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A Real-Time QRS Detection Algorithm

JIAPU PAN AND WILLIS J. TOMPKINS, SENIOR MEMBER, IEEE

Abstract-We have developed a real-time algorithm for detection of
the QRS complexes of ECG signals. It reliably recognizes QRS com-
plexes based upon digital analyses of slope, amplitude, and width. A
special digital bandpass filter reduces false detections caused by the var-
ious types of interference present in ECG signals. This filtering permits
use of low thresholds, thereby increasing detection sensitivity. The algo-
rithm automatically adjusts thresholds and parameters periodically to
adapt to such ECG changes as QRS morphology and heart rate. For
the standard 24 h MIT/BIH arrhythmia database, this algorithm cor-
rectly detects 99.3 percent of the QRS complexes.

INTRODUCTION

THERE are many uses for a reliable QRS recognition algo-
rithm. Computer interpretation of the 12-lead ECG is a

popular technique. Coronary care units now use arrhythmia
monitors extensively. Widely used Holter tape recording re-
quires a Holter scanning device that includes a QRS detector
to analyze the tapes much faster than real time. Currently
under development are arrhythmia monitors for ambulatory
patients which analyze the ECG in real time [1] -[31. When
an arrhythmia appears, such a monitor can be programmed to
immediately store an interval of the abnormal ECG for sub-
sequent transmission to a central station where a physician can
interpret it. Such a device requires a very accurate QRS recog-
nition capability. False detection results in unnecessary trans-
mission of data to the central station or requires an excessively
large memory to store any ECG segments that are unnecessarily
captured. Thus, an accurate QRS detector is an important part
of many ECG instruments.
QRS detection is difficult, not only because of the physio-

logical variability of the QRS complexes, but also because of
the various types of noise that can be present in the ECG signal.
Noise sources include muscle noise, artifacts due to electrode
motion, power-line interference, baseline wander, and T waves
with high-frequency characteristics similar to QRS complexes.
In our approach, digital filters reduce the influence of these
noise sources, and thereby improve the signal-to-noise ratio. Of
the many QRS detectors proposed in the literature, few give
serious enough attention to noise reduction.
Software QRS detectors typically include one or more of

three different types of processing steps: linear digital filtering,
nonlinear transformation, and decision rule algorithms [4]. We
use all three types. Linear processes include a bandpass filter,
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a derivative, and a moving window integrator. The nonlinear
transformation that we use is signal amplitude squaring.
Adaptive thresholds and T-wave discrimination techniques pro-
vide part of the decision rule algorithm.
The slope of the R wave is a popular signal feature used to

locate the QRS complex in many QRS detectors [5]. An
analog circuit or a real-time derivative algorithm that provides
slope information is straightforward to implement. However,
by its very nature, a derivative amplifies the undesirable higher
frequency noise components. Also, many abnormal QRS com-
plexes with large amplitudes and long durations are missed in
a purely derivative approach because of their relatively low R-
wave slopes. Thus, R-wave slope alone is insufficient for proper
QRS detection. To achieve reliable performance, we must ex-
tract other parameters from the signal such as amplitude, width,
and QRS energy [6], [7].

It is very important to evaluate a QRS detector algorithm
using a standard arrhythmia database. There are now two such
databases available: MIT/BIH [8] and AHA (American Heart
Association) [9] . The performance of an algorithm on a data-
base is not the ultimate answer as to its utility in a clinical en-
vironment, but it provides a standardized means of comparing
the basic performance of one algorithm to another.

ALGORITHM OVERVIEW

We implemented the QRS detection algorithm in assembly
language. It operates on either a Z80 (Zilog) or an NSC800
(National Semiconductor) microprocessor. All the processing
is done with integer arithmetic so that the algorithm can op-
erate in real time without requiring excessive computing power.
The database provides two simultaneous ECG channels. We
attempted two-channel analysis, but abandoned this approach.
Due to the way that the electrode positions are orthogonally
placed in Holter recording, a high-quality signal on one channel
normally implies a low-amplitude ECG with a poor signal-to-
noise ratio on the second channel. The only way that two-
channel algorithms will yield improved performance for most
patients is by adopting a new way of electrode placement that
will provide usable signals in both channels.

Fig. 1 shows signals at various steps in digital signal processing.
First, in order to attenuate noise, the signal passes through a
digital bandpass filter composed of cascaded high-pass and low-
pass filters. Fig. l(b) shows the output of this filter. The next
process after filtering is differentiation [see Fig. 1(c)] , followed
by squaring [see Fig. 1 (d)], and then moving window integra-
tion [see Fig. 1(e)]. Information about the slope of the QRS
is obtained in the derivative stage. The squaring process in-
tensifies the slope of the frequency response curve of the deriv-
ative and helps restrict false positives caused by T waves with
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Fig. 1. QRS detection algorithm processing steps for a normal ECG from
the MIT/BIH database. (a) Original signal. (b) Output of bandpass
filter. (c) Output of differentiator. (d) Output of squaring process.
(e) Results of moving-window integration. (f) Original ECG signal
delayed by the total processing time. (g) Output pulse stream.

higher than usual spectral energies. The moving window inte-
grator produces a signal that includes information about both
the slope and the width of the QRS complex. Fig. 1(f) is the
same as the original ECG in Fig. 1(a) except delayed by the
total processing time of the detection algorithm. Fig. l(g)
shows the final output stream of pulses marking the locations
of the QRS complexes after application of the adaptive
thresholds.

Fig. 2 illustrates a set of signals similar to those in Fig. 1 for
a noise-contaminated ECG in the database. The algorithm is
able to correctly detect QRS complexes in the presence of the
severe noise typical of the ambulatory ECG environment. We
based all judgments of correctness upon the annotations in the
database. Each annotation on the location and morphology
of a beat was determined by arbitration between two cardiol-
ogists who had to be in agreement on all beats in order for an

ECG data segment to be placed in the database.
The algorithm is divided into three processes: learning phase

1, learning phase 2, and detection. Learning phase 1 requires
about 2 s to initialize detection thresholds based upon signal and
noise peaks detected during the learning process. Learning
phase 2 requires two heartbeats to initialize RR -interval average
and RR-interval limit values. The subsequent detection phase
does the recognition process and produces a pulse for each QRS
complex. The thresholds and other parameters of the algorithm
are adjusted periodically to adapt to changing characteristics
of the signal.
We use two sets of thresholds to detect QRS complexes. One

set thresholds the filtered ECG, and the other thresholds the
signal produced by moving window integration. By using thresh-
olds on both signals, we improve the reliability of detection
compared to using one waveform alone. Preprocessing the

(a)

(b)

(c)

(d)

(e)

Fig. 2. QRS detection algorithm processing steps for a noise-contam-
inated ECG from the MIT/BIH database. (a) Original signal. (b) Out-
put of bandpass filter. (c) Results of moving-window integration.
(d) Original ECG signal delayed by the total processing tine. (e)
Output pulse stream.

ECG with this digital bandpass filter improves the signal-to-
noise ratio and permits the use of lower thresholds than would
be possible on the unfiltered ECG. This increases the overall
detection sensitivity. The detection thresholds float over the
noise that is sensed by the algorithm. This approach reduces
the number of false positives caused by types of noise that
mimic the characteristics of the QRS complex.
The algorithm uses a dual-threshold technique to find missed

beats, and thereby reduce false negatives. There are two sepa-
rate threshold levels in each of the two sets of thresholds. One
level is half of the other. The thresholds continuously adapt
to the characteristics of the signal since they are based upon
the most-recent signal and noise peaks that are detected in the
ongoing processed signals. If the program does not find a QRS
complex in the time interval corresponding to 166 percent of
the current average RR interval, the maximal peak detected in
that time interval that lies between these two thresholds is con-
sidered to be a possible QRS complex, and the lower of the
two thresholds is applied. In this way, we avoid requiring a
long memory buffer for storing the past history of the ECG,
and thus require minimal computing time to accomplish the
search-back procedure to look for a missing QRS complex.
Unfortunately, the dual-threshold technique is only useful

if the heart rate is regular. In abnormalities such as bigeminy
or trigeminy, we cannot find the missed beat by searching back
through the same time interval as for regular heart rates. For
the case of irregular heart rates, both thresholds are reduced
by half in order to increase the sensitivity of detection and to
avoid missing valid beats.
Once a valid QRS complex is recognized, there is a 200 ms

refractory period before the next one can be detected since
QRS complexes cannot occur more closely than this physio-
logically. This refractory period eliminates the possiblity of a
false detection such as multiple triggering on the same QRS
complex during this time interval. When a QRS detection

231

Authorized licensed use limited to: Oxford University Libraries. Downloaded on November 20, 2009 at 07:45 from IEEE Xplore.  Restrictions apply. 



IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, VOL. BME-32, NO. 3, MARCH 1985

occurs following the end of the refractory period but within
360 ms of the previous complex, we must determine if it is a
valid QRS complex or a T wave. In this case, we judge the
waveform with the largest slope to be the QRS complex.
To be reliable, a QRS detection algorithm must adapt each

of its parameters with time so as to be able to operate properly
for ECG's of different patients as well as for ECG morphology
changes in a single patient. In our algorithm, each threshold
automatically adapts periodically based upon peak values of
signal and noise. When a QRS must be found using second
(lower) thresholds, threshold readjustment occurs twice as fast
as usual. In the dual-threshold technique, theRR-interval aver-
age must be updated for each heartbeat.
Two separate measurements of the average RR interval are

maintained. One RR-interval average is the mean of all of the
most recent eight RR intervals. A second RR -interval average
is the mean of the most recent eight beats that fell within the
range of 92-116 percent of the current RR-interval average.
Without this first average, this approach would be suitable only
for a slowly changing and regular heart rate. When the heart rate
suddenly changes, the first RR-interval average substitutes for
the second one. The algorithm adapts rapidly to a changing
signal. It can even adapt rapidly when switching from one
patient's ECG to another without requiring special learning
phases.

METHODS
An analog filter bandlimits the ECG signal at 50 Hz. An ana-

log-to-digital converter (ADC) samples the ECG at a rate of 200
samples/s. The resulting digital signal passes successively
through a sequence of processing steps that includes three
linear digital filters implemented in software. First is an integer-
coefficient bandpass filter composed of cascaded low-pass and
high-pass filters. Its function is noise rejection. Next is a filter
that approximates a derivative. After an amplitude squaring
process, the signal passes through a moving-window integrator.
Adaptive thresholds then discriminate the locations of the QRS
complexes.

Bandpass Filter
The bandpass filter reduces the influence of muscle noise,

60 Hz interference, baseline wander, and T-wave interference.
The desirable passband to maximize the QRS energy is approx-
imately 5-15 Hz [10], (111. Our filter is a fast, real-time re-
cursive filter in which poles are located to cancel zeros on the
unit circle of the z plane [12] . This approach results in a filter
design with integer coefficients. Since only integer arithmetic
is necessary, a real-time filter can be implemented with a simple
microprocessor and still have available computing power left
to do the QRS recognition task.
This class of filters having poles and zeros only on the unit

circle permits limited passband design flexibility. For our
chosen sample rate, we could not design a bandpass filter di-
rectly for the desired passband of 5-15 Hz using this specialized
design technique. Therefore, we cascaded the low-pass and
high-pass filters described below to achieve a 3 dB passband
from about 5-12 Hz, reasonably close to the design goal. Fig. 3
shows the overall frequency response.

Frequency (Hz)

.L;

(r)

L

ELE4

Fig. 3. Amplitude response of the digital bandpass
dB) is 5-11 Hz.

Low-Pass Filter
The transfer function of the second-order low-pass filter is

(1 - 62

H(Z)= (I z 1)2 .
The amplitude response is

sin2 (3oT)HwT =sin2 (wTI2)

(3

(1)

(2)

where T is the sampling period. The difference equation of
the filter is

y(nT) = 2y(nT - T) - y(nT - 2 T) + x(nT)

- 2x(nT- 6T)+x(nT- 12T) (3)
where the cutoff frequency is about 11 Hz and the gain is 36.
The filter processing delay is six samples.

High-Pass Filter
The design of the high-pass filter is based on subtracting the

output of a first-order low-pass filter from an all-pass filter (i.e.,
the samples in the original signal). The transfer function for
such a high-pass filter is

H(z) = (1+z1))

The amplitude response is

|H(wT)I = [256 + sin2 (16cT)] 1/2
cos (wT/2)

The difference equation is

y(nT) = 32x(nT - 16 T) - [y(nT - T)
+ x(nT) - x(nT - 32 T)] .

(4)

(5)

(6)

The low cutoff frequency of this filter is about 5 Hz, the gain
is 32, and the delay is 16 samples.

Derivative
After filtering, the signal is differentiated to provide the QRS-

complex slope information. We use a five-point derivative with
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the transfer function

H(z) (l/8 T) (-z-2 - 2z- + 2z' + Z2)

The amplitude response is

|H(wT)j = (1/4T) [sin (2coT) + 2 sin (cwT)].
The difference equation is [7]

y(nT) = (1/8 T) [-x(nT - 2 T) - 2x(nT - T)

Frequency (Hz)

(7)
LI

aU-

~L

(8 ) 1:J

,,

L

+ 2x(nT + T) +x(nT+ 2T)]. (9)

Fig. 4 shows that the frequency response of this derivative is
nearly linear between dc and 30 Hz (i.e., it approximates an
ideal derivative over this range). Its delay is two samples.

Squaring Function
After differentiation, the signal is squared point by point.

The equation of this operation is

1.
I

D
-0

--I

E

V

Fig. 4. Amplitude response of the digital derivative filter.

y(nT)= [x(nT)]2.
This makes all data points positive and does nonlinear amplifi-
cation of the output of the derivative emphasizing the higher
frequencies (i.e., predominantly the ECG frequencies).

Moving-Window Integration

The purpose of moving-window integration is to obtain wave-
form feature information in addition to the slope of the R wave.

It is calculated from

y(nT) = (1/N) [x(nT- (N - 1) T) +x(nT- (N - 2) T)

(W-QS)

Fig. 5. The relationship of a QRS complex to the moving integration
waveform. (a) ECG signal. (b) Output of moving-window integrator.
QS: QRS width. W: width of the integrator window.

(11)

where N is the number of samples in the width of the integra-
tion window.

Fig. 5 shows the relationship between the moving-window
integration waveform and the QRS complex. The number of
samples N in the moving window is important. Generally, the
width of the window should be approximately the same as the
widest possible QRS complex. If the window is too wide, the
integration waveform will merge the -QRS and T complexes
together. If it is too narrow, some QRS complexes will produce
several peaks in the integration waveform. These can cause dif-
ficulty in subsequent QRS detection processes. The width of
the window is determined empirically. For our sample rate
of 200 samples/s, the window is 30 samples wide (150 ms).

Fiducial Mark

The QRS complex corresponds to the rising edge of the inte-
gration waveform. The time duration of the rising edge is equal
to the width of the QRS complex. A fiducial mark for the
temporal location of the QRS complex can be determined from
this rising edge according to the desired waveform feature to
be marked such as the maximal slope or the peak oftheR wave.

Adjusting the Thresholds

The thresholds are automatically adjusted to float over the
noise. Low thresholds are possible because of the improve-
ment of the signal-to-noise ratio by the bandpass filter.

The higher of the two thresholds in each of the two sets is

used for the first analysis of the signal. The lower threshold
is used if no QRS is detected in a certain time interval so that
a search-back technique is necessary to look back in time for
the QRS complex. The set of thresholds initially applied to
the integration waveform is computed from

SPKI = 0.125 PEAKI + 0.875 SPKI

(if PEAKI is the signal peak)

NPKI = 0.125 PEAKI + 0.875 NPKI

(if PEAKI is the noise peak)

THRESHOLD Il = NPKI + 0.25 (SPKI - NPKI)

THRESHOLD I2 = 0.5 THRESHOLD Il

where all the variables refer to the integration waveform:

PEAKI is the overall peak,
SPKI is the running estimate of the signal peak,
NPKI is the running estimate of the noise peak,
THRESHOLD Il is the first threshold applied, and
THRESHOLD 12 is the second threshold applied.

(12)

(13)

(14)

(15)

A peak is a local maximum determined by observing when the
signal changes direction within a predefined time interval. The
signal peak SPKI is a peak that the algorithm has already estab-
lished to be a QRS complex. The noise peak NPKI is any peak

(10)
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that is not related to the QRS (e.g., the Twave). The thresh-
olds are based upon running estimates of SPKI and NPKI. That
is, new values of these variables are computed in part from their
prior values. When a new peak is detected, it must first be
classified as a noise peak or a signal peak. To be a signal peak,
the peak must exceed THRESHOLD I1 as the signal is first
analyzed or THRESHOLD 12 if searchback is required to find
the QRS. When the QRS complex is found using the second
threshold-,

SPKI = 0.25 PEAKI + 0.75 SPKI. (16)

The set of thresholds applied to the filtered ECG is determined
from

SPKF = 0.125 PEAKF + 0.875 SPKF

(if PEAKF is the signal peak)

NPKF = 0.125 PEAKF + 0.875 NPKF

(if PEAKF is the noise peak)

THRESHOLD F1 = NPKF + 0.25 (SPKF - NPKF)

THRESHOLD F2 = 0.5 THRESHOLD Fl

where all the variables refer to the filtered ECG:

PEAKF is the overall peak,
SPKF is the running estimate of the signal peak,
NPKF is the running estimate of the noise peak,
THRESHOLD Fl is the first threshold applied, and
THRESHOLD F2 is the second threshold applied.

(17)

(18)

(19)

(20)

When the QRS complex is found using the second threshold,

SPKF = 0.25 PEAKF + 0.75 SPKF. (21)

For irregular heart rates, the first threshold of each set is re-

duced by half so as to increase the detection sensitivity and to
avoid missing beats:

THRESHOLDII v- 0.5 THRESHOLD II (22)

THRESHOLD Fl 0.5 THRESHOLD Fl. (23)

To be identified as a QRS complex, a peak must be recognized
as such a complex in both the integration and bandpass-filtered
waveforms.

Adjusting the Average RR Interval and Rate Limits

Two RR-interval averages are maintained. One is the average

of the eight most-recent beats. The other is the average of the
eight most-recent beats having RR intervals that fall within cer-

tain limits. The reason for maintaining these two separate aver-

ages is to be able to adapt to quickly changing or irregular heart
rates. The first average is the mean of the eight most-recent
sequential RR intervals regardless of their values.

RR AVERAGE1 = 0.125 (RRIn-I7 +RRIn-6 + -+RRn)

(24)
where RR n is the most-recent RR interval.
The second average is based on selected beats.

RR AVERAGE2 = 0.125 (RR'_7 + RR'?6 + * * - + RR')
(25)

where RR' is the most recent RR interval that fell between
the acceptable low and high RR -interval limits. The RR-inter-
val limits are

RR LOW LIMIT = 92% RR AVERAGE2

RR HIGH LIMIT = 116% RR AVERAGE2.

RR MISSED LIMIT = 166%RR AVERAGE2

(26)

(27)

(28)

If a QRS complex is not found during the interval specified
by the RR MISSED LIMIT, the maximal peak reserved between
the -two established thresholds is considered to be a QRS
candidate.

If each of the eight most-recent sequential RR intervals that
are calculated from RR AVERAGE1 is between the RR LOW
LIMIT and the RR HIGH LIMIT, we interpret the heart rate
to be regular for these eight heart beats and

(29)RR AVERAGE2>-RR AVERAGE1.

This is the case for normal sinus rhythm.

T-Wave Identification
When an RI interval is less than 360 ms (it must be greater

than the 200 ms latency), a judgment is made to determine
whether the current QRS complex has been correctly identified
or whether it is really a T wave. If the maximal slope that
occurs during this waveform is less than half that of the QRS
waveform that preceded it, it is identified to be a Twave; other-
wise, it is called a QRS complex.

EVALUATION

We used the MIT/BIH arrhythmia database to evaluate the
QRS detection algorithm [8]. The database consists of 48
half-hour recordings for a total of 24 h of ECG data. The data-
base is on four-channel FM magnetic tape. Channels I and 2
are the two-channel ECG signals. Channel 3 is an annotation
channel recorded in a standard binary format, and channel 4
is a binary-recorded timing track.

Fig. 6 shows the experimental setup for evaluation of the
QRS algorithm. It includes two four-channel FM tape re-
corders, two Z80-based laboratory microcomputer systems, a
dc amplifier, and a nonfade oscilloscope.

Using the QRS detection algorithm, one of the microcom-
puter systems samples and analyzes the database ECG played
back from one of the FM recorders. If it detects a QRS com-
plex, it generates a pulse. Simultaneously, the second micro-
computer monitors the encoded beat annotation channel of
the recorder and generates a pulse coincident with the fiducial
mark annotated in the database.
A second four-channel FM tape recorder records the original

ECG waveform being analyzed on one channel and the pulses
from each of the microcomputer systems on two other chan-
nels. All of these signals appear on a nonfade display oscillo-
scope or a chart recorder for further visual evaluation.
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Fig. 6. Experimental setup for evaluating the QRS detection algorithm
using the MIT/BIH database. 1: ECG signal from MIT/BIH database
channel 1. 2: Binary annotation from MIT/BIH database channel 3.
3: Sampled and reconstructed ECG signal. 4: Pulse generated by detec-
tion algorithm. 5: Pulse obtained from annotation track fiducial mark.

TABLE I
RESULTS OF EVALUATING THE REAL-TIME QRS DETECTION ALGORITHM

USING THE MIT/BIH DATABASE

Total Failed Failed
Tape (No. FP FN Detection Detection
(No.) Beats) (Beats) (Beats) (Beats) (%)

2273
1865
2187
2084
2230
2572
2027
2137
1763
2532
2124
2539
1795
1879
1953
2412
1535
2275
1987
1863
2476
1518
1619
2601
1963
2136
2982
2656
1862
2956
3004
2647
2748
3251
2262
3363
2208
2154
2048
2427
2484
2605
2053
2256
1886
1780
3079
2753

116 137

0 0 0

5 3 8
0 0 0

0 0 0

1 0 1

67 22 89
5 2 7
0 2 2

199 22 221
0 1 1
1 0 1
0 1 1
0 0 0

3 17 20
0 0 0

3 22 25
1 1 2
1 0 1
1 0 1
4 7 11
1 1 2
0 0 0

0 0 0

6 3 9
0 10 10
0 4 4

53 30 83
0 2 2
4 4 8
4 14 18
3 0 3
2 8 10
0 0 0

1 2 3
2 4 6
0 1. 1
4 6 10
0 0 0

0 0 0

2 0 0
101 81 182

1 0 1
25 5 30
1 0 1
0 0 0

6 1 7
0 1 1
O- 0 0

507 277 784

0

0.43
0

0

0.04
3.46
0.05
0.09

12.54
0.04
0.05
0.04
0

1.06
0

1.04
0.13
0.04
0.05
0.59
0.08
0

0

0.35
0.51
0.19
2.78
0.08
0.43
0.60
0.10
0.38
0

0.09
0.26
0.03
0.45
0

0

0.08
7.33
0.04
1.46
0.04
0

0.39
0.03
0

0.675

The maximal amplitude of the ECG from the FM recorder is
less than +1 V, so a dc amplifier amplifies the signal by a gain
of 2.5 to ensure that the signal uses the full range of the A/D
converter (the input voltage range is ±2.5 V).
The 24 h MIT/BIH database contains more than 116 000

beats. Table I summarizes the performance of our algorithm
for this database. It produced 507 false positive beats (0.437
percent) and 277 false negative beats (0.239 percent) for a total
detection failure of 0.675 percent.
The problem tapes are characterized, in general, by stretches

of noise, baseline shifts, and artifacts. Tape 108 has unusually
tall, peaked P waves quite uncharacteristic in morphology of
typical P waves. Particularly at the beginning and end of this
tape, these P waves are classified as QRS complexes because of
their high slopes. This leads to a high false positive count on
this tape. Tape 222 also has some non-QRS waves with highly
unusual morphologies that lead to false positives. A false posi-
tive detection for one of these bizarre waveshapes can some-
times lead to a false negative on the following QRS complex
because the algorithm includes a latency time from the time a
QRS is detected to the next permitted detection.

SUMMARY
We have developed an on-line real-time QRS detection algo-

rithm and implemented it in Z80 assembly language. This
algorithm reliably detects QRS complexes using slope, ampli-
tude, and width information. A bandpass filter preprocesses
the signal to reduce interference, permitting the use of low-
amplitude thresholds in order to get high detection sensitivity.
In the algorithm, we use a dual-thresholds technique and search-
back for missed beats.
The algorithm periodically adapts each threshold and RR in-

terval limit automatically. This adaptive approach provides
for accurate use on ECG signals having many diverse signal char-
acteristics, QRS morphologies, and heart rate changes. In evalu-
ations using the MIT/BIH arrhythmia database, the algorithm
failed to properly detect only 0.675 percent of the beats.
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