readers may find this useful in checking
Python syntax for developing scripts; however, a Python editor will primarily be used for code
development, especially standalone scripts.

The figure below shows ArcMap with the Python Shell open within ArcMap. It is opened by
clicking on the Python button (outlined by the square). Python scripts can be written and
processed within this window. In addition, when ArcGIS functions are written, some code
completion is available and the specific ArcGIS tool help appears on the right. Function
parameters are highlighted as they are encountered when writing the Python script.

28 Chapter 1 Python and ArcGIS

The following figure shows the Python Shell opened within ArcMap while writing the Clip
routine. As the developer types in the Python syntax, the scripting window provides a list of
possible geoprocessing routines. As more characters are typed in, the list becomes shorter.
The developer can click on the specific geoprocessing function and the Python syntax will be
completed up to this point (e.g. arcpy.Clip_analysis).

The figure below shows the Clip routine with the first parameter highlighted on the right side
indicating that the developer needs to type in a value for this parameter. The parameter may
be a specific value (i.e. a specific name of a feature class). As additional parameters are filled in,
the highlighted text on the right changes. When the required parameters are filled in by the
developer, the ArcGIS geoprocess can be completed with an ending parenthesis. At this point,
with a tap of the Return key, Python will process the routine. Other routines and Python syntax
can be written and processed in the same manner. Since this code is written inside ArcMap and
not in the Python IDLE environment, it cannot be executed outside of ArcMap.

 Chapter 1 Python and ArcGIS 29

Although A Python Primer for ArcGIS ultimately focuses on writing code outside of the ArcGIS
environment, the newcomer to Python programming and ArcGIS may find it beneficial to
develop code snippets within ArcMap or ArcCatalog so that the less experienced code
developer becomes familiar with some of the geoprocessing syntax and start to develop
troubleshooting skills. These skills are required to build functional code for performing
geoprocessing tasks. Consult ArcGIS Help for more information for writing Python syntax within
ArcGIS using the Python Shell.

Use of Scripts with Geoprocessing Tools

The ArcGIS geoprocessing tools found in the ArcGIS toolbox are fundamental to the
development of Python scripts for ArcGIS. Essentially, developers are using the ArcGIS
geoprocessing tools to create custom built automated processes that assist analysts and data
managers in automating routine tasks that need to be implemented frequently or with
numerous iterations. These tasks, if performed manually, could take significant hours or days to
complete. For example, an analyst could take a parcel data set from a local tax assessor group
and extract a subset of data. He might then want to join a number of tax and owner related
tables together. Next, he might wish to run a series of queries and computations based on land
use and the number of units found on each parcel. The final product might be a custom parcel
data set that is used by a local code enforcement department. Such important data sets may
need updating each week. Performing this set of tasks could take a number of hours to do on a
weekly basis. A script can be developed that performs all of the above tasks to create,
maintain, and update this custom dataset and it can be performed during off-peak hours.
Doing so frees up the GIS worker to focus on more analytical tasks that require direct
involvement with data, analysis, and cartography.

30 Chapter 1 Python and ArcGIS

Getting Help

A typical question of new Python developers for ArcGIS is where to get help and assistance.
The Esri ArcGIS Help and support site are primary sources for gaining information and insight
into Python syntax for ArcGIS and how it is used for specific tools. However, since Python is an
open source application development software, some questions regarding Python may not be
addressed within the ArcGIS Help or Esri support environment. Python, on the other hand, has
a much broader user base than just GIS and currently, there are numerous generic
clearinghouses for Python on the web.

More advanced Python methods (e.g. dictionaries, arrays, functions, etc.) that can be used with
ArcGIS geoprocessing objects will likely be researched using Internet searches for these Python
methods and by consulting a Python text, the python.org website, or studying other
developers’ code.
A Python Primer for ArcGIS contains some sample scripts written by the author. Additional
scripts or code snippets can be found at the author’s website,
http://www.urbandalespatial.com.

The reader is encouraged to review and use these resources among others on the Web such as
these, among others:

ESRI support, user forums, blogs, training, ESRI Python forums, and the GIS Stack Exchange.

In addition, if the reader resides in California, the author teaches an online GIS Programming
class at American River College, Sacramento, CA and through the UC Davis Extension in Davis,
CA.

The author is available for professional consultation and independent projects and training via
UrbandaleSpatial. Visit www.urbandalespatial.com or contact the author at
nate.jennings@urbandalespatial.com.

ArcGIS

Specific to Python programming, the ArcGIS ArcToolbox Help for specific geoprocesses will
typically be the first point of investigation to get assistance on developing proper syntax and
parameters. ArcGIS has improved the scripting help for many of its geoprocesses. In many
cases, Python code developers can copy and paste code directly from the help and then modify
the syntax accordingly. Many references are made to ArcGIS Help so the newcomer to both
ArcGIS and Python has some starting points to assist themselves to research and develop code
solutions.

http://www.urbandalespatial.com/
http://www.urbandalespatial.com/
mailto:nate.jennings@urbandalespatial.com

 Chapter 1 Python and ArcGIS 31

Secondarily, an application developer can access the online ArcGIS resources. Essentially, the
online help provides the code developer a world-wide GIS community. Since many people are
using and developing under ArcGIS and Python, developers will often find code snippets or
entire programs that provide some of the functionality they are looking for. In many cases, the
developer will need to write and modify any code that is obtained off the Internet.

Python

As mentioned above, Python has a wide ranging user base that covers many specific disciplines.
The Python Help is completely online and with a little effort a code developer can figure out
how to use the Python examples. For those who like to have a hard copy text, a variety of
books can be purchased on-line or at major book retailers. See the References section at the
end of the book for a list of resources, books, and websites related to Python and ArcGIS.

Python and ArGIS Errors

Scripting errors are inevitable when writing programming code. Learning how to understand
and decipher error codes and messages will be important for trouble shooting coding and logic
problems. Two groups of errors will typically be encountered when writing Python script for
ArcGIS:

1. Python related syntax errors, such as typos, indentation, and Python structure

2. ArcGIS errors, which are those related to the incorrect or missing parameters or
incorrect data types used in the ArcGIS geoprocessing tools, methods, and properties.

Python syntax errors will likely be identified with the Check Module routine that can be found
within the Python editor as well as any error message handling provided by the code developer
(such as the use of print statements or the traceback module). ArcGIS errors will likely be

identified through the use of print statements, custom error handling (using specific except:
code blocks for different kinds of errors), or the traceback module which can identify
specific ArcGIS error codes that can be referred to in the ArcGIS help. See more details by
referring to ArcGIS Help specific to error codes, tool errors, and error handling.

Python Syntax Errors

Once new programmers learn some of the basic Python constructs, most of the Python related
errors result from

32 Chapter 1 Python and ArcGIS

• mistyping,

• differences in capitalization with variables,

• indentation

• using the proper data type, and

• forgetting to add geoprocessing parameters, colons, and parentheses.

Keep this list in mind and refer to it often!!! Remember, many of your initial problems will be in
this list.

These problems will typically show up when the programmer clicks the Check Module from the
Run menu in the Python Script Editor. Most of the time the line of code with the problem will
be highlighted or the cursor placed at the line with the suspected problem. In some cases the
problem may actually exist before the highlighted line, so the programmer will want to review
the lines of code preceding the actual error. See the figure below that shows a Python syntax
error after running the Check Module.

ArcGIS Error Codes

Error codes have also been a major subject of discussion in the GIS programming community
and have not been very well explained. Sorry!!! One major advancement with Esri Python
scripting is the use of Esri error codes to help the developer troubleshoot and report errors
back to the user (see figure below). Many of the error codes can be typed into ArcGIS Help or
the Internet using the error code and “ArcGIS” to find out more details about the specific error
(e.g. ERROR 000800). See the ArcGIS Help under Geoprocessing—Geoprocessing tool
reference—Tool errors and warnings. The error and warning sections are divided into folders
of error code ranges so the user can easily find specific error documentation. In many cases,
the errors are related to

 Chapter 1 Python and ArcGIS 33

• poorly written syntax by the code developer,

• incorrect tool parameter data type,

• missing tool parameter,

• tool parameters are in the incorrect order,

• the incorrect information has been entered by the end user of a script or tool.

The error below refers to the ArcGIS ERROR 000800 that indicates the tool parameters are not
valid. In this case the code developer will want to review the data types of the parameters and
the order of the parameters to make sure they are correct before using them in the
geoprocessing routine.

Some Python error handling syntax can be found on several of the ArcGIS tool Help documents
(usually found in an except: block) and be incorporated into custom code. The error syntax
can often be used throughout many scripts and thus can be “recycled.” The reader will find the
same error handling code throughout many of the examples in this book. The error handling
syntax was actually found while reviewing specific ArcToolbox Python example scripts. The
exception code script can be found in the Exception_code.py file located in the
\PythonPrimer\Chapter01 folder of the supplemental material. The author encourages the use
of error handling code when developing scripts.

In addition, code developers can create specific code messages to report issues back to the user
when errors are encountered. These can be reported back to the Tool progress window when
the script is used as part of a custom ArcGIS tool. The author encourages the use of the
traceback module and except: blocks to assist with handling errors. Refer to the

Exception_code.py script, too. More details about error handling are discussed throughout the
book and accompanying material. Workbook II, Chapter 8 specifically discusses developing
custom error handlers.

34 Chapter 1 Python and ArcGIS

Common Methods for Handling Errors

A number of straight forward and commonly used methods are available to troubleshoot
scripting errors. Three types have already been mentioned:

1. Using print statements within a Python script
2. Using except: blocks (associated with try: blocks)
3. Using the traceback module used to capture ArcGIS Errors

print Statements

Print statements can be added at any time throughout a Python script. Print statements can
simply print a message out indicating that the script progressed to a certain line or it can print
out a value of a variable, or a counter for a loop among others. Typically, print statements print
to the Python Shell while the code developer is working on the code. In addition, print
statements can be printed to “log” files to capture progress of automated scripts. See
Workbook II, Chapter 8 for more details.

except: Blocks

except: blocks are used in conjunction with try: blocks and provide an area of the code to
handle errors that occur throughout the code. except: blocks can contain simple print
statements or can contain more involved code that involve the use of variables and different
kinds of message similar to those in the above figure.

traceback module

Often found within except blocks is the use of the traceback module elements, such as
those shown in the above figure that captures ArcGIS error messages and can be printed to a
Python Shell window or to an ArcGIS progress dialog box. Exception code that reports back
specific ArcGIS error messages can be very helpful when troubleshooting ArcGIS tool syntax,
especially for code developers that are relatively new to the ArcToolbox geoprocessing
capability.

Additional commentary regarding error handling can be found in Chapter 3. A discussion of
developing custom error messages and handling can be found in Workbook II, Chapter 8.

 Chapter 2 ModelBuilder and Python 35

Chapter 2 ModelBuilder and Python

Before jumping into Python, let us introduce ModelBuilder. ModelBuilder is fairly
straightforward for combining geoprocesses and is often widely used by seasoned GIS analysts
to build multi-step processes. However, developing and augmenting Python scripts generated
from ModelBuilder can pose some additional challenges. Python code can be generated from a
model and sometimes the code is not in a “tidy” form that is directly usable as a standalone
script. This problem can make learning Python for ArcGIS more difficult. From a programming
perspective the final task when using ModelBuilder is to generate a Python script which can be
edited and further developed in a Python editor. Some caveats are mentioned at the end of
the chapter when using ModelBuilder for Python script development. Some of the challenging
concepts and geoprocessing requirements will be more fully discussed in the next section.
These requirements include feature layers, table views, working with selected record sets, and
looping, among others.

Overview of ModelBuilder

ModelBuilder is a graphical interface often used with ArcMap. An analyst can quickly build
geoprocesses using pre-existing ArcGIS Toolbox tools, other models, or script tools.
ModelBuilder has been available in ArcGIS for a number of years. Many GIS professionals are
familiar with and use ModelBuilder to generate multi-step geoprocesses for tasks such as site
suitability, site assessment, the movement of materials over a landscape, and changes over
time, among others. Before Python was available, ModelBuilder was the primary method for
generating multi-step geoprocesses. Since A Python Primer for ArcGIS focuses on developing
Python script and code development, this chapter describes some basic ModelBuilder
operations with the primary goal of generating a Python script that can then be modified within
a Python script editor and implemented outside of ArcGIS.

Esri has continued to make improvements and add functionality to ModelBuilder such as
looping, conditional statements, and the ability to embed other models and scripts. Many
geoprocesses can be developed, built, and run completely within ModelBuilder without the
need of a Python script. If the only instance of a geoprocess is within ArcGIS or embedded
within an ArcGIS Server environment, then ModelBuilder will meet this need. But suppose the
following:

36 Chapter 2 ModelBuilder and Python

• A GIS analyst wants to be able to use and process data from different environments,

• and reset workspaces throughout a process,

• and auto run geoprocesses

• all of this without any user interaction or dependency on
o ArcGIS being open or
o ArcGIS Server using the model . . .

In these situations, developing standalone Python scripts will meet these needs and meet them
more easily. The developer can then make these scripts available for other non-GIS users to
integrate their own back-end or scripting routines.

For a thorough discussion of ModelBuilder, readers are encouraged to refer to the ArcGIS Help
documents under Geoprocessing—Geoprocessing with ModelBuilder. A Python Primer for
ArcGIS will refer to some of the basic concepts with the ultimate goal of exporting a model to a
Python script. Later, Workbook III, Chapter 10 will describe how to integrate a Python script
into ArcToolbox, similar to how a ModelBuilder model can be run within a custom ArcGIS
Toolbox.

ModelBuilder Python Script Caveats

Developing geoprocesses in ModelBuilder with the intent of generating Python scripts can pose
some frustrating challenges to the code developer if the code developer is not aware of some
of the nuances of how ArcGIS references and uses data, workspaces, and data paths. One large
caveat occurs in using data from the Table of Contents versus accessing data directly from disk.
This circumstance can result in different Python syntax. When code developers try to run a
standalone script without specific paths set to data on disk, the script will likely result in error.
This can be a large issue for more complex models that are then exported to a Python script.
This is the primary reason why the author cautions the reader about using ModelBuilder for
developing Python scripts.

The two scripts below show variable references pointing to the same data. The only difference
is that the first script points to data that have fully defined paths (i.e. the specific locations to
the data on disk). The second script references only the “name” of the data in the Table of
Contents. The name of the layer is actually a “feature layer” (an in-memory representation of
the data) and does not make a specific reference to the location of the data on disk. This is
the “inconvenience of convenience.” ArcGIS allows the user to drag-and-drop items directly
from the table of contents or to be selected by drop-down boxes when setting parameters.
This is convenient to the non-programmer, but it is inconvenient for the script developer. The

 Chapter 2 ModelBuilder and Python 37

first script will run correctly as a standalone script, while the second will not run until the local
variables make a specific reference to data on disk.

Model_to_Python_Script_with_Data_Paths.py

Created on: 2014-11-22 16:28:08.00000

(generated by ArcGIS/ModelBuilder)

Description:

Import arcpy module

import arcpy

Local variables:

point_fc = "C:\\PythonPrimer\\Extra_Samples\\

file_geodatabase.gdb\\point_fc"

polygon_fc = "C:\\PythonPrimer\\Extra_Samples\\

file_geodatabase.gdb\\polygon_fc"

output_fc = "C:\\PythonPrimer\\Extra_Samples\\out_fc.shp"

Process: Clip

arcpy.Clip_analysis(point_fc, polygon_fc, output_fc, "")

Model_to_Python_Script_No_Data_Paths.py

Created on: 2014-11-22 16:23:23.00000

(generated by ArcGIS/ModelBuilder)

Description:

Import arcpy module

import arcpy

Local variables:

point_fc = "point_fc"

polygon_fc = "polygon_fc"

output_fc = "C:\\PythonPrimer\\Extra_Samples\\out_fc.shp"

Process: Clip

arcpy.Clip_analysis(point_fc, polygon_fc, output_fc, "")

38 Chapter 2 ModelBuilder and Python

By default, when data is loaded into the Table of Contents, ArcMap automatically (and
transparently) creates the feature layer. It then can be used in a model or other geoprocess
when ArcMap or ArcCatalog are opened. However, when creating standalone scripts, other
pre-requisite steps may be required for the script to function properly (e.g. defining data paths,
workspaces, feature layers, and table views among others). The programmer needs to be
aware of the limitations and restrictions of ModelBuilder when using it to develop Python
scripts, especially those intended for standalone implementation.

It has been the experience of the author that using ModelBuilder is a good tool to assist with
developing the straightforward sections of a geoprocessing workflow and the general set of
steps. ModelBuilder can also be useful for a limited examination of Python scripting logic for
standalone scripts. However, for making on-going changes and modifications to the Python
script, it is neither efficient nor beneficial to modify the ModelBuilder structures so as then to
“regenerate” a new Python script. The main focus of this text is to illustrate how to use the
major ArcGIS geoprocessing constructs with Python syntax.

A script can be generated from ModelBuilder using these steps:

1. Create a new model
2. Add geoprocessing tools from ArcToolbox
3. Fill in the parameters for each tool (by browsing to the actual path to the correct data)
4. Save the model
5. Test the model
6. Refine the model as required
7. Export model to Python script
8. Make additional edits in a Python script editor

 Chapter 2 Demos 39

Chapter 2 Demos

The following demonstrations show a generally good practice for creating a ModelBuilder
model and then exporting that model into a Python script. There is a preferred way and a non-
preferred way. Demo 2a outlines the general steps and uses the preferred method for creating
a model to generate a Python script. Demo 2b demonstrates the (easily confused) non-
preferred way (where data from the Table of Contents is used for the input) versus assigning
parameters to full data paths to point to data on disk. Demo2.mxd in the Chapter02 folder
contains the data referenced in the demos and can be used by the reader to create their own
models.

40 Chapter 2 Demos

Demo 2a: Using ModelBuilder to Create a Python Script: the Preferred Way 41

Demo 2a: Using ModelBuilder to Create a Python Script: the
Preferred Way

Demo 2a illustrates the generally preferred method for creating a Python script from
ModelBuilder. This is particularly important for the new user. ArcGIS tool parameters are not
particularly user-friendly. When building a model for export, the process creates the variables
and fills the parameters automatically. Two methods can be used to create a new model using
ModelBuilder: 1) click the ModelBuilder button or 2) create a new model within a custom
ArcToolbox. After the new model canvas is open, the development of the model and the
export of the model to Python script remains the same. The code developer can then modify
the code using a Python script editor. The reader can create a new model and script in any
folder they choose by following along the demo. Note: to save a model, it must be stored in
an existing or custom toolbox.

Open the Demo2.mxd from the Chapter02 folder.

STEP 1 - Create a new model using one of the two methods described below.

Method 1: Create a New Model using the ModelBuilder button from ArcMap or ArcCatalog

Method 2: Create a New Model by creating a model in a custom ArcToolbox

Method 1

Start ModelBuilder from the ArcMap or ArcCatalog interface by clicking on the ModelBuilder
button.

An new empty model canvas appears.

Method 2

A custom ArcToolbox is an easy way to keep custom models or scripts organized. Custom
toolboxes can also be saved and provided to other users. To avoid clutter and confusion, tools
are kept in toolboxes.

42 Demo 2a: Using ModelBuilder to Create a Python Script: the Preferred Way

1. Create a Custom ArcToolbox

a. To create a custom toolbox, right click on the ArcToolbox and choose Add Toolbox.

After the user chooses “Add Toolbox,” the following dialog box appears.

b. Browse to the \PythonPrimer\Chapter02 folder (or a folder of your choice). Click on
the New ArcToolbox button shown above.

Note: It is a good idea to store data, scripts, and toolboxes in a common folder structure
so that data and scripts are easy to find.

c. Provide a new name for the new toolbox (e.g. MyCustomToolbox).

Demo 2a: Using ModelBuilder to Create a Python Script: the Preferred Way 43

d. Click Open to add the new toolbox to the ArcToolbox. The new toolbox will appear in
the ArcToolbox interface.

Alternatively, a new toolbox can be created by going to the ArcCatalog Tab within ArcMap or
open ArcCatalog, browse to an existing folder connection, browse to a specific folder or
geodatabase, and then right-click—New—Toolbox. After creating the new toolbox, assign a
useful name to it. See below.

44 Demo 2a: Using ModelBuilder to Create a Python Script: the Preferred Way

2. Create a New Model to the Custom Toolbox

To add a new model to the toolbox, right click on the new toolbox created above and choose
New—Model.

Demo 2a: Using ModelBuilder to Create a Python Script: the Preferred Way 45

The following screen is shown using either method to create a new model.

An empty ModelBuilder window appears. Various tools are shown at the top of the screen to
add data, zoom in/out, pan the model, make connections between model objects, validate, and
run the model. Refer to the ArcGIS Help for a more detailed discussion of each button and
option (ArcGIS Help documents under Geoprocessing—Geoprocessing with ModelBuilder).

Typically, the person designing the model will select geoprocessing tools from ArcToolbox and
drag them into the ModelBuilder window. In the example below, the user clicked the Clip tool
and dragged it into the ModelBuilder window. Confusingly, as we shall learn, dragging and
dropping “tools” is fine. However, the user should avoid dragging and dropping “layers” from
the Table of Contents (TOC) and should instead browse for their data location on the computer!

STEP 2 - Add a Geoprocessing Tool to ModelBuilder

After creating a new model using one of the methods above, select a geoprocessing tool for the
model. The user can drag and drop a tool from the ArcToolbox to the model.

Add the Clip routine (from the Analysis—Extract toolset) to the model.

46 Demo 2a: Using ModelBuilder to Create a Python Script: the Preferred Way

The Clip routine is shown in a “non-ready” empty state indicating that it cannot be run without
some additional information. In this case, the model needs some input data, tool parameters
set, and an output.

STEP 3 - Set Parameters for a Geoprocessing Tool

Double click on the Clip routine to bring up the tool parameter dialog box. This is the preferred
method for filling the tool parameters. Navigate down to the physical location of the data from
the Chapter02\Data folder to fill in the parameters.

Input Features: Sacramento_Streets.shp
Clip Features: Downtown.shp
Output Feature Class: Clipped_Streets.shp (named typed in by user)

The output folder will default to the “default” geodatabase. Make sure to change the output
folder is Chapter02\MyData when adding the “Clipped_Streets.shp” output feature class. Note
the Clipped_Streets.shp file will not (yet) exist in the “MyData” folder.

Demo 2a: Using ModelBuilder to Create a Python Script: the Preferred Way 47

Once the parameters are set and the OK button is clicked, the appearance of the model
changes (the model graphics will change color). Use the pan and zoom in/out tools as needed
to move or re-center the model. Select each input and output and change the shape size to
make the model more readable.

Notice that the model has inputs and an output and the model objects are colored (filled in).
This indicates that a model is in a “ready” state and can be run.

48 Demo 2a: Using ModelBuilder to Create a Python Script: the Preferred Way

STEP 4 - Rename and Save the Model

Before saving the model, the default model name needs to be changed.

a. Click on Model—Model Properties
b. Rename the model
c. Click OK
d. Click Save from the Model menu

If Method 1 is used to create the model, a custom toolbox will need to be created to save this
model. Navigate to a folder (e.g. \PythonPrimer\Chapter02) and create a new toolbox using
the steps outlined in Method 2. The model for this demo is Clip Model Full Data Path and can
be found in the \Chapter02\ClipModels.tbx toolbox.

The model in the custom ArcToolbox will show the new name.

NOTE: The model name must not include any spaces, underscores, or special characters. The label can
have spaces, underscores, and special characters. The label appears in the ArcToolbox as the model
name. A description can be added as well which will show up in the tool help. This might seem to be a
tedious task, but—much like commenting within the actual code—is an excellent habit worth
developing.

Demo 2a: Using ModelBuilder to Create a Python Script: the Preferred Way 49

STEP 5 - Test the Model

Before exporting to a Python script, the model should be run to determine if it will provide the
desired results. Since ModelBuilder is often run within an ArcMap session, the user can check
to make sure the proper input feature classes and parameters are set up as well as check the
output to determine if the results of the model are correct. This can help reduce issues with
data sources and output before working on code refinements.

Run the model.

STEP 6 - Refine the Model (as required)

If the model produces an error, make changes, resave it, and run again.

STEP 7 - Export the Model to a Python Script

Once a model has been tested and reviewed, the model can be exported to a Python script.

a. Click on the Model menu and then choose Export—To Python Script.
b. Choose a location and file name for the Python script. The extension for the script will

be (.py). NOTE: A Clip_Data_1.py script can be found in the Chapter02 folder for
review.

50 Demo 2a: Using ModelBuilder to Create a Python Script: the Preferred Way

STEP 8 - Modify the Python Script

The script created above can be opened in a Python script editor and modifications can be
made. In this demo no further modifications are required, but the script can be reviewed. To
open the script, first start a Python editor (likely All Programs—ArcGIS—Python(version)—
IDLE) and then browse for the Python file created above. Alternatively, the developer can
browse for the script and right click on the file name and choose Edit with IDLE to open with a
Python editor.

Either method for opening a Python script will automatically provide the Python Shell window
and a separate script window showing the Python code. The script below shows the code
generated from the model.

Clip_Data_1.py

Created on: 2014-11-23 10:24:58.00000

(generated by ArcGIS/ModelBuilder)

Description:

Example Clip model which uses full data paths to input and output feature

classes.

Import arcpy module

import arcpy

Local variables:

Sacramento_Streets_shp =

"C:\\PythonPrimer\\Chapter02\\Data\\Sacramento_Streets.shp"

Downtown_shp = "C:\\PythonPrimer\\Chapter02\\Data\\Downtown.shp"

Clipped_Streets_shp =

"C:\\PythonPrimer\\Chapter02\\MyData\\Clipped_Streets.shp"

Process: Clip

arcpy.Clip_analysis(Sacramento_Streets_shp, Downtown_shp,

Clipped_Streets_shp, "")

Demo 2a: Using ModelBuilder to Create a Python Script: the Preferred Way 51

ModelBuilder Generated Python Script Commentary

Notice in the above script that all of the information to run the geoprocess is provided. An area
of comments is provided that includes the name of the Python script, the date the script was
created, and a description if the developer added a description to the model. The arcpy

module line is added as well as a section for default variable names to the data paths for the
geoprocessing tool. Finally the actual geoprocessing line is added which uses the variable
names.

The basic structure of a Python script is provided. The code developer can now make
modifications to the code as desired. For example, the default variable names may need to be
changed, relative paths set up for accessing data, adding looping structures, try and except
blocks, and adding custom print statements and error handling code may be desired.

52 Demo 2a: Using ModelBuilder to Create a Python Script: the Preferred Way

 Demo 2b: Using ModelBuilder to Create a Python Script: the Non-Preferred Way 53

Demo 2b: Using ModelBuilder to Create a Python Script: the
Non-Preferred Way

This demonstration follows the processes described above to generate the Python script for the
ArcGIS Clip routine using the non-preferred method using data from the Table of Contents as
model inputs. The resulting Python script will not work as a standalone script. This script can
be compared to the script created above.

This demo uses the same Demo2.mxd and data as Demo2a.

The Clip model is created in the same fashion as above. Instead of filling in the parameters
using full data paths, the data from the Table of Contents are used.

1. A new model is created in the same custom toolbox created above
2. The Clip routine is added to the new model
3. Double click on the Clip routine
4. Select data from the drop down lists for the input data. The lists include the

layers found in the Table of Contents.

a. Input Features – Sacramento_Streets
b. Clip Features – Downtown
c. Output Feature Class – Navigate to the Chapter02\MyData folder and add a

shapefile name (e.g. Clipped_features_non_preferred.shp)

The Clip routine will look like the following:

54 Demo 2b: Using ModelBuilder to Create a Python Script: the Non-Preferred Way

Notice that the input parameters do not contain a full data path to the respective feature
classes.

5. Click OK. The model will contain colored graphics which represents the model is in a
ready state and can be run.

6. The model name is changed using the same methods as above. (This model has
been saved as Clipped Model Table of Contents and can be found in the
ClipModels.tbx toolbox file in the Chapter02 folder).

7. The model can be run, if desired. In this case, it is not necessary.
8. Click on Model—Export—To Python Script to export the model to a Python script.

The script created from this step is called Clip_Data_2.py in the Chapter02 folder.
9. The script can be opened in Python IDLE for review.

Demo 2b: Using ModelBuilder to Create a Python Script: the Non-Preferred Way 55

The following script represents the output from the above process.

Clip_Data_2.py

Created on: 2014-11-23 11:08:40.00000

(generated by ArcGIS/ModelBuilder)

Description:

Import arcpy module

import arcpy

Local variables:

Sacramento_Streets = "Sacramento_Streets"

Downtown = "Downtown"

Clipped_features_non_preferred_shp =

"C:\\PythonPrimer\\Chapter02\\MyData\\Clipped_features_non_preferred.shp"

Process: Clip

arcpy.Clip_analysis(Sacramento_Streets, Downtown,

Clipped_features_non_preferred_shp, "")

Notice the two lines under local variables highlighted above. These variables are not pointing
to data on disk because the full path to the data are not shown. The output feature class does
show the full path because it was specifically defined in the model. This script will not run as a
standalone script until these two lines are revised to point to data on disk.

So, even though it is easy to choose and use “data” from the Table of Contents when building a
model, the script that is generated from the model will required augmentation and refinement
so that it can run as a standalone script.
The reader needs to appreciate the difference between these two methods when using
ModelBuilder to generate scripts. Using the first method (shown in Demo2a) is preferred over
using the methods outlined in Demo2b. Using data on disk as parameters in models will help
the script generated from the model run more readily as a standalone script. Script
modifications will still be required, but they will be easier to identify to make the changes.

In addition, with either method, numerous variables can be created from the process of
exporting a model to a Python script that will need to be refined after the script is generated.
For simple models and models with few steps, this may not be too much of a problem, but for
more complex models, this will be a very time consuming process to make changes in a model
and then export it to a Python script. For the more complex processes, it is recommended to
refine the model as best as possible, then export the model to a Python script, and then make
any further or future refinements in Python script and not in ModelBuilder.

56 Demo 2b: Using ModelBuilder to Create a Python Script: the Non-Preferred Way

 Exercise 2 - Create a New Feature Class and Add Fields 57

Exercise 2 - Create a New Feature Class and Add Fields

In this exercise, the user will create a new model that creates a new feature class and add some
fields to the new feature class using existing ArcGIS Tools. Use the Create Feature Class (in the
Data Management—Feature Class toolset) and Add Field (in the Data Management—Fields
toolset) ArcGIS tools. Research the ArcGIS Help as necessary to compile a model. NOTE: The
Add Field tool will need to be used multiple times to add more than one attribute field. Test
the model and export to Python script. Test to see if the script runs from Python IDLE. Note
any problems, issues, or successes.

Requirements

1. In the custom toolbox created above, create a new model for Exercise 2.

2. Give the model a unique name, e.g. CreateFeatureAddFields

3. Add the ArcGIS tools mentioned above to the model with the following conditions.

a. Create a feature class type of your choice (point, line, or polygon)

b. Add several attribute fields to the table. Use a mix of data types (text or numbers).
For text fields, provide a length. For number fields use short or long integer or
provide a precision.

c. Make sure to connect the Add Field tool(s) to the Create Featureclass Tool or other
Add Field tools in the model.

4. Use data path locations from the tool’s browser for parameters. Do not use data that is

already present in the ArcMap Table of Contents.

58 Exercise 2 - Create a New Feature Class and Add Fields

 Chapter 2 Questions 59

Chapter 2 Questions

The questions below refer to the exercise.

1a. What is the full toolbox organization (i.e. Toolbox—Toolset—Tool) for the Create
Feature Class tool?

1b. What are the required parameters for this tool?

2a. What is the full toolbox organization for the AddFields tool?

2b. What are the required parameters for this tool?

3. How many times do you need to use the AddField tool?

4. What is required to set the feature class location?

5. What kind of feature class location did you use for the Create Featureclass tool?

6. In the Add Field tool help, can you set the precision and scale using a feature class in a

file or personal geodatabase?

7. After creating the model, did the model run? Yes/No. If not, describe some of the
methods used to attempt to fix the model? Did your modifications fix the model?

Export the model to a Python script (even if you were not able to fix it).

8. What modules were imported for the script?

9. How many “Local Variables’ were created for this script? Do any of them refer to the
same value? If so, which one(s)? Do you think any of the variables can be eliminated?
Why/Why not?

60 Chapter 2 Questions

 Chapter 3 Python and ArcGIS Constructs 61

Chapter 3 Python and ArcGIS Constructs

Overview

When we extend beyond the functionality of ModelBuilder, a number of basic Python
programming fundamentals and ArcGIS constructs need review before writing Python script.
These fundamentals will be used extensively when developing code and will likely cause
significant frustration if they are not strictly adhered to. This section covers the basic and most
commonly used Python structures when programming Python scripts for ArcGIS. Consult a
Python book (such as Learning Python) or visit the python.org site for more details and for a
more comprehensive discussion of these structures as well as others.

Using Python IDLE for Code Development

As mentioned above, the Python Interactive Development Environment (IDLE) is provided as
part of the Python install and will be used throughout this book for demonstrating code. For
simplicity’s sake, IDLE is recommended when working through the programs within the book as
well as with the reader’s own code. More robust IDE’s are beyond the purview of this text.

Starting Python IDLE

When a code developer clicks on All Programs—ArcGIS—Python (version)—IDLE (where
ArcGIS installs Python) or possibly All Programs –Python (version)—IDLE from Windows, the
Python Shell appears.

https://www.python.org/

62 Chapter 3 Python and ArcGIS Constructs

The code developer can go to File—Open and then browse for an existing Python script. For a
new script, choose File—New Window. In either case a new Python scripting window appears.
This is where Python script will be written and edited.

Alternatively, if a Python script file is found in the Windows Explorer, the user can right-click
and choose Edit with IDLE which will bring up a new Python Shell and load the script into a
Python script editor.

 Chapter 3 Python and ArcGIS Constructs 63

Before getting started, read through the rest of this chapter to get an overview of the common
elements of Python programming and its organization. At the end of the chapter, the reader
will have an opportunity to write a “First Script” that demonstrates some of the concepts
described in this chapter.

Using the Python Shell for Code Testing

The code developer may find it useful to type in specific lines (snippets) of Python script
without writing, saving, and troubleshooting code. Python script can be written interactively in
the Python Shell window and the results shown after completing the lines of code. For
example, the figure below shows some variables and an “if” statement typed into the Python
Shell showing the results immediately after typing the lines. Notice that error messages will
pop up when syntax is written incorrectly.

64 Chapter 3 Python and ArcGIS Constructs

The Python Shell can also be accessed and used within ArcGIS by clicking on the Python
Window button as described in the previous chapters. New code developers may find the
ArcGIS Python Window useful since it has the benefit of providing some in-line help, code
completion, and additional help documentation for a specific geoprocessing routine. The code
can be copied and pasted into the Python IDLE environment to build standalone scripts.

Syntax

Python is a fairly flexible scripting language, provided the developer follows a few coding rules.
Any comprehensive Python book as well as the python.org site contains hundreds of pages on
all of the various constructs Python has to offer, however, most of the commonly used coding
structures are needed to write most ArcGIS Python scripts. Because users should have
immediate access to a good economical text at all times, the author will occasionally make
reference to O’Reilly’s Learning Python.

Case Sensitivity

Python code developers need to pay attention to the capitalization and naming of variables,
values, and other programming constructs (Learning Python, p. 225). Typing the same name
using a mix of capitalization will be interpreted by Python as distinct names or values. For
example, the two names below that show different capitalization will refer to different values
(in this case, two distinct feature class shapefiles). Using the same name with different
capitalization can lead to difficulty in troubleshooting code and may produce unintended
consequences. As with the use of invalid pathnames, this is one of the most common of Python
mistakes for the beginner in ArcGIS.

featureclass = “aFeatureClass.shp”

FeatureClass = “aDifferentFeatureClass.shp”

Naming Conventions

A code developer should adopt a naming convention for a program. This will help code become
more legible for the developer and the end user. This will also help the code developer find
and debug problems.

• Common examples can use a lower case abbreviation for a data type and then a name
starting with an upper case letter (also known as “CamelCase”) or
lower_case_with_underscores.

https://www.python.org/

 Chapter 3 Python and ArcGIS Constructs 65

For example,

strFieldname = ‘parcel’

may represent a variable name that is set to the word “parcel” (i.e. a string of characters) that
represents the name of an attribute field.

The developer can also simply use:

fieldname = ‘parcel’

where the variable name (“fieldname”) still represents the word “parcel.”

Important! The programmer should maintain a standard practice of naming objects. The name
should be meaningful, represent the object, and possibly the type of data (e.g. strings of
characters, numbers, feature classes, images, tables, fields, etc.).

Indentation

Indentation is a key requirement when writing Python script. It is the third greatest source of
errors in beginning to script in Python. The novice programmer should take it on faith that,
whatever the inconveniences of indentation, this method of denoting contiguous blocks of
code is far easier than methods in other programming languages. First of all, one is saved a lot
of heartache just by not have to count one’s end lines.
Indentation tells Python that a set of code will be processed as a contiguous block. Indentation
is used when implementing looping structures such as while and for loops, try: except:
blocks, and conditional statements such as if or else statements. The figure below shows an

example using a for loop and the if statement constructs. Notice that both the for loop

and the if statement show indentation. The indented lines of code are considered a “block of
code” and processed line by line.

66 Chapter 3 Python and ArcGIS Constructs

import arcpy

featclass = “C:/PythonPrimer/data/streets.shp”

Use Describe method to access feature class properties

desc = arcpy.Describe(featclass)

Get a list of fields for the feature class

fields = desc.fields

Loop through the fields

for field in fields:

 # Indent starts here for the “for” loop

 # Use “if” statement to check for a specific field name

 if field.name == “Parcel”:

 # Another indent starts here for the “if” statement

 #...other code

For basic code development, the Python IDLE script editing tool does a good job of properly
indenting code. The developer can also use the Check Module within Python IDLE before
running any code that may identify improperly indented lines. Consistent indentation is
important when developing code because Python interprets the indentation as a contiguous
block of code.

A “tab” or a specific number of spaces (e.g. 4 spaces) indicates an “indent.” The default
indentation is a “single tab” or four spaces and can be modified in the Python—Options—
Configure IDLE properties for the Python IDLE script editor. For example, if indentation consists
of four (4) spaces or a single tab, then this format should be used throughout the script. Some
Python editors provide a setting to modify any indentation defaults. See the specific Python
editor help regarding indentation settings.

Comments

Comments are used to provide in-line documentation and commentary about the code. The
author uses two different methods for making comments. The figure below shows both
methods being used in a Python script. The more common method uses a hash symbol (“#”) at
the beginning of each line of commentary. This tells the Python compiler to skip over and not
read what’s written until the next lines without ‘#’ marks.

 Chapter 3 Python and ArcGIS Constructs 67

The other method is a convenience when longer paragraphs of commentary are needed at the
header of the code. This is often the location within the code to document code functionality
and to record editorial comments when the code changes. This method, as shown below,
begins with three single quotes and ends with three quotes. The reader should note that the
“three single quotes” are interpreted by Python as a “string”. If this method is used within
“indented” sections of code, the proper indentation must be strictly maintained; otherwise
Python will result in possible code errors. Shorter comments beginning with “#” should be used
most often throughout the code. A good practice is to create a separate technical document
for both code developers and end-users of the script that explain the functionality of the code
as well as the functionality of the overall script.

68 Chapter 3 Python and ArcGIS Constructs

#Exercise 1

Created by: <author’s name>

Created on: <date>

Updated on: <date>

'''

Notes: This section is reserved for general notes about the script.

Multiple lines can be written here or the triple quotes can be used to

comment a block of code. NOTE: Proper indentation must be maintained when

using triple single quotes.

'''

Comments are helpful because they often provide useful notes about the program, can be used
to create an outline for the script, and provide some additional information about program
variables and geoprocesses.

Creating and Using Variables

Python often requires defined terms, called variables that the programmer uses to write
concise and flexible code. A variable is essentially a name that is assigned a specific value that
can be used in different parts of the code. For example, a variable can represent different
feature classes that are used as an input to a “clip” geoprocessing routine. The code below
illustrates the use of variables to define feature class names and the buffer distance for the
ArcGIS Clip routine.

in_fc = ‘c:\\temp\\aFeatureClass.shp’

clip_fc = ‘c:\\temp\\aPolygon_FC.shp’

out_fc = ‘c:\\temp\\anOutFC.shp’

buf_dist = ‘200 FEET’

arcpy.Clip_analysis(in_fc, clip_fc, out_fc, buf_dist)

The programmer can use the defined variables in_fc, clip_fc, out_fc, and buf_dist in

any place in a script rather than needing to write the full paths and the specific buffer distance
each time they are required in the Python script. Variables can be assigned to almost any value
or reference. Variables can be assigned to numbers, character strings, dates, lists, etc.
Variables can also be assigned to data paths, work spaces, tables, feature classes, databases,
feature data sets, feature layers, file names, images, etc. In many cases, the variables are
assigned to numbers or character strings (e.g. a buffer distance, a specific value such as an
index number or counter, a table or feature class name, a work space, a query, or a file name).
The code below shows some of these examples.

 Chapter 3 Python and ArcGIS Constructs 69

import arcpy

from arcpy import env # environment module

Some examples of common variables used with ArcGIS and Python

NOTE: String values (such as names of workspaces, feature

class names or any alphanumeric value) can be represented in

“single”, “double”, or “triple double” quotes.

an ArcGIS Workspace

env.workspace = "c:\\temp\\"

a directory (folder); not a workspace

datapath = "c:\\temp\\"

an existing shapefile stored in the c:\temp folder

inshapefile = datapath + "parcels.shp"

an existing file geodatabase (not a workspace)

fGDB = "c:\\temp\\fGDB.gdb"

an existing fGDB feature class within an existing

file geodatabase

infeatureclass = fGDB + "\\" + "streets"

String Examples

aName = 'ESRI' # a text string assigned a value

a text string representing a shapefile name

aShapefileName = 'parcels.shp'

a text string to define a query ("where clause") statement

query = """"APN" = '01234567890000'"""

70 Chapter 3 Python and ArcGIS Constructs

Number examples

a variable x assigned to the value 0 (e.g. to initialize a loop # counter)

x = 0

aFloatNumber = 4.5 # a decimal number

a variable y that equals the sum of two numbers

(in this case 0 and 4.5)

y = x + aFloatNumber

bufDist = 100 # this value can be used in the buffer routine

NOTE: the number must be "converted" to a string

to work properly with the Buffer parameter syntax

arcpy.Buffer_analysis (<input_fc>, <output_fc>, \

 str(buffDist) + " Feet")

String and Number Variables

Some of the most common uses of variables are to define strings (i.e. a series of alpha numeric
characters) for names, data paths, workspaces, queries, featureclass names, feature layer
names, table view names, join table names, specific field names, etc. Strings are enclosed in
single or double quotes, or even “triple double” quotes. Numbers may also need to be assigned
to variables so that they can be used and changed as needed. Some common uses of number
variables include (number calculations, counters, values in ArcGIS geoprocessing tool
parameters such as distance, area, unit measures, etc.). Numbers do not have quotes around
the value, as do strings.*

*NOTE: Some numbers may be “cast” as strings so that they can be used in query strings, print
statements, and ArcGIS geoprocessing parameters that require strings that have both numbers and text
characters. For example, to cast a number as a string, the following syntax can be used str(<a
number>). Consult other Python texts and the Python website for more details on casting values.

The reader will find examples throughout the demo scripts and exercises that use the str()
routine to cast numbers as strings. Both strings and number make up the majority of variable
definitions used in ArcGIS parameters.

 Chapter 3 Python and ArcGIS Constructs 71

Strings, Data Path, and Workspace Conventions

Data paths and workspaces (i.e. locations to data on disk) are some of the first lines of code
written for a geoprocess and variables that reference these locations will be achieved by using
strings. Data path variables are simply strings that represent a specific folder, geodatabase,
feature dataset, feature class, or file location on disk. Data paths do not carry any special
properties like ArcGIS workspaces do. ArcGIS workspaces are written in a similar way, but
instead of a variable, the arcpy.env.workspace is assigned to the string. Workspaces can
reference folders, geodatabases, or feature (or raster or LiDAR) datasets. Depending on the
need (in the script and/or a specific geoprocessing routine’s parameter requirements), the
strings that make up the data path or workspace can be created in different ways.

As shown in the table below, data paths and workspaces are represented as strings using
different forms of the folder (directory) “delimiter” (i.e. the backslash, double backslash, or
forward slash), depending on the operating system of the computer. Generally speaking,
Windows uses the backslash whereas Linux or Unix uses the forward slash. Because data paths
and workspaces use strings to represent a location on disk, different methods can be used.
Some will work and some will not depending on how the string and “delimiters” are written.

A variety of data path and workspace syntax will be discovered when researching and reviewing
code from other sources. This can often be confusing to the newcomer to Python programming
and can be difficult to determine which type of string syntax to use. The following table show
different ways to represent a data path or workspace.

72 Chapter 3 Python and ArcGIS Constructs

String data_path Workspace Error/Issue
“c:\\folder\\”
“c:\\folder\\fileGDB.gdb\\”

x x

“c:\\folder”
“c:\\folder\\fileGDB.gdb”

x x

“c:/folder/”
“c:/folder/fileGDB.gdb/”

x x

“c:/folder”
“c:/folder/fileGDB.gdb”

x x

r”c:\folder\\”
r”c:\folder\fileGDB.gdb\\”

x x

r”c:\folder\”
r”c\folder\fileGDB.gdb\”

 End of Line (EOL) error
during Check Module

r”c:\folder”
r”c:\folder\fileGDB.gdb”

x x

“c:\folder”
“c:\temp”
“c:\folder\fileGDB.gdb”
“c:\temp\fileGDB.gdb”

 Result may reference
special “escape”
characters (e.g. “\t”,
“\f”, “\n”, etc) in the
string

 data_path represents a variable name; workspace is (arcpy.env.worksapce)

As shown most of the string formats are valid as either a data path or workspace. Those that
are not valid will produce an end of line (EOL) error or the string will be translated by Python as
a special “escape” character (for example, “\t” is interpreted by Python as a “tab,” so “c:\temp”
becomes “c:<tab>emp”. The “r” at the beginning of some of the examples indicate that the
string in double quotes will be treated “literally” meaning that each character will represent the
specific character. In the case of the strings starting with “r” and ending in a single “\”, the
potential end of line (EOL) errors may occur when validating the code using the Python Check
Module.

For the strings that are valid, the use of the path or workspace can have some differences,
depending on the need.

For example, if the code developer needs to combine two variables, one representing the data
path or workspace and another to represent a feature class name to form a full path to the
feature class, the data path or workspace will need to end with the “\\” or “/” or use a different
method to create the proper path format.

 Chapter 3 Python and ArcGIS Constructs 73

data_path = “c:\\temp\\” # (or “c:/temp/” or r”c:\temp\\”)

feature_class = data_path + “featureclass.shp”

print feature_class

(will produce: c:\temp\feature_class.shp)

For a geodatabase and feature class, the following syntax is used. (Remember shapefile feature
classes are not stored in geodatabases and are a different feature class format than
geodatabase feature classes):

data_path = “c:\\folder\\fileGDB.gdb\\”

(or “c:/folder/fileGDB.gdb/” or

r”c:\folder\fileGDB.gdb\\”)

feature_class = data_path + “featureclass”

print feature_class

(will produce: c:\folder\fileGDB.gdb\featureclass)

If the trailing “\\” or “/” in data_path is missing, then the resulting feature class path will be:

c:\tempfeature_class.shp or
c:\folder\fileGDB.gdbfeatureclass

Notice the missing “\” in the path above. If two strings represent different parts of a data path,
then the proper trailing “\\” (or “/”) is required to formulate the correct path structure.

Also note, in some cases (such as the CreateTable routine), only the folder or geodatabase
name is required. In this instance a variable would be assigned:

data_path = “c:\\temp” # (or “c:/temp” or r”c:\temp”)

data_path = “c:\\folder\\fileGDB.gdb”

(or “c:/folder/fileGDB.gdb or

r”c:\folder\fileGDB.gdb”)

74 Chapter 3 Python and ArcGIS Constructs

In this case the trailing “\\” or “/” are not used because the geoprocessing routine
(CreateTable) does not require it.

As has been shown, a variety of methods are available to create strings for data paths or
workspaces, and depending on the requirements, trailing “\\” or “/” will be required.

It is recommended to adopt one of the methods above by utilizing the “\\” or “/” and use it
consistently throughout the script. In addition, using print statements to confirm that variables
produce the desired “string” output and locations to data on disk is highly recommended at this
step and can help the code developer troubleshoot problems.

Lists

A Python list is a special structure that can store and index a number of related elements. For
example, this list could be a list of names, a list of numbers, a list of fields in a feature class, a
list of feature classes in a folder or geodatabase, a list of images (rasters), etc. A set of specific
ArcGIS list data methods are also available. See Workbook II, Chapter 7 and the ArcGIS Help
under Listing Data for more information on creating and using lists. More general information
is available in Ch. 8 of Learning Python.
In general Python lists are created in this manner:

define a list

aList = [1, 2, 3, 4, 5]

NamesList = [‘Fred’, ‘Wilma’, ‘Barney’, ‘Betty’]

The values in the [] represent specific elements in the list. The values in a list are accessed by
obtaining the index (i.e. the location of the value in the list. Python lists indexes begin with the
value of zero (0), so the “first” element (aList[0]) in the list is the value 1.

To access a specific Python list element, the following can be written:

aList[1] # the value in the list at second position in the list is 2

print NamesList[3] # will result in the string in position 4 printed to

 # the screen

As mentioned above, a list can contain numbers, names, fields, etc. A standard Python list can
be used in this case; however, ArcGIS provides some special list methods that can be used
directly. For example, the following “creates” a list of attribute fields from a feature class.

fieldlist = arcpy.ListFields(“parcels.shp”)

 Chapter 3 Python and ArcGIS Constructs 75

The following looping structure can then be used to operate on each element in the list.

for field in fieldlist:

 print field.name

A more thorough discussion of lists for ArcGIS and Python is discussed in Workbook II, Chapter
7. Code developers may find the standard Python list structure useful in some scripts. The
author’s website urbandalespatial.com has some examples of Python lists being used in ArcGIS
Python scripts.

Conditional Statements and Loops

Another common set of Python structures is the use of conditional statements and looping
structures. This section introduces the concepts; other chapters will demonstrate the use of
these structures. Conditional statements provide a means for deciding whether an action takes
place within a script based on one or more conditions. Looping structures allow a block of code
to “iterate” multiple times, often with a set of conditions, so that the block is not “unbounded”
or can “stop” after a limited number of iterations. If loops are not “bounded,” the code can run
indefinitely, which is not desired (a frequent error in beginning programming!). Notice also that
all conditional and loop statements use indentation as part of the coding syntax.

Three kinds of conditional and looping structures are used in Python:

1. If Statements – used to “test” a condition or set of conditions. Optional statements
include the use of elif and else statements.

The general form of an if statement is:

if <condition is true>:

 # this block of script is processed

 # can be multiple lines

elif <a different set of conditions are true>:

 # this block of script is processed

 # can be multiple lines

else:

this block of script is processed

(if all other if and elif conditions fail)

 # can be multiple lines

http://www.urbnandalespatial.com/

76 Chapter 3 Python and ArcGIS Constructs

2. While loops – used to iterate a block of code “while” a conditional statement is true.

The general form of a while statement is:

while <condition is true>:

 # process a block of code

 # can be multiple lines

3. For loops – used to iterate a block of code “for each element” in a sequence or group of

elements.

for <item> in <sequence>:

 # process a block of code

 # can be multiple lines

import Modules

Python requires specific modules to be imported (i.e. provided to the Python processes at the
time of running a script) so that different operations can take place (such as running ArcGIS
functions, string processing, math, or operating system functions). Think of modules themselves
as toolboxes that hold the tools your scripts will need to successfully run a script. This may
seem quite strange to the beginning programmer.

The first “real” lines of code “import” the modules into the Python processing environment
where their “tools” (or functionality) are needed. The developer must import those modules
using the “import” command. ArcGIS and the proper version of Python must be installed on
the system where the ArcGIS Python script is executed. Data sources (feature classes, tables,
geodatabases (except SDE) can exist on computers, servers, and networks, that do not have
ArcGIS installed on them.)

import arcpy, os, sys, traceback

The above line imports various Python modules that will be used in a Python script. These are
four very frequently used modules—both in the workbooks and in Python/ArcGIS programming
in general. It is worth the reader’s time to study up on these modules in order to better grasp
what each has to offer.

arcpy – provides access to all of the ArcGIS geoprocessing functions including the mapping
(mapping), data access (da), spatial analyst (sa), and geostatistical (ga), and modules. The
arcpy module is required to perform any ArcGIS geoprocessing.

 Chapter 3 Python and ArcGIS Constructs 77

os – provides access to operating system functionality such as file and directory path
operations. The os module is optional in many cases, but required for some file, folder, and
data source management operations that use standard Python syntax. Consult a Python text or
website for more details. A good basic reference of functionality is available at
http://docs.python.org/2/library/os.path.html.

sys – is used to access by Python system functions and are often found in defining variables for
user input such as:

myshapefile = sys.argv[1] # variable accepts user input for

 # the first real argument or

 # parameter from a custom

 # ArcGIS tool that uses

 # a Python script

The sys.argv[] structure will be discussed in more detail in Workbook III, Chapter 10 which
reviews how create and implement a custom ArcTool that uses a Python script. Refer to
http://effbot.org/librarybook/sys.htm for a discussion on the sys module.

traceback – is used for error handling; this module is not required, but it is often useful for
handling errors and the same blocks of code can be reused in many Python scripts. For most
Python scripts developed for ArcGIS only the arcpy module is required and the sys, os, and
traceback modules will often be used. Consult a Python text or the Python website for a full
account of Python modules. A good beginning is
http://stackoverflow.com/questions/12791698/python-traceback-module-for-beginners.

try: and except: Blocks

Python, as with any other programming language, does tell you when you’ve made a mistake—
often cryptically. try: and except: blocks ease the pain of error handling. They are the

essence of good programming practice, even though they are not covered thoroughly until the
very last section of Learning Python (pp575-ff). Scripts can be written without the use of try:
and except:; however, don’t try it! Without these, troubleshooting code and process errors
can be more difficult to remedy. try: and except: must be used together. Proper
indentation is required so that Python knows to process the lines of code as a block. For this
book, the most common implementations of try: and except: will be used. Consult a

Python text or the Python website for a more in depth discussion of try: and except:. See
http://www.tutorialspoint.com/python/python_exceptions.htm.

http://docs.python.org/2/library/os.path.html
http://effbot.org/librarybook/sys.htm
http://stackoverflow.com/questions/12791698/python-traceback-module-for-beginners
http://www.tutorialspoint.com/python/python_exceptions.htm

78 Chapter 3 Python and ArcGIS Constructs

Special Considerations for Query Strings in Python

When defining query strings some special considerations are needed. These can include
backslashes, forward slashes, single and double quotes—and even—“triple” double quotes,
AND “escape” characters! A brief discussion of how each of these is used is provided below.
Additional commentary can be found throughout the rest of the book, especially in Workbook
II, Chapter 5 which discusses queries and selecting data. In addition, the reader can consult a
Python text or the Python website where these topics are covered in more detail. The text in
this book will use one method consistently, and that may be the best approach. Be able to
recognize the alternative methods, as any mixture of them may be encountered, but decide to
use one form religiously.

Single and Double Quotes

Single and double quotes are used to enclose character strings and operate the same; however,
if single quotes are used in string names, it is recommended that the single quote be “escaped”
as described above. In some cases the quotes, themselves, will require “escaping.” This issue is
often encountered when developing query strings for the “where clause” parameter for several
of the ArcGIS functions such as SelectLayerByAttribute and the SearchCursor.

“Triple” Double Quotes

Another option to define strings is the use of “triple double quotes.” More recent Python
examples in ArcGIS show the use of triple double quotes to define query strings. This method
can provide a more consistent method versus the convoluted use of escape characters when
using single and double quotes. The syntax can look a little strange, but is also provides a
method to make troubleshooting query syntax a little easier.

The following code shows three examples of creating a sample query string using single,
double, and triple double quotes, and escape charaters. All three methods produce the same
string format result:

 Chapter 3 Python and ArcGIS Constructs 79

"NAME" = 'Downtown'

a variable

Neighborhood = 'Downtown'

query string with single quotes and escape characters

"NAME" represents an attribute field

query = '"NAME" = \'' + Neighborhood + '\''

print query

query string with 'double quotes' and escape charaxters

query = "\"NAME\" = '" + Neighborhood + "'"

print query

query string with 'triple double quotes'

query = """"NAME" = '""" + Neighborhood + """'"""

print query

For file-based data (such as shapfiles, file geodatabases, and ArcSDE databases double quotes
are required to surround the field name. See Workbook II, Chapter 5 or the ArcGIS Help topic
Building a query expression in ArcGIS that discusses proper format for different data types
when creating query strings and other ways to “delimit” field names in different GIS formats.

The general form of the query is “<field_name>” = <value> such that “Name” is the
field name and ‘Downtown’ is the name (string value), for example, the name of a
neighborhood.

80 Chapter 3 Python and ArcGIS Constructs

General Structure of a Useful Python Script

A Python script is typically processed from the first line to the last line. A typical structure of a
Python script is shown below and has the following general sections.

1. Title and Script Commentary/Notes
2. Import modules
3. Variable assignments (also Python function definitions)
4. Code Body

a. try: block that contains the functional code of the script

b. except: block – for error handling

 Chapter 3 Python and ArcGIS Constructs 81

A typical geoprocessing script layout

Created by: <author>

Created on: <date>

Updated on: <date>

'''

NOTES: This section is reserved for general notes about the script

'''

import the required modules for the python script

import arcpy, os, sys, traceback

define common variables here

'''

Can include:

1. Workspaces

2. Directory or folder paths

3. Input/Ouput files, feature classes, tables, etc.

4. log file variables (e.g. print processing statements to a file)

'''

try:

 # put geoprocessing code here

except:

 # put error handling code here

As shown above, the script has a number of sections. These help code developers organize
their code.

NOTE: This script above can be used as a guide in the exercise below.

82 Chapter 3 Python and ArcGIS Constructs

Title, Author, Date, and Script Comments

Typically, the first section of a Python script shows some comments that provide a title of the
script as well as the author, date, dates of code changes, etc. Comments can use a “#” or a
series of three single quotes (‘’’) that blocks out a “region” of code. This structure is commonly
used to comment special lines, such as special notes about the script, or blocks of code that an
author wants to keep, but not process. Single line comments can be used to provide some in-
line documentation for the script. Remember that triple single quotes used to comment out
sections of code must also use proper indentation when used within the code body.

import Modules

With just a line or two, the required modules can be imported as shown above. The import
modules must precede all other functioning lines of code.

Variable Definitions (and Python Function Definitions)

NOTE: Custom Python function definitions created by the code developer are often placed above any
major section of Python script. Custom Python functions (known as “decorators”) are not discussed in
this book. The reader is encouraged to consult a Python text or the python.org website for more
information. One useful introduction is at http://simeonfranklin.com/blog/2012/jul/1/python-
decorators-in-12-steps/

The only requirement for variable definitions is that they be assigned before being used. Unlike
some programming languages, variables do not have to be explicitly defined above the body of
the script; however, defining some variables at the top of a script does make it more
convenient for both the code developer and user to readily identify these variables, if changes
are required. Common examples include:

a. Workspace paths
b. Folder/Directory paths
c. Variable name that represents a log file (e.g. a text file to print statements to)
d. Input and Output data file, feature class, feature layer, table, or table view names

Code Body

The majority of the code will be written within the try: block. Any conditional statements,
loops, and geoprocessing functions are typically written within the try: block. In addition, the
except: block will contain any error messages that the code developer wishes to handle.

Workbook II, Chapter 8 will discuss error handling in more detail.

https://www.python.org/
http://simeonfranklin.com/blog/2012/jul/1/python-decorators-in-12-steps/
http://simeonfranklin.com/blog/2012/jul/1/python-decorators-in-12-steps/

 Chapter 3 Python and ArcGIS Constructs 83

Running a Python Script

Once a Python script has been written and saved, the script can be run to actually process the
script. Often, after changes have been made to the script, a three step process is used to run
the script:

1. Save the script
2. Use the Check Module to check the script for any Python errors
3. Run the script

Check Module

Once edited code is saved, a code developer can check the Python script for such common
Python syntax errors, such as:

• indentation,

• closed parentheses,

• missed colons,

• misspelled key words, and

• quotation marks, backward and forward slashes, among others.

To do so, the developer clicks Run—Check Module from the IDLE scripting window.

If errors appear, IDLE will highlight the line. All Python errors must be remedied before running
a Python script; otherwise, the script will present an error message. The figure below shows an
error message after running the Check Module. The location in the line with the error is
highlighted. This error will need to be fixed before the script can be “Run.” In the author’s
experience, most Python and ArcGIS related errors occur as a result of mistyping, improper
Python syntax, and the parameters are not properly set to run ArcGIS functions.

84 Chapter 3 Python and ArcGIS Constructs

The developer should note that the Python IDLE script editor does not check for ArcGIS function
syntax. It also does not perform function completion. Additional errors may occur after the
check is successfully achieved. The developer will want to:

• check ArcGIS function syntax,

• check to make sure variables are set to the proper values, and

• check that query syntax is written correctly.

One should consult ArcGIS Help for specific geoprocessing tool parameters, data type, syntax
and examples. In addition, the developer may wish to test some of the geoprocessing
functions “on the fly”, using the ArcGIS Python Shell (sometimes noted as the Python Window
in geoprocessing tool help documents).

Run Module

Once the Python script has been checked and/or fixed for Python syntax errors, the script can
be run to process the lines of code. To do so, the developer clicks Run—Run Module from the
IDLE scripting window.

 Chapter 3 Python and ArcGIS Constructs 85

Handling Errors

If the code generates an error before successfully running the script, the developer will want to
review the script again for syntax and logic problems. Once these problems are corrected, the
script needs to be saved and checked before re-running. Python will indicate the line of code
where the program fails. Note: processing errors may occur before the line indicated in the
Python error message. The figure below shows a Python script that passes the Check Module
operation, but fails when the program runs. Note the parameter “OLD_SELECTION”
highlighted below. “OLD_SELECTION” is not a valid selection type for
SelectLayerByAttribute and hence an error message is produced.

NOTE: An error message is produced because the script contains code in the except: block that
traces (checks for) ArcGIS problems. Without this exception block, the script would run without error,
but the final print statement would not print out because the program does actually produce an error.
It will stop running before the final print line (in the try: block).

If a Python script is run as a standalone script (without being run through a custom ArcGIS tool),
error messages and print statements are “printed” to the Python Shell window. The figure
below shows the error messages reported back from a script to the Python Shell. The specific
error indicates that the function parameters are not valid and lists the valid types that the
SelectLayerByAttribute function accepts. The error message also indicates the specific line of
the error. In addition, the specific ArcGIS Error is noted (ERROR 000800). A user can look
this error up by doing a search on the error code in the ArcGIS Help. More details on ArcGIS
errors are discussed in the next chapter.

86 Chapter 3 Python and ArcGIS Constructs

Summary

Chapter 3 provided an overview of the fundamental Python constructs will be used in almost all
ArcGIS geoprocessing (and general Python) scripts. Many of these fundamentals will be used
and referred to throughout the rest of the book and in one’s own coding. The author
encourages that the reader study and review these fundamentals, while working through the
script exercises for this chapter.

 Exercise 3 - Write a Simple Python Script 87

Exercise 3 - Write a Simple Python Script

Python Concepts

Script layout and organization
import modules
Variable definitions
try: except: code blocks
print statement

Python IDLE functionality

This exercise demonstrates the overall organization of a Python script and some of the methods
to create variables. There are no ArcGIS functions used in this script. Create a simple script
with the following conditions. Optionally, answer the following questions below.

NOTE: Use the \PythonPrimer\Chapter03\General_Layout.py script to begin writing the script
below; otherwise, open a blank Python scripting window and add the following syntax. Use the
text as needed to help write the script.

NOTE: If the reader does a copy/paste of the electronic version of the text, the quotes may
need to be retyped within the Python scripting editor.

Open a copy of the General_Layout.py script

1. Start the Python IDLE editor from Start—All Programs—ArcGIS—Python<version>—
IDLE

2. Click File—New Window to open a blank Python scripting window
3. From the Python IDLE window click File—Open and browse for the General_Layout.py

script file. (Alternatively, the reader can browse the Windows Explorer and go to the
Chapter03 folder and right click on the General_Layout.py script and choose Edit with
IDLE.

Start writing the script

4. Add a title, name, creation date, and notes section
5. Add the import os, sys, and traceback modules
6. Create the following variables:

88 Exercise 3 - Write a Simple Python Script

a. String variable assigned to the following text (all on one line of code).

"""I can't wait to start programming with Python and ArcGIS!"""

b. A number variable, x = 1

7. Create a try: block and add the following code. Make sure to properly indent (usually
one tab). The if statement will be indented because it will be placed inside the try:
block. The print statements in the “if” block will be indented. See the text above and
consult a Python text or resource if necessary. The first print statement will be written
on a single line.

if x == 1:

 print “This is my “ + str(x) + “st Python script \n” + <put your

string variable name here>

 print “Program Successful!”

Make sure to replace the <put your string variable here> (including the <>)
with the name of your variable.

8. Add an except: block and add the following code. Make sure to properly indent. The
second print statement is on one line. The code shown here has been formatted to fit
the page.

print "Program failed."

 print """z is not defined. Assign "z" a value and re-run

 the script."""

9. Add a comment line for each statement in the try: and except: block.

10. Above the try: block add the following statement

print “Starting program…”

11. Save the script (make sure to save the file as a .py file name extension).
12. Check the script for any errors by going to the script window where the code was typed

into and click Run→ Check Module. If any errors appear, resolve them, save the
changes, and recheck the script. Most of the errors at this point should be related to
typos, missed quotes, variable names, and indentation. See above for comments on
using the Check Module.

For this program, search through the code and make sure the syntax is typed correctly. If
needed, the solution can be consulted, but get in the habit of attempting to “troubleshoot” the
code on your own and become familiar with the resources listed in the text.

 Exercise 3 - Write a Simple Python Script 89

13. After any errors are resolved, click Run→Run Module from the script editing window.

Review the results in the Python Shell.

Make the following change to the code, save and check the script, and run again.

14. Add the following line within the “if” statement after the first print statement and then
re-run the script. Notice what happens in the script.

print z

90 Exercise 3 - Write a Simple Python Script

 Chapter 3 Questions 91

Chapter 3 Questions

1. What are the following used for?

a. Python IDLE
b. Python Shell

2. What two key syntax elements are important standards to follow, when writing Python

code?

3. What are variables and how are they used?

4. What is a good recommendation for creating variable names?

5. Give an example for each of the variable types:

a. String variable
b. Number variable

6. What are the conditional statements and looping structures typically used in Python?

7. What are the try: and except: blocks used for?

8. Briefly describe what the Check Module and Run Module function do in Python IDLE.

The following questions focus on the script created in Exercise 3.

1. Why is a “triple double” set of quotes used in the first statement being assigned to a
variable? (HINT: Change the “triple double quotes” in the first statement to a single set
of single quotes. Note the changes in the Python syntax).

2. Why are “triple double” quotes used in the print statement in the except block? What

if the “triple double” quotes are changed to a single set of “single quotes.” Is there any
different in the syntax? Does the script still function properly? Note any changes when
a single set of “double” quotes is used to encapsulate the print statement. Note: that

the “z” uses double quotes in the print statement.

92 Chapter 3 Questions

3. In the print statement above, what does the “\n” represent?

What does it do when the script is run? Do a search on python.org or consult a Python
text (such as Learning Python).

4. When print z is added, describe what occurs in the script?

https://www.python.org/

 Chapter 4 Writing a Basic Geoprocessing Python Script 93

Chapter 4 Writing a Basic Geoprocessing Python Script

Overview

This chapter will expand on the Python fundamentals for Chapter 3 and introduce more ArcGIS-
specific concepts, organization, and syntax. The latter part of the chapter will focus on setting
up workspaces, variables, and the Clip and Buffer geoprocessing routines. These will be used to
demonstrate the first geoprocessing script using Python and ArcGIS.

Getting Ready to Create an ArcGIS Geoprocessing Python Script

Before starting a Python script the code developer should consider what kind of geoprocessing
tasks will be accomplished and how the script will be organized. For example, if a series of
geoprocessing tasks have already been identified and performed manually, a list of the tasks
and the order in which they are implemented can serve as the basic outline for the Python
script. If, on the other hand, a code developer is not sure of the geoprocessing tasks, then the
developer should consider consulting the ArcGIS help and performing some of the individual
tasks manually in ArcMap to discover the appropriate geoprocesses and the order in which they
need to be organized. In addition, the code developer should consider developing the
geoprocessing workflows described in the Introduction. Lastly, and always importantly, the
author recommends using ModelBuilder, as described in Chapter 2, to assist in the code
development process.

Using Pseudo-code to Outline Geoprocessing Tasks

A common method for outlining coding tasks is the use of “pseudo-code.” Pseudo-code is no
more than an outline of coding tasks in plain English. Similar to developing an outline for a
paper, book, or written document, pseudo-code begins with the broad general tasks and then
becomes refined to include more specific tasks, ideas to test, and notes for further
consideration. Code development can take weeks or months to create, refine, and test, so
having an in-line set of documentation can be extremely helpful.

The following example script does not have much actual code, but it is a good start at an outline
for general coding tasks.

94 Chapter 4 Writing a Basic Geoprocessing Python Script

Pseudo-code for Geoprocessing

Author: <author>

Created on: <date>

Updated on: <date>

'''

NOTES: This section is reserved for general notes about the script

'''

import python modules neede to run script

import arcpy, os, sys, datetime, traceback

add and define variables, data paths, environment variables

try:

 # Create feature layer

 # Select features by attribute

 # Query: Select all land use types that are single family

 # Compute land use value

 # Research parcel data to determine proper values

 # Add new field for land use value

 # Calculate land use value Structure Value * 0.0125

 # Copy all rows to an output table

 # Use CopyRows function

except:

 # add error message handling here

Before beginning code development, some of the elements specific to ArcGIS geoprocessing
need further explanation.

 Chapter 4 Writing a Basic Geoprocessing Python Script 95

arcpy Module Overview

The arcpy module is the required module for performing ArcGIS geoprocessing tasks in
Python. It sets up the reference to any of the available geoprocessing methods and properties
provided by Esri in ArcGIS.

Examples of geoprocessing methods are any of the geoprocessing routines found in the
ArcToolbox. For example,

Clip, for clipping features
Buffer, for buffering features
CreateFeatureClass, for creating feature classes
MakeFeatureLayer or MakeTableView, for creating feature layers or table views
AddField or DeleteField, for adding to, or deleting fields from, a table

Examples of geoprocessing properties usually refer to specific elements of feature classes,
tables, images, and spatial reference parameters, among others. Some properties include:

Field names
Data types (points, lines, and polygons)
Spatial extent parameters such as the coordinate system
Number of bands in an image

Alternatively, specific import modules can be referenced and used in Python such as the os and

sys modules. This can simplify code, but the developer needs to be aware of how the modules
are referenced, since some confusion can occur and/or syntax can be more difficult to
interpret. See the ArcGIS Web Help under Importing ArcPy.

The script below shows one method of importing all of the arcpy modules and all of the
mapping routines that can be used for working with ArcMap documents while simplifying the
code development. The use of “from” and “import *” alleviates the need for the code

developer to write “arcpy.mapping” in front of each mapping routine (i.e. MapDocument
and ListDataFrames). They are great time savers. Workbook II, Chapter 9 covers the
arcpy.mapping module in more detail.

96 Chapter 4 Writing a Basic Geoprocessing Python Script

Alternative to import specific modules into Python

import arcpy

from arcpy.mapping import *

Get MXD and then list the data frames

mxd = MapDocument(r”c:\temp\ProjectMap.mxd”)

dfs = ListDataFrames(mxd, “Parcels”)[0]

Note the use of the “r” delimiter and the single backslash in the above example to process the data path
as raw string as opposed to the double backslash that does not require the “r” delimiter. If “r” is not
used with single the single backslash, then a double backslash “\\” or a forward slash “/” would be
required. See Chapter 3 for more details.

Without the use of from arcpy.mapping import * the full reference to the
arcpy.mapping module is required for all arcpy.mapping routines (e.g. MapDocument

and ListDataFrames). This explicit referencing to the arcpy.mapping module at almost
every step can increase the chances of error.

arcpy.mapping module “NOT” explicitly imported into

Python

import arcpy

Get MXD and then list the data frames

mxd = arcpy.mapping.MapDocument(r”c:\temp\ProjectMap.mxd”)

dfs = arcpy.mapping.ListDataFrames(mxd, “Parcels”)[0]

Workspace Definitions and Data Path Variables

Often the next section of code written in a geoprocessing script is one or more references to
data paths or workspaces and provides access to data and to properties related to workspaces
and other routines such as listing different kinds of data, describing data, etc. As discussed in
Chapter 3, the formulation of strings to data paths and workspaces can be challenging.
Choosing a standard method for defining data paths, workspaces, and references to data will
help design readable code and help troubleshoot problems. Refer to Chapter 3 and other
sources for examples on writing proper syntax for data paths and workspaces.

 Chapter 4 Writing a Basic Geoprocessing Python Script 97

Alternative Method for Workspaces Definitions and Data Paths

In addition to the methods describe in Chapter 3 code developers may find the following
“Pythonic” syntax useful when defining data paths and workspaces. The os module must be
imported to use this syntax.

import arcpy, os

aFolder = r”c:\PythonPrimer”

fileGD = os.path.join(aFolder, “file_geodatabase.gdb”)

fc = os.path.join(fileGD, “a_featureclass”)

alternatively, this syntax can be used

fc2 = os.path.join(aFolder, “file_geodatabase.gdb”,

“a_featureclass”)

The script yields the following results:

fileGD – c:\PythonPrimer\file_geodatabase.gdb

fc – c:\PythonPrimer\file_geodatabase.gdb\a_featureclass

fc2 – c:\PythonPrimer\file_geodatabase.gdb\a_featureclass

The os.path.join routine allows different “path” components (folders, geodatabases,
feature datasets, feature classes, images, etc) to be “joined” to create a single path while
producing cleaner code and helping to reduce “typo errors” by not having to make sure the “\\”
is used properly for folder, geodatabase, workspace, and data locations.

The geodatabase above could then be assigned to a workspace and then used in other coding
processes.

arcpy.env.workspace = fileGD

gd_workspace = arcpy.env.workspace

gd_info = arcpy.Describe(gd_workspace)

print "GD Type: " + gd_info.workspaceType

print "GD Version: " + gd_info.release

See the alternative_workspaces_data_paths.py script in the \PythonPrimer\Extra_Samples
folder for more details.

98 Chapter 4 Writing a Basic Geoprocessing Python Script

Define Variables

While developing a geoprocessing Python script, the programmer must review geoprocessing
functions and determine the kinds of required variables. Typically, “hard coded” values used as
parameters, such as specific file names, specific query strings, or function parameters make
code less flexible and require the code to be changed with different data. Variables help make
code more flexible and can be used with other data for the same purposes. Usually variables
will be defined for data paths, workspaces, input and output data, query strings, and
geoprocessing function parameters among others. Once a variable is defined, it can be used
multiple times throughout a script.

Hard Coded Parameters

The Clip function below does not use variables, but rather has specific values “hard coded” for
each parameter. The program must use the specific quoted values to process the Clip function.
If the data path or data change, then changes to these parameters will also need to be changed.
The code has been formatted to fit the page and does not correspond to correct Python syntax.
See the hard_coded.py script in the \PythonPrimer\Extra_Samples folder for the correct
syntax.

import arcpy

this defines the current ArcGIS workspace, in this case a

folder for shapefiles

arcpy.env.workspace = 'C:\\PythonPrimer\\extra_samples\\'

checks to see if the output exists; if it does, then

delete it

if arcpy.Exists('c:\\PythonPrimer\\extra_samples\\output\\

 c_facil_clip.shp'):

 arcpy.Delete_management('c:\\PythonPrimer\\extra_samples\\

 output\\c_facil_clip.shp')

Hard coded parameters

arcpy.Clip_analysis('city_facilities.shp',\

 'central_city_commplan.shp', \

 'c:\\PythonPrimer\\extra_samples\\output\\c_facil_clip.shp')

print 'Completed hard coded clip'

 Chapter 4 Writing a Basic Geoprocessing Python Script 99

Parameters Using Variables

The same Clip function below uses variables instead of the hardcoded values shown above.
Even though specific variables are “hard coded,” only the variable assignments need to be
changed (typically only one time) rather than each occurrence of a specific value throughout
the script. The code is also easier to read and can reduce syntax errors when developing code.
In later chapters the reader will discover how variables can be dynamically assigned by user
input from a custom ArcGIS tool or when the geoprocessing script will be performed in an
automated fashion. Using variables for the function parameters make this possible. See the
non_hard_coded.py script in the \PythonPrimer\Extra_Samples folder.

import arcpy

this defines the current ArcGIS workspace, in this case a

folder for shapefiles

arcpy.env.workspace = 'C:\\PythonPrimer\\extra_samples\\'

infile = 'city_facilities.shp'

clipfile = 'central_city_commplan.shp'

outfile = 'c:\\PythonPrimer\\extra_samples\\output\\c_facil_clip.shp'

checks to see if the output exists; if it does, then

delete it

if arcpy.Exists(outfile):

 arcpy.Delete_management(outfile)

arcpy.Clip_analysis(infile, clipfile, outfile)

print 'Completed non-hard coded clip'

Add and Modify Geoprocessing Functions

Once an ArcGIS Python script has been started, other variables and geoprocessing functions can
be added. The user should consult ArcGIS Help documentation or other sources to learn about
the specific geoprocessing function requirements, parameters, and parameter formats.
Additional research may be required to discover the function (or functions) and the pre-
requisites for unfamiliar geoprocessing routines. Typically, this involves researching ArcGIS
Help, Esri user forums, and Internet searches regarding Esri ArcGIS tasks and processes. Since
this chapter introduces writing a basic geoprocessing script, the following section outlines some
of the steps a code developer can use to learn about a geoprocessing function before adding it
to a Python script.

100 Chapter 4 Writing a Basic Geoprocessing Python Script

Search ArcGIS Help

A common practice for code developers for ArcGIS is to refer to the ArcGIS Help
documentation. This is often a first line of inquiry when developing code and process logic. All
of the geoprocessing routines have Python examples and full explanations of each parameter.
Make sure to refer to some of the additional documentation that may explain some of the
theory and provide insight to the functionality of the algorithms and tools.

Once the documentation is reviewed, the programmer can copy or type the syntax to a Python
editor for the given function as well as adding and defining any additional variables required for
the function. To copy code from an ArcGIS Help document, the developer can highlight the line
(or lines) of the example script, right-click and select Copy from the drop down list (or use Ctrl +
C keys) and then Paste the selected code into an open Python script using the Python IDLE
editor Edit—Paste operation (or Ctrl + V).

NOTE: The code developer will want to check the syntax being copied from ArcGIS Help, since
sometimes the characters can change (for example, quotes and tabs).

After the syntax is pasted into the Python editor, specific changes can be made to the individual
parameters such as using variables defined for the script being developed by the programmer.

ArcGIS Toolbox Aliases

ArcGIS tools (i.e. those found in the ArcToolbox) are organized into toolboxes that share related
activities. For example, tools that are used for creating feature classes, working with attribute
fields, and creating feature layers and table views can be found under the Data Management
Tools toolbox. When using these tools in Python, it is good practice to use the alias toolbox
name that is associated with the specific tool (i.e. the toolbox alias indicate the specific ArcGIS
toolbox where the tool can be found). The general format of this syntax is:

arcpy.ArcGISTool_toolalias(<parameters for tool>)

 Chapter 4 Writing a Basic Geoprocessing Python Script 101

For example, the Clip tool has the following syntax.

arcpy.Clip_analysis(<input feature class>, <clip feature class>,

<output feature class>, {tolerance}, {units})

Notice that the Clip tool can be found in the Analysis toolbox.

The specific toolbox aliases can be found in the ArcGIS Help topic Geoprocessing—Managing
toolboxes. An alternative method for writing ArcGIS Tool syntax can be found here:
Geoprocessing—Geoprocessing with Python—Accessing tools—Using tools in Python (see the
ArcGIS section on Tool organization). Instead of using the toolbox alias, a code developer can
use the module form.

arcpy.toolboxname.tool(<parameters>)

For the Clip tool shown above, the syntax would be

arcpy.analysis.Clip(<input feature class>, <clip feature class>,

<output feature class>, {tolerance}, {units})

Syntax for the tool must also be maintained (such as capitalization of characters; see the
specific tool help for the exact syntax). The method used to access ArcGIS tools is determined
by personal preference; however, one of the two methods must be used when accessing ArcGIS
tools. The code developer should adopt one of the two methods and use them consistently in
Python scripts.

Summary

Chapter 4 introduced some of the specific ArcGIS Python concepts that are required to begin
writing useful Python code to perform geoprocessing. The reader was introduced to the use of
workspaces, data paths, and variables to set up data and ArcGIS tool parameters versus hard
coding these parameters. Doing so provides the fundamentals to write flexible and extended
Python script for multiple tasks, many of which will be covered in later chapters.

102 Chapter 4 Writing a Basic Geoprocessing Python Script

 Chapter 4 Demo Writing a Clip Features Script 103

Chapter 4 Demo Writing a Clip Features Script

This demonstration combines some of the concepts mentioned throughout this chapter. After
completing this demo the reader should be able to understand the following.

ArcGIS Concepts

Import the arcpy module

Define a workspace

Refer to ArcGIS Help for the Clip geoprocessing routine

Successfully run the Clip routine

Python Concepts

Create a pseudo-code outline for the script

Create variables for use in the script

Set up try and except blocks

Add error handling text to the except block

The reader should attempt to write the code on their own to gain practice in developing
programming skills. The Chapter04\Demo4_Clip_Features.py solution is provided and can be
consulted. Exercise 4 will need to use the code developed in Demo 4.

STEP 1 - Create Pseudo-code

a. Start a new Python script window by opening IDLE

b. Name the script Clip_Features.py and save it to the \MyData folder.

c. Add the following pseudo-code information to the Python script editor. Add your name

and the current date at the top of the script. The script up to this point should contain

the following:

104 Chapter 4 Demo Writing a Clip Features Script

Demo 4: Clip Features Geoprocessing Script

Created by: <author>

Created on: <date>

Updated on: <date>

'''

This script will perform the ArcGIS Clip routine for a specified

set of feature classes.

'''

1. import arcpy, sys, and traceback modules

2. Create workspace

3. Create variable definitions for geoprocessing functions

4. Add try: and except: blocks

5. Add Clip routine (see ArcGIS Help)

6. Add exception code within except block

STEP 2 - Start building the script

a. Add the following information.

Add additional commentary
Import arcpy module (and the sys and traceback modules, see below)

The sys and traceback modules are used in the exception block used for error handling.

Add a workspace

If needed, change the path for the workspace to the folder that contains the
\PythonPrimer\Chapter04\Data folder. NOTE: The workspace path may need to be changed
depending on where the reader placed the data for the demo/exercise. After adding the
information above, the section of script should look similar to that shown below. The section
below shows the code modifications.

 Chapter 4 Demo Writing a Clip Features Script 105

1. import arcpy module

import arcpy, sys, traceback

2. Create workspace

arcpy.env.workspace = r”c:\pythonprimer\chapter04\data”

STEP 3 - Consult ArcGIS Tool Help for the Clip routine

Consult the ArcGIS Tool Help for the Clip geoprocessing function. ArcMap or ArcCatalog can be
used to locate the tools. Clip is under Analysis Tools—Extract—Clip. Alternatively, use the
Search Tab in ArcToolbox and type in each of the geoprocessing functions to locate the tool.
Click on the Tool Help to review the specific documentation. Make sure to review the
description of the function as well as the required and optional parameters. Scroll to the
bottom of the help to see a Python script example using the tool.

The parameters below will be required for the geoprocessing functions in the demo script.
Refer to the \PythonPrimer\Chapter04\Data folder to find the data. Use
\PythonPrimer\Chapter04\MyData to store any output files. Load the data into ArcMap to
review what the data looks like.

STEP 4 - Add Clip Parameter Variables

Create variables for each of the required parameters. The output feature class can be written
to the workspace shown above or a separate variable can be created that point to the
Chapter04\MyData folder.

Input features (City_Facilities.shp - City Facilities); City_Facilities.lyr exists that contains some
standard symbology. The layer file is not required for the script to function, but can be used in
ArcMap for viewing.

Clip features (Central_City_CommPlan.shp - Central City Community Plan Boundaries)

Output features – a feature class name,
\PythonPrimer\Chapter04\MyData\City_Facilities_Clip.shp. The reader can change the path
to match a location on their local system.

After creating variables for the Clip geoprocess, the script should look similar to the following

for this section of code:

106 Chapter 4 Demo Writing a Clip Features Script

3. Create variable definitions for geoprocessing functions

can be used to write output to a different

location than the workspace above

outpath = r”c:\pythonprimer\Chapter04\MyData\\”

infile = “city_facilities.shp”

clipfile = "Central_City_CommPlan.shp"

outfile = outpath + "City_Facilities_Clip.shp"

STEP 5 - Add the Clip routine and additional ArcGIS code

a. Add the try: block and type in the following syntax for the Clip geoprocessing function

(see the code below). Make sure to indent the code and use the toolbox alias name or the
alternative method described above for the Clip routine. Add a couple of print
statements that can print out to the Python Shell to monitor the scripts progress.

b. In addition, add the two lines to check to see if the output file exists (i.e. see the “if”
statement with arcpy.Exists and arcpy.Delete_management functions). See

below. This will be discussed in subsequent chapters. Notice that arcpy.Exists does
not have an associated toolbox alias, since Exists is an ArcGIS function and not a tool.

Typically, the ArcGIS functions that are not associated with tools typically perform general tasks such as
checking for the existence of data. For more information see ArcGIS Help: Geoprocessing—
Geoprocessing with Python—Accessing tools—Using functions in Python and Geoprocessing—The
ArcPy site package—Functions—Alphabetical list of ArcPy functions.

4. Add try: and except: blocks

try:

5. Add Clip routine (see ArcGIS Help)

if arcpy.Exists(outfile):

arcpy.Delete_management(outfile)

print "Starting Clip routine"

arcpy.Clip_analysis(infile, clipfile, outfile)

 print "Finished Clip routine"

 Chapter 4 Demo Writing a Clip Features Script 107

STEP 6 - Add Exception Code

Add the following exception code to the script. Go to the \PythonPrimer\Chapter04 folder and
open the Exception_code.py script in Python IDLE. Select all of the text, copy, and then paste it
into the Clip Python script being developed for this demo. Use the Python editor Edit—Copy
(or Ctrl + C keys) and then the Edit--Paste (or Ctrl + V) from the Python script editor (of the Clip
script being developed) to paste the code within the script. Make sure to place the cursor
within the except: block before pasting the code. Make sure to indent the exception code as

shown below. If the exception code is not indented properly by default, highlight all of the
exception text inside the Python script editor, click the Format—Indent Region option within
the Python script editor. This will indent the entire block of selected code. Note that some
lines may extend beyond the window display. This is ok.

The section of script below shows a portion of the indented except code block. Note, that
some code lines are “wrapped” to the next line to fit on the page. See the
Chapter04\Exception_code.py script for the proper formatting.

6. Add exception code within except block

except:

http://help.arcgis.com/en/arcgisdesktop/10.0/help/index.html#//002z00

00000q000000

 # Notice the indent because of the except block

 tb = sys.exc_info()[2]

 tbinfo = traceback.format_tb(tb)[0]

 pymsg = "PYTHON ERRORS:\nTraceback Info:\n" + tbinfo +

 "\nError Info:\n " + str(sys.exc_type) + ": " +

 str(sys.exc_value) + "\n"

 msgs = "ARCPY ERRORS:\n" + arcpy.GetMessages(2) + "\n"

 # prints error messages in the Progress dialog box

 arcpy.AddError(msgs)

 arcpy.AddError(pymsg)

 # prints messages to the Python Shell

 print msgs

 print pymsg

Make sure the sys and traceback modules are in the “import” line at the top of the code.
Without these modules the script will result in an error (as a “name” not defined because the

108 Chapter 4 Demo Writing a Clip Features Script

sys and traceback modules would not be imported) if an error did occur in the try block
section of code. As you can see above, the sys and traceback routines are used in the
exception block. The figure below shows an example of the error that occurs if the sys or

traceback modules are not imported.

After completing the script, the file can be saved.

STEP 7 - Click File—Save

STEP 8 - Check the script for Python errors

Click Run—Check Module to check for any errors. If the script was written correctly, no error
messages should pop up and the Python Shell prompt (>>>) will appear.

If errors appear, try and figure them out or consult the Demo4_Clip_Features.py script in the
\PythonPrimer\Chapter04 folder. Once typos and other syntax issues are resolved, click save.
Click Run—Check Module to make sure the script does not have any errors.

STEP 9 - Run the script

Click Run—Run Module.

The script will run and the two print statements will appear in the Python Shell script. If errors
occur, note them, and consult the Demo4_Clip_Features.py script to remedy any issues. If
errors are found, fix them, save the script and re-run the script.

 Chapter 4 Demo Writing a Clip Features Script 109

>>>

Demo 4 - Clip Features

Starting Clip routine

Finished Clip routine

>>>

STEP 10 - Review results in ArcMap

Close the Python script and the Python Shell window. This will release any data locks on the
files so they can be properly seen and used in ArcMap or ArcCatalog.

Open ArcMap and add the City_Facilities.shp, Central_City_CommPlan.shp, (if not already
added) and the City_Facilities_Clip.shp.

Notice the City Facilities shapefile has been clipped (dots) with the Central City Community
Plan boundary.

The results in the demo can be used in the Exercise below. The Demo4_Clip_Features.py script
can be found in the Chapter04 folder.

110 Chapter 4 Demo Writing a Clip Features Script

 Exercise 4 - Add the Buffer Routine to the Clip Features Script 111

Exercise 4 - Add the Buffer Routine to the Clip Features Script

Using the code developed in Demo 4, do the following to add the Buffer routine to the script
after the Clip routine. Review the ArcGIS Help for the Buffer routine.

1. Add variables for the following required buffer routine variables:

a. Input features for the buffer routine will use the variable created for the output clip

feature class. (The outfile variable used in the Clip routine in Demo 4 is the

“input features” for the Buffer routine in Exercise 4).

b. Output buffer features – a feature class name that will represent the “buffered”

features (i.e. \PythonPrimer\Chapter04\MyData\City_Facilities_Clip_Buffer.shp).

c. Buffer distance – a variable representing a number (e.g. 10, 100, 1000, etc.).

d. Buffer units – a variable representing the word “Feet” or “Meters”. This will

represent the unit portion of the buffer distance parameter. The buffer distance

consists of two parts, a unit measure (10, 100, 1000, etc) and the unit type (feet,

meters, miles, etc). The format for the parameter will look like this: “100 Feet”,

“1000 Meters”, etc.

NOTE: To use the Buffer distance and the Buffer units together, the code developer will
need to “concatenate” the two variables. To obtain the format shown above for the
buffer distance, the following syntax will be needed: str(Buffer_distance) + “ “ +
Buffer_units. str() converts the number to a “string” type so that it can be

“concatenated” with the word “Feet.” Python cannot concatenate a number with a
string. The double quotes have a space between each quote. This represents the space
between the number and the unit type, thus if Buffer_distance is 100 and Buffer_units
is “Feet”, then the above syntax will represent “100 Feet”.

The optional parameters are not needed for the exercise and do not need to be added.

2. Add other print statements if desired.

3. Add an if statement similar to the example above that checks to see if the output

buffer file exists; if it does, then delete it. This will be placed after the Clip routine and

before the Buffer routine. Remember that a different variable will be used for this if

112 Exercise 4 - Add the Buffer Routine to the Clip Features Script

statement that points to the “buffer output features” feature class. (See Demo 4, STEP

5b in the text above).

4. Make sure to Save and “check” the module before running. Save the script to a new

name (\MyData\City_Facilities_Clip_Buffer.py). Attempt to fix any syntax problems.

5. Run the script to see if the clip and buffer works.

6. After successfully running the Python script, close the Python script editor and the

Python Shell and then review the results in ArcMap.

ArcMap should show the clipped and buffered data similar to the following:

 Chapter 4 Questions 113

Chapter 4 Questions

The following questions focus on the Chapter 4 material.

1. What is the benefit of writing “pseudo-code”?

2. Where in a Python script does the import modules need to exist?

3. What is the main difference between setting a variable to a workspace versus setting a

variable to a data path?

4. What does “hard coded” refer to? Describe.

5. What is the benefit of using variables as parameters?

6. What is the suggested location for setting variables? Why does this make sense?

7. If a code developer does not know if an ArcGIS tool, function, or geoprocess exists, what

are two options can one use to find the tool, function, or geoprocess and learn about its
parameters?

The following questions focus on the script created in Exercise 4.

1. If the outpath variable (for the Clip Features script) was not used in the script, what

would the outfile variable be assigned to? Write the syntax.

2. If the workspace environment was not set, would the script be able to function properly
without it? Why or why not. (Hint: Try commenting out the arcpy environment line
and re-running the Python script). Describe what happens and provide a screen shot of
the results.

3. Describe what the arcpy.Exists and arcpy.Delete_management functions do

in the script.

4. How do you know the sys and traceback modules are required for this script? Hint:

Look through the entire code written for this exercise.

114 Chapter 4 Questions

5. What happens if you take out the sys module and re-check the script? Provide a
screen shot of the results in the Python Shell.

6. What happens if you take out the traceback module and re-run the script? Provide a

screen shot of the results in the Python Shell.

7. For the buffer script, write the syntax used to set a variable to the output buffer file.

8. Why do the buffer_distance and buffer_units variables need to be combined

in order to work properly in the Buffer routine?

 Accessing Data, Demos, and Code 115

Accessing Data, Demos, and Code

The reader can obtain the supplemental information for this book at the author’s website using
the following credentials (which are case sensitive):

http://pythonprimer.urbandalespatial.com/resources

 Username: PythonPrimer
 Password: PP4AGIS!

Additional information will be provided on this website with any updates, changes, etc.

http://pythonprimer.urbandalespatial.com/resources

116 References

References

Author’s website – www.urbandalespatial.com
Jennings, Nathan. “Managing Street Sign Assets: An enterprise geospatial business systems
integration solution.” ArcUser, Winter 2009. Date Accessed: 11.09.2011
http://www.Esri.com/news/arcuser/0109/streetsigns.html

ArcGIS

ArcGIS Resource Center - http://resources.arcgis.com/
ArcGIS Web-based Help - http://resources.arcgis.com/en/communities/
ArcGIS Blog - http://blogs.Esri.com
ArcGIS Forums - https://geonet.esri.com/community/developers/gis-developers/python
Geoprocessing script examples and models -
http://resources.arcgis.com/en/communities/python/
Esri Training courses - http://www.esri.com/training/main
ArcUser - http://www.Esri.com/news/arcuser
ArcGIS Resource Center. Exception Code Snippet. Esri, 2011.
http://help.arcgis.com/en/arcgisdesktop/10.0/help/index.html#//002z0000000q000000.

Python

Python website – www.python.org
Lutz, Mark. Learning Python, 4th Ed. Beijing: O’Reilly Media, Inc., 2009.

Organizations

Esri – www.Esri.com
American River College GIS Program - http://wserver.arc.losrios.edu/~earthscience/
Sierra College GIS Program - http://www.sierracollege.edu/academics/divisions/science-
math/geography.php
UC Davis Extension - https://extension.ucdavis.edu/subject-areas/geographic-information-
systems
Del Mar College - http://www.delmar.edu/CIS_-_Geographical_Information_Systems.aspx
City of Sacramento GIS – www.cityofsacramento.org/gis
County of Sacramento GIS – www.sacgis.org
Cal Atlas – http://atlas.ca.gov

http://www.urbandalespatial.com/
http://www.esri.com/news/arcuser/0109/streetsigns.html
http://resources.arcgis.com/
http://resources.arcgis.com/en/communities/
http://blogs.esri.com/
https://geonet.esri.com/community/developers/gis-developers/python
http://www.esri.com/news/arcuser
http://help.arcgis.com/en/arcgisdesktop/10.0/help/index.html#//002z0000000q000000
http://www.python.org/
http://www.esri.com/
http://wserver.arc.losrios.edu/~earthscience/
http://www.sierracollege.edu/academics/divisions/science-math/geography.php
http://www.sierracollege.edu/academics/divisions/science-math/geography.php
https://extension.ucdavis.edu/subject-areas/geographic-information-systems
https://extension.ucdavis.edu/subject-areas/geographic-information-systems
http://www.delmar.edu/CIS_-_Geographical_Information_Systems.aspx
http://www.cityofsacramento.org/gis
http://www.sacgis.org/
http://atlas.ca.gov/

 INDEX 117

INDEX

A

ArcToolbox, 8, 23, 24, 30, 33, 34, 36, 38, 41, 42, 43, 45, 48,
95, 100, 105

B

backslash, 96

C

Check Module, 31, 32, 66, 83, 85, 88, 91, 108

D

data path, 57, 96, 98, 113

E

error handling, 24, 31, 33, 34, 51, 77, 80, 82, 103

F

feature class, 13, 28, 57, 59, 64, 68, 74, 82, 101, 105, 111,
112

feature classes, 49, 65, 68, 74, 76, 95, 100
forward slash, 71, 96

G

geoprocessing, 7, 21, 25, 27, 28, 29, 30, 31, 34, 35, 38, 45,
51, 68, 70, 76, 82, 84, 86, 93, 94, 95, 98, 99, 101, 103,
105, 106

I

if statement, 65, 75, 88, 111

L

Loops
for loop, 65

M

ModelBuilder, 8, 21, 27, 35, 36, 38, 41, 45, 49, 51, 93

P

Python
IDLE, 21, 25, 26, 27, 28, 57, 61, 62, 66, 83, 84, 87, 91,

100, 103, 107
Python Shell, 25, 27, 28, 29, 34, 50, 61, 62, 63, 64, 84,

85, 89, 91, 106, 108, 109, 112, 114
Python Constructs

capitalization, 32, 64, 101
comments, 66, 68, 82
indentation, 65

Python Modules
arcpy, 13, 28, 51, 68, 74, 76, 77, 95, 96, 100, 101, 103,

104, 106, 113
os, 76, 77, 87, 95
sys, 76, 77, 95, 104, 107, 113, 114
traceback, 31, 33, 34, 76, 77, 87, 104, 107, 113, 114

Q

Quotes
double quotes, 70, 78, 79, 100
single quotes, 78
triple double quotes, 11, 78

S

strings, 65, 68, 70, 78, 79, 98

V

variables, 32, 34, 59, 63, 64, 68, 70, 77, 82, 84, 87, 91, 93,
98, 99, 100, 101, 103, 105, 111, 113, 114

W

workspaces, 36, 38, 69, 70, 71, 74, 93, 96, 97, 98, 101

	Acknowledgements
	Introduction
	Objectives and Goals
	Structure of the Workbooks
	Structure of the Workbooks
	Data and Demos
	Accessing the Data, Demos, and Code
	Required Software
	Older Versions of ArcGIS and Python
	Older Versions of ArcGIS and Python
	Reporting Errata
	Prerequisite Knowledge and Skill
	Problem Solving
	Developing Geoprocessing Workflows
	Developing Geoprocessing Workflows

	Workbook I: The Fundamentals
	Chapter 1 Python and ArcGIS
	Overview
	Python and ArcGIS Versions
	How Python is used with ArcGIS
	Python Development Environments
	Relationship to ModelBuilder
	Python Shell in ArcGIS
	Use of Scripts with Geoprocessing Tools
	Getting Help
	Getting Help
	ArcGIS
	Python

	Python and ArGIS Errors
	Python Syntax Errors
	ArcGIS Error Codes

	Common Methods for Handling Errors
	Common Methods for Handling Errors

	Chapter 2 ModelBuilder and Python
	Overview of ModelBuilder
	ModelBuilder Python Script Caveats

	Chapter 2 Demos
	Demo 2a: Using ModelBuilder to Create a Python Script: the Preferred Way
	Demo 2b: Using ModelBuilder to Create a Python Script: the Non-Preferred Way
	Exercise 2 - Create a New Feature Class and Add Fields
	Chapter 2 Questions
	Chapter 3 Python and ArcGIS Constructs
	Overview
	Using Python IDLE for Code Development
	Using the Python Shell for Code Testing
	Syntax
	Case Sensitivity
	Naming Conventions
	Indentation
	Comments
	Creating and Using Variables
	String and Number Variables
	Strings, Data Path, and Workspace Conventions
	Strings, Data Path, and Workspace Conventions
	Lists
	Conditional Statements and Loops

	import Modules
	try: and except: Blocks
	Special Considerations for Query Strings in Python
	Special Considerations for Query Strings in Python
	Single and Double Quotes
	“Triple” Double Quotes

	General Structure of a Useful Python Script
	Title, Author, Date, and Script Comments
	Title, Author, Date, and Script Comments
	import Modules
	Variable Definitions (and Python Function Definitions)
	Code Body

	Running a Python Script
	Running a Python Script
	Check Module
	Run Module
	Handling Errors
	Handling Errors

	Summary

	Exercise 3 - Write a Simple Python Script
	Chapter 3 Questions
	Chapter 4 Writing a Basic Geoprocessing Python Script
	Overview
	Getting Ready to Create an ArcGIS Geoprocessing Python Script
	Using Pseudo-code to Outline Geoprocessing Tasks
	arcpy Module Overview
	arcpy Module Overview
	Workspace Definitions and Data Path Variables
	Alternative Method for Workspaces Definitions and Data Paths
	Alternative Method for Workspaces Definitions and Data Paths
	Define Variables
	Define Variables
	Hard Coded Parameters
	Parameters Using Variables
	Parameters Using Variables
	Add and Modify Geoprocessing Functions
	Search ArcGIS Help
	Search ArcGIS Help
	ArcGIS Toolbox Aliases
	Summary

	Chapter 4 Demo Writing a Clip Features Script
	Exercise 4 - Add the Buffer Routine to the Clip Features Script
	Chapter 4 Questions

	Accessing Data, Demos, and Code
	References
	INDEX
	INDEX
	INDEX

