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Abstract

We build a bio-economic model of crop production at the regional scale to pre-

dict the effects of environmental policies on agriculture and the environment. The

model is calibrated against economic data on observed crop acreages and yields,

as well as predetermined supply responses. In addition, crop-specific production

functions are calibrated to exogenous agronomic information on yield responses to

nitrogen and irrigation, through the use of crop-specific shadow prices for fertilizer

and water. The calibrated model thus replicates economic information while being

consistent, at the margin, with agronomic expectations regarding the responsive-

ness of yield to intensive margin adjustments. The model is applied to the study

of a nitrogen tax in Yolo County, California, intended to mitigate non-point source

nitrogen pollution from field crops. At low tax levels, the behavioral and envi-

ronmental responses to the nitrogen tax appear to be largely due to changes in

the intensive margin. As the tax level increases, intensive margin responses start

to level out and acreage reallocation among crops begins to play a sizable part in

the total response. Overall, the environmental effects of the policy can only be

captured if intensive margin adjustments are correctly accounted for.

1 Introduction

The present paper develops an economic model of nitrogen use at the regional scale, for
use in ex ante agri-environmental policy evaluation. The model is based on the princi-
ples of positive mathematical programming (PMP), as outlined in Howitt (1995b) and,
more recently, Mérel et al. (2011). As such, the model exactly replicates an observed
acreage allocation among activities, as well as an exogenous set of crop supply elastici-
ties. The novelty of our approach lies in the fact that the model is also calibrated so as
to replicate crop yield responses to irrigation and nitrogen application consistent with
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agronomic information obtained from a biophysical soil process model (DAYCENT,
Del Grosso et al. (2008)). Consequently, our fully calibrated model is particularly fit
for the analysis of policies that are likely to affect both crop choice and input intensities
in multi-crop agricultural systems.

Programming models of agricultural supply, notably those based on PMP, have
been a staple of agricultural policy analysis even before their popularization by Howitt
(1995b). Most existing large-scale models of agricultural supply still rely on a fixed-
proportion representation of the cropping technology.1 That is, input intensities are
assumed to be fixed at their observed values, typically obtained from farm survey aver-
ages. While this simplification may be acceptable when modeling farm-level production,
it becomes questionable when the model is designed to delineate the production tech-
nology at a regional scale, where variation in input intensities is often undeniable and
substitution possibilities arise due to the aggregation of heterogenous farm-level pro-
duction functions (Hertel et al., 1996). The problem becomes even more critical when
these regional models are utilized to assess the effects of agri-environmental policies,
such as water conservation or nitrogen pollution reduction, that are designed to directly
impact farmers’ input intensities.

Howitt (1995a) first proposed a constant-elasticity-of-substitution (CES) PMP rep-
resentation of regional agricultural supply, that exactly replicates observed acreage and
input allocations among activities. His specification has been at the core of California’s
SWAP model ever since; it has also been used, for instance, by Graindorge et al. (2001)
or, in a slightly modified version, by Medellín-Azuara et al. (2010). Recently, Heckelei
and Wolff (2003) and Mérel et al. (2011) proposed a variant to Howitt’s model that
specifies a decreasing-returns-to-scale CES production function, eliminating the need to
add ad hoc penalty terms to the objective function. However, none of those papers have
attempted to use agronomic information as a source of calibration for the production
functions. This is problematic, as the yield effects generated by such models remain
largely uncontrolled for, and may be far from reasonable agronomic expectations.

This paper is not the first one to recognize the need to better represent farmers’
input adjustment opportunities in programming models of agricultural supply, but it
is the first one to propose a solution to the yield response calibration problem in the
context of positive mathematical programming. Before us, Godard et al. (2008) have
used local yield response curves derived from the biophysical model STICS (Brisson

1This is the case, in particular, for the US Regional Environment and Agriculture Programming
model (Johansson et al., 2007) and the European Common Agricultural Policy Regionalised Impact
(CAPRI) modelling system (http://www.capri-model.org).
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et al., 2003) to represent farmers’ nitrogen fertilizer application choice as a first stage
to a linear programming representation of crop choice. Graveline and Rinaudo (2007)
have exploited a yield response curve for corn to specify a discrete set of corn production
activities in a pure linear programming framework. Our approach is different from these,
as we focus on exact replication of observed economic behavior through non-linear PMP
calibration, as opposed to constrained linear optimization. We also calibrate crop yield
responses not only to nitrogen, but also irrigation, a critical margin of adjustment for
the assessment of certain environmental outcomes such as nitrate leaching. Finally,
we use the biophysical model to derive regional-level—as opposed to farm-level—yield
response curves.

Our model is applied to field crop agriculture in Yolo County, California, to evaluate
the economic and environmental effects of an exogenous increase in the price of nitrogen.
A nitrogen tax represents a possible market-based instrument to help mitigate non-point
source nitrogen pollution from agriculture. The effects of the tax on nitrate leaching
and nitrous oxide fluxes are tracked. Results show that at low to moderate tax levels,
most of the environmental benefits of the policy arise from input intensity adjustments,
with crop reallocation playing a minor role.

These findings suggest that accurate modeling of farmers’ intensive margin opportu-
nities is warranted for sound agri-environmental policy analysis, including the study of
climate change mitigation strategies, and call into question the use of fixed-proportion
technologies in existing large-scale models of agricultural supply.

2 Calibration of the economic model

Our model is derived as a refinement to the generalized constant-elasticity-of substitu-
tion mathematical programming model of Mérel et al. (2011). We model regional crop
production as the result of the rational maximization of aggregate farm returns, given
input and crop prices, subject to a land constraint. The number of cropping activities
is denoted I. The regional economic optimization model is defined as follows:

max
qi≥0,xij≥0

�
i {piqi − [(ci1 + λi1) xi1 + (ci2 + λi2) xi2 + (ci3 + λi3) xi3]}

subject to




�I
i=1 xi1 ≤ b1

qi = µi

��3
j=1 βijx

ρi
ij

� δi
ρi ∀i = 1, . . . , I

(1)
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where pi is the price of crop i and cij is the price of input j in activity i (j = 1, 2, 3).
The parameter b1 represents the available agricultural land, calculated as the sum of all
crop acreages in the reference allocation. The choice variables xij represent the amount
of input j used in the production of crop i, and qi denotes the output level, related to
the input employments in a generalized CES production function with parameters µi,
βij and δi, satisfying µi > 0, βij > 0,

�
j βij = 1 and δi ∈ (0, 1).

There are three explicit inputs in our model. The index j = 1 denotes land. The
other inputs are water (j = 2) and fertilizer expressed in pounds of nitrogen (j = 3),
assumed to be supplied in a perfectly elastic fashion to the farm sector. For the purpose
of this study, all other inputs (such as pesticides, labor, custom operations etc.) are
assumed to be employed in fixed proportions with land, and therefore their respective
cost is included in the price of land, ci1. The price of land thus varies by crop. Similarly,
it is assumed that all fertilizer elements (N, P, K and others) are employed in fixed
proportions, so that the cost of fertilizer ci3 is in fact crop-specific (different crops use
different proportions of the various elements).

The parameter ρi is a pure substitution parameter and is given by ρi =
σi−1
σi

, where
σi is the elasticity of substitution between any two inputs. In the absence of crop-
specific information on substitution elasticities, we set σi = 0.2 for all crops. This
figure represents a lower bound of the figures we were able to find in the literature.
Howitt (1995a) uses σ = 0.7 for field crop production functions with land, water,
capital and chemical inputs in California and the rest of the United States. More
recently, Medellín-Azuara et al. (2010) set σ = 0.25 for a production function with
land, labor, water, supplies and machinery time in Northern Mexico. Hertel et al.
(1996) empirically estimate the elasticity of substitution between land and nitrogen for
corn production in Indiana to be around 1.15. Therefore, we believe our value of the
substitution elasticity to be conservative.

Following common PMP practice, calibration parameters λi1 are added to the land
cost terms to allow for calibration against the reference acreage allocation. The calibra-
tion parameters λi2 and λi3 are added to allow calibration of the crop yield responses
to water and fertilizer, as explained in section 2.4. As such, the main difference be-
tween our model and previous CES specifications of PMP objective functions is that
we introduce shadow costs on each explicitly modeled input, as opposed to just one
of them—typically, land. As such, our model is free from the under-determinacy in-
herent in previous models, where one of the inputs had to be singled out to allow for
calibration against the reference allocation, and the attendant choice could have been
seen as arbitrary. Hence, by further increasing the information set to include agronomic
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yield responses, one can remove the last piece of under-determinacy that was left in the
specification of Mérel et al. (2011).

In the rest of the article, the calibration information at the reference allocation
is denoted (q̄i, x̄ij, η̄i, λ̄, ȳiW , ȳiN), where λ̄ denotes the shadow price of land obtained
from the first stage of PMP (Howitt, 1995b). The parameter η̄i denotes the exoge-
nous supply elasticity of crop i. The parameters ȳiW and ȳiN represent the agronomic
information, in the form of elasticities of yield with respect to water and nitrogen appli-
cation, respectively. The calibration problem consists of selecting the set of parameters
(µi, βij, δi, λi1, λi2, λi3) so that the optimization model (1) replicates the observed input-
output allocation (q̄i, x̄ij), the shadow price of land λ̄ and the supply responses η̄i, and
the yield responses calculated at the reference allocation coincide with (ȳiW , ȳiN).

2.1 Data sources

We apply model (1) to the representation of cropping activities in Yolo County, Califor-
nia. For crop acreage, we construct an average based on values published in the county
agricultural commissioner reports for the years 2002-2008.

We choose to model input allocation among major field crops only, excluding peren-
nial tree crops and non-irrigated pasture. Tree crops are excluded for simplification
purposes, and because they require significant establishment costs. Non-irrigated pas-
ture is usually grown on marginal land that is not suitable for field crops. The acreage
distribution among modeled crops is shown in table 1. The modeled crops represent
about 51% of total agricultural land in Yolo County, the rest being covered mainly by
non-irrigated pasture (32%) and orchard and vineyard (7%). For each crop, the county

Table 1: Acreage distribution for field crops

Crop Acreage share (%)
Alfalfa 25.06
Corn 3.07
Pasture (irrigated) 6.03
Rice 16.20
Safflower 6.80
Sunflower 6.30
Processing tomato 18.79
Wheat 17.75
Total 100.00

agricultural commissioner reports also provide information on yields and prices, that
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are averaged over the same period as acreages.
Own-price supply elasticities for corn, pasture, safflower, sunflower and wheat come

from the statewide agricultural production (SWAP) model developed by R. Howitt
(Jenkins et al., 2001). The supply elasticities for alfalfa, rice and processing tomato are
updated based on the recent study by Russo et al. (2008).

Baseline water application rates for each crop are taken from the Cost and return
studies published by the Department of Agricultural and Resource Economics at UC
Davis.2 The water price for Yolo County is based on water prices computed for the
California SWAP model (http://swap.ucdavis.edu/).

Per acre costs, excluding water and fertilizer, are calculated using the Cost and
return studies. Nitrogen application rates are imputed based on the methodology de-
scribed in section 2.2, and are checked against the values published in the Cost and
return studies to avoid any large discrepancies. Baseline fertilizer costs for each crop
are obtained from the Cost and return studies.

2.2 Derivation of yield response elasticities

Since we intend to use the calibrated model to predict how the response of the cropping
system to economic conditions, notably intensive margin adjustments, may affect en-
vironmental outcomes, it is crucial that the specified economic functions be consistent
with reasonable agronomic priors regarding the relationship between regional yields and
input intensities. The main reason is that environmental outcomes are assessed based
on the predictions of a biophysical soil process model that relates input intensities to
crop yield and environmental outcomes, conditional on local conditions such as soil and
climate. Exploiting such a model to infer the environmental effects of policy, without
paying attention to consistency in predicted yields between the biophysical and eco-
nomic models, would be highly questionable, because yield effects are essentially linked
to environmental outcomes. For instance, if the plant takes up more of the available
nitrogen, resulting in higher yield, there should be less nitrogen left in the soil to leach
in the form of nitrates.

However, current PMP models are not geared towards ensuring such consistency:
as of now, studies have focussed on the replication of observed economic behavior, that
is, input allocation among activities and, somewhat more recently, supply responses
(Heckelei, 2002; Heckelei and Wolff, 2003; Mérel and Bucaram, 2010; Mérel et al., 2011).
Below, we outline how the common calibration procedure can be amended to ensure

2These water application rates are admittedly not specific to Yolo County—though they are to the
Sacramento Valley,—but they still represent the most reliable information at our disposal.
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consistency not only with respect to economic information, but also with respect to
agronomic priors, at the margin.

The biophysical model used in this study is the DAYCENT model (Del Grosso et al.,
2008), calibrated for crops under California conditions (De Gryze et al., 2009, 2010).
DAYCENT is a version of the CENTURY ecosystem model (Parton et al., 1987, 1994),
that uses a daily time step. We use DAYCENT to generate regional (here, county-
level) yield responses to irrigation water and nitrogen fertilizer. The agricultural region
is divided into cells that can be considered homogenous in terms of local conditions
(soil, climate), and regional yields are calculated as the weighted sum of yields in each
cell, where the weights are commensurate with the cell size.3 The process to generate
regional yield response curves is as follows:

(i) we select the irrigation intensity for each crop based on information from the Cost
and return studies,

(ii) given the selected irrigation intensity, DAYCENT is run for various nitrogen ap-
plication rates,

(iii) an exponential yield response curve to nitrogen is fitted through the obtained
simulation data,

(iv) we select the nitrogen application rate that would replicate the observed regional
yield, obtained from the county agricultural commissioner reports,4

(v) given this baseline nitrogen application rate, DAYCENT is run for various water
application rates, and

(vi) a sigmoid yield response curve to water is fitted through the obtained simulation
data.

Following this process, we have, for each crop, a reference water application rate āiW ,
a reference nitrogen application rate āiN , and a reference yield ȳi. By construction, our
observed yield is consistent with “observed” water and nitrogen application rates, in the
sense that the observation point lies on both yield response curves.

3Not all soils can support production of a given crop. Therefore, regional yields for a crop are
obtained from aggregating over only those cells for which production is agronomically relevant.

4For a couple of crops we selected the yield that would be replicated by the nitrogen application
rate reported in the Cost and return study. For these crops, replicating the observed yield would have
resulted in a nitrogen application rate far from that provided in the Cost and return study, whereas
selecting the fertilizer rate from the Cost and return study did not result in a large departure from
the observed yield. Therefore, in choosing which information to retain, we sought to minimize the
departure from observed average yields and nitrogen application rates.
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The fitted yield response curves yi(aiW , āiN) and yi(āiW , aiN) are then used to cal-
culate the elasticity of regional yield with respect to the water and nitrogen application
rates. Following common practice, the relationship between yield and nitrogen appli-
cation, at the reference water application rate, is specified as the exponential function5

yi(aiN) = yi0 + αiN (1− exp(−βiNaiN))

where yi0 represents the minimum yield as nitrogen application goes to zero. Values for
the parameters yi0, αiN and βiN are obtained through nonlinear regression of a series of
simulated yields on various nitrogen application scenarios, and by construction we have
ȳi = yi0 + αiN (1− exp(−βiN āiN)).6 The elasticity of yield with respect to nitrogen
application at the reference allocation can then be computed as

ȳiN =
dyi
daiN

āiN
ȳi

=
αiNβiN exp(−βiN āiN)āiN

ȳi
.

In a parallel fashion, the relationship between yield and water application, at the ref-
erence nitrogen application rate, is specified as

yi(aiW ) =
αiW

1 + exp
�
−aiW−ai0

βiW

� (2)

where the parameters ai0, αiW and βiW are again estimated using nonlinear regression
on a series of simulated yields. By construction, the reference yield lies on the fitted
curve at the reference water application:

ȳi =
αiW

1 + exp
�
− āiW−ai0

βiW

� .

5The same functional form is used by Godard et al. (2008).
6All of the regression coefficients of the agronomic yield response functions to water and nitrogen are

statistically significant at the 1% level or better. Coefficient estimates for each crop are not reported
here, but are available upon request to the authors.
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The elasticitiy of output with respect to water can then be computed as

ȳiW =
dyi
daiW

āiW
ȳi

=
āiW e

− āiW−ai0
βiW

βiW

�
1 + e

− āiW−ai0
βiW

� .

All yield response elasticities are reported in table 2.7

2.3 Calibration of supply elasticities

The use of prior information on supply elasticities to calibrate PMP models of agri-
cultural supply has been advocated repeatedly in the recent literature (Heckelei and
Britz, 2005; Mérel and Bucaram, 2010). The reason is two-fold: first, PMP models are
typically under-determined, that is, the information on the observed cropping pattern
and input allocation is not sufficient to recover the entire set of model parameters. The
literature has dealt with this under-determinacy problem by either imposing a priori
restrictions—in quadratic models for instance, setting off-diagonal elements to zero is a
popular modeling choice—or, more recently, by using a generalized maximum entropy
algorithm to recover the entire set of model parameters (Paris and Howitt, 1998). The
use of prior information on crop supply elasticities as a second source of information
can thus mitigate the under-determinacy problem.

Second, traditional PMP algorithms are not always geared towards ensuring consis-
tency of the model’s implied supply response with econometric priors regarding the value
of supply elasticities. Although any PMP model exactly replicates the observed crop-
ping pattern, different calibration rules imply different—and sometimes unrealistic—
supply response patterns (Heckelei and Britz, 2005).

This paper follows the calibration method developed by Mérel et al. (2011), which
permits the exact replication of an exogenous set of own-price supply elasticities. These
authors show that the calibration problem for model (1) is recursive, in the sense that
the parameters δi can be chosen independently of the other calibration parameters,
in order to calibrate the model’s own-price supply elasticities. The other parameters
are then chosen, conditional on the values of the δis. Mérel et al. (2011) also show

7As a legume, alfalfa does not have a significant yield response to nitrogen application. Therefore,
we set βalfalfa3 = 0. Similarly, rice is a flooded crop that does not show much response to water
application around the calibration point, therefore we set βrice2 = 0. Irrigated pasture is not part of
the set of calibrated crops in DAYCENT, thus we assume fixed proportions for this crop, that is, we
set σpasture = 0.
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Table 2: Crop yield and supply elasticities

Crop bi ȳiW ȳiN η̄i
Alfalfa 72.99 0.21 - 0.44
Corn 11.86 0.22 0.11 0.55
Pasture (irrigated) 24.91 - - 0.24
Rice 32.97 - 0.17 0.48
Safflower 46.83 0.05 0.25 0.45
Sunflower 26.03 0.26 0.00 0.63
Processing tomato 20.85 0.01 0.09 0.55
Wheat 132.77 0.06 0.11 0.36

Note: bi denotes the ratio of acreage over gross revenue per acre. The parameters η̄iW and

η̄iN denote the yield elasticities with respect to water and nitrogen. The parameter η̄i denotes

the own-price supply elasticity.

that not all sets of supply elasticities can be reproduced by model (1). They derive an
explicit calibration criterion, and argue that when this criterion is met the solution to
the calibration problem is unique. Adapting their notation to that used in the present
paper, the calibration criterion requires that for all i = 1, . . . , I:




η̄i >

ȳiW+ȳiN
1−ȳiW−ȳiN

biη̄i
�
1− σi(ȳiW+ȳiN )

η̄i(1−ȳiW−ȳiN )

�
<

�
j �=i bj η̄j

�
1 + 1

η̄j

�2 �
1 + σj(ȳjW+ȳjN )

η̄j(1−ȳjW−ȳjN )−(ȳjW+ȳjN )

� (3)

where bi ≡ x̄2
i1

piq̄i
represents the ratio of acreage to gross revenue per acre. The first

inequality in (3) ensures that myopic elasticity calibration of the model would be feasi-
ble.8 The second inequality puts an upper bound on each of the supply elasticities η̄i,
that depends on the elasticities of other crops, thereby ensuring that no crop response
“dominates” all others. In our application, the calibration criterion (3) is met for the
set of elasticities reported in table 2, so that the model exactly replicates the exogenous
supply response pattern.

2.4 Calibration to biophysical information

Calibration against agronomic yield response curves is achieved by setting the two
elasticities derived in section 2.2 equal to the elasticities derived using the generalized

8Myopic elasticity calibration refers to calibration of the δis where the change in the shadow price
of land λ is ignored. As such, a myopically calibrated model does not exactly replicate the exogenous
supply elasticities.
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CES economic production function:




ȳiW = δi

βi2x̄
ρi
i2�

j βij x̄
ρi
ij

ȳiN = δi
βi3x̄

ρi
i3�

j βij x̄
ρi
ij

(4)

where the reference water and fertilizer employments satisfy x̄i2 = āiW x̄i1 and x̄i3 =

āiN x̄i1. Taking account of (4), the first-order conditions of model (1) are:






piq̄i (δi − ȳiW − ȳiN) =
�
ci1 + λi1 + λ̄

�
x̄i1

piq̄iȳiW = (c2 + λi2) x̄i2

piq̄iȳiN = (c3 + λi3) x̄i3

. (5)

As long as ȳiW + ȳiN < δi, a condition that is ensured by the first inequality in (3) and
the fact that δi > η̄i

1+η̄i
,9 system (5) determines acceptable values for the parameters λij,

j = 1, . . . , 3. In essence, the shadow prices are chosen so that given the exogenously de-
termined responsiveness of output to input intensities, embedded in the yield elasticities
ȳiW and ȳiN , the marginal value products of factors are equated to their full social cost,
cj + λij. As such, this calibration rule follows the classical paradigm of PMP, whereby
observed behavior is rationalized by adding unobserved, idiosyncratic components to
market prices. Negative values for the λijs thus indicate a “hidden benefit” from factor
use, while negative values indicate a “hidden cost”. For instance, a negative value of
λi3 would indicate that farmers obtain a shadow benefit from applying more fertilizer
to crop i, that is not being captured by the yield effect, for instance an insurance value
against weather shocks.

Table 3 reports the calculated values of the parameters λij. The signs of the cost
adjustments for water and nitrogen vary by crop. For all crops but processing tomato
and safflower, the sign of λi2 is positive, indicating a hidden cost for water, that could
be related to water scarcity at the county level. In contrast, for processing tomato
the hidden benefit offsets most of the market cost of water, indicating that farmers
are benefiting from adding water well beyond the agro-economic optimum dictated by
observed market prices and the yield response function.

Half of the crops display a hidden benefit from nitrogen application. Sunflower
displays the largest relative benefit from nitrogen, as the shadow benefit nearly offsets
the market price of fertilizer. Figure 10 in Appendix B provides an explanation for
this fact, as the observation point lies in the flatter portion of the agronomic yield
response curve, indicating that farmers could reduce nitrogen without losing much

9See Mérel et al. (2011), proposition (2).
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yield. One explanation for over-fertilization that is often discussed among experts is
that “fertilizer is so cheap that farmers apply it without really counting.” This departure
from standard economic principles, if it existed, would indeed be captured in our model
by the parameter λi3: though the market price of fertilizer is $0.53/lb N for sunflower,
farmers behave as if it were only $0.01. In contrast, rice displays a large shadow cost
for fertilizer, indicating that farmers are not applying as much nitrogen as would be
dictated by the yield response and the market prices.

Table 3: Factor costs and shadow costs

Crop ci1 + λ̄ λi1 ci2 λi2 ci3 λi3

($/acre) ($/acre) ($/ac-ft) ($/ac-ft) ($/lb N) ($/lb N)
Alfalfa 358.37 -259.40 17.72 20.46 - -
Corn 266.06 -246.44 17.72 10.42 0.56 -0.29
Pasture (irrigated) 265.76 -158.74 - - - -
Rice 329.67 -149.68 - - 0.30 1.29
Safflower 89.71 -80.01 17.72 -4.48 0.33 0.43
Sunflower 173.09 -101.17 17.72 24.42 0.53 -0.52
Processing tomato 847.57 -329.67 17.72 -14.35 0.65 0.37
Wheat 182.18 -136.95 17.72 12.15 0.95 -0.63

Once the cost adjustment parameters λij have been derived, it is straightforward to
recover the technology parameters µi and βij, using (4) and the equalities

�
j βij = 1

and q̄i = µi

��
j βijx̄

ρi
ij

� δi
ρi . This last step concludes the calibration phase.

Figures 1-6 in Appendix A illustrate the resulting calibration of the yield responses
to water. The blue curve depicts the fitted agronomic response, while the green curve
shows the economic yield function, evaluated at the reference acreage x̄i1 and the ref-
erence nitrogen application rate āiN . The calibrated yield responses with respect to
nitrogen, evaluated at x̄i1 and āiW , are shown in figures 7-12 in Appendix B. Overall,
the curves demonstrate that at the observed acreage allocation, the yield responses of
the economic model are consistent with agronomic priors over a reasonable range of
input application rates around the calibration point.

3 Policy experiments

Our economically- and agronomically-calibrated model is applied to the study of the
economic and environmental effects of a nitrogen tax in Yolo County, California. Ni-
trogen taxes have been suggested as a potential remedy to non-point source nitrogen
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pollution in agriculture (Huang and LeBlanc, 1994; Choi and Feinerman, 1995; Helming,
1998; Graveline and Rinaudo, 2007; Durandeau et al., 2010). The two main avenues of
nitrogen pollution in cropping are field emissions of nitrous oxide (N2O), a very potent
greenhouse gas (GHG), and nitrate leaching in groundwater and streams.

California’s Air Resources Board estimates that N2O contributed 2.8% of Califor-
nia’s total GHG emissions in 2004 (Air Resources Board, 2011). Agricultural soil was
the largest source of N2O, accounting for approximately 50% of the State’s total N2O
emissions. Current methods estimate that on average, approximately 50% of the ni-
trogen fertilizer applied in the field is lost to the transport pathways of volatilization,
leaching and runoff (Ladha et al., 2005).

To comprehend the effect of a nitrogen tax on behavioral and environmental out-
comes, it is useful to decompose the total effect into its two elementary economic re-
sponses: an extensive margin effect, that is, the reallocation of acreage among crops,
and an intensive margin effect, that is, the change in input intensity per acre, for a
given crop. Both effects are operating simultaneously, and we show below that in our
application the intensive margin effect, which has been overlooked in existing PMP
studies (Helming, 1998), is likely to be large. Hence, to anticipate the full effect of a
nitrogen tax policy, it is necessary to accurately model the intensive margin response,
in addition to the extensive margin response.

3.1 Behavioral adjustments

We focus most of our discussion on the effect of the tax on nitrogen employment,
although it is clear from the specification in (1) that the tax will also induce changes in
water application. The total amount of nitrogen applied at the regional level is X3 =
�I

i=1 xi3(ci3), where economic variables other than ci3 are being held constant and hence
are omitted from the notation. Let us denote by cN the price of nitrogen. We consider
nitrogen taxes ranging from 4 ¢/lb N up to 16 ¢/lb N. The highest tax considered would
represent a 50% increase in the price of urea. Because the fertilizer rates xi3 are counted
in pounds of nitrogen, with other nutrients held in fixed proportions, it is the case that
dci3
dcN

= 1. Writing xi3(ci3) =
xi3
xi1

(ci3)× xi1(ci3) = aiN(ci3)× xi1(ci3), the total behavioral
effect can be decomposed as:

dX3

dcN����
total effect

=
I�

i=1

aiN × dxi1

dci3����
acreage effects� �� �

extensive margin effect

+
I�

i=1

xi1 ×
daiN
dci3� �� �

N rate effects� �� �
intensive margin effect

(6)
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where the first term can be interpreted as the extensive margin (acreage reallocation)
effect and the second term as the intensive margin (nitrogen application) effect.

Table 4 shows the acreage reallocation pattern for all crops under various nitrogen
tax scenarios. Alfalfa and safflower expand, while other crop acreages decrease or remain
stable. At all tax levels, corn and wheat experience the largest relative reductions in
acreage. To understand the pattern of land reallocation, it suffices to derive the acreage
reactivities of each crop to the two prices that are changing, namely the price of fertilizer
and the shadow price of land. To see why, note that the total acreage effect for a crop
can itself be decomposed as

dxi1

dcN
=

∂xi1

∂λ

dλ

dcN
+

∂xi1

∂ci3
(7)

where ∂xi1
∂λ denotes the acreage reactivity of crop i to changes in the price of land,

and ∂xi1
∂ci3

denotes its acreage reactivity to changes in the price of fertilizer. Because a
nitrogen tax decreases the overall returns to land, the derivative dλ

dcN
is negative. The

acreage reactivity to land price changes can be calculated as10

∂xi1

∂λ
= −

�
bi

δi(1− δi)
+

σibi(ȳiW + ȳiN)

δi(δi − ȳiW − ȳiN)

�
(8)

where the first condition in (3) ensures that both terms in the bracket are positive (law
of derived demand). The acreage reactivity to fertilizer price changes is11

∂xi1

∂ci3
= −

�
bi

δi(1− δi)
− σibi

δi

�
x̄i3

x̄i1
(9)

a relation that shows that under our maintained assumption that δi < 1 and σi < 1,
fertilizer and land are gross complements, in the sense that a rise in the price of fertilizer,
holding constant all other prices (including λ), results in a reduction in acreage. (The
same would be true for water employment.) Therefore, the two terms in equation (7)
always have opposite signs and thus the sign of the total effect dxi1

dcN
essentially depends

on the relative magnitudes of the two acreage reactivities in (8) and (9).
Note that, if the elasticity of substitution between inputs σi were arbitrarily small,

then the sign of the total acreage effect would only depend on the ratio x̄i3
x̄i1

, that is,
the fertilizer application rate, and the ratio

�� dλ
dcN

��. Since
�� dλ
dcN

�� does not depend on
the crop, crops experiencing an acreage contraction would be those that have higher

10The derivation of this expression can be found on page 9 of the appendix to Mérel et al. (2011).
11See Appendix C for the derivation of this expression.
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fertilization rates. Though we assume here that σi = 0.2, this characterization remains
true to some extent. In particular, corn, processing tomatoes and rice are the crops
with the highest fertilization rates, and they all experience acreage contractions, at the
margin. In contrast, wheat acreage is contracting while safflower acreage is expanding,
though safflower has a marginally higher nitrogen fertilization rate than wheat in the
reference allocation (102.3 lbs/ac, as opposed to 101.7 lbs/ac for wheat). This is due
to substitution between inputs: safflower experiences a greater reduction in nitrogen
fertilization than wheat, and thus becomes less nitrogen-intensive than wheat.

Table 4: Acreage effects

Crop Increase in nitrogen price
4 ¢/lb N 8 ¢/lb N 12 ¢/lb N 16 ¢/lb N

Alfalfa (%) 1.30 2.46 2.86 2.52
Corn (%) -2.11 -4.00 -7.29 -11.95
Pasture (irrigated) (%) 0.62 0.99 0.14 -1.80
Rice (%) -0.60 -1.28 -2.41 -3.95
Safflower (%) 2.97 7.04 7.47 2.61
Sunflower (%) -0.09 -0.03 -0.82 -2.44
Processing tomato (%) -0.76 -1.56 -2.56 -3.75
Wheat (%) -1.42 -2.97 -6.07 -10.47

Tables 5 and 6 show the induced changes in input intensities per acre for all activities.
All crops experience a reduction in their fertilizer and water application rates when the
nitrogen price increases. The crop that is the most responsive to the nitrogen price
increase, in terms of the application rate of fertilizer, is sunflower. Looking at figures 7-
12 in Appendix B, this does not come as a surprise, since this is the only crop for which
the observation point seems to lie on the flatter portion of the yield response curve
to nitrogen. That is, for other crops reductions in nitrogen application cause more
drastic losses in yields. Also note that at the higher tax level considered, the intensive
margin responses appear to level out, particularly for water application. Therefore,
input application rates stabilize at higher tax levels, as the implied yield loss from
further reductions in input intensity becomes very large.

Although the decomposition of the total behavioral effect in (6) holds at the margin
only, we can decipher the relative importances of the extensive margin effect and the
intensive margin effect for non incremental nitrogen price changes by comparing the fol-
lowing metrics:

�
i āiN ×∆xi1 (extensive margin effect) and

�
i x̄i1 ×∆aiN (intensive

margin effect). Results are presented in table 7. It appears that the intensive margin
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Table 5: Water intensity effects

Crop Increase in nitrogen price
4 ¢/lb N 8 ¢/lb N 12 ¢/lb N 16 ¢/lb N

Alfalfa (%) -0.36 -0.68 -0.79 -0.70
Corn (%) -2.36 -4.70 -5.92 -5.92
Pasture (irrigated) (%) - - - -
Rice (%) - - - -
Safflower (%) -5.03 -10.71 -14.09 -14.09
Sunflower (%) -0.62 -1.19 -1.48 -1.48
Processing tomato (%) -0.09 -0.16 -0.20 -0.20
Wheat (%) -0.99 -1.93 -2.39 -2.39

Table 6: Fertilizer intensity effects

Crop Increase in nitrogen price
4 ¢/lb N 8 ¢/lb N 12 ¢/lb N 16 ¢/lb N

Alfalfa (%) - - - -
Corn (%) -5.05 -9.56 -12.65 -14.35
Pasture (irrigated) (%) - - - -
Rice (%) -0.74 -1.44 -2.02 -2.47
Safflower (%) -6.00 -12.48 -16.57 -17.30
Sunflower (%) -22.75 -31.06 -35.89 -39.11
Processing tomato (%) -0.85 -1.65 -2.39 -3.06
Wheat (%) -3.26 -6.13 -8.32 -9.88

effect is responsible for the bulk of the behavioral response, with acreage adjustments
playing only a minor role, except at higher tax levels where the intensive margin adjust-
ments are starting to level out. These results suggest that for small increases in nitrogen
price, reductions in total nitrogen application at the regional scale will mostly be due to
intensive margin responses, while at higher tax levels further reductions will essentially
come from crop reallocation. However, it is notable that even at moderate tax levels,
some individual crops are predicted to experience sizable variations in acreage. As such,
assuming that crop acreages remain constant would likely not constitute a reasonable
modeling choice.
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Table 7: Extensive and intensive margin effects

Effect Increase in nitrogen price
4 ¢/lb N 8 ¢/lb N 12 ¢/lb N 16 ¢/lb N

Extensive margin (%) -0.54 -1.03 -2.48 -4.93
Intensive margin (%) -3.34 -5.66 -7.29 -8.30
Total (%) -3.87 -6.68 -9.65 -12.81

3.2 Welfare effects

The behavioral adjustments derived previously dictate changes in economic welfare
measures. Because the tax is distorting production decisions, it has a negative effect
on social surplus, ignoring the environmental benefits from reduced nitrogen losses. In
our model, land is the sole residual claimant. Table 8 reports the calculated changes in
returns to land ownership, the tax revenue generated, and the change in social surplus,
defined as the sum of land returns and tax revenue. Land returns are equal to the
maximized value of the objective function in (1), and are thus inclusive of all shadow
costs. The values reported imply that the deadweight cost of the policy is moderate,
about -0.2% in social surplus at the highest tax level considered.

Table 8: Returns to land ownership and tax revenue

Scenarios Returns to land ownership Tax revenue Social surplus loss
(million dollar) % change (1,000 dollar) (1,000 dollar)

Base case 124.79 - - -
4 ¢/lb N 124.00 -0.63 771.65 -14.01
8 ¢/lb N 123.24 -1.24 1498.13 -47.61
12 ¢/lb N 122.50 -1.83 2175.80 -107.92
16 ¢/lb N 121.79 -2.40 2799.60 -196.47

3.3 Environmental outcomes

Nitrogen employment at the regional level is not necessarily monotonically related to
the environmental outcomes of interest. That is, an overall reduction in nitrogen em-
ployment (∆X3 < 0) may or may not be related to a decrease in nitrate leaching or a
decrease in N2O emissions from agricultural fields, mainly because these environmental
effects are highly dependent on the crop, and acreage is being reallocated among crops.
One complicating factor in particular is that the more nitrogen-saving crops may not
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be the ones with lower nitrogen leaching and/or N2O emissions per acre. For instance,
in our model wheat has a higher nitrogen fertilization rate than sunflower, yet its N2O
emission rate is less than a fourth of that of sunflower. Therefore, to correctly infer
the environmental effects of the policy, it is essential to couple the economic optimiza-
tion representation of the cropping system with a biophysical model that can predict
nitrogen losses, conditional on the choice of crop and input intensities.

Here, we exploit the predictions of the DAYCENT model in terms of nitrate leaching
and N2O emissions to recover the environmental effects of the tax policy. Since irrigated
pasture is not calibrated in DAYCENT, we assume that nitrogen losses for this crop
are the same as those for alfalfa.12

Tables 9 and 10 show the environmental effects of the increase in nitrogen price for
each crop on a per acre basis. These tables make clear that intensive margin adjustments
always have the intended effect on the environmental outcomes of interest: for each
crop, a reduction in nitrogen intensity is associated with a decrease in both nitrate
leaching and N2O emissions. In addition, the attendant environmental effects can be
significant. For instance, there seems to be a sharp reduction in nitrate leaching for
corn and sunflower. Changes in field emissions of N2O on a crop-by-crop basis appear
to be more modest, except maybe for corn.

Table 9: Nitrate leaching change for each crop due to intensive margin adjustments (%)

Crop Increase in nitrogen price
4 ¢/lb N 8 ¢/lb N 12 ¢/lb N 16 ¢/lb N

Alfalfa -2.07 -3.29 -4.06 -4.56
Corn -8.42 -15.28 -19.84 -22.43
Pasture (irrigated) -2.07 -3.29 -4.06 -4.56
Rice -0.91 -1.73 -2.32 -2.78
Safflower -4.13 -7.90 -10.42 -11.37
Sunflower -12.55 -17.52 -20.50 -22.45
Processing tomato -2.65 -4.41 -5.72 -6.76
Wheat -4.24 -7.19 -9.27 -10.78

However, the story is more nuanced when looking at aggregate regional effects. Table
11 reports the total environmental outcomes at the regional scale, taking into account

12This is hardly a satisfactory assumption. We were not able to find measures of nitrate leaching or
N2O emissions for pasture in the literature. However, we note that since the acreage change for irrigated
pasture is extremely small, the contribution of this crop to changes in nitrogen applied regionally, and
attendant environmental outcomes, is likely negligible, at least under our maintained fixed-proportion
assumption for this crop.
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Table 10: N2O emissions change for each crop due to intensive margin adjustments (%)

Crop Increase in nitrogen price
4 ¢/lb N 8 ¢/lb N 12 ¢/lb N 16 ¢/lb N

Alfalfa -0.61 -1.08 -1.37 -1.52
Corn -5.23 -9.47 -12.69 -14.56
Pasture (irrigated) -0.61 -1.08 -1.37 -1.52
Rice -0.96 -1.81 -2.45 -2.97
Safflower -3.81 -7.85 -10.48 -11.32
Sunflower -6.21 -8.84 -10.47 -11.56
Processing tomato -1.39 -2.48 -3.30 -3.95
Wheat -3.01 -5.53 -7.39 -8.69

all margins of adjustment, while table 12 is constructed assuming that leaching and
N2O emissions per acre and per crop are fixed at their pre-tax values, so that the only
changes in environmental indicators stem from the observed crop reallocation pattern.
Assuming away changes in nitrogen and water application, it appears that the acreage
reallocation effect does little for mitigating nitrogen pollution, especially at lower tax
levels. However, as tax levels rise and intensive margin adjustments level out, acreage
reallocation among crops begins to play a more significant role in the environmental
response. At the highest tax level considered here, the extensive margin effect accounts
for about 45% of the total effect for N2O emissions, and 30% for nitrate leaching.

Still, at all tax levels, total effects for both environmental outcomes are sizable,
thanks to relatively strong intensive margin adjustment effects, as is clear from table
11. The induced reductions in nitrogen and water application rates appear to have
a particularly strong effect on nitrate leaching. Overall, the tax scheme seems more
effective at reducing nitrate leaching than field emissions of N2O.

4 Conclusion

The present study demonstrates the usefulness of combining information obtained from
observed economic behavior (input and output allocation, estimates of crop supply
elasticities) with information simulated by a calibrated biophysical model, to infer the
environmental effects of a policy that is likely to have effects both at the extensive and
intensive margins.

The novelty of the approach presented here lies in the use of agronomic informa-
tion, in the form of crop yield responses to water and nitrogen, to calibrate economic
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Table 11: Aggregate environmental outcomes, total effect

Scenarios

Nitrate leaching N2O flux
Quantity % Change Quantity % Change

(tonne N/yr) from (tonne N/yr) from
base case base case

Base case 4659.66 - 166.00 -
4 ¢/lb N 4433.82 -4.85 162.28 -2.24
8 ¢/lb N 4294.50 -7.84 159.37 -3.99
12 ¢/lb N 4164.28 -10.63 156.06 -5.99
16 ¢/lb N 4029.96 -13.51 152.21 -8.31

Table 12: Aggregate environmental outcomes, extensive margin effect only

Scenarios

Nitrate leaching N2O flux
Quantity % Change Quantity % Change

(tonne N/yr) from (tonne N/yr) from
base case base case

Base case 4659.66 - 166.00 -
4 ¢/lb N 4638.26 -0.46 165.37 -0.38
8 ¢/lb N 4618.57 -0.88 164.75 -0.76
12 ¢/lb N 4564.30 -2.05 162.98 -1.82
16 ¢/lb N 4474.22 -3.98 160.03 -3.60

production functions that explicitly allow for input substitution. This feature of our
model necessitates the addition of crop-specific shadow prices for water and nitrogen
to the generalized CES model proposed by Mérel et al. (2011). These shadow factor
prices, very much like the calibration duals first introduced by Howitt (1995b), reflect
“hidden” costs or benefits of input application that are not captured by the agronomic
response functions, but instead are revealed by the observed economic behavior.

The calibration approach was implemented on a simplified model of crop agriculture
for Yolo County, California, to investigate the economic and environmental effects of
a nitrogen tax. Results suggest that even with a moderate value for the elasticity of
substitution between inputs, intensive margin adjustments are likely to constitute a
very significant part of the behavioral response to nitrogen price increases at lower tax
levels. As tax levels increase and reductions in input application rates start to level out
due to yield effects, extensive margin adjustments start to play a more significant role
in the reduction of nitrogen employment at the regional scale.
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Environmental effects are not perfectly correlated with behavioral outcomes. Over
the range of taxes considered here, intensive margin adjustments are responsible for
the bulk of the environmental benefits from the policy. This is because nitrogen-saving
crops are not necessarily the ones with the lowest leaching and N2O emissions factors,
so that crop reallocation, even when it works towards a reduction of regional nitro-
gen application, may not contribute significantly to reductions in leaching and/or field
emissions.

Overall, these results suggest the need to better account for variability in input use in
models of agricultural supply, especially when modeling the effects of agri-environmental
policies that are likely to influence the intensive margins. The coupling of biophysical
process models with economic information obtained at a more aggregate level represents
a promising avenue in this respect. The integration of the agricultural sector into
climate change mitigation efforts worldwide represents an important and timely policy
issue, the study of which could benefit from the approach proposed in this paper.
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Appendix

A. Yield responses to water
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Figure 1: Corn
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Figure 2: Alfalfa
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Figure 3: Safflower
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Figure 4: Sunflower
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Figure 5: Wheat
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Figure 6: Tomato

B. Yield responses to nitrogen
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Figure 7: Corn
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Figure 8: Rice
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Figure 9: Safflower
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Figure 10: Sunflower
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Figure 11: Wheat
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Figure 12: Tomato

C. Derivation of expression (9)

We drop the crop index to alleviate notation. Denote c̄1 = c1 + λ̄ + λ1, c̄2 = c2 + λ2

and c̄3 = c3 + λ3. Thus, the c̄js represent the full factor costs, inclusive of all shadow
components. The first-order conditions for optimization of the profit from a given crop
are

pµδ

�
�

l

βlxl
ρ

� δ
ρ−1

βjxj
ρ−1 = c̄j ∀ j = 1, . . . , 3. (10)

Therefore, x2 and x3 can be expressed as functions of x1: x2 =
�

β1

β2

c̄2
c̄1

� 1
ρ−1

x1 and

x3 =
�

β1

β3

c̄3
c̄1

� 1
ρ−1

x1. Plugging these expressions back into the first-order condition with
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respect to x1 and defining β�
1 = β1 + β2

�
β1

β2

c̄2
c̄1

� ρ
ρ−1

+ β3

�
β1

β3

c̄3
c̄1

� ρ
ρ−1 , we obtain:

pµδ (β�
1(c̄3))

δ
ρ−1 β1x

δ−1
1 − c̄1 = 0 (11)

where we have made explicit the fact that c̄3 appears in the expression of β�
1. The

derivative ∂x1
∂c̄3

can be obtained as

∂x1

∂c̄3
= −

pµδβ1x
δ−1
1

�
δ
ρ − 1

�
(β�

1)
δ
ρ−2β3

�
β1

β3c̄1

� ρ
ρ−1

�
ρ

ρ−1

�
(c̄3)

ρ
ρ−1−1

pµδ(β�
1)

δ
ρ−1β1(δ − 1)xδ−2

1

= −
x1

�
δ
ρ − 1

��
ρ

ρ−1

�
β
− 1

ρ−1

3 β
ρ

ρ−1

1 (c̄1)
− ρ

ρ−1 (c̄3)
1

ρ−1

β�
1(δ − 1)

= −
(δ − ρ)σβ1

�
β1

β3

c̄3
c̄1

� 1
ρ−1

x1

(1− δ)β�
1c̄1

= −(δ − ρ)σβ1x3

(1− δ)β�
1c̄1

= − (δ − ρ)σβ1x3

(1− δ)pµδ(β�
1)

δ
ρβ1x

δ−1
1

= − (δ − ρ)σx3

(1− δ)pqδx−1
1

=
σx1x3

pqδ
− x1x3

pqδ(1− δ)

where we have made use of σ = 1
1−ρ and q = µ(β�

1)
δ
ρxδ

1. Evaluated at the reference
allocation, this derivative becomes

∂x1

∂c̄3
=

σb

δ

x̄3

x̄1
− b

δ(1− δ)

x̄3

x̄1

where we have used b = x̄2
1

pq̄ . Equation (9) follows.


