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Abstract 

We describe the properties of a connectionist network that is 
able to make decisions in strategic games. We use the 
structure of Bidirectional Associative Memory (BAM), a 
minimal two-layer recurrent neural network with binary 
activation functions and binary connection weights. We apply 
BAM to finite-strategy two-player games, and show that 
network activation in the long run is restricted to the set of 
rationalizable strategies.  The network is not guaranteed to 
reach a stable activation state, but any pure strategy profile 
that constitutes a stable state in the network must be a pure 
strategy Nash equilibrium.    

Keywords: Decision making; Constraint satisfaction; Neural 
networks; Game theory; Nash equilibrium 

Introduction 

Strategic decision making is an important feature of high-

level cognition. From coordinating meeting times to 

cooperating on research projects or negotiating household 

chores, interdependent scenarios – in which the choices of 

an individual are contingent on the choices of others – are 

ubiquitous in everyday life.  Game theory provides a 

mathematical framework with which rational decision 

making in interdependent scenarios can be formally 

represented and analyzed. It is an important area of research 

in economics, political science, computer science, and 

philosophy, and it is widely used for studying behavior in 

social settings, where it describes and predicts the types of 

cooperation, conflict, and coordination observed in groups 

of human decision makers (see, e.g., Camerer, 2003).  

Despite its importance for the study of human behavior 

(as well as rational interdependent behavior, more 

generally) the cognitive basis of game theoretic decision 

making is still unclear. Solving game theoretic problems can 

be computationally intractable (Daskalakis et al., 2008). 

How do humans represent choices, reason through 

contingencies involving the choices of others, and 

ultimately make decisions, in strategic settings?  

In this paper we present a connectionist model that is able 

to reason through game theoretic problems in two-player 

games. Our model is based on Kosko’s (1988) Bidirectional 

Associative Memory (BAM) network, which is a minimal 

two-layer recurrent neural network with binary activation 

functions and binary connection weights. We assume that 

the two layers in our network represent the strategies 

available to the two players, with connections between these 

layers encoding best-responses to any given strategy.   

 Like the Hopfield network, which it generalizes, BAM 

can make decisions through constraint satisfaction, with 

final choices corresponding to activated nodes once the 

network stabilizes. Constraint satisfaction networks (see e.g. 

McClelland & Rumelhart, 1981) are commonly used to 

model decision making in non-strategic settings, including 

causal reasoning, stereotype formation, analogical mapping, 

legal reasoning, and preferential choice (Bhatia & 

Chaudhry, 2013; Glöckner & Betsch, 2008; Holyoak & 

Simon, 1999; Mischel & Shoda, 1995; Simon et al., 2004; 

Thagard, 1989; see also Van Overwalle, 2007). The implicit 

assumption in constraint satisfaction networks is that long-

term activation is necessarily described by a stable state. We 

find that our implementation of game theoretic decision 

making in the BAM network restricts long-term activation 

to the set of rationalizable strategies, even if the network 

never reaches a stable activation state. In settings in which 

network stabilizes with the activation of a particular strategy 

profile, this profile is guaranteed to be some pure strategy 

Nash equilibrium. Conversely, every pure strategy Nash 

equilibrium corresponds to some stable state in the BAM 

network. These results show that rational choice in strategic 

games can be described by the same cognitive principles at 

play in nonstrategic settings, and that models based on 

constraint satisfaction are able to provide a wide range of 

valuable insights regarding the cognitive basis of human 

reasoning, judgment, and decision making. 

Game Theoretic Decision Making 

In strategic games, two or more players make choices over a 

set of strategies. Crucially, the strategies chosen by the 

players collectively determine the outcomes of the game, so 

that each player’s utility depends on the other’s choice as 

well as on their own. We define a finite-strategy two-player 

game with a set of pure strategies for each player,    
           and               respectively, and a pair 

of payoff functions    and    that give each player’s utility 

for each profile of pure strategies           (see, e.g., Hart, 

1992). Thus if player 1 selects     and player 2 selects    the 

utility for player 1 is             and the utility for player 2 

is            .  We use the notation     as a shortcut for 

(                       ).   



The most standard solution concept for a strategic game is 

Nash equilibrium, which relies on common knowledge of 

rationality and accurate (so-called “rational”) expectations.  

A Nash equilibrium is a strategy profile in which no player 

can obtain higher utility by unilaterally changing her 

strategy; each player is already playing a best response to 

the equilibrium strategy profile.  We define the set of best 

responses for player   to an opponent’s strategy     as 

B (   )   arg max            .  Then a pure strategy 

Nash equilibrium can be defined as a strategy profile 

          such that     B       and     B      .  

The concept of Nash equilibrium can be generalized to 

relax the assumption that players somehow have correct 

expectations about what others will do.  The solution 

concept of rationalizability (Bernheim, 1984; Pearce, 1984) 

retains the assumption of common knowledge of rationality, 

but imposes no additional constraints on behavior.  As in a 

Nash equilibrium, players best respond to the strategy they 

expect their opponent to select, but in contrast to a Nash 

equilibrium, this expectation is not necessarily correct.  

Players must only be able to “rationalize” their strategy 

choice as a best response to one of the opponent’s 

rationalizable strategies.  We define the set of rationalizable 

strategies for each player as the maximal sets    and    

such that any       satisfies    B       for some 

       and any       satisfies    B       for some 

      .  Clearly, any Nash equilibrium profile is 

rationalizable, and if the sets of rationalizable strategies are 

singletons, then these strategies form a Nash equilibrium.  

Bidirectional Associative Memory 

Nash equilibrium and rationlizability are two of the most 

important solution concepts in game theory. Here we will 

examine how choices corresponding to these solution 

concepts are generated by human decision makers, modeled 

with constraint satisfaction neural networks.  These types of 

networks rely on bidirectional (recurrent) connectivity 

between their component nodes, which is able to generate 

sophisticated dynamics and subsequently explain a range of 

human behavior. Although these networks have traditionally 

been used only to explain behavior in non-strategic settings 

(Bhatia & Chaudhry, 2013; Glöckner & Betsch, 2008; 

Holyoak & Simon, 1999; Mischel & Shoda, 1995; Simon et 

al., 2004; Thagard, 1989), they can be easily be applied to 

strategic game theoretic decision making.  Indeed these 

networks are particularly suitable for this task, as game 

theoretic decision making features complex interactions 

between the choices of different decision makers; 

interactions that can be captured through bidirectional 

connectivity. 

The Bidirectional Associative Memory Network (BAM) 

is a particularly powerful (and mathematically tractable) 

constraint satisfaction neural network (Kosko, 1988). It 

consists of two layers with binary connections between their 

respective nodes and binary activation functions for any 

given node. When the connections between its nodes are 

symmetric then BAM is guaranteed to reach a stable pattern 

of activation, regardless of its starting state. This property 

has been used by scholars to solve a variety of practical 

tasks involving associative memory and pattern completion 

(Kosko, 1988; see also Cao, 2003 or Gopalswamy & He, 

1994 for additional results) and also model human decision 

making and the biases that it often involves (Bhatia & 

Chaudhry, 2013).  

In this paper, we model how an individual decision maker 

reasons through two-player finite strategy games, using the 

BAM network. Strategies in these games for each of the two 

players can be represented in each of BAM’s two layers. We 

will assume that the first layer in the BAM network 

represents strategies available to the decision maker (or 

self). If the decision maker can choose from the set of 

strategies              , then the first layer in our 

network consists of N nodes, with node i representing 

strategy    . The activated nodes in this layer represent the 

strategies that the decision maker considers playing in the 

game.  

 Correspondingly we will assume that the second layer in 

the BAM network represents strategies available to player 2 

(or other). If player 2 can choose from the set of strategies 

             , then the second layer in our network 

consists of M nodes, with node j representing strategy    . 

The activated nodes in this layer represent the strategies that 

the decision maker thinks other might play in the game. 

As mentioned earlier, node activation in BAM is binary, 

with each node being on or off. We will assume that every 

node has the same binary activation function, with 

activation triggered by strictly positive input.  For any node 

k (in either layer of the network) with input   , the activation 

function    is specified by the following equation: 

 

        {
          
          

 

 

In a slight abuse of notation, we denote by f the activation 

function for either layer of the network, with components    

for every node k. 

Connections between nodes are also binary, with each 

node in the first layer either connected or not connected to 

each node in the second layer, and each node in the second 

layer either connected or not connected to each node in the 

first layer. There are no connections between two nodes in 

one layer.  The network structure can thus be described by 

the matrices W
12

 and W
21 

which represent connections from 

layer 1 to layer 2, and from layer 2 to layer 1 respectively. 

 We will assume the pattern of connections in our network 

captures best-responses. Particularly, if     B       then 

we assume the connection from node i in the first layer to 

node j in the second layer is    
   = 1. If     B       then 

we assume    
   = 0.We assume a similar pattern of 

connectivity from the second layer to the first, so that    
   = 

1 if     B       and    
    = 0 otherwise. Figure 1 

provides an illustration of the proposed network. 



 
Figure 1: Example of a BAM network encoding a game 

with two strategies for self and three strategies for other.  

 

We write the activation of any node i in the first layer, at 

time t, as A
1
i(t), and any node j in the second layer, at time t, 

as A
2
j(t).  With the connectivity specified above, vectors 

A
1
(t) and A

2
(t) together represent network activation at time 

t. We can describe their dynamics in the following 

equations: 

 

A
1
(t) = f (A

2
(t-1)∙W

21
) 

A
2
(t) = f (A

1
(t)∙W

12
) 

 

As formalized in the above equation, node updating in our 

network is sequential, with layer 1 updating before layer 2. 

This does not affect the network’s behavior, except at the 

starting point t = 0. Here, the above assumption implies that 

the network begins processing the decision when some 

nodes in layer 1 are activated exogenously (intuitively, self 

begins the decision process by first considering his 

strategies). The choice of the starting point activation in our 

network can affect subsequent node activation and 

sometimes will determine selection among multiple stable 

states. 

Like related recurrent neural network models, the BAM 

network can make decisions through constraint satisfaction, 

that is, by settling into a stable activation state. A stable 

activation state in the network is a state from which 

endogenous deviations are not possible. Activation states 

A
1* 

in layer 1 and A
2*

 in layer 2 are stable if A
1*

(t) = 

A
1*

(t+1) and A
2*

(t) = A
2
(t+1). We assume that a decision 

maker chooses one of the strategies that are activated in 

layer 1 and expects other to choose one of the strategies 

activated in layer 2, in the network’s stable state.  

Note that the connections assumed in this paper are not 

necessarily symmetric, as strategy     can be a best response 

to strategy     without     being a best response to strategy 

   . This means that the network is not always guaranteed to 

stabilize. If the network does not stabilize, then it enters a 

pattern of oscillating activation in which a certain subset of 

nodes are activated and deactivated consecutively. We 

assume that the nodes that are activated (but then 

deactivated) as part of this oscillating pattern correspond to 

the set of strategies from which decision makers make their 

final choice.  Nodes that are not activated as part of this 

oscillating pattern correspond to strategies that are ignored 

by the decision maker. 

Results 

First, suppose the network reaches a stable state 

corresponding to a pure strategy profile, that is, a stable 

state of activation in which only one node is activated in 

each layer of the network.  Our first result characterizes that 

stable activation state as corresponding to a Nash 

equilibrium.  

 

Proposition 1.  Suppose that       (           )
 

 

          with unique nodes i and j in each layer for which 

   
    and    

   .  Then           is a Nash 

equilibrium. 

 

Proposition 1 will turn out to be a special case of 

Theorem 1 below, so we omit proof here.   

Proposition 1 tells us that the neural network will find a 

Nash equilibrium if it is able to converge on a single 

strategy profile.  The process through which the network 

finds this Nash equilibrium is constraint satisfaction.  The 

example of the traveler’s dilemma in the section below 

illustrates how the network converges on a pure strategy 

Nash equilibrium.   

The game of rock-paper-scissors discussed in the section 

below illustrates that the network may not converge to a 

stable state. Even if the network does not reach a stable 

state, however, we can characterize the nodes which may 

experience recurrent activation.  In the long run, activation 

is restricted to the set of rationalizable strategies, R1 and R2 

respectively.  Let  ̅     and  ̅     respectively denote the 

sets of strategies that are activated at time t, i.e.,       ̅     

if   
      . 

   

Theorem 1.  There exists τ such that for any t > τ we have 

 ̅         and  ̅         . 

 

Proof. We show that if        , then for large enough t, 

  
      .  (The argument for player 2’s strategies is 

analogous.)   

If        , then any chain of best responses can include 

    at most once.  Strategy      is activated at time t (i.e., 

  
      ) if and only if there exists         such that 

    B       and   
        .  The players only have a 

finite number (N+M) of strategies, so for t   +M, there 

are no more strategies available to seed a chain of best 

responses, so   
      .  

 

Theorem 1 tells us that we should expect strategically 

sophisticated individuals only to play rationalizable 

strategies.  The network may never converge to a state with 

stable activation, so we may not be able to identify a single 

strategy that will necessarily be chosen, but we can make 

testable predictions about what will not be chosen.   



We can also recognize that the lack of a point prediction 

creates space for contextual factors to matter.  An 

individual’s eventual decision may depend on which 

strategy she considers first, which could in turn depend on 

the salience of different options, how the options are 

framed, or how the decision maker’s attention is anchored. 

The coordination game discussed in the section below 

illustrates how the starting point determines which of the 

multiple Nash equilibria is eventually selected by the 

network.    

It is straightforward to observe that any pure strategy 

Nash equilibrium would constitute a stable state in our 

network. The strategies in the Nash equilibrium would, due 

to the nature of the connection weights, reinforce each other 

and, once activated, sustain their activation.  

 

Theorem 2.  If           is a Nash equilibrium, then there 

exists a stable state           with unique nodes i and j in 

each layer for which    
    and    

   . 

 

Proof. This follows from our assumption that strategies are 

connected to their best responses.  

Illustrations 

In this section we apply the BAM network to three 

representative games. The games vary in the number of 

Nash equilibria and in the size of the set of rationalizable 

strategies. These examples demonstrate that activation in the 

BAM network in different contexts either may converge to a 

unique pure strategy Nash equilibrium from any initial state, 

may fail to converge at all as it oscillates through multiple 

rationalizable strategies, or may converge to one of many 

stable profiles depending on the initial state. 

Traveler’s Dillema 

The traveler’s dilemma is a generalization of the famous 

prisoner’s dilemma, conceived in order to demonstrate 

unraveling in a strategic game (Basu, 1994).  In the original 

parable, two travelers have lost identical antiques and must 

request compensation between $2 and $100.  The airline 

(which is responsible for the lost luggage) will accept the 

lower claim as valid and pay that amount to both players, 

and, to deter lying, will penalize the higher claimant with a 

$2 fee and will reward the lower claimant with $2 bonus.  

We represent the game with the strategy sets         
           , where x1i and x2j correspond to the dollar 

amounts associated with strategies s1i and s2j, and with the 

following utilities: 

 

      {

(           )             

(       )                            

                          

 

 

The airline’s scheme, of course, does not actually reward 

honesty; it rewards undercutting the other traveler.  The best 

response is always to claim exactly $1 less than the other 

traveler does (if it is feasible to do so).  As it turns out, the 

only rationalizable strategy for either player is to claim $2, 

and the unique Nash equilibrium has both players claim $2.    

The network connectivity implied by the traveler’s 

dilemma is illustrated in Figure 2. Given enough time this 

network is guaranteed to stabilize with the activation of the 

node corresponding to $2 in layer 1, the node corresponding 

to $2 in layer 2, and the deactivation of all the other nodes 

(corresponding to higher claims). If, for example, the 

deliberation process begins with self considering claiming 

$100, i.e., node $100 being activated in layer 1, then node 

$99 will become activated in layer 2, and in turn node $98  

will become activated in layer 1, and so on, until only the 

nodes corresponding to $2 in each layer are activated.  The 

unique Nash equilibrium corresponds to the only stable state 

of activation here, because it consists of the only 

rationalizable strategy for each player.  Intuitively, when a 

decision maker is given enough time to reason, our model 

predicts that he will choose to claim $2 and will expect the 

other player to do so as well. 

 

 
Figure 2: Example of a BAM network encoding traveler’s 

dilemma game. 

Rock-Paper-Scissors 

The classic game of rock-paper-scissors is the simplest 

symmetric, zero-sum game with non-transitive winning 

strategies. Each player has three pure strategies: rock, paper, 

or scissor. The loop is that rock “defeats” scissors, scissors 

“defeats” paper, and paper “defeats” rock. If both players 

play the same strategy, then the game is a tie.  We can 

represent the rock-paper-scissors game with the utilities uij 

described in table 1.  

 

Table 1: Utilities in rock-paper-scissors 

 

 
 

The game of rock-paper-scissors has no pure strategy 

Nash equilibrium, but every strategy is rationalizable. Every 

strategy is a best response to some other strategy, but no 

strategy is a best response to itself.  



The network connectivity implied by the rock-paper-

scissors game is illustrated in Figure 3.  With a single node 

initially activated, the network will never stabilize, 

regardless of which node is the starting point. Instead, the 

network will display an oscillating pattern of activation, in 

which each node in each layer activates consecutively. If, 

for example, the network begins with the activation of the 

rock node in layer 1, then the node corresponding to paper 

(the best response to rock) will activate in layer 2. In turn, 

the node corresponding to scissors will then activate in layer 

1. This leads to activating rock in layer 2, and so on. 

Intuitively, our model predicts that a decision maker will 

cycle through all three possible strategies as she reasons 

about the game, and any of these strategies may eventually 

be chosen.  

 

 
Figure 3: Example of a BAM network encoding rock-paper-

scissors game. 

Coordination Game 

A coordination game captures situations in which the 

players’ primary incentives are to behave similarly, as for 

example in the case that two friends would like to get 

together at a meeting place and each has to choose where to 

go.  If they both arrive at the same location, then they each 

obtain a high reward (e.g., they get to enjoy each other’s 

company). If they arrive at different locations, then they 

each obtain a low reward or a punishment (e.g., a solitary 

evening). We can represent a coordination game with 

      and a utility function that has the following 

property: 

 

      {
                     

                       
 

 

with       and       for all i and j.  In a coordination 

game, self is always incentivized to play the strategy that he 

expects other to play and vice versa, regardless of the 

specific strategy involved. Thus, there are N = M pure 

strategy Nash equilibria in the game, with each Nash 

equilibrium corresponding to an outcome in which self and 

other choose the same strategy.  As in the rock-paper-

scissors game, every strategy is rationalizable.  However, 

whereas the network never stabilizes for the rock-paper-

scissors game, it immediately stabilizes for a coordination 

game. 

The network connectivity implied by a coordination game 

is illustrated in Figure 4. The network is guaranteed to 

stabilize with the activation of the same strategy nodes in 

layers 1 and 2.  The precise strategies activated in the stable 

state depend on the starting point in the deliberation process, 

so that if deliberation begins with the activation of node i in 

layer 1 (representing strategy     for self), then the network 

will stabilize with the activation of node i in layer 1 and the 

activation of the corresponding node j=i in layer 2. Any pair 

of nodes corresponding to a Nash equilibrium creates a 

mutually reinforcing pattern of activation, a stable state in 

the network. Intuitively, our model predicts that a decision 

maker will choose to play the strategy that he first begins 

thinking about and will expect other to play this strategy as 

well.  

 

 

Figure 4: Example of a BAM network encoding 

coordination game. 

Discussion 

Constraint satisfaction is a key feature of high-level 

cognition, and models of constraint satisfaction --often 

formalized using recurrent neural networks-- are frequently 

used to study human reasoning, judgment, and decision 

making. In this paper we extend this research to game 

theoretic decision making. In particular, we adapt the 

Bidirectional Associative Memory (BAM) model (Kosko, 

1988), a minimal two-layer recurrent neural network, to 

make decisions in finite strategy two-player games.  

BAM is well-suited for this task. Choices in these game 

theoretic settings are interdependent, with the payoff 

generated by choosing any one strategy being a function of 

the choice made by the other decision maker. The recurrent 

connectivity in BAM can be used to model this type 

interdependence. We assume that the two layers in the BAM 

represent strategies available to the self and strategies 

available to the other, and connections between these two 

layers capture the best-responses to the various strategies. 

With this structure, we show that  activation in the BAM 

network in the long run can only be sustained for 

rationalizable strategies.  Decision making with the BAM 

network can thus achieve full strategic sophistication (i.e., 

rational strategic choice), although it dispenses with the 

assumption of perfect foresight (i.e., rational expectations).  

Of course, real people do not exhibit so much strategic 

sophistication.  In the aforementioned traveler’s dilemma, 

for example, people often make higher claims, which cannot 

be supported by any rationalizable strategy (Capra et al., 



1999).  Actual behavior is often better modeled by level-k 

thinking, which captures bounded rationality (Nagel, 1995).  

The level-k model assumes that players can reason through 

k steps of best response analysis, where the value of k may 

be heterogeneous in a population.  Our proposed BAM 

network could capture this sort of level-k thinking if we did 

not associate decisions with asymptotic patterns of 

activation, but rather terminated the network dynamics at a 

finite time horizon and associated decisions with activation 

when this horizon was reached.  

Although game theory is most commonly used to describe 

economic phenomena, such as price setting in markets and 

bidding in auctions, it also has a large number of 

applications for the study of cognition and behavior. For 

example, games such as the traveler’s dilemma can help us 

understand some of the difficulties involved in maintaining 

cooperation in social settings (Axelrod & Hamilton, 1981). 

Likewise rock-paper-scissors can be used to represent 

evolutionary predator-prey dynamics (Nowak & Sigmund, 

2004), and the coordination game provides a perspective for 

understanding the evolution of language, as different 

individuals have to agree on the meaning of words 

(Demichelis & Weibull, 2008).  

Our paper leaves open the question of strategy learning. 

We have assumed the network is able to encode best-

responses, but how do decision makers learn these best-

responses? One solution to this problem may involve a 

simple form of supervised learning. If, after playing each 

game, the decision maker is able to infer both the best-

response to the strategy that was played by other, and 

other’s best-response to the strategy that was played by self¸ 

then a variant of the perceptron learning rule (that is 

restricted to binary connections) could over time allow the 

network to learn the pattern of best-response connectivity 

assumed in our BAM model. This could also be 

accomplished by reinforcement learning, as the individual 

considers various possible responses to each strategy.  In the 

long run, reinforcement learning would ensure that the 

response with the highest payoff would be selected for, and 

the connection to the best response would be the strongest 

of all connections. Future work should examine these 

conjectures formally and should compare the predictions of 

BAM given different forms of learning with real choice 

observed in experimental settings.  
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