
CHAPTER 2

A Quick and Dirty Introduction to Differential Geometry

2.1. The Geometry of Surfaces

There are many ways to think about the geometry of a surface (using charts, for instance) but
here’s a picture that is well-suited to the way we work with surfaces in the discrete setting. Consider
a little patch of material floating in space, as depicted below. Its geometry can be described via a
map f : M ! R3 from a region M in the Euclidean plane R2 to a subset f (M) of R3:

f

X

f (M)

M

df(X)

N

The differential of such a map, denoted by df , tells us how to map a vector X in the plane to the
corresponding vector df(X) on the surface. Loosely speaking, imagine that M is a rubber sheet and
X is a little black line segment drawn on M. As we stretch and deform M into f (M), the segment
X also gets stretched and deformed into a different segment, which we call df(X). Later on we can
talk about how to explicitly express df(X) in coordinates and so on, but it’s important to realize that
fundamentally there’s nothing deeper to know about the differential than the picture you see here—the
differential simply tells you how to stretch out or “push forward” vectors as you go from one space
to another. For example, the length of a tangent vector X pushed forward by f can be expressed as

q
df(X) · df(X),

where · is the standard inner product (a.k.a. dot product or scalar product) on R3. Note that this
length is typically different than the length of the vector we started with! To keep things clear, we’ll
use angle brackets to denote the inner product in the plane, e.g., the length of the original vector
would be

p
hX, Xi. More generally, we can measure the inner product between any two tangent

vectors df(X) and df(Y):
g(X, Y) = df(X) · df(Y).

The map g is called the metric of the surface, or to be more pedantic, the metric induced by f . Note
that throughout we will use df(X) interchangeably to denote both the pushforward of a single
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2.1. THE GEOMETRY OF SURFACES 8

vector or an entire vector field, i.e., a vector at every point of M. In most of the expressions we’ll
consider this distinction won’t make a big difference, but it’s worth being aware of. Throughout
we’ll use TM to denote the tangent bundle of M, i.e., the set of all tangent vectors.

So far we’ve been talking about tangent vectors, i.e., vectors that lay flat along the surface. We’re
also interested in vectors that are orthogonal to the surface. In particular, we say that a vector
u 2 R3 is normal to the surface at a point p if

df(X) · u = 0

for all tangent vectors X at p. For convenience, we often single out a particular normal vector N
called the unit normal, which has length one. Of course, at any given point there are two distinct
unit normal vectors: +N and �N. Which one should we use? If we can pick a consistent direction
for N then we say that M is orientable. For instance, the circular band on the left is orientable, but
the Möbius band on the right is not:

For orientable surfaces, we can actually think of N as a continuous map N : M ! S2 (called the
Gauss map) which associates each point with its unit normal, viewed as a point on the unit sphere
S2. In fact, if we think of S2 as a subset of R3 (consisting of all the points unit distance from the
origin), then we can do all the same things with N that we did with our map f . In particular, the
differential dN (called the Weingarten map) tells us about the change in the normal direction as
we move from one point to the other. For instance, we can look at the change in normal along a
particular tangent direction X by evaluating dN(X)—this interpretation will become useful when
we talk about the curvature of surfaces. Overall we end up with the following picture, which
captures the most fundamental ideas about the geometry of surfaces:

N
S2

f (M)

f
M
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2.1.1. Conformal Coordinates. When working with curves, one often introduces the idea of
an isometric (a.k.a. arc-length or unit speed) parameterization. The idea there is to make certain
expressions simpler by assuming that no “stretching” occurs as we go from the domain into R3.
One way to state this requirement is

|df(X)| = |X|,
i.e., we ask that the norm of any vector X is preserved.

For surfaces, an isometric parameterization does not always exist (not even locally!). Most of
the time you simply have to stretch things out. For instance, you may know that it’s impossible to
flatten the surface of the Earth onto the plane without distortion—that’s why we end up with all
sorts of different funky projections of the globe.

However, there is a setup that (like arc-length parameterization for curves) makes life a lot
easier when dealing with certain expressions, namely conformal coordinates. Put quite simply, a map
f is conformal if it preserves the angle between any two vectors. More specifically, a conformal map
f : R2 � M ! R3 satisfies

df(X) · df(Y) = ahX, Yi
for all tangent vectors X, Y, where a is a positive function and h·, ·i is the usual inner product on R2.
In practice, the function a is often replaced with eu for some real-valued function u—this way, one
never has to worry about whether the scaling is positive. Notice that vectors can still get stretched
out, but the surface never gets sheared—for instance, orthogonal vectors always stay orthogonal:

X

Y

f

df(Y)

df(X)

A key fact about conformal maps is that they always exist, as guaranteed by the uniformization
theorem. In a nutshell, the uniformization theorem says that any disk can be conformally mapped
to the plane. So if we consider any point p on our surface f (M), we know that we can always find
a conformal parameterization in some small, disk-like neighborhood around p. As with unit-speed
curves, it is often enough to simply know that a conformal parameterization exists—we do not
have to construct the map explicitly. And, as with arc-length parameterization, we have to keep
track of the least possible amount of information about how the domain gets stretched out: just a
single number at each point (as opposed to, say, an entire Jacobian matrix).
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2.2. Derivatives and Tangent Vectors

2.2.1. Derivatives on the Real Line. So far we’ve been thinking about the differential in a very
geometric way: it tells us how to stretch out or push forward tangent vectors as we go from one place
to another. In fact, we can apply this geometric viewpoint to pretty much any situation involving
derivatives. For instance, think about a good old fashioned real-valued function f(x) on the real
line. We typically visualize f by plotting its value as a height over the x-axis:

f(x)

x

In this case, the derivative f

0 can be interpreted as the slope of the height function, as suggested
by the dashed line in the picture above. Alternatively, we can imagine that f stretches out the real
line itself, indicated by the change in node spacing in this picture:

X

f

df(X)

R

f(R)

Where the derivative is large, nodes are spaced far apart; where the derivative is small, nodes
are spaced close together. This picture inspires us to write the derivative of f in terms of the
push-forward df(X) of a unit tangent vector X pointing along the positive x-axis:

f

0 = df(X).

In other words, the derivative of f is just the “stretch factor” as we go from one copy of R to the
other. But wait a minute—does this equality even make sense? The thing on the left is a scalar, but
the thing on the right is a vector! Of course, any tangent vector on the real line can be represented
as just a single value, quantifying its extent in the positive or negative direction. So this expression
does make sense—as long as we understand that we’re identifying tangent vectors on R with real
numbers. Often this kind of “type checking” can help verify that formulas and expressions are
correct, similar to the way you might check for matching units in a physical equation.
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Here’s another question: how is this interpretation of the derivative any different from our
usual interpretation in terms of height functions? Aren’t we also stretching out the real line in that
case? Well, yes and no—certainly the real line still gets stretched out into some other curve. But
this curve is now a subset of the plane R2—in particular, it’s the curve g = (x, f(x)). So for one
thing, “type checking” fails in this case: f

0 is a scalar, but dg(X) is a 2-vector. But most importantly,
the amount of stretching experienced by the curve doesn’t correspond to our usual notion of the
derivative of f—for instance, if we look at the magnitude of |dg(X)| we get

p
1 + (f0)2. (Why is

this statement true geometrically? How could you write f

0 in terms of dg(X)? Can you come up
with an expression that recovers the proper sign?)

2.2.2. Directional Derivatives. So far so good: we can think of the derivative of a real-valued
function on R as the pushforward of a (positively-oriented) unit tangent vector X. But what
does df(X) mean if f is defined over some other domain, like the plane R2? This question may
“stretch” your mind a little, but if you can understand this example then you’re well on your way
to understanding derivatives in terms of tangent vectors. Let’s take a look at the geometry of the
problem—again, there are two ways we could plot f. The usual approach is to draw a height
function over the plane:

f(x)

The derivative has something to do with the slope of this hill, but in which direction? To answer
this question, we can introduce the idea of a directional derivative—i.e., we pick a vector X and
see how quickly we travel uphill (or downhill) in that direction. And again we can consider an
alternative picture:

f df(X)

R

R2

X
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Since f is a map from R2 to R, we can imagine that it takes a flat sheet of rubber and stretches it out
into a long, skinny, one-dimensional object along the real line. Therefore if we draw an arrow X
on the original sheet, then the “stretched-out” arrow df(X) gives us the rate of change in f along
the direction X, i.e., the directional derivative. What about type checking? As before, everything
matches up: df(X) is a tangent vector on R, so it can be represented by a single real number. (What
if we had continued to work with the height function above? How could we recover the directional
derivative in this case?)

By the way, don’t worry if this discussion seems horribly informal! We’ll see a more explicit,
algebraic treatment of these ideas when we start talking about exterior calculus. The important
thing for now is to build some geometric intuition about derivatives. In particular: a map from any
space to any other space can be viewed as some kind of bending and twisting and stretching (or
possibly tearing!); derivatives can be understood in terms of what happens to little arrows along
the way.
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2.3. The Geometry of Curves

I
X

dg(X)

g

g(I)

The picture we looked at for surfaces is actually a nice way of thinking about shapes of any
dimension. For instance, we can think of a one-dimensional curve as a map g

: I ! R3 from an
interval I = [0, T] ⇢ R of the real line to R3. Again the differential dg tells us how tangent vectors
get stretched out by g, and again the induced length of a tangent vector X is given by

|dg(X)| =
q

dg(X) · dg(X).

Working with curves is often easier if g preserves length, i.e., if for every tangent vector X we have

|dg(X)| = |X|.

There are various names for such a parameterization (“unit speed”, “arc-length”, “isometric”) but the
idea is simply that the curve doesn’t get stretched out when we go from R to R3—think of g as a
completely relaxed rubber band. This unit-speed view is also often the right one for the discrete
setting where we have no notion of a base domain I—from the very beginning, the curve is given
to us as a subset of R3 and all we can do is assume that it sits there in a relaxed state.

2.3.1. The Curvature of a Curve.

N
T

B
g(I)

Suppose we have a unit-speed curve g and a positively-oriented unit vector X on the interval I.
Then

T = dg(X)

is a unit vector in R3 tangent to the curve. Carrying this idea one step further, we can look at the
change in tangent direction as we move along g. Since T may change at any rate (or not at all!) we
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split up the change into two pieces: a unit vector N called the principal normal that expresses the
direction of change, and a scalar k 2 R called the curvature that expresses the magnitude of change:

dT(X) = �kN.

One thing to realize is that T and N are always orthogonal. Why? Because if the change in T were
parallel to T, then it would cease to have unit length! (This argument is a good one to keep in mind
any time you work with unit vector fields.) By convention, we choose N to be the normal pointing
to the “left” of the curve, i.e., if at any point we consider a plane spanned by the tangent and the
normal, N is a quarter turn in the counter-clockwise direction from N.

How does this frame change as we move along the curve? The answer is given by the Frenet-
Serret formula:

2

4
T0

N0

B0

3

5

| {z }
Q02R3⇥3

=

2

4
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.

Here T, N, and B are interpreted as row vectors, and a prime indicates the change in a quantity as
we move along the curve at unit speed. For instance, T0 = dT(X), where X is a positively-oriented
unit vector on I. The quantity t is called the torsion, and describes the way the normal and binormal
twist around the curve.

A concise proof of this formula was given by Cartan. First, since the vectors T, N, and B are
mutually orthogonal, one can easily verify that QQT = I, i.e., Q is an orthogonal matrix. Differenti-
ating this relationship in time, the identity vanishes and we’re left with Q0QT = �(Q0QT)T, i.e.,
the matrix Q0QT is skew-symmetric. But since A = Q0QT, A must also be skew-symmetric. Skew
symmetry implies that the diagonal of A is zero (why?) and moreover, we already know what the
top row (and hence the left column) looks like from our definition of k and N. The remaining value
A23 = �A32 is not constrained in any way, so we simply give it a name: t 2 R.

What do you think about this proof? On the one hand it’s easy to verify; on the other hand,
it provides little geometric understanding. For instance, why does N change in the direction of
both T and B, but B changes only in the direction of N? Can you come up with more geometric
arguments?

2.3.2. Visualizing Curvature. What’s the curvature of a circle S? Well, if S has radius r then
it takes time 2pr to go all the way around the circle at unit speed. During this time the tangent
turns around by an angle 2p. Of course, since T has unit length the instantaneous change in T is
described exclusively by the instantaneous change in angle. So we end up with

k = |kN| = |dT(X)| = 2p/2pr = 1/r.

In other words, the curvature of a circle is simply the reciprocal of its radius. This fact should make
some intuitive sense: if we watch a circle grow bigger and bigger, it eventually looks just like a
straight line with zero curvature: limr!• 1/r = 0. Similarly, if we watch a circle get smaller and
smaller it eventually looks like a single point with infinite curvature: limr!0 1/r = •.
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r

g
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g

Now consider a smooth curve g in the plane. At any point p 2 g there is a circle S called the
osculating circle that best approximates g, meaning that it has the same tangent direction T and
curvature vector kN. In other words, the circle and the curve agree “up to second order.” (The
phrase “agree up to nth order” is just shorthand for saying that the first n derivatives are equal.)
How do we know such a circle exists? Easy: we can always construct a circle with the appropriate
curvature by setting r = 1/k; moreover every circle has some tangent pointing in the direction T.
Alternatively, we can consider a circle passing through p and two other points: one approaching
from the left, another approaching from the right. Since these three points are shared by both g and
S, the first and second derivatives will agree in the limit (consider that these points can be used to
obtain consistent finite difference approximations of T and kN).

The radius and center of the osculating circle are often referred to as the radius of curvature and
center of curvature, respectively. We can tell this same story for any curve in R3 by considering the
osculating plane T ⇥ N, since this plane contains both the tangent and the curvature vector.

For curves it makes little difference whether we express curvature in terms of a change in the
tangent vector or a change in the (principal) normal, since the two vectors are the same up to a
quarter-rotation in the osculating plane. For surfaces, however, it will often make more sense to
think of curvature as the change in the normal vector, since we typically don’t have a distinguished
tangent vector to work with.
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2.4. Curvature of Surfaces

Let’s take a more in-depth look at the curvature of surfaces. The word “curvature” really
corresponds to our everyday understanding of what it means for something to be curved: eggshells,
donuts, and cavatappi pasta have a lot of curvature; floors, ceilings, and cardboard boxes do not.
But what about something like a beer bottle? Along one direction the bottle quickly curves around
in a circle; along another direction it’s completely flat and travels along a straight line:

X2

X1

This way of looking at curvature—in terms of curves contained in the surface—is often how we
treat curvature in general. In particular, let df(X) be a unit tangent direction at some distinguished
point on the surface, and consider a plane containing both df(X) and the corresponding normal N.
This plane intersects the surface in a curve, and the curvature kn of this curve is called the normal
curvature in the direction X:

N df(X)

df(X)N1/kn

Remember the Frenet-Serret formulas? They tell us that the change in the normal along a curve
is given by dN = kT � tB. We can therefore get the normal curvature along X by extracting the
tangential part of dN:

kn(X) =
df(X) · dN(X)

|df(X)|2 .
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The factor |df(X)|2 in the denominator simply normalizes any “stretching out” that occurs as we go
from the domain M into R3—a derivation of this formula can be found in Appendix A. Note that
normal curvature is signed, meaning the surface can bend toward the normal or away from it.

2.4.1. Principal, Mean, and Gaussian Curvature.

N
N

N

X2
X1

X1

X21/k2

1/k1

At any given point we can ask: along which directions does the surface bend the most? The
unit vectors X1 and X2 along which we find the maximum and minimum normal curvatures k1 and
k2 are called the principal directions; the curvatures ki are called the principal curvatures. For instance,
the beer bottle above might have principal curvatures k1 = 1, k2 = 0 at the marked point.

We can also talk about principal curvature in terms of the shape operator, which is the unique
map S : TM ! TM satisfying

df (SX) = dN(X)

for all tangent vectors X. The shape operator S and the Weingarten map dN essentially represent
the same idea: they both tell us how the normal changes as we travel along a direction X. The only
difference is that S specifies this change in terms of a tangent vector on M, whereas dN gives us the
change as a tangent vector in R3. It’s worth noting that many authors do not make this distinction,
and simply assume an isometric identification of tangent vectors on M and the corresponding
tangent vectors in R3. However, we choose to be more careful so that we can explicitly account for
the dependence of various quantities on the immersion f —this dependence becomes particularly
important if you actually want to compute something! (By the way, why can we always express the
change in N in terms of a tangent vector? It’s because N is the unit normal, hence it cannot grow or
shrink in the normal direction.)

One important fact about the principal directions and principal curvatures is that they corre-
spond to eigenvectors and eigenvalues (respectively) of the shape operator:

SXi = kiXi.

Moreover, the principal directions are orthogonal with respect to the induced metric: g(X1, X2) =
df (X1) · df (X2) = 0—see Appendix B for a proof of these two facts. The principal curvatures
therefore tell us everything there is to know about normal curvature at a point, since we can express
any tangent vector Y as a linear combination of the principal directions X1 and X2. In particular, if
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Y is a unit vector offset from X1 by an angle q, then the associated normal curvature is

kn(Y) = k1 cos2
q + k2 sin2

q,

as you should be able to easily verify using the relationships above. Often, however, working
directly with principal curvatures is fairly inconvenient—especially in the discrete setting.

On the other hand, two closely related quantities—called the mean curvature and the Gaussian
curvature will show up over and over again (and have some particularly nice interpretations in the
discrete world). The mean curvature H is the arithmetic mean of principal curvatures:

H =
k1 + k2

2
,

and the Gaussian curvature is the (square of the) geometric mean:

K = k1k2.

What do the values of H and K imply about the shape of the surface? Perhaps the most elementary
interpretation is that Gaussian curvature is like a logical “and” (is there curvature along both
directions?) whereas mean curvature is more like a logical “or” (is there curvature along at least one
direction?) Of course, you have to be a little careful here since you can also get zero mean curvature
when k1 = �k2.

It also helps to see pictures of surfaces with zero mean and Gaussian curvature. Zero-curvature
surfaces are so well-studied in mathematics that they have special names. Surfaces with zero
Gaussian curvature are called developable surfaces because they can be “developed” or flattened out
into the plane without any stretching or tearing. For instance, any piece of a cylinder is developable
since one of the principal curvatures is zero:

Surfaces with zero mean curvature are called minimal surfaces because (as we’ll see later) they
minimize surface area (with respect to certain constraints). Minimal surfaces tend to be saddle-like
since principal curvatures have equal magnitude but opposite sign:
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The saddle is also a good example of a surface with negative Gaussian curvature. What does a
surface with positive Gaussian curvature look like? The hemisphere is one example:

Note that in this case k1 = k2 and so principal directions are not uniquely defined—maximum
(and minimum) curvature is achieved along any direction X. Any such point on a surface is called
an umbilic point.

There are plenty of cute theorems and relationships involving curvature, but those are the basic
facts: the curvature of a surface is completely characterized by the principal curvatures, which are the
maximum and minimum normal curvatures. The Gaussian and mean curvature are simply averages
of the two principal curvatures, but (as we’ll see) are often easier to get your hands on in practice.

2.4.2. The Fundamental Forms. For historical reasons, there are two objects we should proba-
bly mention: first fundamental form I and the second fundamental form II. I’m actually not sure what’s
so fundamental about these forms, since they’re nothing more than a mashup of the metric g and
the shape operator S, which themselves are simple functions of two truly fundamental objects: the
immersion f and the Gauss map N. In fact, the first fundamental form is literally just the induced
metric, i.e.,

I(X, Y) := g(X, Y).
The second fundamental form looks quite similar to our existing expression for normal curvature:

II(X, Y) := �g(SX, Y) = �dN(X) · df(Y).
The most important thing to realize is that I and II do not introduce any new geometric ideas—just
another way of writing down things we’ve already seen.
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2.5. Geometry in Coordinates

f

p+hX

X
p

f (p+hX)

f (p)
df(X)

So far we’ve given fairly abstract descriptions of the geometric objects we’ve been working
with. For instance, we said that the differential df of an immersion f : M ! R3 tells us how to
stretch out tangent vectors as we go from the domain M ⇢ R2 into the image f (M) ⇢ R3. Alluding
to the picture above, we can be a bit more precise and define df(X) in terms of limits:

dfp(X) = lim
h!0

f (p + hX)� f (p)
h

.

Still, this formula remains a bit abstract—we may want something more concrete to work with in
practice. When we start working with discrete surfaces we’ll see that df(X) often has an incredibly
concrete meaning—for instance, it might correspond to an edge in our mesh. But in the smooth
setting a more typical representation of df is the Jacobian matrix

J =

2

4
∂ f 1/∂x1

∂ f 1/∂x2

∂ f 2/∂x1
∂ f 2/∂x2

∂ f 3/∂x1
∂ f 3/∂x2

3

5 .

Here we pick coordinates on R2 and R3, and imagine that

f (x1, x2) = ( f1(x1, x2), f2(x1, x2), f3(x1, x2))

for some triple of scalar functions f1, f2, f3 : M ! R. So if you wanted to evaluate df(X), you could
simply apply J to some vector X = [X1 X2]T.

2.5.1. Coordinate Representations Considered Harmful. You can already see one drawback
of the approach taken above: expressions get a lot longer and more complicated to write out. But
there are other good reasons to avoid explicit matrix representations. The most profound reason is
that matrices can be used to represent many different types of objects, and these objects can behave
in very different ways. For instance, can you guess what the following matrix represents?


0 1
1 0

�

Give up? It’s quite clear, actually: it’s the adjacency matrix for the complete graph on two vertices.
No, wait a minute—it must be the Pauli matrix sx, representing spin angular momentum along the
x-axis. Or is it the matrix representation for an element of the dihedral group D4? You get the idea:
when working with matrices, it’s easy to forget where they come from—which makes it very easy
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to forget which rules they should obey! (Don’t you already have enough things to keep track of?)
The real philosophical point here is that matrices are not objects: they are merely representations of
objects! Or to paraphrase Plato: matrices are merely shadows on the wall of the cave, which give
us nothing more than a murky impression of the real objects we wish to illuminate.

A more concrete example that often shows up in geometry is the distinction between linear
operators and bilinear forms. As a reminder, a linear operator is a map from one vector space to
another, e.g.,

f : R2 ! R2; u 7! f (u),
whereas a bilinear form is a map from a pair of vectors to a scalar, e.g.,

g : R2 ⇥ R2 ! R; (u, v) 7! g(u, v).

Sticking with these two examples let’s imagine that we’re working in a coordinate system (x1, x2),
where f and g are represented by matrices A,B 2 R2⇥2 and their arguments are represented by
vectors u, v 2 R2. In other words, we have

f (u) = Au

and

g(u, v) = u

T

Bv.

x2

x1

u

u

x̃2

x̃1u

1

u

2

ũ

1

ũ

2

Now suppose we need to work in a different coordinate system (x̃1, x̃2), related to the first one
by a change of basis P 2 R2⇥2. For instance, the vectors u and v get transformed via

ũ = Pu,

ṽ = Pv.
How do we represent the maps f and g in this new coordinate system? We can’t simply evaluate
Aũ, for instance, since A and ũ are expressed in different bases. What we need to do is evaluate

f (u) = PAu = PAP

�1
ũ

and similarly
g(u, v) = u

T
Bv = (P�1

ũ)T
B(P�1

ṽ) = ũ

T(P�T

BP

�1)ṽ.
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In other words, linear operators transform like

A 7! PAP

�1,

whereas bilinear forms transform like

B 7! P

�T

BP

�1.

So what we discover is that not all matrices transform the same way! But if we’re constantly scrawling
out little grids of numbers, it’s very easy to lose track of which transformations should be applied
to which objects.

2.5.2. Standard Matrices in the Geometry of Surfaces. Admonitions about coordinates aside,
it’s useful to be aware of standard matrix representations for geometric objects because they
provide an essential link to classical results. We’ve already seen a matrix representation for one
object: the differential df can be encoded as the Jacobian matrix J containing first-order derivatives
of the immersion f . What about the other objects we’ve encountered in our study of surfaces?
Well, the induced metric g should be pretty easy to figure out since it’s just a function of the
differential—remember that

g(u, v) = df (u) · df (v).
Equivalently, if we use a matrix I 2 R2⇥2 to represent g, then we have

u

TIv = (Ju)T(Jv)

which means that
I = J

T

J.
We use the letter “I” to denote the matrix of the induced metric, which was historically referred to as
the first fundamental form —fewer authors use this terminology today. In older books on differential
geometry you may also see people talking about “E”, “F”, and “G”, which refer to particular entries
of I:

I =

E F

F G

�
.

(Is it clear why “F” appears twice?) One might conjecture that these fifth, sixth, and seventh letters
of the alphabet have fallen out of fashion precisely because they are so coordinate-dependent and
hence carry little geometric meaning on their own. Nonetheless, it is useful to be able to recognize
these critters, because they do show up out there in the wild.

Earlier on, we also looked at the shape operator, defined as the unique map S : TM ! TM
satisfying

dN(X) = df (SX),
and the second fundamental form, defined as

II(u, v) = g(Su, v).

(Remember that S turned out to be self-adjoint with respect to g, and likewise II turned out to be
symmetric with respect to its arguments u and v.) If we let S, II 2 R2⇥2 be the matrix representations
of S and II, respectively, then we have

u

TIIv = u

TISv

for all vectors u, v 2 R2, or equivalently,
II = IS.
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Components of II are classically associated with lowercase letters from the Roman alphabet, namely

II =

e f

f g

�
,

which in coordinates (x, y) are given explicitly by

e = N · fxx,
f = N · fxy,
g = N · fyy,

where N is the unit surface normal and fxy denotes the second partial derivative along directions
x and y.

At this point we might want to stop and ask: how does a matrix like IS transform with respect
to a change of basis? The first term, I, is a bilinear form, but the second term S is a linear map! As
emphasized above, we can’t determine the answer by just staring at the matrices themselves—we
need to remember what they represent. In this case, we know that IS corresponds to the second
fundamental form, so it should transform like any other bilinear form: IS 7! P

�T ISP�1.

Finally, we can verify that classical geometric expressions using matrices correspond to the
expressions we derived earlier using the differential. For instance, the classical expression for
normal curvature is

kn(u) =
II(u, u)
I(u, u)

,

which we can rewrite as
u

TIIu
u

TIu
=

u

T

ISu

u

TIu
=

(Ju)T(JSu)
(Ju)T(Ju)

=
df (u) · dN(u)

|df (u)|2 .

Up to a choice of sign, this expression is the same one we obtained earlier by considering a curve
embedded in the surface.


