
A Reconstructing Android User Behavior
Approach Based on YAFFS2 and SQLite

Ming Xu*

College of Computer, Hangzhou Dianzi University, Hangzhou, China
Email: mxu@hdu.edu.cn

Jun Yao, Yizhi Ren, Jian Xu, Haiping Zhang, Ning Zheng, Shiyue Ling

College of Computer, Hangzhou Dianzi University, Hangzhou, China
Email: { renyz, jian.xu, zhanghp, nzheng }@hdu.edu.cn

Abstract—Nowadays, a variety of Android user behavior
information is automatically stored in SQLite to indicate
when and what user behavior took places. In this paper, an
approach to reconstruct Android user behavior from
YAFFS2 based on SQLite is proposed. Based on the storage
mechanism of YAFFS2 file system and the file structures of
SQLite, all of the SQLite records can be recovered from the
Android image, regardless of whether the SQLite file has
been deleted or not in YAFFS2, and the user behaviors are
parsed from those recovered SQLite records; then an
Android user behavior timeline is constructed for
visualizing based on the time stamp stored in it’s SQLite
records. The evaluated experiment results show that the
proposed method can reconstruct user behavior correctly,
and can obtain more user behaviors than Encase to help
investigators to complete digital forensic.

Index Terms—Digital forensics, Android, YAFFS2, SQLite,
User behavior

I. INTRODUCTION

With the growth in functionality and market share of
Android smart phone, increasing numbers of people use
them for day to day activities. In criminal cases, Android
smart phones often contain relevant communication
information about the user, incriminating images, videos
or documents transferred from PC. In this paper, we
define the most common daily events those take place in
Android as user behavior, such as sending or receiving an
SMS or phone call, adding a contact, etc. And a large
amount of user behavior is stored in the SQLite database.
In the paper, we only consider the user behavior that
stored in SQLite. Different Android phones have
different file systems based on their versions and
manufacturers. There are still many devices that are
running a lower version than Gingerbread (Android 2.3)
in use, the official file system of this kind of Android
smart-phone is YAFFS2. Therefore, it is significant to
handle such devices that are using YAFFS2. A lot of
forensic methods are developed to recover and analyze
data from Android smart phone. But those existing
forensic investigation methods performed poorly in
collecting data selectively and automatically for user
behavior, mainly reflecting in costing long time at the
collection of data and further prolonging the period of

analysis of data. Investigators need to select and analyze
data to reconstruct useful user behavior from large
number of data. It seriously affects the investigator’s
work. Besides, since the capacity of storage media gets
higher and user behavior become more diversified, such a
phenomenon become gradually worsen.

This paper proposes a method to reconstruct Android
user behavior based on YAFF2 and SQLite, and construct
a user behavior timeline. Unlike the existing investigation
methods, the proposed method can reconstruct user
behavior correctly, based on events which consist of the
behaviors users had done at a specific time. Besides, we
developed a visualized tool to display user behavior,
making the forensic investigation more convenient.

This paper is structured as follows: Section2 introduces
some related work; the forensic-friendly specifics of
SQLite and YAFFS2 are presented briefly in Section3; In
Section4, we propose a method of reconstructing user
behavior from YAFFS2 and constructing the user
behavior timeline; Section5 implements an Android
smart-phone forensics system and Section6 describes the
evaluated experiment. The paper ends up with the
discussion of the future works and conclusions (Section7).

II. RELATED WORK

Although there are some previous researches were
recovering and analyzing user data from Android smart-
phone, they are still insufficient in recovering or
visualizing user data. This section will discuss the
existing researches about recovering and visualizing user
data from Android.

A study conducted by Ming Xu [1] attempted to
recover files, reconstruct file system and recover their
previous history versions trace from YAFFS2 based on
metadata. For recovering all files based on metadata,
even damaged files can be recovered. However, some
information stored in the damaged file cannot to be
obtained, and investigators need to select useful file from
large number of file.

Another method to recover history records for SQLite
database was suggested by Beibei Wu [2]. While the
objective of deleted SQLite file recovery is on the line of
Ming Xu’s work. In this paper, an algorithm based on
rollback journal and metadata to recover deleted SQLite

2294 JOURNAL OF COMPUTERS, VOL. 9, NO. 10, OCTOBER 2014

© 2014 ACADEMY PUBLISHER
doi:10.4304/jcp.9.10.2294-2302

file was proposed. However, the information stored in the
damaged SQLite database file still cannot to be obtained.

A tool called ‘ADEL’ (Android Data Extractor Lite)
was designed by Michael Spreitzenbarth [3]. It can
automatically dump predefined SQLite database files
from Android devices and extract the contents stored in
the dumped database. However, the tool can only obtain
the data contained in Android devices and it cannot
recover the deleted records of SQLite database files.

Another tool called ‘DFRC USER BEHAVIOUR
ANALYZER’ was developed by Namheun Son [4]. It
collects events from computer and smart-phone to
analyze users’ behavior patterns. This tool does not
provide a method to recover data, it is used to analyze the
data that already recovered and it only supports iOS of
iPhone.

Several commercial forensic tools have been
developed for mobile phones, including Oxygen Forensic
Suite [5], EnCase [6] and MOBILedit! [7]. Additionally,
hardware solutions for forensic analysis such as XRY [8]
are available. The tool implemented by us in this paper
doesn’t provide all the functions of those existing tools.
This paper aims to reconstruct user behavior correctly
from YAFFS2 and visualize its timeline for the
convenience of investigators to complete digital forensic.

This paper depicts the specifics of storage mechanism
of YAFFS2 and internal structure of SQLite on NAND
flash, and proposes a method to reconstruct user
behaviors from YAFFS2. Meanwhile a timeline tool,
which can reconstruct user behavior correctly and
completely, is designed to visualize user behavior data for
investigators.

III. SPECIFICS OF YAFFS2 AND SQLITE

A. YAFFS2
For smart phones, hard disks are too large in size, too

fragile and too high in power consumption to utilize in
reality. In contrast, flash memory provides fast read
access time and better kinetic shock resistance than hard
disk. There are two fundamentally different types of flash
memory: NOR (Not-OR) and NAND (Not-AND), where
NOR is bit-addressable, and NAND is block addressable
[9]. NOR memory can be used like RAM, with every
single bits being addressed and applications can run
directly from it. NOR is low density, offers slow writes
and fast reads. NAND cannot address individual bit, and
must access blocks of memory through a controller
(Myers, 2008) [10]. Nevertheless, NAND is low cost,
high density and offers fast writes and slow reads [11].
Android (version lower than 2.3) mobile phone’s internal
memory is a NAND flash chip using YAFFS2 file system
to manage data.

NAND flash memory contains three logical structures:
flash erasable zone, flash block and flash page. The flash
erasable zone is the unit of managing bad block, because
the NAND flash almost contains bad block. A flash
erasable zone contains one or more flash blocks, and a
flash block is comprised of 32, 64 or 128 flash pages. The
flash page is the mini-addressable unit in NAND.

A flash page contains two parts: usable area and spare
or Out Of Band (OOB) area. The usable area stores the
user data while the OOB area stores NAND drive data. In
a flash page, the usable area and OOB area has a different
size based on their manufacturers. For most Android
devices, the usable area contains 2048 bytes while the
OOB/spare area contains 64 bytes, where various tags
and metadata are stored in blocks.

a. Block and chunk allocation of YAFFS2
YAFFS2 use the chunk that has the same size with the

usable area of a NAND flash page as the mini-allocation
unit to store data. Usually the NAND drive using only a
portion of the OOB area of a NAND flash page, the rest
portion of the OOB area stores YAFFS2’s meta-data.

YAFFS2 allocates the block and chunk in sequence:
anytime there is only one the allocating block that is
termed the allocation block. After finding the block, it
will allocate chunks for the file sequentially from the
allocation block. When the allocating block runs out of
chunks, if there are other block not in use, the block are
used to become the allocation block sequentially.
Otherwise, YAFFS2 will recycle the dirtiest block
according to garbage collection and make the recycled
block to become the allocation block.

Because NAND flash only sustain a limited number of
writes and erases, In order to increase service time of
NAND flash, YAFFS2 will not rewrite directly but write
data to a new chunk when data stored in a chunk
modified.

b. File storage mechanism of YAFFS2
In YAFFS2, all types of data (directory, regular data

file, hard link, soft link, etc.) are treated as objects. Each
object is stored in the form that is composed of an Object
header chunk and a plurality of Data chunks. Data chunk
contains data of a file, while Object header chunk is used
to store the meta-data of an object (the owner of
ID, group ID, object size, object type, object name, etc.).

YAFFS2 stores a file on the NAND flash memory like
this: when a new file needs to be stored, it will allocate a
Object header chunk with a ObjectType and a specific
objectID which are stored in OOB area of the Object
header chunk. Each file has different objectID. The
Object header chunk contains the file’s meta-data such as
file name, time stamps (access time/modified time/create
time), length of the file, etc. Data chunks following with
The Object header chunk are allocated to store file’s data.
Each Data chunk can be organized by chunked and
ChunkType which are stored in OOB area of the Data
chunk.

When a file is modified, YAFFS2 will not rewrite
directly but write data to a new chunk. This non-
overwritten strategy is named “out-of-place-write”.
YAFFS2 will allocate a new Object header chunk with
new information to indicate this operation and a plurality
of Data chunk to store the update data. So an Object
header chunk with new information can be used to
indicate an operation. Even though a file is deleted,
YAFFS2 will never rewrite the Data chunk directly.

JOURNAL OF COMPUTERS, VOL. 9, NO. 10, OCTOBER 2014 2295

© 2014 ACADEMY PUBLISHER

YAFFS2 stored the meta-data in OOB area of Object
header chunk and Data chunk, such as objectID,
ObjectType, chunkID, ChunkType, sequence number and
bytenum, etc. ObjectID indicates which object a chunk
belongs to; ObjectType indicates that an object is a file or
a directory (file: 0x10/directory: 0x30); chunkID tells
where the chunk belongs within an object; ChunkType is
used to illustrate that this chunk is a data chunk or object
header chunk (Object header: 0x80/Data: 0x00);
sequence number increases by 1 when a block is allocated
and every chunk in that block shares the same number, so
all the allocated blocks can be organized in chronological
order by this special tag; bytenum shows the number of
bytes of valid data in a data chunk.

B. Internal Structure of SQLite
The SQLite database file tends to become fragmented

because of “out-of-place-write” strategy of YAFFS2.
Thus, the most efficient method to obtain the SQLite
records for reconstructing user behaviors is to search by
the records themselves and ignore all the database
structure. To do this, knowledge of their internal structure
is required.

Essentially, SQLite database is stored in segments,
called pages [12]. A SQLite database is composed of
multiple B-trees, and every B-tree takes a full page at
least. One B-tree for each table and index, structured as
B-trees for index, and B+trees for table. Each table or
index in a SQLite database has a root page that defines
the location of its first page. The root pages for all
indexes and tables are stored in the sqlite_master table.
The sqlite_master table is a system table that contains
information about all the table, view, index, and trigger in
the database. And the sqlite_master table has a fixed
structure: sqlite_master (type TEXT, name TEXT,
tbl_name TEXT, rootpage INTEGER, sql TEXT), the
type field is one of table, view, index, and trigger; the
name and tbl_name field is the table name for a table; the
rootpage field is the root page of the table; the sql field
stores the SQL text related to how to create the table.
Furthermore, the root and internal pages of B+trees only
contain only navigation information and the table data
(database records) which are stored in leaf pages, as
shown in Figure.1 (Owens, 2010, page 305). We can
obtain the SQLite records according to the SQL text that
stored in the sqlite_master table ignoring B+tree structure.

The SQLite record is stored in binary form using a
specialized record format that describes all the fields in
the record, it has the following sequential structure: the
record size, the id value, the header and the data segment
(D1 to DN), as shown in Figure. 2. The record size only
includes the size of header and data segment. The header
comprises the header size (hsize) and an array of field
types and sizes (F1 to FN), which describes each field
stored in the data segment. The hsize and the array, as
well as the id, are represented as a variable-sized 64-bit
integer value. For this kind of value, SQLite uses a
compression method based on Huffman coding [13].

It is important to note that the record size, the id, and
the header size are stored using Huffman coding.
However, fields’ sizes and data do not use the

compression method, the array of types and sizes in the
header uses one value to identify the field type and the
size. Table I lists the entry specifies data type and the size
of its corresponding field value.

Figure 1． B+ tree structure of SQLite databases (Owens, 2010, page

305)

Figure 2．Record structure

TABLE I.
FIELD TYPE VALUES

Type Value Meaning Length of Data
0 NULL 0

N in 1..4 Signed integer N
5 Signed integer 6
6 Signed integer 8
7 IEEE float 8

8-11 Reserved for future use N/A
N>12 and even BLOB (N-12)/2
N>13 and odd TEXT (N-13)/2

C. User Behavior in Android
There are lots of events taking place in Android smart-

phone, but 5 kinds of user behaviors more important: Call
history, SMS/MMS, Location info, Web Use History [14]
and SNS (Social Networking Services) [15]. Currently,
the application software usually uses SQLite to save these
user behaviors information in Android. The saved file
directory and stored table about 5 kinds of user behaviors
are described in Table II.

It is possible to obtain the information that when and
with whom users had a phone call by analyzing call
history. Contact information and call history information
are stored in contacts2.db on the user data partition. In
the contacts2.db, the table calls contain detailed
information of call history, such as call time, call duration
and the number of incoming and outgoing calls. And the
detailed information of contacts is stored in the table data.
For SMS/MMS, the information of when, about what and
with whom users talked, can be obtained as well. Unlike
Call History, it is possible to know the contents of their
conversation, so it can be used as very important data.
The information of SMS/MMS is stored in mmssms.db on
the user data partition. The table sms store all data about
SMS and the table pdu store the detailed information of
MMS. When an application within map information such
as Google map and Browser is used, the application will

2296 JOURNAL OF COMPUTERS, VOL. 9, NO. 10, OCTOBER 2014

© 2014 ACADEMY PUBLISHER

record data indicating the present location, which can be
used to detect the user's location. The location
information is stored in multiple SQLite database files on
the user data partition. The cachedPositions.db contains
the location information which is stored in the browser,
and the search_history.db contains the location
information which was ever searched in the Google map.
Browser is a good source to find out sites and search
words that users have visited and used, and the Android’s
default browser stores the browser data in browser.db on
the user data partition. The table bookmark contains both
bookmarks and browser histories in versions 2.x of the
Android platform, and the table searches contain the
default browser’s search histories. People use SNS
services like Skype, Facebook, Twitter and Sina-Weibo
on their smart-phone, and those services include
meaningful data, such as sending text messages and free-
for-charge calls. Apparently, it is inevitable to analyze
SNS data. These applications also store important user
data stored in SQLite database. We have not thoroughly
inspected these applications' mechanism of storing data.

IV. THE PROPOSED METHOD

In this section, we propose a method to obtain useful
information in SQLite database file from YAFFS2 and
reconstruct user behaviors timeline. The Figure.3 is the
framework of the proposed algorithm.

Figure 3. The process framework of the proposed method.

A. Acquiring Image
Before starting to analyze internal file system of

android phone, it’s needed to obtain the image file of data
partition firstly. There are two main ways to get an image
from Android devices—physical and logical. Physical
method obtain image that carried out by JTAG [16] and
logical method carried out by using "DD" or
"NANDdump" instruction after the android devices have
acquired rooting right.

In this paper, we only consider the logical method to
obtain the image file of data partition. To carry out
logical imaging, android devices must be rooted
beforehand. "SuperOneClick" [17] was used in this work.
Once the devices have acquired rooting right, the most
forensically-sound method of acquiring data from the

device is the following:
• Put the device in developer mode and connect the

device with a computer;
• Add "NANDdump" command using Android

Debug Bridge (ADB);
• View the MTD partitions using command "adb

shell cat";
• Acquiring the image using "NANDdump".

In this work, "NANDdump" instruction is used to
acquire the complete data partition image of android
phone. The 1.18 version of BusyBox [18] contain the
command of "NANDdump". In order to support
"NANDdump" command for the device, the ADB tool
[19] can be used to install BusyBox on the system
partition, and this process only affects the system
partition [20].

As a result, the integrity of data partition, which is the
research object in most forensic task, can be retained bit-
by-bit. A bit-by-bit image allows an investigator to
conduct analysis on the entirety of the data, such as
deleted data, which is a great role in any investigation.

B. Pre-processing
The pre-processing is such a process that obtains each

chunk’s meta-data that stored in OOB area in the
allocation order on chip. From the perspective of the
storage mechanism of YAFFS2, each block’s sequence
number of a flash memory are allocated in ascending
order, and each chunk have the same sequence number in
a block. Therefore, we scan the image in the reverse order
of sequence number in our approach. Each chunk’s
objectID, objectType, chunkID, and chunkType can be
obtained in our approach according to the OOB tags
obtaining algorithm as pseudo-code show in Algorithm 1.

The pre-processing work is completed as follows.
Firstly, the sequence number for each block and the
corresponding physical block offset is stored in an array
of structures bsn[], during scanning each logical block in
sequence (lines 1-3). Secondly, all the blocks stored in
bsn[] are sorted by sequence number from the largest to
the smallest (line 4). Finally, these sorted blocks are
scanned from the one with the largest sequence number to
the one with the smallest, and within a block, its chunks
are scanned from the last one to the first. During this
process, each chunk’s objectID, objectType, chunkID and
chunkType are stored into an array of structures pbk[]
separately (lines 5-9). Each chunks physical address can
be calculated as below:

TABLE II.
USER DATA STORED IN SQLITE

User’s data Saved file directory SQLite table
Call history data/data/com.android.providers.contacts/databases/contacts2.db calls
Contact data data/data/com.android.providers.contacts/databases/contacts2.db data

SMS
MMS data/data/com.android.providers.telephony/databases/mmssms.db sms

pdu
Browser data data/data/com.android.browser/databases/browser.db Bookmark searches

Location info data/com.google.android.apps.maps/databases/da_destination_history
data/com.google.android.apps.maps/databases/search_history.db

destination_history
history

SNS Application /data/data/com.android.<Application Name>/databases/

JOURNAL OF COMPUTERS, VOL. 9, NO. 10, OCTOBER 2014 2297

© 2014 ACADEMY PUBLISHER

[/]blockOffset bsn i NUM= (1)
(%)chunkOffset NUM i NUM= − (2)

chunkAddress blockOffset chunkOffset= + (3)
Where i means the location of the chunk which is

ready to be stored into pbk[], NUM is the number of
chunks in one block, blockOffset is the chunk i’s block
number, chunkOffset is the chunk i’s relative offset
number in the block, and chunkAddress is the physical
address of chunk i.

Since the whole chip is scanned reversely in
chronological order, we don’t need to consider the spatial
sequence.

ALGORITHM I
OOB TAGS OBTAININGALGORITHM

Algorithm 1：OOB Tags Obtaining Algorithm
Input：the image
Output：the array of structures pbk[]
01 for each block in image do /*scan the entire image in order*/
02 read sequence number and physical number stored in the array of
structures bsn[];
03 end for
04 sort by sequence number from the largest to the smallest for the array
of structures bsn[];
05 for each block in bsn[] do
06 for each chunk in block from the last one to the first do
07 calculate chunk’s physical address by formula (1~3);
08 read objectID, objectType, chunkID, and chunkType stored in the
array of structures pbk[];
09 endfor
10 endfor
11 return pbk[]

C. Recovering SQLite Database Records and
Reconstructing User Behavior

Most of user behavior data in Android mobile phone
are stored in SQLite database file. In order to reconstruct
user behavior, it is necessary to recover SQLite database
records about user behavior, and then analyze the low-
level SQL events corresponding to each user behavior.
Two simplified algorithm in pseudo-code are shown
below. We recognize SQLite database file’s page in the
reverse order of sequence number scanning on chip
according to recovering SQLite database records
algorithm as pseudo-code show in Algorithm 2, and we
parse records from each page of SQLite according to
parsing SQLite database records algorithm as pseudo-
code show in Algorithm 3.

ALGORITHM II
RECOVERING SQLITE DATABASE RECORD ALGORITHM

Algorithm 2： Recovering SQLite Database Records Algorithm
Input：the image;
the array of structures pbk[] that stored each chunk’s objectID,
objectType, chunkID and chunkType;
SqliteName = {si | si is the ith sqlite database file’s name that you want
to obtain records from it, such as contacts2.db, mmssms.db and so on};
Output：Records = {ri | ri is the ith record we obtained in the sqlite
file}
01 i = 0;
02 while i < pbk.length-1 do
/*scan the entire image reversely in chronological order*/;
03 if (pbk[i].chunkType=0x80) and (pbk[i].objectType=0x10) then
/*recognize an file’s object header chunk*/
04 if (the filename∈SqliteName) then
/*Read the filename in object header chunk and determined the sqlite
database file*/
05 Parse the SQLite file’s sqlite_master table;
/*obtain the SQL_text that describes how to create the table and store

it*/
06 Extract information such as time stamps, objectID and store
them;
07 for each chunk k from pbk[i+1] to pbk[pbk.length -1] do
08 if (k.objectID = pbk[i].objectID) then
09 if (k.chunkType=0x80) and (k.objectType = 0x10)then
10 break;
11 calculate chunk k’s physical address by formula

(4~6);
12 tempRecords{ti|ti is the ith record obtained from
chunk k}= Algorithm III (k, SQL_text);
/*parse record from chunk based on Algorithm 3*/
13 if k∈ParsedChunk = {pi | pi is the ith chunkID of
the ith chunk has been parsed}; then
14 if tempRecords⊄Records then
15 add time stamps obtained from the
previous object header chunk to the record ti ∉ Records;
16 end if
17 end if
18 Records ←Records ∪ tempRecords;
19 ParsedChunk ← ParsedChunk ∪ k.chunkID;
20 end if
21 end for
22 end if
23 end if
24 i++;
25 end while
26 return Records

ALGORITHM III
PARSING SQLITE DATABASE RECORDS ALGORITHM

Algorithm 3： Parsing SQLite Database Records Algorithm
Input： the chunk k of the image and the SQL_text obtained from
sqlite_master table
Output：tempRecords = {ti|ti is the ith record obtained from chunk k}
01 read the first 1024 bytes from chunk store in page[];
/*SQlite page size is 1024,chunk’s size is 2048*/
02 if (page[0]=0x0D) then /* recognize the B+ tree page*/;
03 i=0 and calculate the total_records of the file by formula (4);
04 while i < total_records do /*traverses every record in the page */;
05 calculate the record_offset of the i record by formula (5);
06 for each field,according to SQL_text do;
07 read its content and content’s size store them;
08 end for;
09 if content’s size of each field match with Table I then;
10 tempRecords ← tempRecords ∪ record i;
11 end if
12 i++;
13 end while
14 end if
15 read the another 1024 byte from chunk store in array of structures
page[];
16 redo step 2 to step 14;
17 return tempRecords

To parse the Android image, the pre-processing work
is completed as Algorithm 2 and all the chunks are
scanned reversely in spatial (lines 1-2). An object header
chunk is recognized by chunkType (chunkType=0x80) in
OOB (line 3). The information, such as type,
parent_objectID, filename, time stamps, objectID and file
length, is extracted from object header chunk. YAFFS2
uses type in object headers to distinguish a directory from
a normal file.

The relationship between a directory and its files is
holded by that all the parent_objectID of its included files
are equal to the directory’s ObjectID. In order to obtain
the record that related with user behavior, these SQLite
database file name need to be known in advance (line 4).
These SQLite database files can be recognized by their
magic number “53 51 4c 69 74 65 20 66 6f 72 6d 61 74
20 33 00”. This magic number byte sequence corresponds

2298 JOURNAL OF COMPUTERS, VOL. 9, NO. 10, OCTOBER 2014

© 2014 ACADEMY PUBLISHER

to the UTF-8 string "SQLite format 3" including the null
terminator character at the end. When a database file is
identified, the table’s SQL text that contains the record
related with user behavior can be obtained according to
the fixed format of sqlite_master table (line 5).

After the SQL text is obtained, the information about
the table that contains records about user behavior can be
obtained, such as each field’s type and its name. As
mentioned above, YAFFS2 appends an object header to
data chunks when some operations (create, modify and
append, etc.) have been done. This means that the chunks
between the two object headers, stored the updated data,
and the time stamps can be used to show when the
operation happened can be obtained from the object
header chunk (line 6). Not until the next object header
chunk appear, it is necessary to traverse all these chunks
that follow with the object header chunk to obtain all
record related to operation. The follow chunk have the
same ObjectID with the object header chunk (lines 7-10),
each chunk’s physical address can be calculated
according to equations 1, 2 and 3 (line 11).

When the location of the chunk has been obtained, the
work that parsing SQLite database records from the
chunk completed as Algorithm 3. The chunk size is 2048
bytes, while the SQLite page size default is 1024 bytes.
Therefore, when the physical address of chunk is
determined, we store the following a SQLite page size
bytes in page [] (line 1). The table’s records only store in
the SQLite database file’s B+tree, and the B+tree page’s
first byte is 0x0D. If page is a B+tree page (lines 2-5),
records can be obtained from the page. The total record
number can be calculated as below:

_ [3]*256 [4]total records page page= + (4)

In order to obtain each record from the page, the ith
record offset address from page header can be calculated
as below:

_ [8 2(1)]*256 [9 2(1)]record offset page i page i= + − + + − (5)

Then, according to the SQL text, record’s entire field’s
content and size can be obtained (lines 6-8). If each
field’s size matches with its type, then we stored the
record in a set tempRecords (lines 9-11). For example if a
field’s type is TEXT, its size must be an odd number
greater than 13. Because a SQLite database file hardly
contains two tables with the same SQL text, tempRecords
contain records related to user behavior. When all records
are obtained from the page, another 1024 bytes in the
chunk will be processed in the same way as the first 1024
bytes (lines 15-16).

After obtaining records from the chunk, we need
continue follow the steps of Algorithm 2. It is necessary
to check out whether the chunk has been parsed (line 13).
If the chunk has been parsed, then it is necessary to check
out whether the chunk contains the deleted record. If the
tempRecords contains some records that have not been
obtained, it indicates that there is a delete operation took
place between the previous object header chunk and the
object header chunk. And because of all the chunks are
scanned reversely order of sequence number, the previous
object header chunk contain the time stamps of the delete
operation taking place. So the time stamps need to be

appended to the record as its DELETE time and store the
record (lines 14-17). If the chunk hadn’t been parsed, all
of these records obtained from the chunk will be stored
directly (lines 18-19). When all chunks in the image have
been parsed, the recovery work is completed.

After all recoverable SQLite records in the database
file are recovered, user behavior need to be parsed from
these SQLite records by extracting some important fields
in a record related to user behavior. When the call history
records need to be parsed into corresponding user
behavior, the detailed information about call should be
extracted from the call history records, such as the call
time, call duration and the number of incoming and
outgoing calls. The process involves some unrelated
fields. For SMS/MMS, the SMS/MMS body field, the
number field, and time field and name field should be
extracted from the SMS/MMS history records. To the
record related to location information, the longitude, the
latitude, the place name and the time fields should be
extracted. The most important of the record related to
browser is URL and time, both them should be obtained
to translate into user behavior. For simplicity, only two
most popular SNS services, Twitter and Sina-Weibo, are
considered. The reposted tweet or microblog and private
message contact with others are important to both, so
both them should be obtained to translate into user
behavior besides time field.

If the record has a DELETE time field, it indicates that
the record is a deleted record. Namely, user once deleted
the record sometime. For example, a SMS record
containing the DELETE time field which has a value of t
means the user deleted the SMS at time t. We must
extract and reconstruct these user behaviors too.

D. Construct Timeline and Analyze User Behavior
After the user behavior has been reconstructed, a

timeline can be constructed by timestamps contained in
the corresponding SQLite recorder, like SMS time, call
time, visiting website time, deleted time, etc. Every user
behavior of timeline is arranged in chronological order,
and different icons represent different user behavior. We
mark the icon of the delete user behavior in red, because
these behaviors may be deemed suspicious.

Through the analysis of the timeline, we will have a
global awareness about what and when the user did.
Considering a scenario where criminals delete all
information, related to other suspect, such as call history,
SMS. We can reconstruct the user behavior by recovering
the SQLite records and building the user behavior
timeline, it will play an important and positive role in the
investigation process of such scenario.

V. ATCL FORENSIC TOOL

Based on the above proposed method, a tool named
ATCL (Android timeline constructor Lite) is
implemented. It is a user behavior timeline construction
and analysis tool for versions 2.x of the Android platform.
It can automatically recover SQLite records from
Android image dumped by NANDdump instruction, and
construct the timeline of user behavior. The tool converts

JOURNAL OF COMPUTERS, VOL. 9, NO. 10, OCTOBER 2014 2299

© 2014 ACADEMY PUBLISHER

SQLite records data into visual timeline so that
investigators can easily understand the data and efficient
analysis user behavior. Figure 4 shows the workflow of
ATCL. In the beginning, it is needed to select a mode on
the User Interface after determining whether read an
image directly or obtain the image via the Android
debugging bridge (adb). Then, the tool starts collecting
data from the image. To accomplish this work, we
developed a specialized parser module for the image,
which extracts SQLite database records from the Android
image dumped by NANDdump and parsed into
corresponding user behavior. After the user behavior is
parsed, the tool starts to reinterpreting and visualizing the
user behavior. The user behavior timeline is constructed
automatically, and the user behavior containing deleted
time will be highlight because these behaviors are
deemed suspicious, such as deleted call history, deleted
SMS and browser searches key word. The tool also has a
statistic function about user behavior, such as call, SMS,
web visit and etc. By using the statistic function, it is
likely to grasp the interest tendencies of Android users in
a forensic investigation.

Figure 4．The ATCL workflow

VI. EXPERIMENT AND EVALUATION

In this section, the proposed method in Section IV will
be evaluated by experiments. Two types of experiments
were designed on three real Android phones and a public
and available Android images dataset.

A. Experiments on Three Real Android Phones
Step1: Propagating the system
In order to evaluate the proposed approach in three real

phone: ZTE U880, HUAWEI C8650 and MOPS T800.
Before the evaluating, three smart phones were rooted
using three different methods (modifications based on
SuperOneClick) respectively due to the different handset
vendors. Actually, all of three smart phones have been
used more than a year.

Step2: Experiment design and implementation
In this scene, The ATCL and the latest version of

Encase v7.07 [21] had been used to analyze the user
behavior in a real android phone (ZTE-U880). There are
two ways to analyze method for smart phones in Encase
v7.07: logical acquisition and physical acquisition. All of
three analysis methods (logical acquisition, physical
acquisition by Encase, and the proposed method) used
about 2 minutes in this test. The compared result about
the user behavior acquired from the android phone was
shown in Table III. We can only obtain the undeleted Call,
SMS, MMS and contacts from the logical acquisition by
Encase, and the data is very limited for analysis. The
physical acquisition by Encase can obtain more
information than the logical acquisition, and the deleted
information can also be obtained. However, both methods
by Encase are weak in obtaining the data about the
browser history, location information and SNS. The
physical acquisition by Encase treats browser history and
location information as URL, which will affect the
correctness of forensic investigation. Furthermore,
Encase only provider visualizes function for analyzing
the Android image, and doesn’t provide visualizes
function for user behavior’s data. The ATCL can obtain
more information than Encase including 155 browser

TABLE III.
USER BEHAVIOR OBTAINED FROM ZTE-U880

User behavior Contacts Call SMS Browser history
Google

map
info

Sina-Weibo

Encase(logical) 72 494 1393 0 0 0
Encase(physical) 72 500 1394 160 0 0

ATCL
(our method) 72 500

(6 deleted)
1394

(1 deleted)
188

(33 bookmark) 11 4

Figure 5．Timeline constructed by ATCL

2300 JOURNAL OF COMPUTERS, VOL. 9, NO. 10, OCTOBER 2014

© 2014 ACADEMY PUBLISHER

history, 33 bookmarks, 11 Google map search
information and 4 Sina-weibo personal messages.
Additionally, it provides a function that visualizes the
acquired data by a timeline, as shown in Figure 5. Some
suspicious user behavior will be marked red, such as
deleted call history, deleted SMS, etc. If something
interests you, you can select an object on the timeline.
Then the detail information of the user behavior can be
showed in a new message box. ATCL can effectively
reduce the difficulty of forensic investigation analysis, so
that forensic investigation has become more convenient
and intuitive. The experiment was also conducted on
other smart phones: HUAWEI C8650 and MOPS T800,
and the results are similar to that in ZTE U880 phone.

B. Experiments on Public and Available Android Images
Dataset

In this part, experiments on a public dataset are used to
evaluate the effectiveness of the proposed method.

The DFRWS has created two scenarios for the
forensics challenge in 2011 [22]. Images for Scenario 2
were acquired through NANDdump. OOB area can be
acquired through NANDdump. File mtd8.dd for Scenario
2 is the user image that contains a large number of user
information. So in this experiment, the proposed method
is used on the mtd8.dd image. The user behavior obtained
from mtd8.dd is displayed in Table IV. The number of
information related to the aforementioned user’s
behaviors in our result is the same to the DFRWS’ final
result. The user behaviors timeline generated by the
ATCL for the mobile user is shown in Figure 6. We can
easily know about what and when the user did from the
timeline. Moreover, the recovered and acquired user
behaviors information is listed on the left of the timeline,
we can easily find any information recovered from the
Android image.

VII. CONCLUSIONS AND FUTURE WORK

In this paper, a method to reconstruct user behavior
from YAFFS2 based on SQLite was proposed. Based on
user behavior such as SMS/MMS, call history and Geo
Location, we proposed a method and developed a tool
named ATCL to reconstruct user behavior and provide a

visual user behaviors timeline. The experimental results
show the efficiency of the proposed method.

Although the proposed method is based on the
YAFFS2 file system, and the file system had turned to
EXT4 in the higher version than Gingerbread (Android
2.3), our method also provides successful experiences of
others to go by for different file system and other popular
cell-phone platforms. By fully analyzing the storage
mechanism of file system, we can collect the user
behavior conveniently.

Automated evidence collecting and analyzing plays an
important role in digital forensics. In this paper, the
proposed method could only be used to analyze YAFFS2
files systems. Automated user behaviors collecting and
analyzing from ext4 file system is our research work in
the near future.

ACKNOWLEDGMENT

This work is supported by the Natural Science
Foundation Natural Science Foundation of China under
Grant No.61070212 and 61003195, the Zhejiang
Province Natural Science Foundation Natural Science
Foundation of China under Grant No.Y1090114 and
LY12F02006, the Zhejiang Province key industrial
projects in the priority themes of China under Grant No
2010C11050, the science and technology search planned
projects of Zhejiang Province (No.2012C21040), the soft
science research project of Hangzhou (No.
20130834M15), Project of Department of Education of
Zhejiang Province (No. Y201226281).

REFERENCES
[1] Ming Xu, Xue Yang, Beibei Wu, Jun Yao, Haiping Zhang,

Jian Xu and Ning Zheng, “A metadata-based method for
recovering files and file traces from YAFFS2.” Digital
Investigation, vol. 10, pp. 62–72, June 2013.

[2] Beibei Wu, Ming Xu, Haiping Zhang, Jian Xu, Yizhi Ren
and Ning Zheng, “A Recovery Approach for SQLite
History Recorders from YAFFS2.” in the 2013
international conference on Information and
Communication Technology, pp.295–299, 2013.

[3] Michael Spreitzenbarth, Sven Schmitt and Felix Freiling,
“Comparing Sources of Location data From Android

TABLE IV.
FIELD TYPE VALUES

User behavior Calls history SMS Browser history Google map info tweets
Number 4 17 50 1 161

Figure 6．Timeline constructed by ATCL

JOURNAL OF COMPUTERS, VOL. 9, NO. 10, OCTOBER 2014 2301

© 2014 ACADEMY PUBLISHER

Smartphones”, in International Conference on Digital
Forensics, South Africa: Pretoria, 2012, pp.143–157.

[4] Namheun Son and Sangjin Lee, “Forensic investigation
method and tool based on the user behaviour analysis.”
Proceedings of the 9th Australian Digital Forensics
Conference, pp. 125–133, 2011.

[5] Oxygen Forensic Suite, http://www.oxygen-forensic.com/.
[6] EnCase, http://www.encaseondemand.com/Home/tabid/63

2/Default.aspx.
[7] Compelson Labs, MOBILedit! Forensic Overview, ww

w.mobiledit.com/mef-overview.html.
[8] Micro Systemation, XRY Physical, www.msab.com/xry/

xry-physical.
[9] Siddharth Choudhuri, Tony Givargis, “Deterministic

Service Guarantees for NAND Flash using Partial Block
Cleaning.” Journal of Software, vol. 4, pp. 728-737, 2009.

[10] Daniel Myers, “On the Use of NAND Flash Memory in
High-Performance Relational Databases.”

[11] NAND vs NOR Flash Memory: Technology Overview,
http://www.toshiba.com/taec/components/Generic/Memory
_Resources/NANDvsNOR.pdf

[12] SQLite. SQLite Database File Format. http://www.sql-
ite.org/, 2008.

[13] Wikipedia. Huffman coding. http://en.wikipedia.org/wiki/
Huffman_code.

[14] Jianbo Bai, Yuzhe Hao, Guochang Miao, “Integrating
Building Automation Systems based on Web Services.”
Journal of Software, vol. 6, pp. 2209-2216, 2011.

[15] Hui Chen, “Relationship between Motivation and Behavior
of SNS User.” Journal of Software, vol. 7, pp. 1265-1272,
2012.

[16] Ing. M.F. Breeuwsma, “Forensic imaging of embedded
system using JTAG(boundary-scan).” Digital Investigation,
vol. 2, pp. 32–42, March 2006.

[17] superoneclick, http://www.superoneclick.net/.
[18] BusyBox, http://busybox.net.
[19] ADB tool, http://developer.android.com/tools/help/adb.ht-

ml.
[20] Blog about android phone rooting: Blocg of Tegrak, http://

pspmaster.tistory.com.
[21] EnCase Forensic v7.07, http://www.encase.com/products/

Pages/EnCase-Forensic/Search.aspx.
[22] DFRWS, DFRWS-2011-challenge. http://www.dfrws.org/

2011/challenge/index.shtml, 2011.

Ming Xu is a Professor in the college of Computer, Hangzhou
Dianzi University, P. R. China. He received the doctor degree in
computer science and technology from the Zhejiang University
in 2004. His research interests include Digital Forensics,
Network Security, Social Network and Data Mining.

Jun Yao received the B.S. degree in Information and
Computing Science from the China JiLiang University in 2011.
He is currently a master candidate in computer technology from
the Hangzhou Dianzi University, P. R. China. His research
interest includes Smart-phone Forensics and Computer
Forensics.

Yizhi Ren is a Lecturer in the college of Computer, Hangzhou
Dianzi University, P. R. China. He received the doctor degree in
computer science and technology from the Dalian University of
Technology in 2011. His research interests include Network
Security, Social Computing and Evolutionary game.

Jian Xu is a Professor in the college of Computer, Hangzhou
Dianzi University, P. R. China. He received the doctor degree in
computer science and technology from the Zhejiang University
in 2004. His research interests include Location-based Services,
Mobile Computing, Distributed Database and Network Security.

Haiping Zhang is an Associate Professor in the college of
Computer, Hangzhou Dianzi University, P. R. China. He
received the master degree in Computer Software and Theory
from the Hangzhou Dianzi University in 2005. His research
interests include Digital Forensics, Network Security, Social
Network and Corporate Information Technology.

Ning Zheng is a Professor in the college of Computer,
Hangzhou Dianzi University, P. R. China. His research interests
include Network Security, CAD, and CAM.

Shiyue Ling is a Lecturer in the college of Computer,
Hangzhou Dianzi University, P. R. China. She received the
master degree in Computer Technology from the Hangzhou
Dianzi University in 2007. Her research interests include Digital
Forensics, Network Security, Social Network and Corporate
Information Technology.

2302 JOURNAL OF COMPUTERS, VOL. 9, NO. 10, OCTOBER 2014

© 2014 ACADEMY PUBLISHER

