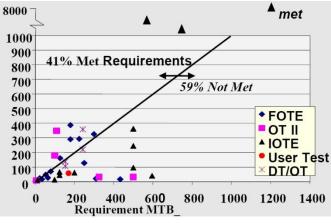
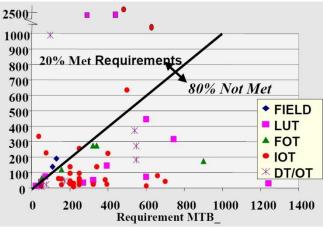
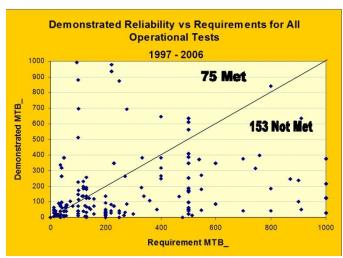


A Recommendation for Specifying Better DoD System Reliability Requirements

David Nicholls, CRE, Reliability Information Analysis Center (RIAC) Quanterion Solutions Incorporated


15th Annual Systems Engineering Conference 22-25 October 2012 San Diego, CA




A DTIC sponsored Information Analysis Center operated by a team led by Wyle Laboratories

Outline

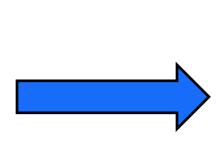
- Introduction
- Establishing System Design Reliability Requirements (Hypothetical Example):
 - How Good Operational Reliability Requirements Turn Into Bad System Reliability Requirements
 - How to Translate Good Operational Reliability Requirements into Good System Reliability Requirements
- Standardizing the Process
- Conclusions
- Contact Information

<u>1985-1990</u>

- Demonstrated Reliability vs. Requirements for Operational Tests (DoD RAM Guide)
- Program: MIL-STD-785B

<u>1996-2000</u>

- Demonstrated Reliability vs. Requirements for Operational Tests (DoD RAM Guide)
- Program: MIL-STD-785B (canceled in 1998)
- Commercial Standards IEEE 1332 (1998) and SAE JA1000 (1999)?


<u> 1997-2006</u>

- Demonstrated Reliability vs. Requirements for Operational Tests (Army Systems Only)
- MIL-STD-785B (canceled in 1998)
- Use of IEEE 1332 and SAE JA1000?

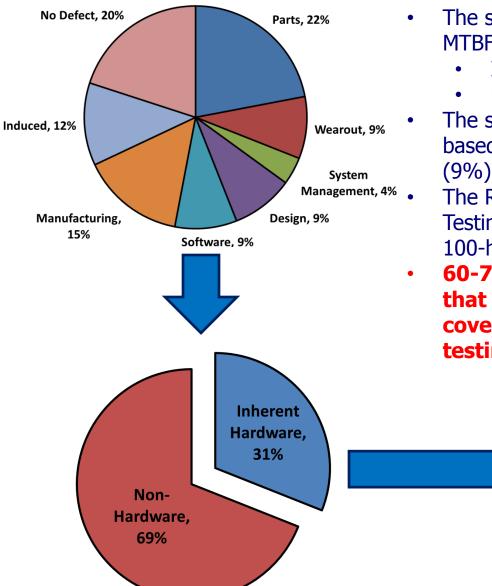
Introduction

- The Warfighter Has Critical Operational Reliability Needs
 - "Does Not Care" What Caused a Mission Failure:

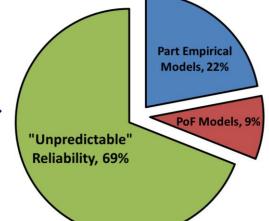
- Inherent hardware (wearout)
- Hardware quality (random part quality/variability, manufacturing workmanship)
- Inherent software
- Induced (maintenance or operator)
- No defect found/cannot duplicate
- Inadequate design (e.g., inadequate margins, tolerance stack-up, sneak paths)
- System management (e.g., requirements issues, insufficient resources)

Introduction

- Failure of DoD Systems to Meet Operational Test and Evaluation (OT&E) Reliability Requirements is Typically Focused on Differences Between Predicted and Observed Reliability
 - Historically blamed on prediction methods
- Objective Analysis Finds Criticism is Misplaced
 - RIAC study of fielded DoD electronic systems (covering ~200 different systems on 9 different fighter/cargo/bomber platforms):
 - 22% of system failures due to random part failures
 - 9% due to wearout
 - 69% due to non-inherent or non-hardware (software) causes
- Debate has Diverted Attention from the Likely Root Cause: Designing to "Bad" System Reliability Requirements
- A More Realistic Process is Needed to Develop Contractual System Reliability Requirements for DoD Systems


Establishing Reliability Requirements

- Needs of the Warfighter (Hypothetical Example)
 - Warfighter desires an operational MTBF of 100 hours
 - Example basic assumptions ("perfect world"):
 - The operational reliability requirement is realistic and feasible
 - The Warfighter is only concerned that the mission fails, regardless of root cause
 - Any reliability growth planned prior to OT&E is sufficient to ensure compliance with the operational requirement during OT&E
 - If the 100-hour requirement is met in OT&E, then the system is considered compliant


Establishing Reliability Requirements

- Translating Warfighter Needs to Requirements (Hypothetical Contract Language)
 - "...achieve a series configuration MTBF of 100 hours..."
 - "Comparative analyses shall be performed...using field results, similar equipment history, laboratory test data, physics-of-failure (PoF) analysis, data from reliability handbooks (i.e., MIL-HDBK-217, NPRD-2011, etc.), and/or best engineering judgment supported by technical rationale."
- The Systems Engineering Design Approach Taken to Meet Contract Requirements:
 - Use of robust Design for Reliability (DFR) processes
 - Complementary use of empirical and PoF methods
 - Aggressive reliability growth planning and tracking
 - Demonstration of system reliability

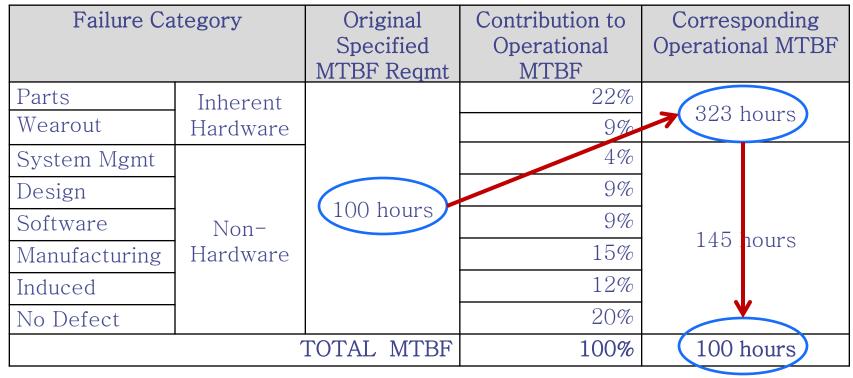
How Good Requirements Go Bad

- The system is designed to meet the 100-hour MTBF requirement based on:
 - Inherent hardware design
 - Maybe software design is also considered
 - The system reliability prediction of 100 hours is based on empirical models (22%), PoF techniques (9%) and maybe software reliability models (9%) The Reliability Growth Planning Curve (RGC) and Testing (RGT) and RDT/RQT are all based on the 100-hour requirement
- 60-70% of potential root failure causes that impact operational MTBF will not be covered by reliability design, analyses and testing

How Good Requirements Go Bad

 Based on a Robust System Design Approach Using DFR Processes and Reliability Growth Planning/Tracking to Meet the 100-Hour MTBF Requirement...

Failure Category		Original Specified MTBF Reqmt	Contribution to Operational Reliability	Corresponding Operational MTBF
Parts	Inherent Hardware	100 hours	22%	
Wearout			9%	100 hours
System Mgmt	Non- Hardware	N/A	4%	
Design			9%	
Software			9%	
Manufacturin			15%	45 hours
g				
Induced			12%	↓
No Defect			20%	
TOTAL MTBF			100%	31 hours


...the Warfighter Will Only "See" a 31-Hour MTBF

How Good Requirements Go Bad

- Impact of the "Bad" Design Requirement:
 - The Warfighter operational reliability requirement of 100-Hours *is not met*
 - A Reliability Growth Curve (RGC) based on the 100-hour goal will be optimistic
 - Risk of insufficient reliability growth/test time
 - Minimum acceptable MTBF for reliability demonstration/qualification test (RDT/RQT) based on a 100-hour requirement will be optimistic
 - Risk of not passing the test

How to Keep Requirements "Good"

Based on a System Design Using the Same Rigorous DFR Processes and Reliability Growth Planning, What Should the Specified Requirement Have Been?

The Warfighter Will "See" a 100-Hour MTBF

How to Keep Requirements "Good"

- Impact of the "Good" Design Requirement:
 - The Warfighter operational reliability requirement of 100-hours <u>is met</u> by the system design
 - Requires the system inherent reliability design MTBF to be 343 hours
 - This is <u>not</u> gold plating of the inherent hardware design
 - If the FD/SC is based only on the inherent hardware design, then that same FD/SC would serve as the basis for RGC/RGT
 - If the FD/SC includes all other non-HW factors (145hour MTBF from Slide 11), then the RGC/RGT and RDT/RQT approaches would be appropriately tailored

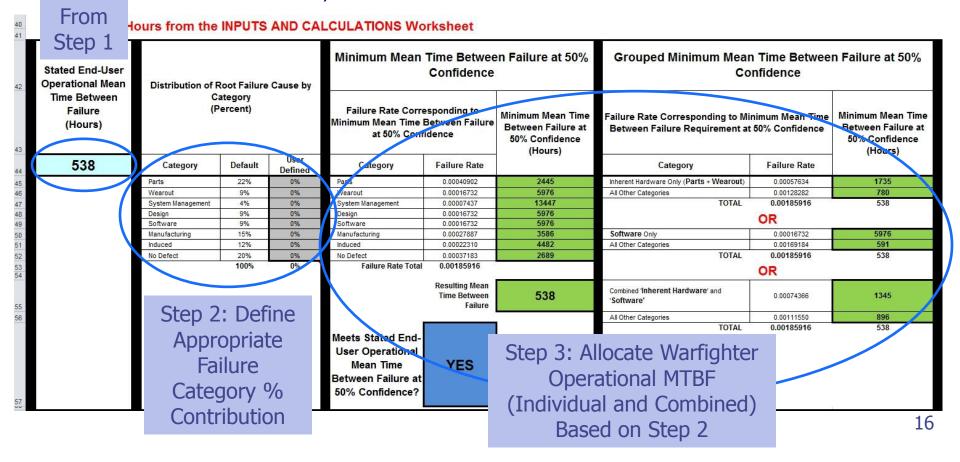
- Several Factors Can Influence How "Bad" the Design Reliability Requirements Can Become:
 - Differences in contractual language (HW-only, HW+SW, SW-only)
 - Differences in percent contribution of the eight defined failure categories, influenced by:
 - Different types of equipment
 - Different classes of users
 - Different FD/SC criteria used (initially and as they evolve)
 - Different maintenance skill levels
- A Standardized Process is Needed to Better Specify System Reliability Requirements That Meet Operational Reliability Needs

1. Understand Warfighter Operational Reliability Needs Serves as the basis for quantifying a reliability requirement that considers all eight failure contribution categories (HW and non-HW)

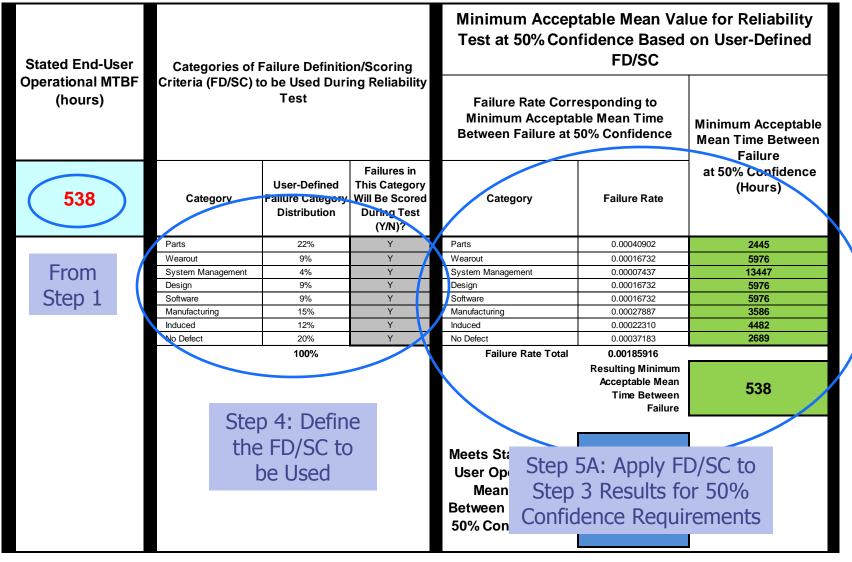
2. Assign Appropriate % Contribution of the Eight Failure Categories

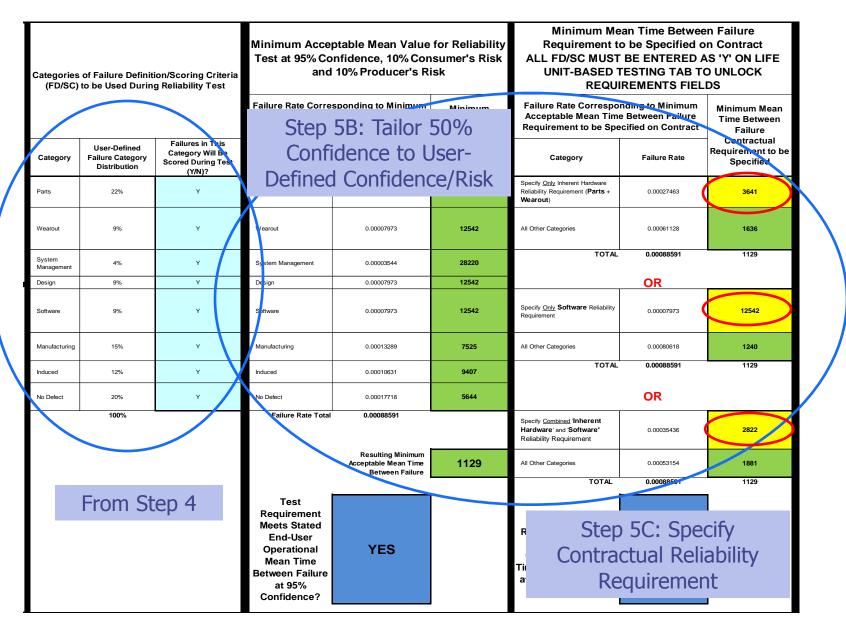
- a. Obtain/use existing contribution from previous system, or
- b. Obtain/use existing contribution from similar system, or
- c. Use "informed" engineering judgment
- d. Use default values from RIAC Study

3. Apply % Contribution to Warfighter Operational Reliability Needs


•

Results in individual (or combined) quantified reliability requirement for each of the eight failure contribution categories (from Slide 11) based on operational reliability needs




- Use the FD/SC for OT&E as the basis for specifying contractual reliability requirements. If unknown, assume that all eight failure categories (and corresponding percent contributions) will be covered by the FD/SC.
- The combination of Steps 3 & 4 defines what categories and corresponding reliability should be specified
 - If only inherent hardware reliability requirements are to be designed to, then the "Inherent Hardware Reliability" value should be contractually specified
 - If both inherent hardware and software reliability requirements are to be designed to, then those values (individually or combined) should be contractually specified
- Requiring root failure cause data collection, analysis and categorization into the eight failure contribution areas provides a means for:
 - Verifying accuracy of the process used to determine the contractual reliability needs on the current program
 - Provides data to support the development of reliability requirements for future acquisitions

- RIAC Spreadsheet Excerpt (different from example):
 - Step 1 (Understand Warfighter Operational Reliability Needs) performed in earlier Worksheets (Based on DoD RAM-C Guide Process)

C. Based On Hours from the INPUTS AND CALCULATIONS Worksheet

Standardizing the Process & Recommendations

Step 6: Place Data Requirements on Contract

- Contractually Impose Requirements for Collection/ Analysis of Data & Classification of Failures Based on Standardized "Failure Cause" Definitions
- Ensure Government Access to Appropriate Details of Data Generated Over the System Life Cycle, <u>Down to</u> <u>Root Failure Cause</u>, if Possible
- Recommendations the DoD should:
 - Gain a Better Understanding of All Eight Root Failure Cause Categories Through Data Collection/Analysis
 - Gain a Better Understanding of Current Prediction Methodology Benefits/Limitations & How They Relate to Failure Categories
 - Support Development of System Reliability Assessment Methods That Address All Hardware & Non-Hardware Failure Categories

Conclusions

- The Root Cause of Systems Not Meeting Operational Reliability Requirements (and the Differences Between Predicted and Observed MTBF) is:
 - "Good" operational reliability requirements that are translated to "bad" specified system design reliability requirements
- A Formal Process was Presented that Allocates Contractual Reliability Requirements Based on Eight "Real World" Failure Categories that Impact Operational Reliability
- Recommendations were Provided to Improve the DoD Acquisition Process for Reliable Systems

Contact Information

 David Nicholls, CRE Reliability Information Analysis Center (RIAC) Quanterion Solutions Incorporated 100 Seymour Rd, Suite C101 Utica, NY 13502-1311 Ph: 315.351.4202 Fax: 315.351.4209 Email: dnicholls@theRIAC.org