

A Reactive Performance

Monitoring Framework

Katherine ChengLi

Directed By:

Prof. Liam Peyton

Thesis

Submitted to the

Faculty of Graduate and Postdoctoral Studies

in partial fulfillment of the requirements for the degree of

Master of Computer Science

University of Ottawa

Ottawa, Ontario, Canada

June 2016

© Katherine ChengLi, Ottawa, Canada, 2016

ii

Abstract

With the ascendency of data and the rise of interest in analytics, organizations are

becoming more interested in the use of data to make their business processes more

intelligent and reactive. BI applications are a common way that organizations integrate

analytics in their processes. However, it can be days, weeks or even months before a

manual response is undertaken based on a human interpreting a report. Even when

information technology supports automatic responses within an organization, it is often

implemented in an ad hoc manner without following a systematic framework.

In this thesis, we present a reactive performance monitoring (RPM) framework

which aims at automating the link from the analytical (how well is the operational

achieving the strategic) to the operational (the particular process steps implemented

within an organization that determine its behavior) aspects of businesses to bypass the

strategic (the high level and long term goals an organization is trying to achieve) as

needed and reduce the latency between knowledge and action. Our RPM framework is

composed of an architecture, a methodology, and a rule environment which permits the

redaction of rules possessing relevant conditions and actions. In addition, we present an

OLAP rule engine which is demonstrated to be effective in our framework where events

are streamed in, reacted upon in real-time, and stored in an OLAP database.

To develop and evaluate our framework, two case studies were undertaken. The

first was done using IBM technologies implementing an application made to identify

patients at high risk of cancer recurrence. The second was done using open source

technologies. With this second implementation, we created an application that has the

iii

goal of informing women from at risk populations of the different stages of pregnancy on

a weekly basis.

iv

Acknowledgements

Although the accomplishment of a thesis is a personal achievement, I would

certainly not have been able to finish it without the help, support, and patience of my

supervisor Prof. Liam Peyton. Thank you for your continued help and encouragement.

Thank you to my family for encouraging me throughout this process and for

believing that I would be able to successfully accomplish this. A special thank you to

Mathieu Jobin for his never ending support.

In addition, I would like to thank the organizations that helped fund my master’s

degree. This includes MITACS, NSERC, and OGS.

Finally, thank you to IBM and CENGN for providing me the opportunity to intern

with them. In particular, thank you to Randy Giffen from IBM and my Extreme Blue

team. It has been a great source of knowledge and experience.

v

Table of Contents

Abstract .. ii

Acknowledgements ... iv

Table of Contents ... v

List of Figures ... viii

List of Tables .. ix

List of Acronyms ... x

1 Introduction ..1

1.1 Problem Statement ..1

1.2 Thesis Motivation and Contributions ...3

1.3 Thesis Methodology and Organization ...5

2 Background ...9

2.1 Performance Monitoring ..9

2.1.1 Performance Management ..9

2.1.2 Real-time Analytics .. 10

2.1.3 Predictive Analytics ... 11

2.1.4 Event .. 11

2.2 Business Process Management ... 11

2.2.1 Business Process .. 11

2.2.2 Web Service ... 12

2.2.3 Business Process Management (BPM) .. 12

2.3 Event Processing Technologies .. 14

2.3.1 Message Broker ... 15

2.3.2 Event-Driven Architecture ... 15

2.3.3 Complex Event Processing (CEP) ... 15

2.3.4 Notification .. 16

2.4 On-Line Analytical Processing (OLAP) .. 16

2.4.1 Data Access Object .. 16

2.4.2 Business Intelligence (BI) ... 17

2.4.3 Data Warehouse .. 17

vi

2.4.4 Star Schema ... 18

2.4.5 Online Analytical Processing (OLAP) .. 18

2.5 Rule Engine .. 19

2.5.1 State Monitoring Engine (SME) ... 19

2.5.2 IBM SPSS Analytical Decision Management (IBM SPSS ADM) and IBM SPSS

Modeler 20

2.5.3 Drools and IBM Operational Decision Manager .. 20

2.6 Related Works ... 21

2.6.1 Application Framework for Monitoring Care Processes (AFMCP) 21

2.6.2 Big data Analysis Infrastructure Testbed (BAIT) .. 22

2.6.3 IBM Predictive Maintenance and Quality (IBM PMQ) ... 25

3 A Reactive Performance Monitoring Framework .. 26

3.1 Problem Description .. 26

3.2 Gap Analysis... 29

3.3 Evaluation Criteria ... 31

3.3.1 Framework ... 31

3.3.2 Rule Environment .. 33

3.4 Overview of the Reactive Performance Monitoring Framework 35

3.4.1 Architectural Pattern ... 36

3.4.1.1 Critical Interfaces ... 41

3.4.2 Methodology ... 41

3.4.3 Rule Environment .. 49

3.4.4 OLAP Rule Engine .. 51

4 Case Studies ... 55

4.1 Overview .. 55

4.2 IBM PMQ ... 57

4.2.1 Architecture ... 57

4.2.2 Results ... 61

4.3 IBM RPM .. 62

4.3.1 Architecture ... 62

4.3.2 Methodology ... 64

4.3.3 Rule Environment .. 66

vii

4.3.4 Results ... 67

4.4 QuickForms RPM ... 67

4.4.1 Architecture ... 69

4.4.2 Methodology ... 71

4.4.3 Rule-Based Environment ... 72

4.4.4 Results ... 74

4.5 Rule Example 1 .. 74

4.6 Rule Example 2 .. 76

5 Evaluation .. 79

5.1 Comparison of Frameworks .. 79

5.2 Comparison of Rule Engines .. 84

5.3 Limitations and Assumptions .. 87

6 Conclusions and Future work .. 89

6.1 Conclusions .. 89

6.2 Future Work... 90

References ... 91

viii

List of Figures

Figure 1: DSRM (Design Science Research Methodology) Process Model (Peffers et al., 2007)5

Figure 2: The basic elements of performance management (Pollitt, 2013) 10

Figure 3: BPM Life Cycle as described by (Pourshahid et al., 2009) .. 13

Figure 4: The BPM life cycle consisting of three phases: (1) (re)design, (2) implement/configure,

and (3) run and adjust. (van der Aalst, 2013) .. 14

Figure 5: Data Access Object (Sun Microsystems Inc., 2002) .. 17

Figure 6: Example usage of AFMCP (Aladdin Baarah, 2013) ... 22

Figure 7: BAIT Architecture Layers (Kelly et al., 2015) .. 23

Figure 8: Response Gap ... 27

Figure 9: RPM Framework Architecture .. 37

Figure 10: RPM Framework Methodology .. 43

Figure 11: Rule Environment ... 50

Figure 12: OLAP Rule Engine Object Model .. 51

Figure 13: Simplified architecture view of IBM PMQ .. 58

Figure 14: IBM PMQ Master Data Model (IBM Corporation, 2016a) .. 59

Figure 15: Example of a simple Orchestration file .. 61

Figure 16: IBM RPM Architecture .. 63

Figure 17: QuickForms Application Framework (QuickForms (uOttawa), 2015a) 68

Figure 18: QuickForms RPM Architecture ... 70

file:///C:/Users/Katherine/Dropbox/quickForms/Publications%20&%20Presentations/Thesis/Katherine%20Thesis/KatherineChengLiThesis_ToSubmit_Corrections_afterDefense.docx%23_Toc452974583
file:///C:/Users/Katherine/Dropbox/quickForms/Publications%20&%20Presentations/Thesis/Katherine%20Thesis/KatherineChengLiThesis_ToSubmit_Corrections_afterDefense.docx%23_Toc452974585
file:///C:/Users/Katherine/Dropbox/quickForms/Publications%20&%20Presentations/Thesis/Katherine%20Thesis/KatherineChengLiThesis_ToSubmit_Corrections_afterDefense.docx%23_Toc452974586
file:///C:/Users/Katherine/Dropbox/quickForms/Publications%20&%20Presentations/Thesis/Katherine%20Thesis/KatherineChengLiThesis_ToSubmit_Corrections_afterDefense.docx%23_Toc452974586
file:///C:/Users/Katherine/Dropbox/quickForms/Publications%20&%20Presentations/Thesis/Katherine%20Thesis/KatherineChengLiThesis_ToSubmit_Corrections_afterDefense.docx%23_Toc452974587
file:///C:/Users/Katherine/Dropbox/quickForms/Publications%20&%20Presentations/Thesis/Katherine%20Thesis/KatherineChengLiThesis_ToSubmit_Corrections_afterDefense.docx%23_Toc452974588
file:///C:/Users/Katherine/Dropbox/quickForms/Publications%20&%20Presentations/Thesis/Katherine%20Thesis/KatherineChengLiThesis_ToSubmit_Corrections_afterDefense.docx%23_Toc452974589
file:///C:/Users/Katherine/Dropbox/quickForms/Publications%20&%20Presentations/Thesis/Katherine%20Thesis/KatherineChengLiThesis_ToSubmit_Corrections_afterDefense.docx%23_Toc452974590
file:///C:/Users/Katherine/Dropbox/quickForms/Publications%20&%20Presentations/Thesis/Katherine%20Thesis/KatherineChengLiThesis_ToSubmit_Corrections_afterDefense.docx%23_Toc452974591
file:///C:/Users/Katherine/Dropbox/quickForms/Publications%20&%20Presentations/Thesis/Katherine%20Thesis/KatherineChengLiThesis_ToSubmit_Corrections_afterDefense.docx%23_Toc452974592
file:///C:/Users/Katherine/Dropbox/quickForms/Publications%20&%20Presentations/Thesis/Katherine%20Thesis/KatherineChengLiThesis_ToSubmit_Corrections_afterDefense.docx%23_Toc452974593
file:///C:/Users/Katherine/Dropbox/quickForms/Publications%20&%20Presentations/Thesis/Katherine%20Thesis/KatherineChengLiThesis_ToSubmit_Corrections_afterDefense.docx%23_Toc452974594
file:///C:/Users/Katherine/Dropbox/quickForms/Publications%20&%20Presentations/Thesis/Katherine%20Thesis/KatherineChengLiThesis_ToSubmit_Corrections_afterDefense.docx%23_Toc452974595
file:///C:/Users/Katherine/Dropbox/quickForms/Publications%20&%20Presentations/Thesis/Katherine%20Thesis/KatherineChengLiThesis_ToSubmit_Corrections_afterDefense.docx%23_Toc452974596
file:///C:/Users/Katherine/Dropbox/quickForms/Publications%20&%20Presentations/Thesis/Katherine%20Thesis/KatherineChengLiThesis_ToSubmit_Corrections_afterDefense.docx%23_Toc452974597
file:///C:/Users/Katherine/Dropbox/quickForms/Publications%20&%20Presentations/Thesis/Katherine%20Thesis/KatherineChengLiThesis_ToSubmit_Corrections_afterDefense.docx%23_Toc452974598
file:///C:/Users/Katherine/Dropbox/quickForms/Publications%20&%20Presentations/Thesis/Katherine%20Thesis/KatherineChengLiThesis_ToSubmit_Corrections_afterDefense.docx%23_Toc452974599
file:///C:/Users/Katherine/Dropbox/quickForms/Publications%20&%20Presentations/Thesis/Katherine%20Thesis/KatherineChengLiThesis_ToSubmit_Corrections_afterDefense.docx%23_Toc452974600

ix

List of Tables

Table 1: WeeklyDueDateReport example ... 76

Table 2: FemaleAtRiskReport example .. 78

Table 3: Comparison of Frameworks ... 80

Table 4: Comparison of Rule Engines .. 85

x

List of Acronyms

Acronym Definition

AFMCP Application Framework for Monitoring Care
Processes

AJAX Asynchronous JavaScript and XML

API Application Programming Interface

ASDI Aircraft Situation Display to Industry

BAIT Big data Analytics Infrastructure Testbed

BI Business Intelligence

BPEL Business Process Execution Language

BPM Business Process Management

BPMN Business Process Model and Notation

CEP Complex Event Processing

CIWS Corridor Integrated Weather System

CoSPA Consolidated Storm Prediction for Aviation

CPMA Care Process Monitoring Application

CPME Care Process Monitoring Engine

DAO Data Access Object

DSRM Design Science Research Methodology

ET Echo Top

ETL Extract Transform Load

GUI Graphical User Interface

HTML Hypertext Markup Language

xi

HRRR High-Resolution Rapid Refresh

IBM ODM IBM Operational Decision Manager

IBM PMQ IBM Predictive Maintenance and Quality

IBM SPSS ADM IBM SPSS Analytical Decision Management

IBM SPSS C&D IBM SPSS Collaboration and Deployment
Services

JSON JavaScript Object Notation

JVM Java Virtual Machine

KPI Key Performance Indicator

LDM Local Data Manager

OLAP Online Analytical Processing

REST Representational State Transfer

RPM Reactive Performance Monitoring

RTLS Real-Time Location System

SME State Monitoring Engine

SOAP Simple Object Access Protocol

VIL Vertically Integrated Liquid

XML Extensible Markup Language

1

1 Introduction

1.1 Problem Statement

With the ascendency of data and the rise of interest in analytics (Brown, 2015),

organizations are becoming more interested in the use of data to make their business

processes more intelligent and reactive. Traditionally, organizations define operational

business processes to achieve their strategic business goals (improve revenues, reduce

costs, ensure customer satisfaction, improve quality of results), and then they collect data

from those operational business processes into data warehouses where reports are created

and the results are analyzed using Business Intelligence (BI) applications to see if the

operational business processes are effective in achieving the strategic business goals.

Unfortunately, the creation of such BI applications is complex.

Traditionally, BI applications follow Kimball’s (Kimball, Ross, Thornthwaite,

Mundy, & Becker, 2008) methodology: the requirements are initially collected; followed

by the technical architecture and its plan; then design of the dimensional model; then

physical and performance database planning; then design and development of the ETL

system; finally the design and the development of the BI applications. However, there is

little direct linkage between the analysis done in these applications, and appropriate

reactions to adjust business processes in response. It can be days, weeks or even months

before a manual response is undertaken based on a human interpreting a report. Even

when information technology supports automatic responses within an organization, they

2

are often implemented in an ad hoc customized manner without following a systematic

framework.

As Chamney described in his thesis (Chamney, 2014), the creation of BI

applications and the accompanying backend is non-trivial. If we also add complex event

processing (CEP), or business process management (BPM) to achieve some degree of

automation, it can only be imagined that the creation of a seemingly simple application

can quickly become complex without careful and controlled planning and execution.

The literature does offer examples of use cases where some sort of analytics

framework has been implemented to achieve specific goals. For example, (Kelly, Craig,

& Matthews, 2015) created an architecture to provide “analytics-as-a-service for

algorithm developers to use when creating and testing new capabilities for air traffic

management decision support.” Although these different architectures provide a

framework for building BI applications they often do not possess a rule environment to

directly connect reports and decisions to actions based on incoming events and existing

known variables.

This illustrates a lack of bridging between the operational (the detailed steps we

follow as a business), and the analytical (how well is the business fulfilling the strategic)

aspects of businesses. Typically, feedback is unidirectional with insufficient context.

Moreover, feedback is given by people after the fact. This creates latency between having

the data that informs us of what needs to be done and actually doing what needs to be

done. The use of data for analytics is very disconnected from operational use so that

3

determining reports from operational data is done in an ad hoc manner, and determining

operational actions from reports is also done in an ad hoc manner.

1.2 Thesis Motivation and Contributions

The main goal of this thesis is to provide a framework which will enable

organizations to systematically design the relationships and reactions between the

analytical and operational parts of business so that businesses are not simply limited to

performance management of their operations to determine if strategic goals are achieved,

but rather can define reactive performance monitoring so that automatic actions can be

triggered operationally in real-time when needed as indicated by analytics.

Technology in the form of business process management exists to automate

business processes (van der Aalst, 2013); and technology exists in the form of predictive

modelling (zur Mühlen & Shapiro, 2010) to analyze data and predict when actions are

needed; and technology exists for complex event processing that can stream data for

processing and define rules to trigger actions when determined by a model (Luckham,

2012). It was our initial motivation to combine these technologies in a systematic

framework.

Most rule engines used in complex event processing are based on simple object

models that are independent of the rich multidimensional OLAP databases that are used

in Business Intelligence applications (Abdelfattah, 2013). Another motivation for our

work is that more appropriate rule engines and an architecture optimized for reactive

performance monitoring could be created if OLAP Databases were more often integrated

with complex event processing (Costa, Cecílio, Martins, & Furtado, 2011).

4

 This thesis proposes a Reactive Performance Monitoring (RPM) framework that

processes and analyzes events to determine appropriate re-actions across systems that are

needed in a scenario where data is gathered, reported on, and acted upon or directed as

needed. In particular, RPM is based on a rule environment which can trigger meaningful

actions methods with condition functions based on analytics. RPM rests on a data

warehousing infrastructure centered around OLAP databases. Ultimately, RPM attempts

to close the gap between the strategic, analytical, and operational parts of a business by

providing relevant interfaces and feedback mechanisms.

The main contributions of this thesis are the following:

1. A reactive performance monitoring framework (RPM) including:

a. An architecture pattern which integrates various technologies and

structures the event flow

b. A methodology to build applications using said framework

c. A rule environment using appropriate condition functions and

action methods to respond to operational events based on data from

an analytical data warehouse

2. An OLAP Rule Engine

While working on this thesis we were fortunate to be able to collaborate with two

different organizations on two different internships. The first one is IBM (IBM

Corporation, 2016c), the multinational technology company, where we were able to learn

more about their technologies used in our case studies. The second internship was at

CENGN (CENGN, 2016). CENGN is a network technologies accelerator and consortium

5

where we were able to participate in both their projects and underlying infrastructure. We

also have one publication so far from this thesis:

ChengLi, Katherine. (2014, November) Smarter Process Triggers: Predictive Analytics

for Smarter Business Operations. Poster session presented at CASCON 2014 24th Annual

International Conference on Computer Science and Software Engineering “Smarter

Systems of Interactions”, Toronto, Canada. (ChengLi, 2014)

1.3 Thesis Methodology and Organization

We followed the Design Science Research Methodology (DSRM). As described

by (Hevner, March, Park, & Pam, 2004), DSRM is adapted to situations where the

creation of an artifact is “intended to solve identified organizational problems”. Figure 1

describes the entire process model of the DSRM proposed by (Peffers, Tuunanen,

Rothenberger, & Chatterjee, 2007). This is the process we followed in the second

iteration. For our first iteration, although still following DSRM, the process followed was

a bit less structured.

Figure 1: DSRM (Design Science Research Methodology) Process Model (Peffers et al., 2007)

6

1. Identifying the problem: A problem was identified with the integration of

predictive analytics in business processes to bridge the gap between event-

based analytics triggers and business processes. The problem was

identified through the implementation of a proof of concept with IBM

technologies at IBM and the comparison of their solution with current

research group activities.

2. Defining the objectives of the solution: The goal of was to reduce the gap

between business processes and real-time events.

3. Designing and developing the artifact: To reduce this gap, a framework

integrating real-time Fact Events to trigger business processes was

designed.

4. Demonstrating the artifact: In this first iteration, the initial problem was

context initiated. Our demonstration consisted of a proof of concept made

with IBM technologies.

5. Evaluating the artifact: We evaluated the framework comparing it with

current practices and with the use of predictive analytics only.

6. Communication: A poster presentation was made called “Smarter Process

Triggers: Predictive Analytics for Smarter Business Operations.”

For our second iteration, these steps were followed:

1. Identifying the problem: DSRM as defined by (Peffers et al., 2007) starts

with the identification of the problem and its definition through which the

importance of the problem is shown. In our case, we re-identified the

7

problem. Businesses try to integrate analytics or big data in their day to

day operations but with much difficulty. There is a considerable gap

between the strategic and the operational when trying to integrate the

results of analytics in real-time. We adapted our initial problem related to

Fact Event based triggers for business processes to a broader analytical-

operational bridging problem.

2. Defining the objectives of the solution: The second step of DSRM consists

of defining the objectives of the solution and defining how the resulting

artifact would yield better results. We want to bridge the gap between the

strategic, the analytical, and the operational.

3. Designing and developing the artifact: We propose a framework which

integrates several technologies in a structured way with defined interfaces

and a methodology guiding the construction of the architecture and the

integration of each part.

4. Demonstrating the artifact: To demonstrate our framework, we have two

example uses of the framework. One uses IBM technologies, and the other

uses open source technologies, namely QuickForms. These two examples

helped refine the architecture and identify the existing gaps more

precisely.

5. Evaluating the artifact: The framework was evaluated, validated, and

reviewed by comparing it with literature examples as well as current

practices, and the use of a data warehouse only. Our criteria are based on

8

the evaluation of the gaps between strategic, analytical, and operational

parts of a business.

6. Communication: This thesis presents our final results.

As it is usually done in DSRM, our framework was actually re-evaluated multiple

times in micro-iterations to be redefined and redesigned.

The thesis is organized as follows. Chapter 1 introduces the thesis. In Chapter 2,

we present the underlying concepts needed to understand this thesis as well as the related

works. In Chapter 3, we present the problem, our evaluation criteria, and our framework.

In Chapter 4, two case studies and some rule examples are presented. In Chapter 5, our

evaluation of the framework is given. Chapter 6 concludes our thesis.

9

2 Background

For a better understanding of this thesis, there are several concepts that should be

known beforehand. This chapter is dedicated to those concepts as well as related works

that have tried to solve or partially solve the problem stated in Chapter 1 Introduction.

We have separated this chapter in 5 sections: Performance Monitoring, Business Process

Management, Data Integration Technologies, On-Line Analytical Processing, and Related

Works.

2.1 Performance Monitoring

To understand RPM, our reactive performance monitoring framework, it is

necessary to understand performance monitoring. This section is dedicated to related

concepts. We outline performance management, real-time analytics, predictive analytics,

and the concept of an event.

2.1.1 Performance Management

As described by (Pollitt, 2013), performance management is composed of 6 main

cyclical elements:

 activities (in business processes)

 measurements of particular aspects of activities (metrics)

 data

 criteria against which to compare the data,

 relevant information obtained from the data,

10

 and decision making pertaining to the activities (which leads to new

activities)

Figure 2: The basic elements of performance management (Pollitt, 2013)

In short, it is used to measure and communicate the success (or lack thereof) of

business processes activities using metrics (Middleton, Peyton, Kuziemsky, & Eze,

2009).

2.1.2 Real-time Analytics

Real-time analytics consists of events, or simply data, being stored in real-time

and displayed in real-time via a medium such as a dashboard, metrics, or alerts. The

display then consists of current and historical data (Chieu & Zeng, 2008). Organizational

performance can be measured using real-time analytics comparing fine-grained real-time

performance metrics to actual objectives (Mouttham, Peyton, & Kuziemsky, 2011).

11

2.1.3 Predictive Analytics

 “Predictive analytics uses statistical techniques, machine learning, and data

mining to discover facts in order to make predictions about unknown future events”

(Lechevalier, Narayanan, & Rachuri, 2014). As one of the advantages, this can allow the

business to act ahead of time and diminish costs because actions have been undertaken

before the system actually fails (Dash, Giffen, Ramakrishnarao, & Sreenivasan, 2013).

Predictive analytics lets you predict and act ahead of failures while real-time analytics

lets you know the current state of the system.

2.1.4 Event

“An event is an object that represents or records an activity that happens, or is

thought of as happening” (Luckham, 2012). Events received by the RPM framework

must have a structure that can be interpreted or transformed by another entity, namely the

application management or a message broker.

2.2 Business Process Management

Once again, to further understand the RPM framework, a knowledge of business

process management is necessary. This short section will explain what it is by covering

what is a business process, a web service, and business process management itself.

2.2.1 Business Process

“A business process consists of a set of activities that are performed in

coordination in an organizational and technical environment. These activities jointly

realize a business goal. Each business process is enacted by a singled organization, but it

12

may interact with business processes performed by other organizations” (Weske, 2012).

We are principally interested by online business processes. For example, online business

processes using BPEL (Andrews et al., 2003) are easily interpreted because they follow a

standard language and follow an executable format. Online business processes such as

those using BPEL use web service interfaces exclusively to import and export

information (Andrews et al., 2003).

2.2.2 Web Service

The W3C defines web services as "a software system designed to support

interoperable, machine-to-machine interaction over a network" (W3C, 2004). Web

services can easily be accessed through defined interfaces supporting SOAP and REST

(Mumbaikar & Padiya, 2013). With their easy access and machine-to-machine

interaction, Web services are meant to enable the communication of heterogeneous

applications via a network.

2.2.3 Business Process Management (BPM)

Business Process Management is, as its name says, the management of business

processes. From (Pourshahid et al., 2009), it “is the understanding and management of

diverse and cross-organizational processes which link humans and automated system

together.” From (Pourshahid et al., 2009), it is usually done following 5 cyclical steps:

Define, Model, Execute, Monitor, and Optimize. In the “Define” step, processes, business

objectives, areas of improvement, and others are established. In the “Model” step,

modeling of the processes to manage is done. In the “Execute” step, we implement

execute the previously designed process models. In the “Monitor” step, the execution is

13

measured using previously carefully defined business metrics. In the last step,

“Optimize”, we try to improve the process models using the data gathered using BI

methods. (van der Aalst, 2013) simplified these 5 cyclical steps in 3 cyclical phases as

described in Figure 4. These 3 cyclical steps are: (re)design, run and adjust, and

implement/configure. During the (re)design phase, model-based analysis can be done

while during the run and adjust phase, data-based analysis can be done.

IBM Business Process Manager (IBM Corporation, 2016d) is a tool that acts as a

platform for business process management and which supports the importation and

exportation using BPMN (Claus, 2011). It permits the creation of business processes and

accompanying graphical user interfaces, including mobile. It also possesses tools that

Figure 3: BPM Life Cycle as described by (Pourshahid et al., 2009)

14

allows the analysis of the processes in place. We have used IBM BPM in our IBM use

case for the deployment of immediate actions such as business process triggers.

2.3 Event Processing Technologies

Our RPM framework depends on event processing technologies. In our

framework, we are integrating performance monitoring with business process

management in real-time. It would not be possible without event processing technologies.

This section presents some of the main concepts such as what is a message broker, an

event-driven architecture, complex event processing, and a notification.

Figure 4: The BPM life cycle consisting of three phases: (1) (re)design, (2)
implement/configure, and (3) run and adjust. (van der Aalst, 2013)

15

2.3.1 Message Broker

In our IBM case study, a message broker was used to transfer events between the

different components of our architecture. A message broker is an enterprise integration

pattern that can receive different types of data streams, convert them to a desired format,

and reroute it to the wanted destination (Hohpe & Woolf, 2003). The implementation

used in the case study is the IBM Integration Bus (IBM Corporation, 2016e).

2.3.2 Event-Driven Architecture

In an event-driven architecture, a variety of events originating from different

places are collected and processed (Middleton et al., 2009). It is an architecture pattern

aimed at systems where there is an abundance of events that need to circulate between

entities resulting in the production, storage, and use of events (perhaps to trigger

notifications or create more events) (Niblett & Graham, 2005). Message brokers are often

used in SOAs and event-driven architectures to transfer events from and to different

sources and destinations. Event-driven architectures are often key in real-time and

predictive analytics.

2.3.3 Complex Event Processing (CEP)

Complex event processing involves the use of an event-driven architecture. It is “a

set of concepts and principles for processing events and methods of implementing those

concepts” (Luckham, 2012) which leverages an event-driven architecture. There are

several main concepts related to CEP. This includes but is not limited to: the immutability

of events, adaptation, filtering, prioritization, computation on event data, event pattern

detection, exception detection and handling, event pattern abstraction, event pattern-

16

triggered processes, and computable event hierarchies (Luckham, 2012). More

specifically, it is used to infer high level business events, which are equivalent to

complex events, in real-time (Ku, Zhu, Hu, & Lv, 2008). CEP uses relevant events to

infer new ones that interest businesses for decision-making (A Baarah, Mouttham, &

Peyton, 2011).

2.3.4 Notification

In the context of this thesis, a notification is an event which is used to alert an

external party via the storage of a new fact which will be used by an application, or

another service that can notify an external entity such as a service able to send an email

(Huang & Gannon, 2006).

2.4 On-Line Analytical Processing (OLAP)

OLAP is the basis for analytics and fundamental to our RPM framework. This

section will explain some of the associated key concepts such as what is a data access

object, business intelligence, a data warehouse, a star schema, and OLAP itself.

2.4.1 Data Access Object

The Data Access Object (DAO) is a design pattern used to abstract the data

sources from the applications, or other components (Sun Microsystems Inc., 2002). It is

often used in service-oriented architectures and is considered “type-safe” by providing an

API and helping achieve encapsulation (Mellqvist, 2006). This permits a complete

abstraction of the data source with no reference to its implementation. It also highly

decreases coupling with the data source (Sun Microsystems Inc., 2002). In one of our use

17

cases, we use QuickForms (Chamney, 2014) which implements a DAO to interact with

our OLAP Databases.

2.4.2 Business Intelligence (BI)

Business Intelligence (BI) refers to processing and display of data for analysis or

reporting. It is usually based on data stored in a data warehouse (Kimball et al., 2008). BI

Applications, refers specifically to applications providing analytics to users. BI Systems

refer to the end-to-end processing of data from operational sources all the way through to

supporting analysis of data in BI applications and the delivery of key performance

indicators (KPIs) that measure how well strategic goals are being achieved (Exforsys

Inc., 2008).

2.4.3 Data Warehouse

As described by (Kimball et al., 2008), a data warehouse is an organized

collection of data used as a source of data to support business decision making. The entire

process of organizing, collecting and managing such data is called data warehousing.

Data warehouses must consider how the data is communicated to meet the need of the

Figure 5: Data Access Object (Sun Microsystems Inc., 2002)

18

business users. They are therefore optimized for reporting and providing a complete view

of an organization and its activities. Data is organized in “fact” tables where metrics,

measurements, or others are stored. Specific redundant characteristics or attributes of the

facts are stored in “dimensional” tables (Kimball & Ross, 2013).

2.4.4 Star Schema

A star schema is defined as a “generic representation of a dimensional model in a

relational database in which a fact table with a composite key is joined to a number of

single level dimension tables, each with a single primary key” (Kimball et al., 2008). The

dimensional model, consisting of denormalized operational tables to flatten the

relationships, is optimized for query performance, making it ideal for reporting (Kimball

et al., 2008). As a slightly more complicated version of the star schema, there is the

snowflake schema. The snowflake schema consists of a star schema where the

dimensions having “redundant many-to-one attributes are removed into separate

dimension tables” (Ross, 2008). However, as (Ross, 2008) explains, snowflaking is

generally discouraged due to reduced query performance.

2.4.5 Online Analytical Processing (OLAP)

“OLAP performs multidimensional analysis of business data and provides the

capability for complex calculations, trend analysis, and sophisticated data modeling. It is

the foundation for many kinds of business applications for Business Performance

Management, Planning, Budgeting, Forecasting, Financial Reporting, Analysis,

Simulation Models, Knowledge Discovery, and Data Warehouse Reporting. OLAP

enables end-users to perform ad hoc analysis of data in multiple dimensions, thereby

19

providing the insight and understanding they need for better decision making” (PARIS

Technologies Inc., 2015). When the dimensional model is stored in an OLAP database, as

opposed to a relational database where we call it a star schema, it is called a cube

(Kimball et al., 2008).

2.5 Rule Engine

Rule engines are engines which do data processing by applying a particular logic

to it (Chisholm, 2004). Some rule engines specifically do data inference and also apply a

wide variety of actions to the data that they process. In the case of business rule engines,

the rules of the rule engine apply business rules that implement organizational policy on

how data should be interpreted or processed. In this thesis we will be comparing our

OLAP rule engine to several other rule engines.

2.5.1 State Monitoring Engine (SME)

A state monitoring engine is a particular type of rule engine designed specifically

for performance monitoring (Baffoe, 2013). It integrates complex event processing with

the storage of events in an OLAP database for reporting. Again, although, not used in our

RPM framework, we compare it to the rule engine that we developed for RPM. The SME

to which we will compare the RPM rule engine is a specific performance monitoring

complex event processing engine created by Shirley Awusi Baffoe in the context of her

master’s thesis in Electronic Business Technologies at the University of Ottawa (Baffoe,

2013). One specific interesting capability of her SME is the generation of events by

inference (Baffoe, Baarah, & Peyton, 2013).

20

2.5.2 IBM SPSS Analytical Decision Management (IBM SPSS ADM) and

IBM SPSS Modeler

IBM SPSS Analytical Decision Management (IBM Corporation, 2016b), further

referred to as IBM SPSS ADM, and IBM SPSS Modeler (IBM Corporation, 2016h) are

both rule engines used in our IBM case study and default rule engines that come with the

IBM SPSS (IBM Corporation, 2016h) suite. IBM SPSS ADM is a generic rule engine

that is closely integrated in the IBM SPSS suite allowing the use of the predefined data

sources in IBM SPSS Collaboration and Deployment that can both be used in IBM SPSS

Modeler and IBM SPSS ADM. IBM SPSS ADM by itself cannot perform actions but it

can infer events. It has basic comparison capabilities which will be described further in

the IBM RPM case study.

IBM SPSS Modeler consists of a predictive analytics rule engine. It is not usually

considered as being a rule engine but it does data inference where new (predicted) events

are outputted following the insertion of events, the accumulation of others, and the

application of a series of “rules”. For this reason, IBM SPSS Modeler is considered as

being a rule engine in the context of the RPM framework.

2.5.3 Drools and IBM Operational Decision Manager

Drools (Red Hat, 2016) is an interesting rule engine which requires more

customization but offers a lot of functionality such as having its own rule language and

enabling an easy integration with Java. Drools has not been used in our case studies but is

offered as a comparison to the Rule Engines we did use. IBM Operational Decision

Manager (IBM Corporation, 2016f), also known as IBM ODM, resembles Drools in

terms of functionality. IBM ODM is not used in our use cases but is offered as

21

comparison like Drools. IBM ODM and Drools are both very powerful engines that can

do a lot of different things but require a lot of customization and implementation for them

to be used in specific use cases.

2.6 Related Works

2.6.1 Application Framework for Monitoring Care Processes (AFMCP)

Baarah created an interesting framework in the context of his thesis (Aladdin

Baarah, 2013). His Application Framework for Monitoring Care Processes (AFMCP)

addressed reactive performance monitoring in the context of care processes in clinics,

hospitals, etc. His framework is based on the integration of a Care Process Monitoring

Application (CPMA) with existing sources and new sources. For example, in Figure 6,

the CPMA is used with online forms. In our context, the online forms would consist of

the operational level and the CPMA would fit in the analytical level. The CPMA always

contains a Care Process Monitoring Engine (CPME) which helps triage and infer facts to

store in the data mart (star schema). His CPME is implemented using IBM ODM

(previously known as IBM Websphere Business Events (IBM Corporation, 2016i)). The

CPMA also contains a Performance Reporting Dashboard which allows BI capabilities in

the context of the CPMA. When the CPMA is integrated in a hospital architecture, facts

come in from various sources. Their framework usually makes use of a message broker in

that case to be able to process the different facts.

22

The AFCMP has significant similarities with our proposed RPM framework but

does not directly trigger reactions such as notifying care providers when an alarm state

occurred. The rule engine is specialized for their care processes based on a specific care

process application model and their methodology is driven by that model. Specifically,

their rule engine has been created to infer states and measure wait times.

2.6.2 Big data Analysis Infrastructure Testbed (BAIT)

There are many examples in the literature of frameworks that attempt to bridge

the operational and the analytical. However, these frameworks are always very specific to

their use cases, either aiming at maintenance (Lechevalier et al., 2014) or a particular

problem. The main example that we will use to compare in this thesis is a framework

called “Big data Analytics Infrastructure Testbed” (Kelly et al., 2015). The main

Figure 6: Example usage of AFMCP (Aladdin Baarah, 2013)

23

application of their framework was to air traffic management and had the architecture

described in Figure 7.

In Figure 7, we can see that their architecture consists of a “Data Layer”, an

“Analytics Layer”, and the “Display Layer”. In the “Data Layer”, there is CIWS

(Massachussetts Institute of Technology, n.d.) VIL and ET data transferred using Atom

feeds (HOra & Gregorio, 2007), CoSPA (Pinto et al., 2010) VIL and ET data also

transferred using Atom feeds, HRRR (Earth System Research Laboratory, 2016) VIL and

ET data transferred using LDM transfer, and ASDI (Aircraft Situation Display to

Industry) which transfers its data using the ASDI XML format. Every one of these tools

have a different update schedule to send their data.

Figure 7: BAIT Architecture Layers (Kelly et al., 2015)

24

In the “Analytics Layer”, there is an Apache Storm Processing Engine (The

Apache Software Foundation, 2015b) linked to a Cassandra (The Apache Software

Foundation, 2015a) NoSQL (NoSQL, n.d.) database using Python (Python Software

Foundation, 2016) scripts to wrap up and create an interface for MATLAB (The

MathWorks, 2016) algorithms. MATLAB’s algorithms’ results need to be sent using

JSON according to Apache Storm’s requirements. Apache Storm supports JSON-based

protocol streams and JVM.

To transfer messages to the “Display Layer”, the processing engine uses a direct

connection to the database, and a message broker, in this case, ActiveMQ (The Apache

Software Foundation, 2016). The BAIT “Display Layer” is web-based and hosted on an

application server. The application server, Glassfish (Oracle Corporation, 2015) in Figure

7, receives or retrieves data from the database or the message broker. Next, it sends the

data to be displayed using the JSON format with the WebSocket protocol (Fette &

Melkinov, 2011). The client is expected to display the data using HTML5 (W3C, 2014).

Similarly to our problem, the goal of this architecture was to provide feedback at

the operational level from the analytical level in real-time. By providing “analytics-as-a-

service”, they architected their infrastructure to be able to test various big data tools used

in air traffic management.

Although they have managed to create real-time feedback from the analytical to

the operational level, their approach is hard to generalize as it assembles tools specifically

for their use case. In our context, the data layer is purely operational tools while the

25

analytics layer is purely analytical tools. The display layer is somewhat of an integration

between the two because the different display tools can be used at one level or the other.

2.6.3 IBM Predictive Maintenance and Quality (IBM PMQ)

IBM PMQ (IBM Corporation, 2016g) is a collection of products creating a

solution for the predictive maintenance of the assets of asset-intensive organizations.

Several known software are contained in the IBM PMQ solution. Notably, there is the

IBM SPSS (IBM Corporation, 2016h) suite including IBM SPSS Modeler, IBM Cognos

Business Intelligence, and the message broker IBM Integration Bus. IBM SPSS is a

product mainly focused on using predictive analytics. The IBM PMQ solution is

structured to exploit IBM SPSS’s capabilities to apply them to predictive maintenance.

IBM PMQ is described in detail in chapter 4 as it is the starting point for our case studies.

26

3 A Reactive Performance Monitoring Framework

In this chapter, we present our proposed framework. We define and analyse the

problem we wish to address in section 3.1 and 3.2. In 3.3, we identify the evaluation

criteria that we will use to evaluate our research artifacts that address the problem, and in

section 3.4 we present our Reactive Performance Monitoring Framework.

3.1 Problem Description

In any organization, there is a strategic level where the objectives and business

goals that the organization wishes to achieve are determined by senior executives. As

shown in Figure 8, these are translated into actions at the operational level where business

processes are defined and human resources are staffed and information systems are

implemented to carry out the operational business processes that are intended to achieve

the strategic objectives and business goals of the organization. At the same time, the

strategic is also translated into actions at the analytic level where managers and business

analysts collect data and run reports to measure how well the operational processes are

performing. These provide feedback to the strategic level, which might decide to change

business processes, human resources or information systems in response. The data used

by the analytical are typically gathered from operational processes as a log of operational

events that have occurred. Often there is a reaction gap, where there is unnecessary

latency, as the mapping between the strategic, the operational and the analytical is ad hoc

at best (Barone et al., 2015).

27

 Currently, decisions in businesses are made at the strategic level and the needed

actions are passed to the operational and analytical levels. At the operational level, we

have business processes being managed using business process management. They send

events, or facts, to the analytical level so that the results can be analyzed and compared to

the business’ goals. The analytical level may use a systematic framework like balanced

scorecards to organize reporting to the strategic level (2GC, 2015). Performance of

operational business processes towards strategic business goals are measured in terms of

metrics and key performance indicators. However, there is typically not a systematic

framework for communication between the analytical level and the operational level.

There is no centralized framework to automate feedback from the analytical to the

operational, even for “easy” labelled scenarios, for example sending an email to the

operational manager when the number of defects for a certain asset part reaches a

particular number. At present, there might be feedback done from the analytical to the

Figure 8: Response Gap

28

operational level, but it is established in an ad hoc manner. Reactive performance

monitoring consists of automating strategic decisions into rule-based actions when

appropriate. Condition(s) in a rule allow us to flag certain characteristics which are

thereupon used to trigger an action, such as a notification. Automating strategic decisions

using rules is good for some cases where the outcome should be obvious. However, we

have to be cautious to not automate complex decisions which necessitate strategy. A

systematic model-based approach is needed to be able to more easily bridge the current

gaps. Using a systematic model-based approach also has the potential of reducing the

time lapse between identification and reporting from the analytical to actual changes and

responses in the operational.

For example, consider an organization where maintenance needs to be done to

keep big machinery, like cranes, in working order. At the operational level, each crane,

has a maintenance schedule. There might even be different maintenance schedules for

different parts of the crane.

At the analytical level, information is collected from the different cranes: date last

inspected; which parts fail; after what interval of time the parts need to be replaced; and

when the entire crane should be replaced. Once every quarter year, the analytical team

puts together a report summarizing some of the data that interests stakeholders.

Sometimes, they notice interesting information they use to put together a special report.

This special report is then sent to the strategic level.

When the strategic level receives the report that states that crane use could be

optimized if engine maintenance was done at the beginning of spring and the end of fall

29

instead of mid-winter, it might take a while until the strategic considers the information

with a plan to change the schedule at the operation level. Subsequently, the plan needs to

be implemented. If the operation level was not included in the discussion, the plan might

need changes.

This process can be re-iterated multiple times for different scenarios. Obviously,

the people involved in these actions can try to optimize their time use to make the process

shorter. However, there is a limit to what can be accomplished with current practice. In

an ideal world, the situation with respect to crane maintenance might be modeled

effectively enough, that the analytical could be continuously assessing data from the

cranes and providing feedback directly to the operational as to the optimal time for

maintenance tasks using reactive performance monitoring.

3.2 Gap Analysis

As explained in 3.1, there is an existing gap between the strategic, the analytical,

and the operational that we want to bridge. In particular, a direct interface between the

analytical and the operational is missing. The current practices would highly benefit from

a systematic model-based approach. A combination of several things would address the

problem. First, we would need an architecture with components and interfaces to manage

the interactions needed for continuous feedback between the operational and the

analytical. Second, a methodology would be needed to systematically establish how to

approach applications like crane maintenance. Finally, a flexible rule environment would

be needed to define the business rules around continuous feedback within the

architecture. Integrating the operational business processes with the analytical data

30

models would facilitate the communication of relevant events and inferred or predicted

facts between the operational and the analytical.

As mentioned in Chapter 2.6, there is related work that has tried to address this

problem. For example, The Application Framework for Monitoring Care Processes

(AFMCP) had a specialized rule engine designed for care process monitoring, and a

specific care process application model which drove the AFMCP’s methodology.

However, this framework is specialized for inferring states and measuring wait times

only. In addition, it does not have actions as an output, it simply has dashboards that need

to be actively consulted by the appropriate users. As a result, although this is a good

framework for care process monitoring, it is too specialized and lacks resulting actions,

such as notifications, that can actively link the operational and the analytical.

The Big data Analysis Infrastructure Testbed (BAIT) architecture is generalized

for testing different tools in air traffic management. They succeeded in creating a useful

big data infrastructure specifically made for air traffic management with mostly open

source tools that provide constant monitoring of VIL, ET, and general flight data. The

tools gathering the data (CIWS, CoSPA, HRRR, ASDI) are not necessarily open source,

and MATLAB, which plays a key role when it comes to the algorithms available, is

definitely not open source. The rest of the architecture uses open source tools. Although it

might be adequate for this use case, this infrastructure did not offer actions other than a

real-time dashboard. It would not be feasible to apply their infrastructure generally but it

is a good example of an infrastructure attempting to solve the described strategic-

31

operational-analytical business gap problem for a specific domain (air traffic

management).

IBM PMQ has managed to slightly reduce the gap between the operational and

the analytical levels of businesses by using predictive models to create prioritized work

lists. IBM PMQ is very specific to predictive maintenance and does not inherently offer

actions other than ordering work orders which have to be manually consulted. It will be

discussed in more detail in chapter 4, as part of our case study work.

3.3 Evaluation Criteria

Based on our analysis of the problem, our literature survey, and our experiences

interacting with domain experts to define our case studies, we have identified the

following list of criteria to evaluate any proposed solution or framework for our problem.

We also identify specific criteria for the rule environment needed to bridge the gap

between the operational and the analytical. We will use these criteria in chapter 5 to

evaluate our proposed RPM framework.

3.3.1 Framework

 Cost of hardware, software, and support: This is the monetary cost of

the hardware, software, and support needed for the framework. Cost is

always an issue when considering a framework, tools, or methodology in

an organization.

 Developer Skillsets/Training: This is an indication of how much do the

developers need to know to be able to work with the framework. As

reported by (Bandor, 2006), it is important to consider whether people can

32

work with the chosen tools, infrastructure, or framework. That is to

consider if the people that will use the tool already have the necessary

knowledge or require additional training.

 Developer Effort: This is an indication of the time and effort to

implement reactive performance monitoring using the framework. Once

again reported by (Bandor, 2006), it is important to consider the time and

effort required to interface with a product and make use of its features.

 Rule Support: This is an indication of the framework’s support of

different rules and being able to change them. It implicitly indicates the

presence of some sort of rule engine. To be able to integrate business rules

and other analytics rules in a structured framework, a rule engine is

necessary. Rules determine resulting actions and a component in the

framework specifically made to write rules would highly facilitate the use

of the framework.

 Defined Architecture with APIs: This criterion indicates the presence of

APIs in the framework. As explained by (Tulach, 2008), APIs are

important in complex frameworks or applications to enable an easier and

better use of the components without worrying about the details by

creating abstraction.

 Predictive Modeling Integrated: This is to indicate whether predictive

modeling is directly integrated in the framework. A lot of the focus in

literature and enterprise is on creating frameworks integrating predictive

modeling, especially predictive maintenance. The BAIT (Kelly et al.,

33

2015) infrastructure, IBM PMQ (Dash et al., 2013), and others like the one

presented by (Lechevalier et al., 2014) are examples using predictive

modeling.

 Latency between knowledge and action: This is to indicate the time it

takes between knowledge and action. This is key to make use of the

information gathered and found as it is in business process management

systems (zur Mühlen & Shapiro, 2010).

 Supports OLAP databases: Criterion to indicate whether the said

framework possesses support for OLAP databases. Relevant facts to

actions, such as the use of predictive modeling might come from different

kinds of OLAP databases depending on the scenario. The support of

multiple OLAP databases can become key in the generation of meaningful

actions (Aladdin Baarah, 2013).

 Methodology for reactive performance monitoring application

development: Criterion indicating whether a methodology to create

performance monitoring applications exists. As it is with data warehousing

applications (Kimball et al., 2008) or, for example, real-time monitoring

applications (Aladdin Baarah, 2013), a methodology is needed to be able

to accomplish the initially set goals.

3.3.2 Rule Environment

 Dedicated Syntax: This criterion indicates whether there is a set syntax to

create the rules and actions. For the users to be able to write rules

seamlessly, the rule syntax, or language, must have a certain regularity to

34

it. For example, Drools is often liked for its punctuation and versatility

(Garzón, 2015). This criterion is mainly to compare the different types of

approaches that the different rule engines have taken.

 Open Source: This criterion indicates whether the rule engine is open

source or not. In its definition, open source software is freely distributable

(Perens, 1999). This criterion generally affects costs, especially if there is

a strong support developer community (MacCormack, Rusnak, &

Baldwain, 2006). In the case of our evaluation, this also affected the

Extendible Operations criterion.

 Extendible Operations: This criterion indicates whether it is possible to

add different kinds of condition functions and action methods. Drools

(Red Hat, 2016) and IBM ODM (IBM Corporation, 2016f) are great

examples of extensibility where the implementation of different condition

functions and action methods is almost necessary. This offers great

flexibility in terms of application.

 Directly Linked to Actions: This criterion indicates whether it is possible

to trigger an action natively from the rule engine or easily such as through

a Web service from the rule engine. During my IBM internship, one of the

goals was to start addressing this problem present in the underlying

structure of IBM PMQ (IBM Corporation, 2016g) which is used for

maintenance of assets management.

 Scheduled Facts: This criterion indicates the possibility of triggering

actions based on a timing functionality in the rule engine. Schedulers can

35

be a real value added especially when considering business processes. This

is why schedulers have been integrated with rule engines such as Drools

(Red Hat, 2016).

 OLAP Database Integrated: This criterion indicates whether it is easily

possible to link with and integrate any OLAP database. In particular,

whether it is possible to articulate rules with conditions and actions based

on the contents of OLAP databases. We realized that this was necessary

for a well-integrated RPM framework when exploring the use of other rule

engines while working on both the IBM RPM and the QuickForms RPM.

The OLAP database is central to our context and not having access to it is

awkward and difficult with most rule engines as they generally do not

have support for this.

 Predictive Inferencing: The criterion indicates whether the rule engine

possesses predictive analytics capabilities. Predictive Analytics has been

proven to be very interesting for performance monitoring use cases, in

particular in the domain of predictive maintenance (Dash et al., 2013).

3.4 Overview of the Reactive Performance Monitoring

Framework

This section provides an overview of the RPM framework. It consists of:

 An architectural pattern that identifies the key component technologies

and interfaces that need to be brought to bear and how they can be

organized

36

 A methodology that defines the steps needed to be taken in selecting the

relevant components for an application, defining models as appropriate,

and iteratively identifying, defining, and reefing the events and rules used

to link data analytics to actions

 A rule environment in which rules can be written, conditions used, and

actions enacted

3.4.1 Architectural Pattern

As shown in Figure 9, the architectural pattern for our RPM framework is

composed of 4 main components: Operational Event Sources, Analytical Data

Warehouse, a Rule Environment that mediates between them, and Actions that can be

invoked for continuous feedback. The first component, Operational Event Sources,

represents any entity from which we could receive Fact Events. The second component is

the Rule Environment, the core of our contribution. Third, the Actions, which has

Email, BPM, Web Service, and Scheduler but could contain other possible actions. The

last component is our Analytical Data Warehouse. In particular, the OLAP Database

composes the heart of the Analytical Data Warehouse. In this section, the data flow will

be described followed by a description of each component.

As we described in 3.1 using Figure 8, our architecture pattern aims at closing the

gap between the operational and the analytical. The Analytical Data Warehouse

contains all the data that the analytical uses to understand the operational. The

Operational Event Sources provide data from the operational to the analytical, and the

Actions provide feedback from the analytical to the operational. The Rule Environment

37

is really what distinguishes this architecture as a bridge for the analytical to give feedback

to the operational. It is a specialized analytical engine for processing events and

determining actions in real-time. This lets feedback skip the Strategic when it is not

needed.

In this architecture, Fact Events are received from Operational Event Sources

and sent to Application Management. Operational Event Sources can be Forms filled

by people, a Message Broker that forwards Fact Events, or an Application Server that

sends Fact Events directly. Depending on the Fact Event, it will either be sent directly

to the DAO to be stored, or to the Rule Engine if there are Rules corresponding to the

Fact Event.

When the Fact Event is sent to the Rule Engine, it is evaluated against its

corresponding Rules. Rules need to be predefined so that the Application Management

Figure 9: RPM Framework Architecture

38

can send them to the Rule Engine ahead of time. That way, the Rule Engine becomes

ready to receive Fact Events. Depending on the Rules corresponding to the Fact Event,

the Rules may use condition functions that require a Condition Query to test the current

context when the Fact Event is received. The current context is defined by the OLAP

Database that has stored all Fact Events currently received (according to a multi-

dimensional model, as defined by OLAP). An OLAP Database consists of a database

optimized for reporting, especially used by the analytical.

A Condition Query consists of a query made to an OLAP Database in order to

obtain the relevant data needed to evaluate the business Rule for a Fact Event. In return

the DAO will return facts as a Facts Set. The Rule Environment has appropriate

functions defined in order to manipulate and test the information contained in the Facts

Sets returned by the Condition Query. Condition Queries are essential to the well-

functioning of the Rule Engine. They are used in rule conditions to extract relevant data

from the OLAP Database. For example, in conditions necessitating contextual

information such as the number of times a Fact Event of a particular type has been

received in the last 5 hours, a Condition Query will be used to extract a Facts Set of the

Fact Events of the particular type in the last 5 hours. These are explained in more detail

in 3.4.3.

It is worth mentioning that there can be more than one Rule Engine, and other

types of Rule Engines. For example, in the case of a Rule Engine possessing predictive

analytics capabilities, this Predictive Analytics Rule Engine can predict events that will

happen if actions are not taken. These predicted Fact Events can be sent back to the

39

Application Management in addition to operational events. A Classic Rule Engine

with “IF <condition> THEN <action>” rules could then be used to translate either

predicted or operational Fact Events in to appropriate actions. By default, there is at

least one Rule Engine which should be an OLAP Rule Engine for it to be able to be

integrated with the OLAP Database for logging, and inferring Fact Events, and for

querying any aspect of the complete history of all Fact Events that might be relevant for

defining context and determining Actions.

In the Rule Engine, after a Fact Event has been evaluated against one Rule, one

or more resulting Actions may occur. An Action can consist of simply storing a single

Fact Event or multiple Fact Events in different OLAP databases via the DAO.

However, there are other interesting Actions that may occur. Generally, once a Fact

Event has been evaluated positively against a Rule in the Rule Engine, an action method

is executed using the Fact Event’s data (including Fact Sets returned by Condition

Queries) and a Report is sent to the corresponding Action component.

We have identified four main possible Action components: Email, BPM, Web

Service, and Scheduler. Furthermore, each of these components could have a role in the

Operational Data Sources component, therefore creating a feedback loop. All Actions

are meant to link the analytical with the operational. Emails consist of messages

(Reports) sent to a number of recipients, on the operational side, to provide timely

information that needs to be acted upon. BPM consists of either triggering a new business

process, trigger an action in a business process, or simply sending useful information

(Reports) to an already existing process, all on the operational side. A Web Service

40

simply consists of a generic service available to send information (Reports) to servers on

the operational side. The Scheduler is to schedule any of the above Actions to take place

in the future, as well as generating a scheduled Fact Event (in order to trigger rule

processing at a scheduled time).

The Operational Event Sources are simply defined by their capacity to send

Fact Events, from the operational to the analytical. They can be any entity that has that

functionality. It could be from a Form, which enables humans to enter data defining or

reporting a Fact Event. It could be from an enterprise Message Broker that receives and

forwards events from any source within the organization using a publish-subscribe

mechanism. Or it could be from an Application Server containing specific apps or web

services that sends events directly to the Rule Environment.

Typically, a Form simply consists of a specific application made for manual input

of events. The Message Broker could be implemented using technology like IBM’s

Integration Bus, BizTalk (Microsoft, 2016), ActiveMQ, etc. If we consider the strategic-

operational-analytical problem, the different event generators correspond to the

operational part of the business where we monitor different key metrics destined to the

analytical part.

Another essential part of our framework consists of the data warehousing

components. As per usual, the data warehousing components include OLAP Databases,

and an engine allowing BI Reports to be made. All data used, processed, or generated by

our RPM framework is persisted in OLAP Databases. In particular, this allows OLAP

41

Databases to report against history, making use of aggregations, contextual information,

and trend analysis.

3.4.1.1 Critical Interfaces

The Rule Environment provides the critical interface to the operational and the

analytical. The interface to the analytical is based strictly on a Data Access Object (DAO)

design pattern (Sun Microsystems Inc., 2002). One component manages the interface to

the analytical and can read and write to any database in the Analytical Data Warehouse.

The interface to the operational is more nuanced. The REST interface provided

by the Application Management component to receive Fact Events is the mechanism

for receiving inputs from the operational. The Rule Engine creating Reports to send to

Actions is the mechanism for providing feedback to the operational.

3.4.2 Methodology

The RPM framework methodology is shown in Figure 10. It is a model-based

approach in which business process models on the operational side are related to multi-

dimensional OLAP Databases on the analytical side in terms of business Rule Sets that

link Fact Events to Actions that deliver Reports. Three main roles are needed to

complete an application using the RPM framework. First, there is the Business

Operations Architect. Their role pertains to current operational business processes and

how they can be integrated in the framework. The second role is the Performance

Analytics Analyst. This role does not accomplish many tasks but is crucial to this

framework. This role creates the OLAP Databases on which all applications are based.

42

The third and last role is the RPM Applications Developer. This role mostly develops

what has been established by the previous roles.

In Figure 10, there are 13 main activities, each performed by one of the three

different roles:

43

Figure 10: RPM Framework Methodology

44

1. Identify and model operational business processes: During this step, the

Business Operations Architect creates operational models of the

operational business processes that need to be monitored. This includes

identifying the monitored objects, and any roles (people) that are involved

in the process of monitoring or using those objects. Suppose one of our

business interests was the maintenance of cranes in the domain of heavy

machinery. We would have to identify specific operational business

processes that interest us. For example, we could be interested in the

maintenance of crane brakes. Once we have identified this specific

operational business process, we model it. When we model it, this includes

the identification of the things we want to monitor, in this case, the crane

brakes, and any party affected in the process (for example, a mechanic, a

management team, a technician, etc.) At the end of this step, the obtained

completed artifacts are Operational Business Models.

2. Identify operational event sources (incoming Fact Events): Once we

have the Operational Business Models, the Business Operations

Architect can identify the Operational Event Sources that can provide

Fact Events for monitoring the operational business processes. The

Operational Event Sources are key to our architecture as they are the

direct link of the Operational to the Analytical. In the crane brakes

example, we would need to identify all brakes, the people in charge of

maintenance, the people in charge of ordering parts, the crane users, and

maybe even others. Each of these would communicate events through

45

Forms (e.g. for the people in charge of maintenance), Message Broker

(e.g. for some of the sensors of the brakes), or Application Server (e.g.

for the application used by the people ordering parts). In addition to

identifying the actual sources, we would need to identify any information

relevant to the crane brakes scenario that needs to be monitored about the

brakes. This might include the level of use, an indication of unevenness,

voltage, etc.

3. Identify and model strategic goals and KPIs: This step and “Identifying

operational event sources” are steps that can be done in parallel since they

both only depend on having modelled the operational business processes

and they are performed by different roles. This step is performed by the

Performance Analytics Analyst. When we have the models, the analyst

can identify the relevant strategic goals the operational business process

is intended to support. From the strategic goals, we can derive KPIs that

it would be important to report and the Fact Events needed to generate the

Reports. KPIs define the target range. When a KPI is outside of its

target range, actions need to be taken. In the crane brakes example, we

might like to improve the efficiency of the business process by doing

preventative maintenance at the correct time instead of slowing down the

operations by doing reactive repairs. For the KPI, and as an example, we

would then aim to reduce the delays due to the brakes by 50%.

4. Identify alarm states and model in terms of events and intermediate

indicators: This step done by the Business Operations Architect aims at

46

concretizing the business rules using the information that we have from

Fact Events coming in to identify Alarm States for which we should

generate Reports. For example, in the crane brakes example, we want to

send an email to the people in charge of parts when the thickness of brake

pad A attains a certain level. In this step, we need to identify where that

fits in the Operational Business Model. This is also the step where we

identify whether we need additional information that was not previously

included. For example, we might want to add an Alarm State if the new

brake pad has not been ordered (meaning that we need to identify when a

part has been ordered) and it has been more than 3 days (meaning that we

will need to keep timestamps). With this information, we have an Alarm

State that can be identified with specific information that also needs to be

tracked. With this Alarm State, we can create a report which will enable

us to act upon it.

5. Determine business rules: Once Alarm States have been identified, the

Business Operations Architect can actually create the business rules that

will trigger the wanted Actions when the specific conditions are met.

6. Determine Incoming Fact Events and outgoing Reports: Using the

identified Operational Event Sources, the Alarm States, and the

Business Rules, the Performance Analytics Analyst can formalise the

Fact Events and Reports, and triage which information should be kept. In

our crane brakes example, we might want to keep crane information such

as the model, year of fabrication, year of acquisition, as well as brake

47

information including model, location, and relevant metrics such as brake

pad thickness, voltage, relevant timestamps, and any necessary

information about the people in the process (emails, ids, etc.)

7. Design OLAP Databases: With the information established in step 6 as

well as the Business Rules, the Performance Analytics Analyst can

finally design the OLAP Database(s). The OLAP Database is crucial for

the RPM Applications Developer as well as represents the basis of the

framework. In reality, there is already business reports that are being sent

to the strategic to report on the operations. A combination of both the Fact

Events and the Reports correspond to the dimensions that can be used to

create the OLAP Databases for the performance monitoring in which we

are interested. The dimensions combined with the previously identified

Fact Events create the OLAP Databases.

8. Configure DAO: The first step of the RPM Applications Developer

simply consists of creating the connection between the OLAP

Database(s) in the DAO.

9. Building OLAP Databases and business rule sets (Application

Management): Although the OLAP Databases have been designed, they

still need to be implemented. The RPM Applications Developer

accomplishes this during this step. When the OLAP Databases are

implemented, it allows the rules to refer to them. With this integration, we

can then prepare the business Rule Sets from the Application

48

Management point of view so that it can send the rules to the Rule Engine

once they are implemented.

10. Identify appropriate actions: Even if the Business Rules have been

determined by the Business Operations Architect, at this step, the RPM

Applications Developer needs to properly identify what type of Actions

will be needed. In the crane brakes example, we were interested in

notifying the parts crew and perhaps the management group if a part has

not been ordered within three days. We would then be interested in a

notification action like using a service to send an Email. Another option

might have been that we would send a trigger to a BPM system to start a

process that would automatically assign the ordering brake pad part task to

a specific person. This step is where we identify each action needed for

each rule in each Rule Set.

11. Establish needed components to accomplish identified actions

and rule sets: In this step, the RPM Applications Developer needs to

identify the Components needed to accomplish the identified Actions and

Rule Sets. Two main factors affect this choice: the action type, and the

component availability. In our framework, we have identified four main

external action types for reactive performance monitoring: email, BPM,

web service, and scheduler. For example, for email, we need an email

service. This email service would be identified as one of the needed

components. For a BPM action, the best component might not be

available. In that case, the action might be implemented differently and in

49

an ad hoc way, for example through an email sent to the actor triggering a

business process.

12. Configure Rule Environment and Integrate components: Depending

on the components chosen, some might come freely with the chosen tools

but other components might require the addition of an interface to the

service. For example, if we want to trigger a BPM system, this action

might need to be added to the services supported by the Rule Engine.

Configuration and integration become additional tasks of the RPM

Applications Developer.

13. Implement Rules: Once all the details have been figured out, the RPM

Applications Developer can simply implement the Rules Sets that have

been predefined in the Rule Engine language.

3.4.3 Rule Environment

The Rule Environment is an important part of the RPM framework. It enables the

storage of facts on which we can report on, and relevant actions. As briefly described in

the architecture, the Rule Environment is composed of three main components: the

Application Management, the Rule Engine(s), and the DAO.

Application Management is responsible for quick Fact Event processing as well as

passing on Fact Events that require Rule processing, and sending out Rule sets

information to the Rule Engines, available from the Rule Sets Configuration. It also

ensures that many different applications could be running simultaneously. By quick Fact

Event processing, we mean storing facts to the OLAP Database. The Rule Sets

50

Configuration contains the information necessary for the Rule Engine to recognize a Rule

set, as well as the information necessary for a Fact Event to be evaluated against the Rule

set(s) it is associated with.

In the Rule Environment, there can be more than one Rule Engine. In the context

of this thesis, three main types of Rule Engines are identified. The first one is the Classic

Rule Engine. The Classic Rule Engine follows the “IF <condition> THEN <action>”

pattern and has no specific support for OLAP. The second type is the Predictive Analytics

Engine. This type has predictive analytics capabilities and does not generally follow the

classic “IF <condition> THEN <action>” pattern. A Fact Event goes into the Predictive

Analytics Rule Engine and another Fact Event comes out after having passed through a

predictive analytics model. The third type is the OLAP Rule Engine. This Rule Engine is

like a classic Rule Engine but possesses OLAP support. A Rule Engine’s role is to react

Figure 11: Rule Environment

51

upon the incoming Fact Events and make them go through their respective Rule Sets. For

a Fact Event to go through another Rule Engine, it must be modified by the first and

passed back to the Application Management.

3.4.4 OLAP Rule Engine

To fully link the Operational with the Analytical for reactive performance

monitoring, we define an OLAP Rule Engine.

Figure 12 shows the OLAP Rule Engine object model. A Rule Engine can

contain multiple Rule Sets. A Fact Event can be evaluated against multiple Rule Sets

from the same Rule Engine. A Rule Set corresponds to an OLAP Database. A Rule Set is

composed of a series of Rules.

Each Rule is composed of one or more conditions which can be expressed with

plain basic operations or using available condition functions. Each Rule also has a series

Figure 12: OLAP Rule Engine Object Model

52

of actions that are executed against the Fact Event if the condition has been evaluated as

true.

There are three main types of condition functions: Basic Operations, Previous

Facts Functions, and Fact Event Functions. Basic Operations simply consist of using

basic operators that can be applied to integer, real, characters, and booleans. Previous

Facts Functions are only available in OLAP Rule Engines because it requires an OLAP

Database connection and permits us to access previously stored facts to trigger an action.

It makes use of historical facts and aggregations. This is particularly used if we need

contextual information. For example, if we wanted to send an email to the managers only

if the brake pad has been evaluated three times as being too thin, we would need to get

the count of previous facts where the brake pad has been evaluated as being too thin. This

is done by using a Previous Facts Function. Actually, the Previous Facts Function would

do a Condition Query asking for the previous facts for the particular brake pad. In return

we would get a Facts Set in which we would count the number of relevant entries. The

third type of Condition Function is to compare Fact Event fields. Fact Event Functions

allow us to extract data from the Fact Event by field name and compare strings. We can

also simply verify that a field is present using a Fact Event Function.

On the actions side, we have categorized them using 4 main types. The first type

is “StoreOrUpdate” and is necessary with an OLAP Rule Engine. This is a type that is

always present in business analytics applications since we always need to store or update

new data. For that reason, it is not really an external action, and it is done directly via the

Rule Environment to the OLAP database. We called the second type “Inferred Fact”. This

53

type is one of the main reasons why an OLAP Rule Engine is necessary. Like the

“StoreOrUpdate” action, “InferredFact” is done directly from the Rule Environment to

the OLAP database and therefore only available in an OLAP Rule Engine. Inferred Fact

consists of facts that are determined via a series of factors. These factors can be a series

of Fact Events, the presence of a certain entity combined with an incoming Fact Event,

contextual data combined with a Fact Event, etc. The inferred fact highly depends on the

condition function, especially previous fact functions for contextual information.

However, previous fact information functions are not only used in condition functions.

For example, for the BPM action, previous fact information can be useful to the process

triggered. BPM has been identified as one of the main action types because being able to

trigger BPM processes directly translates on linking the analytical to the operational.

Another type of action is Emails. It is easy to see that emails are incredibly useful

in RPM scenarios since it is a type of actions that can directly be transferred to operations.

With the Web Services action, technically any type of action that can be called upon

using a service could be accepted in the RPM framework. It is a generic action type. We

simply have categorized the actions that seemed to be the most useful in an RPM

framework. As a last action, we have the Scheduler. The Scheduler is simply an action

that allows us to call other actions at another time.

For the OLAP Rule Engine, each Fact Event must contain information about the

Rule Set, or OLAP Database, to which they correspond. This is in order for the DAO to

be able to identify the correct OLAP Database associated with the Fact Event to store. In

our case, the role of the DAO is to do the translation between the Database and the Rule

54

Environment. As described in the diagram, the DAO receives and sends back Fact Events

to the Application Management. The DAO possesses methods which can be called by

other entities to store and update facts, as well as request a facts set with, or without, a

Condition Query. These simple methods allow all interactions with the OLAP Database.

However, the OLAP Rule Engine does not have free access to the DAO as

interactions are done through action methods or condition functions. It only requests

DAO functions through condition functions and action methods. The Rule Engine has

access to condition functions and action methods against which the Fact Events are

evaluated if they are associated with a particular Rule Set.

55

4 Case Studies

4.1 Overview

This chapter presents our case studies and some rule examples. First we present

an existing IBM technology which inspired the RPM framework. Second, our first

iteration of the framework is presented, followed by the third. Lastly, two rules are

presented in the last two sections showcasing the strengths and weaknesses of the

different rule engines used in these case studies, with a particular focus on the OLAP

Rule Engine we presented in chapter 3.

In 5.2, we present IBM PMQ, an already existing framework we worked with at

IBM. It is while working with IBM PMQ that we established the need for an RPM

framework. IBM PMQ was created to do the predictive maintenance of assets and is a

great tool for it. While using both a Predictive Analytics Rule Engine and a Classic Rule

Engine, it is able to predict asset failure and can provide a worklist with different levels

of urgency. But in spite of being of being a great tool, IBM PMQ still does not quite fit

the RPM framework. We think that IBM PMQ is a missed opportunity because predictive

maintenance of assets is only a subset of predictive maintenance which itself is only a

small subset of RPM applications. Furthermore, IBM PMQ failed at closing the gap

between the operational and the analytical by not providing direct support for invoking

actions. Work Orders can be created but do not consist of actions as they require active

consultation by people to go and look at the list of Work Orders to see what needs to be

56

done. There is no timely and automatic delivery of the Work Orders to the right

recipients.

For these reasons, in 4.3, we undertook our IBM RPM case study based on our

proposed RPM framework. The IBM RPM case study implemented a successful RPM

framework prototype using an IBM technology stack. We extended the IBM technology

stack that was used for IBM PMQ, to include an IBM BPM adaptor in support of directly

invoked action to trigger business processes. As well, we adjusted our RPM

methodology, explained in 3.4.2, to customize and generalize the OLAP database from

IBM PM, not just asset management. Yet, this implementation still had a few caveats.

Amongst those, the generalization of the OLAP Database and the creation of the BPM

adapter were complex, and the combination of Predictive Analytics Rule Engine and

Classic Rule Engine was awkward to use. IBM PMQ experts, an expert database

administrator, and at least one developer would be needed to use the framework in other

settings.

This provided motivation to create our own RPM framework using open source

technologies. QuickForms RPM is presented in 4.4. Using technologies that were free

and much lighter, we managed to create an RPM framework that had all the needed

components. This included the creation of an OLAP Rule Engine that was much more

appropriate for RPM applications and that uses reports for both the conditions and actions

of the rules. In addition, we identified that the main type of actions needed for RPM is

notifications, so we provided both an Email and a Scheduler Action component. Web

services were provided as a general all-purpose Action component. While BPM was not

57

one of the included actions, the presence of an API easily accepting Web services

sufficiently demonstrate that it would be possible to add BPM.

In the last sections of this chapter, 4.5 and 4.6, we show two rule examples that

were used in the IBM RPM and QuickForms RPM case studies to highlight the

differences between the Predictive Analytics, Classic, and OLAP Rule Engines.

4.2 IBM PMQ

4.2.1 Architecture

As briefly described in 2.6.3, IBM Predictive Maintenance and Quality (IBM

PMQ) is an architecture designed for predictive maintenance of assets in asset-intensive

organizations. It has managed to slightly reduce the gap, but not close it, between the

operational and the analytical level by using predictive models to create prioritized work

lists.

Figure 13 shows a simplified architecture of PMQ. Device Events associated with

the assets are continuously streamed into the Real-Time Event Processing implemented

with the IBM Integration Bus message broker. The message broker then sends events

both to be stored in the Analytics Data Store (OLAP Database) implemented by IBM

DB2 and to the Predictive Analytics (Predictive Analytics Rule Engine in our context)

implemented by IBM SPSS Modeler. After it receives the device event, IBM SPSS

Modeler processes the device event through the prediction model, which will output a

result depending on the model type. An example would be an asset failure risk value.

58

Once this risk is outputted, it is stored to the Analytics Data Store and passed on

to the Decision Management implemented by IBM SPSS ADM. The Decision

Management, which is simply a Classic Rule Engine, outputs a value depending on the

rule associated with the risk. The value outputted is subsequently stored in the OLAP

Database and passed on to the Work Orders component if it exists and if that message

flow was defined. The Work Orders, is a component that can be added to work with IBM

PMQ and is implemented by IBM Maximo Asset Management. It simply consists of an

intricate asset management worklist. Furthermore, it is interesting to note that in reality,

whenever a message goes either to IBM SPSS Modeler or to IBM SPSS Analytical

Decision Management, it goes through the “Deployment of Models” IBM SPSS

Collaboration and Deployment Services (IBM SPSS C&D).

Figure 13: Simplified architecture view of IBM PMQ

59

As we can see in Figure 13, there is also the Dashboards and Master Data

components which have not been discussed. The Dashboards component simply

corresponds to BI Reports that are implemented with IBM Cognos BI. The Master Data

component is something that is part of the overall Analytic Data Warehouse in our RPM

framework. Implemented by IBM Master Data Management, it is simply IBM PMQ’s

way of managing the fact tables and dimensions in the OLAP database.

As shown in Figure 14, it is fairly complicated to manage the fact tables and

dimensions to use IBM PMQ. IBM has divided the task in two categories: one they call

“Master Data”, and the other is called “Event Data”. “Master Data” consists of the

monitored assets. It is optionally managed by “IBM Master Data Management” or

through a flat file following a specific model adapted for predictive maintenance that can

Figure 14: IBM PMQ Master Data Model (IBM Corporation, 2016a)

60

be extended. We have only experienced the second method. “Event Data” consists of the

events that go through the architecture. Each of them needs to be defined. Like the

“Master Data”, “Event Data” possesses a flat file API which must be in accord with the

“Master Data”.

 When both “Master Data” and “Event Data” has been defined, in this

architecture, every message flow between every component needs to be defined. This is

also very complicated as it is done both through the message broker directly and a

component called the “Orchestration”. The “Orchestration” necessitates the definition of

Master Data and Event Data before being created. It consists of an implementation of an

XML model that can possibly be created through a Web application (IBM Corporation,

2015). Figure 15 consists of an example of the configuration file that needs to be written

for the “Orchestration” that works with a unique event coming in. The

“<event_orchestration_mapping>” identifies the event’s business process and the

“<orchestration>” (message flow), that it needs to follow. The “<orchestration>” defines

things like which event(s) are expected in, from which component, where it needs to be

sent, and which event(s) need to be stored in the process. It is common to have multiple

“<orchestration>”, especially if more than one Fact Event is tracked.

61

4.2.2 Results

IBM PMQ is a great solution for RPM applications but also a missed opportunity

due to it only be applicable to a subset of them, namely predictive maintenance of assets.

In addition, it does not quite accomplish what we are trying to do with the RPM

framework, which is to bridge the operational and the analytical. It possesses some of the

components we are interested in for the RPM framework, including two rule engines (a

Figure 15: Example of a simple Orchestration file

62

Predictive Analytics Rule Engine and a Classic Rule Engine), an OLAP Database, and a

component with BI capabilities but misses the capability of integrating Actions.

4.3 IBM RPM

The main objective of our IBM RPM case study was to be able to handle any

RPM application, not just asset management, and to incorporate direct support for

actions. In this case study, we built a simple RPM application related to the detection of

patients with a higher risk of cancer recurrence where we had the role of RPM

Application Developer. More specifically, we used rules to automatically start the cancer

recurrence hospital process for all patients whose risk of recurrence was higher than 60%.

For example, if Amelia was 54, female, overweight, and had repeatedly very high blood

pressure, the risk of cancer recurrence prediction model would output a risk of 62%

which would trigger a rule to automatically start the cancer recurrence business process

for preventative treatment. In the context of performance monitoring, the goal of this

application is for patients to have a timelier doctor visit when there is a high risk of

cancer recurrence thus bridging the analytical to the operational by reacting to events

coming in and triggering the follow up preventive cancer process proactively.

4.3.1 Architecture

To create the IBM RPM framework, we adapted the IBM PMQ architecture. In

our RPM architecture, three operational sources of events are possible: Forms, Message

Broker, and Application Server. Having adapted this architecture from the IBM PMQ, it

is easy to see that our source of events for the IBM RPM is the Message Broker

implemented from IBM Integration Bus. An Android mobile application to monitor blood

63

pressure was made to receive data from a blood pressure Bluetooth device and a

Bluetooth scale. The mobile application then sent Fact Events to the Message Broker.

The Message Broker then sent Fact Events to Application Management component using

a REST service.

The Application Management component in the architecture, as shown in Figure

16, is implemented by IBM SPSS C&D and supported by IBM Integration Bus. It is the

main component interacting with the OLAP Database through a built-in DAO. The

OLAP Databases were in IBM DB2 supporting BI Reports using the IBM Cognos BI

tool, as it is in IBM PMQ.

Furthermore, as briefly mentioned previously, the IBM PMQ possesses two Rule

Engines: a Predictive Analytics Rule Engine and a Classic Rule Engine implemented by

IBM SPSS Modeler and IBM SPSS ADM respectively. When IBM SPSS Modeler

Figure 16: IBM RPM Architecture

64

receives a Fact Event, it is evaluated against a predictive model, which generates new

Fact Events (the risk of cancer). The result of this model is then sent to the Classic Rule

Engine by forwarding the resulting event through Application Management. The Classic

Rule Engine (IBM SPSS ADM) then determines whether a trigger should be sent to IBM

BPM, our BPM Action, depending on our predetermined rules.

The BPM adapter was implemented while interning at IBM in order to

incorporate rule-processing for triggering external actions. Consequently, we had one

available Action to consolidate the IBM RPM framework which was strictly to launch the

appropriate business process to respond using IBM BPM. In this case, automatically

triggering a follow up preventive cancer process which would automatically populate

follow up tasks in the Nurse and Physician inboxes.

4.3.2 Methodology

With this IBM RPM architecture, we created an RPM application that was meant

to identify patients at high risk of cancer recurrence. Our RPM methodology was adapted

to customizing and extending the IBM PMQ solution. We filled the role of RPM

Applications Developer. Other members of the team filled the Business Operations

Architect and Performance Analytics Analyst roles. This means that steps 1 through 7 of

our RPM methodology, from Figure 10 in chapter 3.4.2, were either preconceived or

done by others. This includes the creation of Operational Business Models; and the

identification of Strategic Goals, KPIs, Operational Event sources, Alarm States; and the

determination of Fact Events, and Business Rules; and the design of OLAP Databases

65

and identification of the need for a Predictive Analytics Rule Engine for some of the

Business Rules.

In IBM PMQ, the OLAP Database is not touched directly. All modifications to

generalize it so that it fitted a context other than predictive maintenance of assets had to

be done through a configuration file for “Master Data” and had to be aligned with the

predefined IBM PMQ “Master Data” Model as seen in Figure 14. In addition, all message

flows are defined in the “Orchestration” or the IBM Integration Bus directly, including

the ones going to the OLAP Database.

Therefore, in steps 8 and 9, the OLAP Database, Business Rules Sets, and DAO

configuration were modified to fit our case study involving patients and healthcare

providers by changing the “Master Data” and the “Orchestration” configuration files. For

step 10 and 11, the actions needed were triggered in the IBM BPM process to alert the

healthcare provider. Step 12 consisted of creating a BPM adapter to communicate with

IBM BPM using the available REST APIs but that needs to be used by means of the

“Orchestration”.

Step 13 consisted of implementing the rules. In the case of the Predictive

Analytics Rule Engine, the predictive model had to be implemented. In the case of the

Classic Rule Engine, specific rules had to be written to trigger BPM. In addition, the

“Orchestration” had to be modified to properly direct the Fact Events to the right

components.

66

4.3.3 Rule Environment

From a Rule Environment point of view, the one in IBM RPM is somewhat

complex. IBM PMQ is more focused on message flows than on the rules that need to be

applied to the Fact Events. Three main things had to be taken into account: the

“Orchestration”, the Predictive Analytics Rule Engine, and the Classic Rule Engine.

For the “Orchestration”, this means that all of the Fact Events paths had to be

predefined granularly. For example, we needed to explicitly specify that the Predictive

Analytics Rule Engine expected blood pressure and weight fact events and that the output

was a health risk Fact Event. Thankfully, since the IBM SPSS suite is tightly linked, it

did not require an entry to specify the output of the IBM SPSS Modeler into the IBM

SPSS ADM. In another entry, we had to specify that the possible output of the Classic

Rule Engine was to be sent to the IBM BPM adapter. Nevertheless, it can quickly become

very complicated with multiple Fact Events from different sources. In our case, the

weight and blood pressure data was combined in one Fact Event.

For the Predictive Analytics Rule Engine, the predictive model had to be

implemented. This requires an IBM SPSS Modeler expert that understands predictive

analytics and the inner workings of the tool. For the Classic Rule Engine, it is not as

complicated but still requires someone that knows how to specify the Fact Event that

comes from the IBM SPSS Modeler as an input to the rules in IBM SPSS ADM and the

relationship to BPM processes.

67

4.3.4 Results

Using IBM PMQ, we managed to implement an IBM RPM framework by

generalizing the underlying OLAP Database and by adding a BPM Action. Further

customizations of the configurations might be required for other scenarios, including in

the IBM Integration Bus for added message flows. Adding an Action was not ideal as it

required the development of an additional adapter in the underlying IBM PMQ

“Orchestration”. In short, the usage of the IBM RPM framework is possible and might be

suited for big organizations that require heavy duty software to execute their operations

but maybe not for smaller organizations. Generalizing the IBM PMQ framework for

different contexts is complex due to many premade configurations that need to be

modified. The addition of Actions is also complex and so is the definition of message

flows in the underlying architecture of IBM PMQ through the “Orchestration”. This

further complicates the redaction of rules since the RPM Application Developer must be

an expert of the IBM PMQ architecture, its jargon (as seen in the “Master Data” model in

Figure 14 and the “Orchestration” file in Figure 15), the OLAP Database, the prediction

model, the Predictive Analytics Rule Engine, and the Classic Rule Engine. Nonetheless,

the rules we implemented in the framework did help us achieve reactive performance

monitoring by proactively reacting to events coming in by scheduling timelier doctor

visits.

4.4 QuickForms RPM

The complexity and cost of the IBM RPM framework motivated us to investigate

prototyping the RPM framework using open source technologies with the components

expected by the RPM framework. The QuickForms RPM case study was implemented

68

using an open source software stack called QuickForms developed at the University of

Ottawa (QuickForms (uOttawa), 2015a). QuickForms is an open source application

framework to develop mobile applications for monitoring and reporting (QuickForms

(uOttawa), 2015b). This framework has been developed to facilitate the development of

BI applications and integrates them with an application-specific OLAP database. Figure

17 shows the architecture of the QuickForms framework. QuickForms has three main

layers: the app database, the independent middleware, and the app user interface. In this

case study, the App database is the OLAP Database from our architectural pattern in

3.4.1, and we have used the independent middleware (QuickForms Service) as a basis for

our Rule Environment. The App User Interface is an Event Source where HTML forms

can be used to create events.

Figure 17: QuickForms Application Framework (QuickForms (uOttawa), 2015a)

69

In this case study, we built a very simple RPM application named “Celebrate

Creation” where we had the role of RPM Application Developer. The goal of this

application was to inform women from at risk populations of the progress of their

pregnancy and for them to view the information in a timely manner. To do so, we wanted

to have a rule that would enable us to send a weekly email reminder to view content

associated with the patient’s current pregnancy week using a link to the content. For

example, if Amelia’s due date is October 18th, then, on August 16th, send Amelia an email

reminder with a link to week 31 content. In the context of reactive performance

monitoring, the rule demonstrated allows us to be proactive in the business process by

directly trying to improve the analytics (how often is the content viewed, how many

people click the content links, etc.) by directly affecting the operational. Although, this is

a very simple RPM application, we show in 4.5, that this particular rule is not easily

supported by the Predictive Analytics or Classic Rule Engines.

4.4.1 Architecture

The architecture for our case study is shown in Figure 18, based on the

architectural pattern from section 3.4.1. The faded out boxes (Message Broker,

Application Server, BI Reports, BPM, and Web Service) were not needed for the

Celebration Creation application but are supported by the architecture. The Dashed

Black box shows the existing QuickForms server, which we extended to forward Fact

Events to our own open source OLAP Rule Engine that we built ourselves, as well as

Email service, and Scheduler that we developed during this case study. Existing Rule

Engines, Email services, and Scheduler were investigated, but in the end it was deemed

optimal to build our own. We deemed it better to build our own OLAP Rule Engine

70

because it has access to the OLAP Database and that allows us to use Reports in both

conditions and actions of Rule, as it will be demonstrated in chapters 4.5 and 4.6.

Direct links to Operational Event Sources, the BI Reports, Web Services, and the

BPM were not implemented as part of this case study, but are supported by the

QuickForms Service API. For the Operational Event Sources, we used a Form which

contained the patient’s subscription information including pregnancy due date, email, etc.

This Form sends Fact Events to the Application Management. The rest of the architecture

was part of the QuickForms Service. The OLAP Rule Engine was developed for this case

study, as well as the Scheduler. The Email service was modified to be adapted to the

architecture. The Scheduler was programmed to schedule the Email service based on the

Fact Events received.

Figure 18: QuickForms RPM Architecture

71

Our DAO is a component which simply interacts with the Database to store facts,

update facts, and retrieve Facts Sets. It receives Fact Events and Condition Queries to

return the Facts Sets. Compared to the DAO, the Rule Engine has a more significant role

in the resulting actions of the framework. The Rule Engine receives all Fact Events that

can potentially be affected by a Rule. When a Fact Event is affected by a Rule, the

evaluation of the Rule determines whether the Fact Event should be changed, stored, or

should trigger an external action.

4.4.2 Methodology

For this case study, all the steps of our RPM methodology accomplished by the

Business Operations Architect and the Performance Analytics Analyst had been

previously done by others. In addition, the business application “Celebrate Creation” to

inform pregnant women from at risk populations of the different stages of their pregnancy

containing the Form already existed. We simply had to fill the role of the RPM

Applications Developer and implement the needed rules.

In short, our role consisted of identifying the appropriate actions which were

notifications that were implemented using Email and scheduled Emails (using a

Scheduler), as in step 11 of our RPM methodology. For step 12, we opted to implement

the Email service in Java, QuickForms implementation language as well as using Quartz

(Terracotta, 2016) for the Scheduler component which was integrated in the QuickForms

Service. For step 13, we proceeded to implement the rules that would subscribe a person

and trigger the Scheduler.

72

4.4.3 Rule-Based Environment

Our QuickForms Rule Environment closely follows the defined Rule

Environment in the RPM framework. We have an Application Management component

which needs to configure the Rule Sets and send them to the Rule Engine. There is also

an OLAP Rule Engine that executes the rules against the Fact Events and has access to

various action methods and condition functions, sometimes via external services.

Our current OLAP Rule Engine assumes that a Fact Event corresponds to only

one Rule Set. When it receives a Fact Event, the Rule Set is identified with the

application from which the Fact Event comes from. Subsequently, it is evaluated against

all the Rules contained in the Rule Set, in serial.

Using QuickForms, we have a tight link between the data model and the values

available to the Rule creator. When creating a QuickForms application, knowledge of the

business data model is crucial to create the application. Otherwise, it is impossible to

specify the correct fields. For the creation of the Rules, we took a similar approach which

assumes that the RPM Applications Developer has complete knowledge of the OLAP

Database and the possible Fact Events. In QuickForms RPM, it would be possible to add

functionality that could make a list of suggestions for the fields needed to create Rules

due to the OLAP Database Integration.

Currently, the RPM Applications Developer needs to have a basic knowledge of

Java to be able to use the necessary syntax to write the Rules. However, a library of

functions used to write rules have been created which simplifies the task. They use

73

readable function names which describe their usage. It is important to note that the Rule

organization is still not appropriate for an unexperienced Java user to write the Rules.

Conditions are generally written according to events coming in. QuickForms

sends its events in a JSON format. Keeping that in mind, predefined functions, part of the

“Fact Event functions”, have been created to deal with the content of the JSON structure.

In particular, two functions are particularly useful. One is “getEventFieldValue” which

accepts a string type field name and returns its value. We can then compare this value

using “equals” (in the case of a string). The other is “checkEventFieldPresence” to simply

determine whether a field is contained in the event or not. With these simple two

functions, we can make a lot of different comparisons with enumeration values or convert

the JSON field to a numeric value which we can compare with Java’s operators.

In terms of the framework, action methods correspond to predefined functions

that can be referred to from the Rule class associated with the QuickForms application.

For example, a function called “sendEmailFromGmail” has been created part of a class

called “NotificationService” providing the Email Action. This function can be used as

long as the service has been instantiated and its required parameters have been provided.

BPM and Web Services have not been added to this framework but the QuickForms

Service API would easily support it.

For our case study, once the star-schemas, business rules, needed facts, and others

had been established, as an RPM Applications Developer, we created the Rules needed to

trigger the needed Actions. If a Rule is evaluated as true, the Actions following are

enacted. In the “Celebrate Creation” business application, we used a StoreOrUpdate

74

Action, an Email Action, and a Scheduler Action. The first to record the subscription of

the patient, the second to notify the patient of their subscription success, and the third and

fourth to schedule weekly emails to inform the patient of their pregnancy stages.

4.4.4 Results

Using open source technologies, we have created a much lighter RPM framework

than the one using IBM technologies, namely IBM PMQ. In addition, it is a much closer

implementation of the intended RPM framework. In the process, we have also created an

OLAP Rule Engine which had access to the OLAP Database. This allowed us to create

Rules that could use Reports both in the conditions and for the Actions. For the available

Actions, we had Email, a Scheduler, and an API supporting Web services which

inherently supports BPM. We used an incredibly simple business application to create the

rules but as we will see in the examples of 4.5 and 4.6, these rules are not achievable with

either a Predictive Analytics Rule Engine or a Classic Rule Engine

4.5 Rule Example 1

In this first example, we will demonstrate an important rule example that could be

implemented using the OLAP Rule Engine. In the “Celebrate Creation” application, the

goal was to proactively inform women from at risk populations of the progress of their

pregnancy. To do so, we wanted to have a rule that would enable us to send a weekly

email reminder to view content associated with the patient’s current pregnancy week

using a link to the content. For example, if Amelia’s due date is October 18th, then, on

August 16th, send Amelia an email reminder with a link to week 31 content.

75

Using our RPM Framework with an OLAP Rule Engine, this is not too difficult to

achieve since we have a Scheduler:

1. Every Day at 3am:

 SendEmailReminderEvent

2. If SendEmailReminderEvent and WeeklyDueDateReport:

 SendEmailsAction (WeeklyDueDateReport)

The “Every Day at 3am” condition is doable since we have a Scheduler and an

OLAP Rule Engine which is linked to actions. The “SendEmailReminderEvent” is

simply creating a Fact Event which triggers the second rule. The “If

SendEmailReminderEvent and WeeklyDueDateReport” condition checks if the Fact

Event being processed is “SendEmailReminderEvent”, and if the

“WeeklyDueDateReport” returns a Facts Set containing at least one Fact.

“WeeklyDueDateReport” consists of a condition query made to the OLAP Database

which returns a Report having the following fields: Name, Email, Due Date, and Week. If

the rule condition passes, the action “SendEmailsAction” is enacted. This action simply

consists of sending an Email for every Fact (patient) in the report

“WeeklyDueDateReport”. We can simply use an Email template with which we can fill

in the fields with the content of the Report previously obtained. This is the same as

sending a Report with a template to fill. For example:

“Hello [Name],

Since your due date is [Due Date], here is your weekly content associated

with week [Week] of your pregnancy:

http://www.example.com/week[Week]!

Yours truly,

The Celebrate Creation Team”

76

When we consider reactive performance monitoring, this rule allows us to

proactively improve analytics and directly affect the operational. It would not be possible

to implement these using a Classic Rule Engine because a Classic Rule Engine does not

have access to Actions or the OLAP Database and would therefore not (typically) have

access to a Scheduler, and could certainly not be able to retrieve the information required

for the report.

Table 1: WeeklyDueDateReport example

Name Email Due Date Week

Amelia amelia@example.com 2016-10-18 31

Sofia sofia@example.com 2016-09-20 35

Karman karman@example.com 2016-12-27 21

On the other hand, the Predictive Analytics Rule Engine is simply not adapted for

this task. It does not have rules formulated the same way. Under the premise that the

Predictive Analytics Rule Engine works by receiving a Fact Event, processes it with the

prediction model (a black box), and outputs a Fact Event according to the predictive

model, it would have to be trained with data to know when to send each Email.

Presumably, this is possible, if a few weeks’ worth of emails had already been sent

manually, but this seems unnecessarily awkward.

4.6 Rule Example 2

For our second rule example, we will demonstrate rules that were implemented

for the IBM RPM case study using the Predictive Analytics Rule Engine combined with

the Classic Rule Engine and analyze how well our OLAP Rule engine could support

mailto:amelia@example.com
mailto:sofia@example.com
mailto:karman@example.com

77

them. Our application with the IBM RPM case study was related to the detection of

patients with a higher risk of cancer recurrence to improve the timeliness of doctor visits.

More specifically, we needed rules to start the cancer recurrence hospital process for all

patients whose risk of recurrence was higher than 60%. For example, if Olivia was 54,

female, overweight, and a repeatedly very high blood pressure, the risk of cancer

recurrence prediction model would output a risk of 62%. Then, the cancer recurrence

business process would be kicked off for Olivia. The following summarizes the sequence

and rules:

1. BloodPressureEvent in -> Prediction Model -> out CancerRecurrenceRisk

2. If CancerRecurrenceRiskEvent > 60%

StartCancerRecurrenceBusinessProcess

 Where Rule 1 would be implemented by the Predictive Analytics Rule Engine,

and Rule 2 would be implemented by the Classic Rule Engine.

Alternatively, we could use an OLAP Rule Engine. Presumably, there exists data that

was used to train the Predictive Rules Engine. Presumably, once the predictive model

was finalized, one could characterize and document the patterns used by the predictive

model. For example, patients whose sex is female and age is over 50 and whose height in

cm / weight in lbs is < 1 have a risk of cancer that should be treated proactively. Such

characterizations, could be formulated as a FemaleAtRiskReport. Then, we could have a

rule similar to the rule in 4.5:

1. Every Day at 3am:

SendFemaleReportReminderEvent

2. If SendFemaleReportReminderEvent and FemaleAtRiskReport:

 SendEmailsAction (FemaleAtRiskReport)

78

Clearly, this would not be as optimal or as dynamic as the IBM RPM rule. However,

for many applications (including this health care example), it would be a) sufficient and

b) more easily understood, maintained and updated as new medical research was done.

Table 2: FemaleAtRiskReport example

First Name
Id

Number
Sex Age

Height(cm)to

Weight(lbs)

Ratio

Healthcare Provider

Email

Olivia 12345678 Female 54 0.97 amanda@hospital.com

Regina 87654321 Female 72 0.93 amanda@hospital.com

Melody 12367845 Female 59 0.94 marc@hospital.com

In the cases where this was not sufficient, the OLAP rule engine would still be

relevant as a replacement for the Classic Rule Engine. It would complement a Predictive

Analytics Rule Engine better. It would have built in capabilities to trigger actions

directly, and it would have more flexibility in scheduling both processing of events and

triggering of actions, with better OLAP Database integration.

79

5 Evaluation

In this chapter, two different comparisons are being presented using the criteria

described in 3.3. In 5.1, our two implementations of the RPM framework are compared

with the related work described in section 2.6: AFMCP, BAIT, and IBM PMQ. In 5.2, a

comparison of the RPM OLAP Rule Engine is made with IBM ODM, SME, IBM SPSS

ADM, IBM SPSS Modeler, and Drools. The chapter concludes with our limitations and

assumptions in 5.3.

5.1 Comparison of Frameworks

In Table 3: Comparison of Frameworks, we compare the different frameworks

presented in this thesis. From left to right, we have AFMCP, BAIT, IBM PMQ, IBM

RPM, and QuickForms RPM. The first criterion to compare is the cost of software,

hardware, and support. AFMCP has an expensive cost due to the different pieces of IBM

software used (BPM, ODM, Integration Bus, and Cognos BI), as well as RTLS from

Ekahau(Ekahau Inc., n.d.). BAIT possesses mostly open source components but also

depends on proprietary components such as MATLAB. IBM PMQ is an IBM solution

which is proprietary and expensive. This product is aimed at bigger organizations. IBM

RPM has the same issues as the IBM PMQ and is therefore expensive. The QuickForms

RPM framework uses open source technologies only and is free.

80

Table 3: Comparison of Frameworks

Criteria AFMCP BAIT
IBM

PMQ

IBM

RPM

QuickForms

RPM

Cost of

sw/hw/support
Expensive

Mostly

Open

source

Expensive Expensive Open source

Developer

Skillsets/Training

Many,

specific

Simple,

specific

Many,

specific

Many,

general

Simple,

general

RPM Developer

Effort
~2 weeks ~1 week 1 week 2 weeks 1 week

Rule Support Yes No Yes Yes Yes

Defined

Architecture with

APIs

Yes Yes Yes Yes Yes

Predictive

Modeling

Integrated

No Yes Yes Yes No

Latency between

knowledge and

action

Ad hoc Manual Manual Real-time Real-time

Supports any

OLAP Database

Domain

specific
No

Domain

specific

Yes, but

limited

mapping

Yes

Methodology for

reactive

performance

monitoring

application

development

Domain

specific
No No Yes Yes

81

The second criterion consists of the needed developer skillsets and training.

AFMCP is composed of multiple proprietary pieces of software that require extensive

skillsets. In addition, this framework is not general, but requires skills specific to care

monitoring processes. In the case of BAIT, the developer skillsets required are much

simpler due to the components they have chosen to be part of their architecture. However,

BAIT, much like AFMCP, requires very specific skillsets in air traffic management. As a

result, we evaluated BAIT as requiring simple skillsets and specific training. For IBM

PMQ, much like the AFMCP, many skillsets are required to use it. In addition, it is once

again specific to a domain, in this case, predictive maintenance. IBM RPM also requires

many skillsets for the different components. Although the framework is general it still

requires knowledge of the specific mapping technique used in order to customize it for

general applications. We have evaluated it as requiring many skillsets and general

training. The QuickForms RPM requires much simpler skillsets but is still general.

The third criterion is the RPM Developer effort. This criterion is a rough estimate

of the time and effort required to implement an application of similar complexity to the

cancer prediction application used in section 4.2. The values we list here is very

subjective but based on our experience with that application, our experience working with

IBM PMQ and QuickForms RPM, our conversations with those who implemented

AFMCP, and our reading on BAIT. This criterion is highly dependent of the skillsets

required, but we assume the developer would have all skillsets needed. IBM PMQ has an

estimate of 1 week due to its high specificity which, given the knowledge and training,

almost simply requires plug and play once the framework is up and running to build a

working application. The IBM RPM requires much more customization due to its

82

generality and many skillsets are required to build an application. Because of this, our

estimate is of 2 weeks given the experts. The QuickForms RPM has an estimate of 1

week. It is still a general framework but requires much simpler implementations than the

IBM RPM once the framework is up and running. We did not get to try the AFMCP or

the BAIT so these two are pure estimates based on what we know from the technologies

involved and their literature. In the case of AFMCP, although the framework is highly

specific, it possesses many different components that need to be configured to be used.

This is why we gave an estimate of ~2 weeks. BAIT on the other side has both a specific

context and little to do once the framework is in place due to its high specificity on the

tools side. For this reason, the estimate is ~1 week.

On the Rule support side, all frameworks except the BAIT possessed some kind

of Rule Engine. All frameworks possessed defined architectures with APIs as opposed to

if different components had simply been integrated in an ad hoc fashion as it is

sometimes ad hoc solutions.

For the sixth criterion which consisted of predictive modeling being integrated,

AFCMP did not have that integration, but the other frameworks did. For the QuickForms

RPM, the integration is not direct and has not been implemented but it would easily be

doable through the API the QuickForms API offers.

For the latency between knowledge and action, we have different degrees at

which each of the frameworks fill that criteria. For AFMCP, it has been evaluated as

being ad hoc. This is because the reports generated need to be consulted by the right

people but there is no control done by the framework to help manage that. For BAIT,

83

there is a real-time aspect with the graphs generated directly to the operators due to how

they have structured their architecture. However, the operators need to determine what to

do with the data that is presented to them. For IBM PMQ, the feedback given is real-time

but the data is not necessarily given to the concerned people in a real-time fashion as they

need to manually consult the work lists containing the work orders manually. The RPM

framework using either of the technologies has been designed to be able to deliver the

information in real-time with selected specific and useful actions such as emails, or data

fed via the database to a notification application.

The eighth criterion was OLAP Database support. The BAIT architecture does not

support OLAP Databases as it uses a NoSQL database. The AFMCP and the IBM PMQ

frameworks support domain specific OLAP Databases. The AFMCP supports care

process models while the IBM PMQ has a premade model which is specifically for

maintenance scenarios. Both of the RPM frameworks support OLAP Databases.

However, the one using IBM technologies requires extensive work to be changed and

adapted to any kind of scenario as a modification of the IBM PMQ part of the RPM

framework is needed.

Our last criterion was to determine if there is a methodology for reactive

performance monitoring application development. AFMCP had its own methodology but

it is highly domain specific for healthcare and is not actually reactive. The BAIT did not

possess a particular methodology as they focused on the functionalities and the

architecture. IBM PMQ also did not have a methodology for reactive performance

monitoring application development. The reason is that their solution is based on

84

premade templates that developers simply have to fill in to connect things together. As

for the RPM framework, we have a methodology which has been defined in this thesis.

5.2 Comparison of Rule Engines

In Table 4: Comparison of Rule Engines, we compared 6 different Rule Engines

with 6 criteria identified in section 3.3.2. From left to right, we have IBM ODM, SME,

IBM SPSS ADM, IBM SPSS Modeler, Drools, and the RPM OLAP Rule Engine. IBM

ODM, IBM SPSS ADM, and Drools are all Classic Rule Engines. IBM SPSS Modeler, is

a Predictive Analytics Rule Engine, while both SME and the RPM OLAP Rule Engine

are OLAP Rule Engines.

For the dedicated syntax criterion, both IBM ODM and Drools have specific

languages associated to write the rules. They use specialized languages for rule writing

which makes it easier for the users to write specific rules and also understand them. In the

case of the IBM SPSS ADM, they use a GUI which is easy to write simple rules with.

The only thing is that their GUI and rules are quite limited because they only support a

limited number of operations. On the other hand, the IBM SPSS Modeler also has a GUI

which facilitates rule writing, but is specific to predictive analytics applications. In the

case of our developed RPM OLAP Rule Engine, and also the SME, there is no

specialized rule language, nor is there a GUI associated with it. This highly reduces the

usability. But SME and the RPM OLAP Rule Engine have a useful library of condition

and action functions that makes it straightforward to write rules. The lack of such a

library made it awkward to write rules with the other rule engines.

85

Table 4: Comparison of Rule Engines

Our second criterion for the Rule Engine was the open source aspect. Both of the

IBM Rule Engines were not open source but Drools and the RPM OLAP Rule Engine

were. The third criterion, extendible operations, is partially affected by the second one. In

the case of both the IBM SPSS ADM and IBM SPSS Modeler, we are not able to extend

their operations. In the case of the IBM ODM, its basis is in creating all kinds of rules. As

a result, it was already extendible. Drools is a similar open source solution but has even

more leeway so it is also extendible. The SME is a collection of different components and

Criteria

IBM

Operational

Decision

Management

(used in

AFMCP)

State

Monitoring

Engine

(SME)

IBM

SPSS

ADM

IBM SPSS

Modeler
Drools

RPM

OLAP

Rule

Engine

Dedicated

Syntax
Yes

Structured

API

GUI

inter-

face

GUI

Interface
Yes

Structured

API

Open

source
No No No No Yes Yes

Extendible

operations
Yes No No No Yes Yes

Directly

linked to

actions

No No No No Extendible Yes

Scheduled

Facts
No No No No Yes Yes

OLAP

Database

Integrated

No

Inferred

facts but no

conditions

No Yes No Yes

Predictive

Inferencing
No No No Yes No No

86

is not extendible due to its structure. Since the rules are still developed in Java in the case

of the RPM OLAP Rule Engine, the operations are extendible.

The fourth criterion indicates whether the Rule Engine is able to directly link

actions as part of rule evaluation. Classic Rule Engines and Predictive Analytics Rule

Engines do not have this capability. SME does not have this ability either. Even if

Classic Rule Engines follow the “IF <condition> THEN <action>” pattern, the “action” is

not an actual action. It simply represents an action that needs to be accomplished, or a

current state. However, by developing the case studies, we realized that a direct link to

Actions was an important feature. Only the RPM OLAP Rule Engine is truly directly

linked to actions. However, we did notice that partly due to its extensibility for

operations, it would not be difficult to create an “OLAP Drools” and directly link it to

actions.

The fifth criterion is the ability to schedule facts. SME is not designed to

schedule events but could be able to do so by receiving scheduled external events. The

IBM ODM is not designed to be able to schedule facts although it might be possible by

extending its operations. Both the IBM SPSS ADM and the IBM SPSS Modeler do not

have this capability at all and would have to depend on an external action or other

operational event source to schedule something. Drools has integrated scheduling

capabilities as does the RPM OLAP Rule Engine,

The last criterion consists of a core asset for the framework, the integration of

OLAP Databases. This is where the SME is interesting because it is highly integrated

with an OLAP Database. However, the entire SME depends on one object model linked

87

to the OLAP Database. This is not realistic when there is multiple applications with

different OLAP Databases but it could otherwise be sufficient when considering this

criterion. For the IBM ODM and Drools, the OLAP Database is not natively linked.

However, it might be possible, especially for Drools, to better integrate it by extending

both of the Rule Engines’ capabilities. IBM SPSS ADM is highly integrated in the IBM

SPSS suite which gives access to the OLAP Databases. When it comes to RPM, the RPM

OLAP Rule Engine has been designed with the integration to the OLAP Database in

mind, generalizing SME’s capabilities. By consequence, it easily fills the criterion with it

being extendible to multiple applications and multiple OLAP Databases.

5.3 Limitations and Assumptions

There are several limitations and assumptions that we can highlight in this

master’s thesis. First and foremost, based on design science research methodology, our

framework was not proven. We demonstrated the potential of the RPM framework using

two different applications with the IBM technologies and open source technologies which

is sufficient to justify further research and more comprehensive trials. We would need

additional studies to prove that the framework works for other domains of reactive

performance monitoring applications such as project management, device management,

monitoring systems, environmental surveillance, etc. In addition, these demonstrations

were made in laboratory by myself and were not deployed for actual business use. More

studies would be needed to see whether other people can use the framework and not just

myself.

88

With the creation of this framework, we are making an important assumption. We

are assuming that OLAP databases with multidimensional models are adequate to

represent the context in which automated reactions between the analytical and

operational. However, we think that this is a reasonable assumption as it is already well

established in literature that OLAP databases are sufficient for analyzing many business

applications, especially organizational applications. In particular, even healthcare

processes can be analyzed using OLAP Databases as described by the AFMCP. However,

we acknowledge that there may be phenomena for which the RPM framework and OLAP

modeling may not be appropriate.

Another assumption we are making is that we assume the availability of a stream

of events. The stream of events allows us to incrementally store them and process them

through the Rule Engine as needed and allows us to be reactive.

89

6 Conclusions and Future work

6.1 Conclusions

This thesis aimed to close the gap between the analytical, and the operational

aspects of businesses. We have managed to do demonstrate the viability of doing so by

creating the RPM framework. We managed to demonstrate our RPM framework using

two different simple applications. For one, we used IBM technologies to recreate the

RPM framework and a prototype application meant to detect “At Risk” patients before

they develop a disease. For the other, we developed the RPM framework using open

source technologies such as QuickForms and an application to inform pregnant women

from at risk populations. The RPM framework we created is a reactive framework for

performance monitoring that streams events in an OLAP database instead of processing

them in bulk using ETL. Included in the framework, we have created an OLAP Rule

Engine which is necessary for our applications. This necessity is due to how the

analytical side models business processes using OLAP Databases. To effectively stream

events in, an OLAP Rule Engine which could parse events and create meaningful events

for our model was created.

In short, our first main contributions is the RPM framework which is composed of

an architecture, a methodology, and a Rule Environment permitting appropriate rules

composed of conditions and actions. Our second main contribution is an OLAP Rule

Engine which has been manifested as being essential in the RPM framework.

90

However, this framework was only exercised by myself in the context of my

master’s degree. To prove the efficacy of the RPM framework, we would have to test it

with different people using it in different settings. In addition, we only used this

framework with two applications in laboratory while assuming that OLAP Databases

were sufficient to represent business operations. In conclusion, although we presented an

interesting framework, there is still much work to do to prove its efficiency and

correctness.

6.2 Future Work

Many instances of future work are possible to continue this thesis’ work. For

example, although we believe that using OLAP Databases is sufficient to represent

operations, it would not be unreasonable to study the extent at which our framework is

applicable to other processes and how other phenomena applications are not appropriate

to our framework. We also would like to have other developers use our rule engine.

In addition, our RPM framework QuickForms Rule Engine’s usability is highly

lacking when comparing it to the other Rule Engines mentioned in this thesis. There is

great improvement possible in this area, especially in terms of GUI support for building

rules and a declarative rule language that would eliminate the need for writing rules in

Java. We would like to revisit the Drools rule engine and see if it can be extended to

provide integrated OLAP database support and integrated action support for report-based

notification.

91

References

2GC. (2015). Balanced Scorecard. Retrieved from https://2gc.eu/services/balanced-
scorecard

Abdelfattah, M. (2013). A Comparison of Several Performance Dashboards
Architectures. Intelligent Information Management, 5(2), 35–41. Retrieved from
http://www.scirp.org/journal/CTA.aspx?paperID=29589

Andrews, T., Curbera, F., Dholakia, H., Goland, Y., Klein, J., Leymann, F., … Weerawarana,
S. (2003, May). Business Process Execution Language. Retrieved from
http://download.boulder.ibm.com/ibmdl/pub/software/dw/specs/ws-bpel/ws-
bpel.pdf

Baarah, A. (2013). An Application Framework for Monitoring Care Processes. (Doctoral
Dissertation). University of Ottawa, Ottawa, Ontario, Canada.

Baarah, A., Mouttham, A., & Peyton, L. (2011). Improving Cardiac Patient flow based on
Complex Event Processing, 1–6.

Baffoe, S. A. (2013). A Generic BI Application for Real-Time Monitoring of Care Processes.
(Master’s Thesis). University of Ottawa, Ottawa, Ontario, Canada.

Baffoe, S. A., Baarah, A., & Peyton, L. (2013). Inferring state for real-time monitoring of
care processes (pp. 57–63). San Francisco, USA,: IEEE.

Bandor, M. S. (2006, September). Quantitative Methods for Software Selection and
Evaluation. Carnegie Mellon University. Retrieved from
http://www.sei.cmu.edu/reports/06tn026.pdf

Barone, D., Peyton, Li., Rizzolo, F., Amyot, D., Mylopoulos, J., & Badreddin, O. (2015).
Model-Based Management of Strategic Initiatives. Journal on Data Semantics, 4(3),
149–165.

Brown, B. (2015, September). 13 more big data & analytics companies to watch.
Retrieved from http://www.networkworld.com/article/2976305/big-data-business-
intelligence/13-more-big-data-and-analytics-companies-to-watch.html

CENGN. (2016). CENGN. Retrieved from http://www.cengn.ca/

Chamney, A. (2014, September). A BI Applications Framework for Integrating Mobile
Forms Data. (Master’s Thesis). University of Ottawa, Ottawa, Ontario, Canada.

ChengLi, K. (2014). Smarter Process Triggers: Predictive Analytics for Smarter Business
Operations. Toronto, Canada: CASCON 2014 24th Annual International Conference
on Computer Science and Software Engineering “Smarter Systems of Interactions.”

92

Chieu, T. C., & Zeng, L. (2008). Real-time performance monitoring for an enterprise
information management system (pp. 429–434). IEEE Computer Society.

Chisholm, M. (2004). What Are Business Rules and Business Rules Engines? In How to
build business rules engine extending application functionality through metadata
engineering (pp. 1–7). Elsevier Inc.

Claus, T. J. (2011, December). BPM Voices: What is BPMN 2.0 and why does it matter?
Retrieved from
http://www.ibm.com/developerworks/websphere/bpmjournal/1112_col_jensen/1
112_jensen.html

Costa, J., Cecílio, J., Martins, P., & Furtado, P. (2011). Blending OLAP Processing with
Real-Time Data Streams. In Database Systems for Advanced Applications (pp. 446–
449). Springer Berlin Heidelberg.

Dash, D., Giffen, R., Ramakrishnarao, J., & Sreenivasan, L. (2013). IBM Predictive
Maintenance and Quality Technical Overview. IBM Redbooks. Retrieved from
http://books.google.ca/books?id=HDyrAgAAQBAJ

Earth System Research Laboratory. (2016, February). NOAA Earth System Research
Laboratory. Retrieved from http://ruc.noaa.gov/hrrr/

Ekahau Inc. (n.d.). RFID-over-Wi-Fi Tracking Systems, RTLS and WLAN Site Survey.
Ekahau Inc. Retrieved from http://www.ekahau.com/

Exforsys Inc. (2008, May). Business Intelligence Key Performance Indicators. Retrieved
from http://www.exforsys.com/tutorials/business-intelligence/business-
intelligence-key-performance-indicators.html

Fette, I., & Melkinov, A. (2011). The WebSocket Protocol (RFC 6455). Internet
Engineering Task Force. Retrieved from https://tools.ietf.org/html/rfc6455

Garzón, M. (2015). The Rule Language. Reverse Engineering Object-Oriented Systems
into Umple: An Incremental and Rule-Based Approach. (Doctoral Dissertation).
University of Ottawa, Ottawa, Ontario, Canada.

Hevner, A. R., March, S. T., Park, J., & Pam, S. (2004). Design Science in Information
Systems Research.

Hohpe, G., & Woolf, B. (2003, October). Message Broker. Retrieved from
http://www.enterpriseintegrationpatterns.com/patterns/messaging/MessageBrok
er.html

HOra, B. de, & Gregorio, J. (2007). The Atom Publishing Protocol. Retrieved from
https://tools.ietf.org/html/rfc5023

Huang, Y., & Gannon, D. (2006). A comparative study of Web services-based event

93

notification specifications (pp. 8–14). Columbus, OH,: IEEE.

IBM Corporation. (2015). IBM ® Analytics Solutions Foundation Developer Guide.
Retrieved from http://www-
01.ibm.com/support/docview.wss?uid=swg27045826&aid=1

IBM Corporation. (2016a). api_eg1. Retrieved April 28, 2016, from
http://www.ibm.com/support/knowledgecenter/SSTNNL_2.5.1/com.ibm.swg.ba.co
gnos.pmq_solution_guide.2.5.1.doc/api_eg1.jpg

IBM Corporation. (2016b). Documentation - IBM® Analytical Decision Management 8.
Retrieved from http://www-
01.ibm.com/support/docview.wss?uid=swg27038937#en

IBM Corporation. (2016c). IBM - Canada. Retrieved from http://www.ibm.com/ca-en/

IBM Corporation. (2016d). IBM Business Process Manager. Retrieved from http://www-
03.ibm.com/software/products/en/business-process-manager-family

IBM Corporation. (2016e). IBM Integration Bus. Retrieved March 7, 2016, from
http://www-03.ibm.com/software/products/en/ibm-integration-bus

IBM Corporation. (2016f). IBM Operational Decision Manager. Retrieved from
http://www-03.ibm.com/software/products/en/odm

IBM Corporation. (2016g). Products. Retrieved from https://www-
01.ibm.com/software/analytics/solutions/operational-analytics/predictive-
maintenance/products.html

IBM Corporation. (2016h). SPSS software. Retrieved from http://www-
01.ibm.com/software/analytics/spss/

IBM Corporation. (2016i). WebSphere Business Events. Retrieved from http://www-
01.ibm.com/software/integration/wbe/

Kelly, C., Craig, K., & Matthews, M. (2015). Real-Time Predictive Analytics to Estimate Air
Traffic Flow Rates (pp. N1–1 – N1–12). Herdon, VA,: IEEE.

Kimball, R., & Ross, M. (2013). The Data Warehouse Toolkit: The Complete Guide to
Dimensional Modeling (3rd ed.). John Wiley & Sons.

Kimball, R., Ross, M., Thornthwaite, W., Mundy, J., & Becker, B. (2008). The Data
Warehouse Lifecycle Toolkit (2nd ed.). Indianapolis, Indiana USA: Wiley Publishing
Inc.

Ku, T., Zhu, Y. L., Hu, K. Y., & Lv, C. X. (2008). A Novel Pattern for Complex Event
Processing in RFID Applications. In Enterprise Interoperability III (pp. 595–607).
London,: Springer. Retrieved from http://dx.doi.org/10.1007/978-1-84800-221-

94

0_47

Lechevalier, D., Narayanan, A., & Rachuri, S. (2014). Towards a Domain-specific
Framework for Predictive Analytics in Manufacturing (pp. 987–995). Washington,
DC,: IEEE.

Luckham, D. C. (2012). First Concepts in Event Processing. In Event processing for
business: organizing the real time strategy enterprise (pp. 1–26,49–76). Hoboken,
N.J.,: Wiley.

MacCormack, A., Rusnak, J., & Baldwain, C. Y. (2006). Exploring the structure of complex
software designs: an empirical study of open source and proprietary code.
Management Science, 52(7), 1015–1030.

Massachussetts Institute of Technology. (n.d.). FAA WEATHER SYSTEMS: Corridor
Integrated Weather System (CIWS). Retrieved from
https://www.ll.mit.edu/mission/aviation/faawxsystems/ciws.html

Mellqvist, P. (2006, May). Don’t repeat the DAO! Retrieved from
http://www.ibm.com/developerworks/java/library/j-genericdao/index.html

Microsoft. (2016). Microsoft BizTalk integration platform. Retrieved from
http://www.microsoft.com/en-ca/server-cloud/products/biztalk/overview.aspx

Middleton, G., Peyton, L., Kuziemsky, C., & Eze, B. (2009). A framework for continuous
compliance monitoring of eHealth Processes, 152–160. Retrieved from
http://search.proquest.com/docview/502545069?accountid=14701

Mouttham, A., Peyton, L., & Kuziemsky, C. (2011). Leveraging Performance Analytics to
Improve Integration of Care (pp. 56–62). Waikiki, Honolulu,: ACM.

Mumbaikar, S., & Padiya, P. (2013). Web Services Based On SOAP and REST Principles.
International Journal of Scientific and Research Publications, 668–671.

Niblett, P., & Graham, S. (2005). Events and service-oriented architecture: The OASIS
Web Services Notification Specifications. IBM Systems Journal, 44(4), 869–886.

NoSQL. (n.d.). NOSQL Databases. Retrieved from http://nosql-database.org/

Oracle Corporation. (2015, October). GlassFish - World’s first Java EE 7 Application
Server. Retrieved from https://glassfish.java.net/

PARIS Technologies Inc. (2015, December). What is the definition of OLAP? Retrieved
from http://olap.com/olap-definition/

Peffers, K., Tuunanen, T., Rothenberger, M. A., & Chatterjee, S. (2007). A Design Science
Research Methodology for Information Systems Research. Journal of Management
Information Systems, 24:3, 45–77.

95

Perens, B. (1999). The Open Source Definition. In Open sources: voices from the open
source revolution (pp. 171–188). O’Reilly Media Inc.

Pinto, J., Dupree, W., Weygandt, S., Wolfson, M., Benjamin, S., & Steiner, M. (2010).
ADVANCES IN THE CONSOLIDATED STORM PREDICTION FOR AVIATION (CoSPA). In
Conference on Aviation, Range and Aerospace Meteorology (pp. 18–21). Atlanta,
GA,: American Meteorological Society.

Pollitt, C. (2013). The logics of performance management. Evaluation, 19(4), 346–363.

Pourshahid, A., Amyot, D. L., Peyton, L., Ghanayati, S. P., Chen, P., Weiss, M., & Forster,
A. J. (2009). Business Process Management with the User Requirements Notation.
Electronic Commerce Reserach, 9(4), 269–316.

Python Software Foundation. (2016). Welcome to Python.org. Retrieved from
https://www.python.org/

QuickForms (uOttawa). (2015a, April). uoForms/quickforms3/README.md. Retrieved
from https://github.com/uoForms/quickforms3/blob/master/README.md

QuickForms (uOttawa). (2015b, July). QuickForms Wiki. Retrieved from
https://github.com/uoForms/quickforms3/wiki

Red Hat. (2016). Drools - Drools - Business Rules Management System (JavaTM, Open
Source). Retrieved from http://www.drools.org/

Ross, M. (2008, September). Design Tip #105 Snowflakes, Outriggers, and Bridges.
Retrieved from http://www.kimballgroup.com/2008/09/design-tip-105-
snowflakes-outriggers-and-bridges/

Sun Microsystems Inc. (2002). Core J2EE Patterns - Data Access Object. Sun
Microsystems Press and Prentice Hall. Retrieved from
http://www.oracle.com/technetwork/java/dataaccessobject-138824.html

Terracotta, I. (2016). Quartz Enterprize Job Scheduler. Retrieved from
http://www.quartz-scheduler.org/

The Apache Software Foundation. (2015a). Apache Cassandra. Retrieved April 17, 2016,
from http://cassandra.apache.org/

The Apache Software Foundation. (2015b). Apache Storm. Retrieved from
http://storm.apache.org/

The Apache Software Foundation. (2016, March). Index. Retrieved from
http://activemq.apache.org/

The MathWorks, I. (2016). MATLAB. Retrieved from
http://www.mathworks.com/products/matlab/?s_tid=hp_fp_ml

96

Tulach, J. (2008). Practical api design: confessions of a java framework architect. Apress.
Retrieved from
http://common.books24x7.com.proxy.bib.uottawa.ca/toc.aspx?bookid=29020

van der Aalst, W. M. P. (2013). Business Process Management: A Comprehensive Survey.
ISRN Software Engineering, 2013, 1–37.

W3C. (2004, February). Web Services Architecture. Retrieved from
http://www.w3.org/TR/ws-arch/

W3C. (2014, October). HTML5. Retrieved from https://www.w3.org/TR/html5/

Weske, M. (2012). Business Process Management: Concepts, Languages, Architectures
(Second). Springer-Verlag.

zur Mühlen, M., & Shapiro, R. (2010). Business Process Analytics. In J. vom Brocke & M.
Rosemann (Eds.), Handbook on Business Process Management 2 (pp. 137–157).
Berlin Heidelberg,: Springer-Verlag.

	Abstract
	Acknowledgements
	Table of Contents
	List of Figures
	List of Tables
	List of Acronyms
	1 Introduction
	1.1 Problem Statement
	1.2 Thesis Motivation and Contributions
	1.3 Thesis Methodology and Organization

	2 Background
	2.1 Performance Monitoring
	2.1.1 Performance Management
	2.1.2 Real-time Analytics
	2.1.3 Predictive Analytics
	2.1.4 Event

	2.2 Business Process Management
	2.2.1 Business Process
	2.2.2 Web Service
	2.2.3 Business Process Management (BPM)

	2.3 Event Processing Technologies
	2.3.1 Message Broker
	2.3.2 Event-Driven Architecture
	2.3.3 Complex Event Processing (CEP)
	2.3.4 Notification

	2.4 On-Line Analytical Processing (OLAP)
	2.4.1 Data Access Object
	2.4.2 Business Intelligence (BI)
	2.4.3 Data Warehouse
	2.4.4 Star Schema
	2.4.5 Online Analytical Processing (OLAP)

	2.5 Rule Engine
	2.5.1 State Monitoring Engine (SME)
	2.5.2 IBM SPSS Analytical Decision Management (IBM SPSS ADM) and IBM SPSS Modeler
	2.5.3 Drools and IBM Operational Decision Manager

	2.6 Related Works
	2.6.1 Application Framework for Monitoring Care Processes (AFMCP)
	2.6.2 Big data Analysis Infrastructure Testbed (BAIT)
	2.6.3 IBM Predictive Maintenance and Quality (IBM PMQ)

	3 A Reactive Performance Monitoring Framework
	3.1 Problem Description
	3.2 Gap Analysis
	3.3 Evaluation Criteria
	3.3.1 Framework
	3.3.2 Rule Environment

	3.4 Overview of the Reactive Performance Monitoring Framework
	3.4.1 Architectural Pattern
	3.4.1.1 Critical Interfaces

	3.4.2 Methodology
	3.4.3 Rule Environment
	3.4.4 OLAP Rule Engine

	4 Case Studies
	4.1 Overview
	4.2 IBM PMQ
	4.2.1 Architecture
	4.2.2 Results

	4.3 IBM RPM
	4.3.1 Architecture
	4.3.2 Methodology
	4.3.3 Rule Environment
	4.3.4 Results

	4.4 QuickForms RPM
	4.4.1 Architecture
	4.4.2 Methodology
	4.4.3 Rule-Based Environment
	4.4.4 Results

	4.5 Rule Example 1
	4.6 Rule Example 2

	5 Evaluation
	5.1 Comparison of Frameworks
	5.2 Comparison of Rule Engines
	5.3 Limitations and Assumptions

	6 Conclusions and Future work
	6.1 Conclusions
	6.2 Future Work

	References

