
A Relation-Algebraic Approach
to Graph Structure Transformation

WOLFRAM KAHL

u0

PhiL PhiR

ChiL

Xi

PsiL

Psi

Chi

BerichtNr. 2002-03

June2002

UniversitätderBundeswehrMünchen

Fakultätfür
.

INFORMATIK
Werner-Heisenberg-Weg 39• 85577Neubiberg • Germany

A Relation-Algebraic Approach

to Graph Structure Transformation

Wolfram Kahl1

Abstract

Graph transformation is a rapidly expanding field of research, motivated by a wide range
of applications.

Such transformations can be specified at different levels of abstraction. On one end,
there are “programmed” graph transformation systems with very fine control over manip-
ulation of individual graph items. Different flavours of rule-based graph transformation
systems match their patterns in more generic ways and therefore interact with the graph
structure at slightly higher levels.

A rather dominant approach to graph transformation uses the abstractions of cate-
gory theory to define matching and replacement almost on a black-box level, using easily
understandable basic category-theoretic concepts, like pushouts and pullbacks. However,
some details cannot be covered on this level, and most authors refrain from resorting to
the much more advanced category-theoretic tools of topos theory that are available for
graphs, too — topos theory is not felt to be an appropriate language for specifying graph
transformation.

In this thesis we show that the language of relations can be used very naturally to cover all
the problems of the categoric approach to graph transformation. Although much of this
follows from the well-known fact that every graph-structure category is a topos, very little
of this power has been exploited before, and even surveys of the categoric approach to
graph transformation state essential conditions outside the category-theoretic framework.

One achievement is therefore the capability to provide descriptions of all graph trans-
formation effects on a suitable level of abstraction from the concrete choice of graph
structures.

Another important result is the definition of a graph rewriting approach where rela-
tional matchings can match rule parameters to arbitrary subgraphs, which then can be
copied or deleted by rewriting. At the same time, the rules are still as intuitive as in the
double-pushout approach, and there is no need to use complicated encodings as in the
pullback approaches.

In short: A natural way to achieve a double-pushout-like rewriting concept that incorpo-
rates some kind of “graph variable” matching and replication is to amalgamate pushouts
and pullbacks, and the relation-algebraic approach offers appropriate abstractions that
allow to formalise this in a fully component-free yet intuitively accessible manner.

1 Current e-mail address: kahl@mcmaster.ca. This habilitation thesis was completed during the author’s
appointment at the Institute for Software Technology of Universität der Bundeswehr München.

Acknowledgements

Although my interest in graphs and structures may have been “hard-wired” in my brain, it
was Gunther Schmidt who led me on the one hand to applications of graph transformation
in software development, and on the other hand to relation-algebraic formalisations in
general, and to their applications to graphs in particular. Besides guiding me with his
deep understanding of the calculus of relations as a valuable tool for formalisation and
reasoning, he also alerted me to the importance of being aware of the axiomatic basis
underlying one’s work, and refraining from assuming more than necessary for the task at
hand.

Another important influence has been Yasuo Kawahara, who introduced me to Dede-
kind categories and to working in weaker axiomatisations of relation categories, and whose
pioneering work on “pushout-complements in toposes” provided an important stepping
stone for the current thesis.

I wish to thank many friends and colleagues for discussions on more or less directly
related topics that considerably helped to shape my ideas, let me only mention Andrea
Corradini, Jules Desharnais, Hitoshi Furusawa, Fabio Gadducci, Hélène Jacquet, Bernhard
Möller, John Pfaltz, and Michael Winter.

Finally, I am infinitely grateful to my wife Liping and daughter Cynthia for their
patience, understanding and support during the genesis of this thesis.

Contents

1 Introduction 1

1.1 Graph Grammars and Graph Transformation 1

1.2 The Categoric Approaches to Graph Transformation 3

1.2.1 Pushouts . 4

1.2.2 More About Pushouts in Graphs . 7

1.2.3 The Double-Pushout Approach . 7

1.2.4 The Gluing Condition . 9

1.2.5 Restricting Derivations . 12

1.2.6 The Single-Pushout Approach . 13

1.2.7 Shortcomings of the Pushout Approaches 15

1.2.8 The Pullback Approach . 15

1.3 Graph Transformation with Relational Matching 21

1.4 Relation Algebras and Generalisations . 24

1.5 Contrasting the Relational and the Categoric Approaches 26

1.6 Overview . 27

1.7 Eddi . 29

2 Graph Structures and Their Parts 30

2.1 Preliminaries: Sets, Lattices . 31

2.2 Signatures . 34

2.3 Algebras and Subalgebras . 36

2.4 Subalgebras in Graph Structures . 41

2.5 Partial Algebras and Weak Partial Subalgebras 44

2.6 Pseudo-Complements . 46

2.7 Semi-Complements . 50

2.8 Näıve Graph Rewriting . 56

2.9 Discreteness in Graph Structures . 57

2.10 Coregular Parts and Base Elements . 63

3 Allegories of Σ-Algebras 66

3.1 Preliminaries: Categories and Allegories . 66

3.2 Abstract Σ-Algebras and Relational Homomorphisms 73

3.3 Constructions in Σ-AlgD . 77

4 Dedekind Categories of Graph Structures 84

4.1 Preliminaries: Distributive Allegories and Dedekind Categories 84

4.2 Joins in General Σ-Algebra Allegories . 88

4.3 Relational Homomorphisms Between Graph Structures 90

4.4 Pseudo- and Semi-Complements in Σ-GSD 93

4.5 Constructions in Σ-GSD . 94

4.6 Discrete Relations . 95

iii

iv CONTENTS

5 Categoric Rewriting in a Relational Setting 98
5.1 Pullbacks . 99
5.2 Transitive and Difunctional Closures . 102
5.3 Pushouts . 103
5.4 Pushout Complements . 107
5.5 Pullback Complements . 116
5.6 Pushouts of Partial Functions . 120
5.7 Summary . 129

6 Relational Rewriting in Dedekind Categories 131
6.1 Gluing Setup . 131
6.2 Amalgamating Pushouts and Pullbacks to Pullouts 134
6.3 Pullout Complements . 138
6.4 Pullout Rewriting . 140
6.5 The Weak Pullout Construction . 143

7 Conclusion and Outlook 151

Bibliography 153

A Proofs of Auxiliary Properties 165
A.1 Allegory Properties . 165
A.2 Partial Identities . 167
A.3 Dedekind Category Properties . 169
A.4 Semi-Complements and Partial Identities in Dedekind Categories 170
A.5 Symmetric Quotients . 172

B Proofs for Relational Rewriting, Chapter 6 173
B.1 Correctness of the Glued Tabulation Construction 173
B.2 Correctness of the Pullout Complement Construction 179
B.3 Monomorphy of Weak Pullouts . 184
B.4 Correctness of the Direct Result Construction 190
B.5 The Straight Host Construction Yields Weak Pullout Complements 199

Index 201

Chapter 1

Introduction

We start this introductory chapter with an overview over graph transformation, followed
by a more detailed presentation of the categoric approaches to graph transformation. In
Sect. 1.3 we sketch the problem of relational matching and shortly sketch our solution.
All this serves as introduction into the problem area of the present thesis.

The solutions rely on axiomatisations of categories of relations, and we present some
historical background for this in Sect. 1.4. Although categories of relations are still cat-
egories, the style of relational formalisations is frequently very different from the style of
category-theoretic formalisations; we discuss this effect in Sect. 1.5.

Finally, we present an overview over the remainder of this thesis in Sect. 1.6.

1.1 Graph Grammars and Graph Transformation

Research on graph grammars started in the late 1960s [PR69, Sch70, EPS73] and has
since evolved into a very active area, as documented by a gradually increasing number of
conference series devoted to the topic [CER78, ENR82, ENRR87, FK87, EKR91, CR93b,
SE93, C+96, EEKR00, ET00].

Given the fact that graphs are a useful means for modelling many different kinds
of complex systems, graph grammars and graph replacement was, from the beginning,
strongly motivated by applications in computer science, such as networks, and also in
biology, such as modelling the growth of plants [LC79, PL90].

Important areas of applications currently include applied software systems and systems
modelling [Jon90, Jon91, Jon92, EB94], many aspects of parallelism, distributed systems
and synchronisation mechanisms [BFH85, Kre87, KW87, Sch90], implementation of term
rewriting and operational semantics of functional (and logic) programming [Pad82, HP91,
CR93a, PvE93, SPvE93, Kah96, Plu99, BS99], operational semantics of object oriented
languages [WG96, WG99], and many aspects of visual programming languages [BMST99].

A survey of the foundations of graph transformation is contained in the first volume
[Roz97] of a three-volume handbook. The second volume [EEKR99] concentrates on ap-
plications, languages, and tools, and there already has been a first international workshop
on “Applications of Graph Transformations with Industrial Relevance” [NSM00].

In recent years, there has been a shift of attention, accompanied by a shift of terminology,
from “graph grammars” to “graph transformation”, from “productions” to “(transfor-
mation) rules”, as problems of describing, generating, and parsing classes of graphs (as
“graph languages”) are nowadays overshadowed by problems of using graph transformation
to specify or describe complex system behaviour and step-wise adaptation or refinement
of systems or abstract entities represented by graphs.

Accordingly, we shall use the following nomenclature for the essential items involved
in an individual graph transformation step:

1

2 1. Introduction

• A rule usually contains at least a left-hand side and a right-hand side, which usually
both are graphs, and some indication of how instances of the right-hand side are
going to replace matched instances of the left-hand side.

• Rule application to some application graph requires identification of a redex in the
application graph, usually via some kind of matching from the rule’s left-hand side
to the application graph.

• Performing the transformation then produces a result graph, and usually it is possible
to identify, via a result embedding , some instance of the rule’s right-hand side in the
result graph.

left-hand side rule - right-hand side

redex / matching

? ?

result embedding

application graph transformation - result graph

Traditionally, there are two main groups of approaches to graph transformation:

• The “set-theoretic” approaches consider graphs concretely as made up of a set of
vertices and a set of edges between vertices, and allow rules to describe more or less
arbitrary operations on graphs. Two important classes of graph grammars belong
here:

– Node replacement graph grammars have rules that specify replacement graphs
for single nodes, and how these replacement graphs are connected into the
application graph depending on how the replaced node was connected. Through
such a replacement step, edges may be deleted or created in numbers that
cannot (and need not) be controlled by the rules. For an introduction, see
[ER97].

– Edge replacement graph grammars, or, more usually, hyperedge replacement
graph grammars have rules that specify a replacement graph for a single
(hyper-)edge, and which nodes of the replacement graph should be identified
with the nodes the replaced edge was incident with. Such a replacement step
cannot delete nodes; it deletes a single edge and creates new nodes and edges
in numbers completely specified by the applied rule. For an introduction, see
[DKH97].

• In the “algebraic” approaches, graph homomorphisms make up the rules and serve
as matchings, and category-theoretic concepts of pushout and pullback are used to
specify rewriting.

As a result, larger patterns (not single items as in the set-theoretic approaches)
can be rewritten, and reasoning about graph transformation is facilitated via the
category-theoretic abstraction underlying these approaches. If this was followed
through consequently, then nodes and edges should never occur in arguments about
categoric graph transformation — proofs should be completely component-free.

1.2. The Categoric Approaches to Graph Transformation 3

Programmed graph transformation [Sch97, SWZ99] has historically been closer to the
set-theoretic approaches.

We are interested mainly in the categoric approaches, which we therefore present in
more detail in the next section.

1.2 The Categoric Approaches to Graph Transformation

The so-called “algebraic approach to graph transformation” is really a collection of ap-
proaches that essentially rely on category-theoretic abstractions.

Historically, Ehrig, Pfender and Schneider developed the double-pushout approach as
a way to generalise Chomsky grammars from strings to graphs, using pushouts as “gluing
construction” to play the rôle of concatenation on strings [EPS73]. The name “algebraic
approach” derives from the fact that graphs can be considered as a special kind of algebras,
and that the pushout in the appropriate category of algebras was perceived more as a
concept from universal algebra than from category theory. The first three graph grammar
conference proceedings contain early tutorial introductions [Ehr78, Ehr87, EKL91].

Motivated by the shortcomings of the double-pushout approach that was based on total
graph homomorphisms, the end of the 1980s saw the emergence of the single-pushout ap-
proach based on categories of partial graph homomorphisms. The work of Raoult [Rao84]
and Kennaway [Ken87, Ken91] was mainly motivated by applications to term graph rewrit-
ing, while Löwe [Löw90, LE91, Löw93] took a more general approach.

A recent exposition of the foundations of the pushout approaches can be found as
chapters 3 and 4 [CMR+97, EHK+97] in the foundations volume of the “Handbook of
Graph Grammars and Computing by Graph Transformation” [Roz97].

A less prominent categoric approach “turns all arrows around” — Bauderon proposed
algebraic graph rewriting based on pullbacks [Bau97, BJ01]. In contrast to the pushout
approaches, the pullback approach can handle deletion and duplication with ease. So
far, only pullbacks of total graph homomorphisms have been considered, but neverthe-
less, single- and double-pullback rewriting can be used for rewriting concepts of different
complexity.

The remainder of this section is a “guided tour” through the concepts and variants of
the categoric approach to graph rewriting, starting with pushouts and the double-pushout
approach, including the “restricting derivation” variant of the latter. We then continue
with the single-pushout approach and finish with a short presentation of the pullback
approach.

From now on, we will illustrate our arguments with diagrams involving graphs and graph
morphisms. Here is an example of such a diagram:

F G

It shows three graphs, each in a rectangular box, with two morphisms F and G in-between.

4 1. Introduction

Each graph consists of octagonal nodes, small square edges, and for every edge a source
tentacle from the edge to the source node of that edge — this is drawn as a small-tipped
arrow from the source node towards the edge — and a target tentacle from the edge to the
target node of that edge — this is drawn as a large-tipped arrow from the edge towards
the target node.

This unconventional way to draw graphs makes it easier to make explicit the edge
mappings of graph homomorphisms. Intuitively, the two tentacles together with the edge
square may be understood as a single edge “from the source node to the target node”;
this intuition motivates the directions of the arrows.

On the diagram level, graphs can be understood as nodes, and graph homomorphisms
as edges, and they are presented in the same way: The homomorphism’s name is connected
via two thick tentacles with the homomorphism’s source and target graphs, and both
tentacles have arrows in the direction of the homomorphism.

The homomorphism itself is represented by thin arrows connecting graph items (nodes
and edges) in the source graph with their images in the target graph.

A conventional graph homomorphism has to map every node to a single node, and
every edge to a single edge, such that the source and target nodes of the image edge are
the images of the source and target nodes of the original edge.

Therefore it is easy to check that F and G in the drawing above are indeed graph
homomorphisms. The target of G is a unit graph, that is, a graph consisting of a single
edge and a single node which is both source and target of that edge. Such an edge where
source and target coincide is usually called loop. In our drawings, the two tentacles of
loop edges usually merge into a single two-tipped arrow, as above in the target of G.

1.2.1 Pushouts

Because of its importance in the context of categorical graph rewriting, and in view of its
simplicity and intuitive accessibility, we start with a detailed introduction to the definition
of the pushout construction, and provide step-by-step illustrations of an example in the
category of unlabelled graphs (see Def. 5.3.1 for a compact definition of pushouts).

The setup for a pushout is a diagram consisting of two morphisms P and Q with
common source A.

A
Q - C

P

?
B

Q

P

The pushout for P and Q then consists of a pushout object D and two morphisms R and
S with D as target, such that, first of all, the resulting square commutes, that is, all
compositions of morphisms along different paths connecting the same objects are equal,

1.2. The Categoric Approaches to Graph Transformation 5

which in this case just means P ;R = Q;S (we use a small semicolon “;” for composition,
and write composition in the diagrammatic order1).

A
Q - C

P

?

S

?
B

R - D

R

S

Q

P

Now there may be more candidates for a commuting square completion, such as another
object D′ with morphisms R′ and S′ as in the following example:

A
Q - C

P

?

S

?
B

R - D

A
A
A
A
A
A
A
A
AAU

S′

HHHHHHHHHHj

R′

D′

R

S

Q

P

R’

S’

The pushout proper is then defined by the following universal characterisation: For every
such candidate for a commuting square completion, there has to exist a unique arrow U
from the pushout object D to the candidate object D′ such that the candidate morphisms
can be factorised via U , that is, they can be expressed as compositions of the pushout
morphisms with this unique morphism U , which concretely means R′ = R;U and S′ = S;U .

1that is, we compose R : A → B and S : B′ → C to R;S only if B = B′.

6 1. Introduction

A
Q - C

P

?

S

?
B

R - D

A
A
A
A
A
A
A
A
AAU

S′

HHHHHHHHHHj

R′

p p p p p p p p p p p p p p p p p p pR
U

D′

R

S

Q

P

U

S’

R’

It is easy to see that in this example, there are morphisms VR and VS in the opposite
direction, that is from D′ to D, such that R = R′;VR and S = S′;VS , but there is no
morphism V from D′ to D that would factorise both R and S, since the edge that has two
pre-images by U can have only one image by V .

Other candidate commuting square completions are even “farther away” from being
pushouts: In the following example, because of the additional identification of two vertices
there is not even a morphism VS such that S = S ′;VS . In addition, this example features
graph items not covered by R′ or S′:

P

Q

S

R

U

S’

R’

1.2. The Categoric Approaches to Graph Transformation 7

1.2.2 More About Pushouts in Graphs

The simplest case of pushouts arises if the graph A is empty, or, in general, if the object
A is initial in the category under consideration. In this case, every choice of object D and
arrows R and S to D makes the square commute, so the pushout condition degenerates
to the condition for the disjoint sum (also called coproduct).

P

Q

S

R

P

Q

In general, pushouts may be understood as producing first a disjoint sum, and then gluing
the two parts together along the interface indicated by A and its embeddings into the two
constituent graphs.

P

Q Q

P

R

S

As shown in this example, Amay contain edges. However, in the context of graph rewriting
the interface usually just consists of the “real interface” between, for example, the redex
and the context, and therefore is a discrete graph, that is, a graph consisting only of nodes.
An example for that was given in the previous section — it differs from this example here
only in that the edge has been taken away from the interface. Therefore, in the example of
the last section, only the images of the two interface vertices were affected by the gluing,
while the two edges connecting the respective images in B and C remained distinct.

1.2.3 The Double-Pushout Approach

The double-pushout approach is the “classical” variant of the “algebraic approach” to
graph rewriting, going back to [EPS73].

In this approach, a rewriting rule is a span L ΦL¾ G ΦR-R of morphisms, that is a pair
of morphisms ΦL and ΦR starting from a common source G, called the gluing object , and

8 1. Introduction

ending in the rule’s left-hand side L and right-hand side R, respectively. Usually, ΦL must
be injective (a detailed discussion of this issue is contained in [HMP01]). As an example
consider the following graph rewriting rule, which deletes a path of length two between the
two interface nodes, and inserts a four-node cycle with one edge connecting the interface
nodes.

PhiL PhiR

A redex for such a rule is a morphism XL : L → A from the rule’s left-hand side L into
some application graph A.

ChiL

PhiL PhiR

Application of the rule has to establish a double-pushout diagram of the following shape:

L
ΦL¾ G ΦR - R

XL

?

Ξ

?

XR

?

A
ΨL¾ H

ΨR- B

Here we encounter a first weak point of the categoric approach: While pushouts are a
universal construction that may be described in very simple category-theoretic terms, the
first step necessary for producing such a double-pushout diagram is not of this kind.

What is needed here is a host object H together with a host morphism Ξ from the
gluing object to the host object such that the matching can be reconstructed as part of
the pushout for ΦL and Ξ. This is called a pushout complement for ΦL and XL.

The fundamental result enabling the success of the double-pushout approach is that,
for graphs, there is a simple condition on ΦL and XL, called the gluing condition, that is
necessary and sufficient to ensure that the pushout complement in the category of graphs
exists — more about the gluing condition below.

For the time being, it is sufficient to know that in our example, the gluing condition
holds. A pushout complement is easily constructed as a subgraph of the application graph:

1.2. The Categoric Approaches to Graph Transformation 9

ChiL

PhiL PhiR

Xi

PsiL

The pushout shown in 1.2.1 then completes the double-pushout diagram:

PsiL

ChiRXi

PhiRPhiL

ChiL

PsiR

Such a rewriting step is usually called a direct derivation of B from A. If r is an identifier

denoting the rule L ΦL¾ G ΦR-R, then such a direct derivation via r is frequently written
A

r
⇒B.

1.2.4 The Gluing Condition

For our rule from above, consider the following matching:

PhiL PhiR

ChiL

10 1. Introduction

Since this matching morphism does not add any context, the host morphism can only be
the identity on the gluing graph.

ChiL

PhiRPhiL

Xi

PsiL

However, this host is not a pushout complement: The pushout of ΦL and Ξ is the identity
on the left-hand side and therefore does not reconstruct the identification that is part of
the original matching XL from the left-hand side to the application graph:

PsiL0

ChiL0ChiL

PsiL

PhiRPhiL

Xi

In contrast, if the identification in the matching affects only interface nodes, then there is
no problem. In the following example, the host is a proper pushout complement:

ChiR

Xi

PhiL PhiR

ChiL

PsiL
PsiR

1.2. The Categoric Approaches to Graph Transformation 11

In general, for the existence of a pushout complement it is therefore necessary that the
following is satisfied:

Definition 1.2.1 For two graph morphisms Φ : G → L and X : L → A, the identification
condition holds iff whenever two different nodes of L are identified by X, then they both
lie inside the image of Φ.

Another class of problems is illustrated by the following matching:

PhiRPhiL

ChiL

Intuitively, there seem to be two choices for the host:

PsiL

ChiL

PhiL

Xi

Xi
ChiL

PhiL

PsiL

But in both cases, the pushout of the host morphism and the left-hand-side morphism
fails to reconstruct the original application graph:

PhiL

XiChi0

Psi0

Psi0

Chi0

PhiL

Xi

12 1. Introduction

The problem here is the fact that in the application graph, an edge is incident in a node
that is outside the image of the interface graph. Therefore, in addition to the identification
condition, also the following needs to be satisfied:

Definition 1.2.2 For two graph morphisms Φ : G → L and X : L → A, the dangling
condition holds iff whenever an edge connects a node outside the image of X with a node
x inside the image of X, then x has in its pre-image via X only nodes in the image of Φ.

It happens that these two conditions together are necessary and sufficient for the exis-
tence of pushout complements, so they are usually taken to be parts of a single condition:

Definition 1.2.3 [←107] For two graph morphisms Φ : G → L and X : L → A, the gluing
condition holds iff both the identification condition and the dangling condition hold.

Obviously, something is wrong with this condition.
Remember that the motto of the categoric approach is that graph rewriting should be

defined entirely on an abstract level, namely the level of category theory. The rewriting
step itself also is defined entirely on this level. Nevertheless, this crucial application
condition is given on the concrete level of nodes and edges.

This “escape” is, in fact, not necessary: already in 1987 Kawahara gave an appropriate
abstract formulation of the gluing condition [Kaw90]. For this purpose, he employed a
relational calculus embedded in the more advanced category-theoretic concepts of topoi
[Gol84]. However, this abstract formulation seems not to have received the deserved at-
tention; even in the “Handbook of Graph Grammars and Computing by Graph Transfor-
mation” [Roz97], written a decade later, the exposition of the foundations of the categoric
approach [CMR+97] still states the gluing condition on the concrete level of vertices and
edges and does not even refer to Kawahara’s abstract formulation.

In Sect. 5.4 we are going to present more details of Kawahara’s formulation, and put
it into a wider context.

1.2.5 Restricting Derivations

One can argue that in the above counter-examples to the gluing condition, application of
the rules in question still makes sense, although the pushout of the rule’s left-hand side
and the host morphism does not reproduce the application graph.

Since there still is a commuting square, the pushout condition guarantees that there
is a morphism from the pushout object to the application graph, and Parisi-Presicce
developed together with Ehrig the approach of restricting derivations [PP93, EPP94] that
allows rewriting under such circumstances.

An application of a rule L¾ G -R to an application graph A via a matching
L -A starts with constructing any host object and host morphism G -H such that
the matching factors via the pushout of L¾ G -H. The result is then obtained as
the pushout of H¾ G -R, as in the double-pushout approach.

L ¾ G - R

¡
¡

¡
¡¡ª ? ? ?

A ¾ A′ ¾ H - B

1.2. The Categoric Approaches to Graph Transformation 13

The considerable flexibility arising from this very weakly limited choice of hosts on the one
hand lets restricting derivations not only encompass all double-pushout rule applications
and also all single-pushout derivations (see below), but even exceed their possibilities.
On the other hand, however, the number of choices in general becomes so large that this
approach is not useful for automatic application without further guidance.

1.2.6 The Single-Pushout Approach

In the double-pushout approach, as we have seen above, a rule is a span L ΦL¾ G ΦR-R,
where ΦL is usually restricted to be a monomorphism, that is, an injective graph homo-
morphism. From the category-theoretic point of view, such a span is precisely a partial
morphism. This can be understood by considering the monomorphism as designating a
subobject which is then the domain of definedness of the partial morphism.

In the single-pushout approach, a rule is a single partial morphism L Φ-R. Usually,
the subobject underlying such a partial morphism is not explicitly mentioned nor drawn
in this approach. The following example rule deletes an incoming edge from the source
node of another edge, and replaces it by an incoming edge to the target node of that other
edge:

Phi

A redex is a total morphism from the left-hand side L into some application graph A.
There is general consensus that admitting partial morphisms in this rôle does not make
much sense.

Xi

Phi

A rewriting step is now a single pushout in the category of partial morphisms.

14 1. Introduction

Chi

Xi

Phi

Psi

Partialities in the rule morphism may be interpreted as “prescriptions to delete”, while
defined parts of the rule morphism may be interpreted as “prescriptions to preserve”.
With these interpretations, conflicts can arise: Below, in the example on the left a node
that is to be deleted and a node that is to be preserved are mapped to the same node
in the application graph. It is easy to see that the requirement that the pushout square
must commute gives priority to deletion.

Xi

Phi

Chi

Psi
Psi

Xi
Chi

Phi

In the example on the right, a deleted node is mapped to a node with a “dangling” edge.
In the double-pushout approach, such a matching would violate the dangling condition,
so no derivation would be possible. In the category of partial graph morphisms, however,
a pushout exists, and deletes the dangling edge, too. As a result, in circumstances like
those exemplified by these two cases, the morphism from the right-hand side of the rule
to the result graph is not total, even though the matchings from the left-hand side to the
application graph are always total.

If one is interested only in rewriting steps with total result morphisms, then the follow-
ing condition has to hold for the matching (the name “conflict-free” has been introduced
by Löwe; Kennaway calls this condition ident’ [Ken91]):

Definition 1.2.4 A total matching morphism Ξ : L → A is called conflict-free for a
(partial) rule morphism Φ : L 7→ R iff whenever a node in the domain of Φ has the same
image via Ξ as another node, then that other node is in the domain of Φ, too.

1.2. The Categoric Approaches to Graph Transformation 15

In the literature on the single-pushout approach, this condition is always stated like that,
on the concrete level of nodes and edges. We provide an abstract variant in Sect. 5.4.

1.2.7 Shortcomings of the Pushout Approaches

We have seen that with pushout rules, it is possible to specify the following:

• deletion of graph items in the image of the rule’s left-hand side,

• in the single-pushout approach or via restricting derivations, deletion of “dangling”
items, usually edges,

• addition of graph items,

• identification of graph items.

However, it is not possible to specify proper replication. The case that another, equal
item is inserted for a preserved matched item does not count as proper replication. With
proper replication, we mean replication of parts of the graph that are only indicated by
the matching, but not fully specified. The kind of replication that is most interesting for
us allows graph variables to be matched to whole subgraphs, and a rewriting step may
then involve producing several copies of these subgraphs. Because of the analogy of this
scenario with that of term rewriting, there has been a first attempt in this direction in the
shape of “graph rewriting with substitutions” [PH96], which will be discussed in Sect. 1.3.

Another kind of replication can be found in vertex replacement graph grammars, where
new edges introduced by the rule are replicated as often into the result graph as there are
appropriate neighbours of the redex node.

Considering again the pushout construction, the inability to perform such arbitrary
replications is clearly connected with the proximity of pushouts to disjoint sums. Since
replication can be seen as an instance of a product construction, it is natural to look into
the dual of the pushout construction, namely the pullback.

1.2.8 The Pullback Approach

Bauderon proposed a different categorical setting for graph rewriting that overcomes the
lack of replication capabilities in the pushout approaches. Starting from the fact that the
most natural replication mechanism in category theory is the categorical product, and that,
in graph-structure categories, pullbacks are subobjects of products, Bauderon introduced
a setup that uses pullbacks in place of pushouts [Bau97, Bau95, BJ96, BJ97, Jac99, BJ01].
He showed that it is possible to encode the rules of important vertex replacement graph
grammars as single- resp. double-pullback rules — these vertex replacement systems are
beyond the reach of the pushout approaches because of the unpredictable replication of
edges incident to the redex node. In addition, single- and double-pushout rules can be
encoded as appropriate pullback rules, too. Therefore, from the point of view of expres-
siveness, the pullback approach is clearly more powerful than the pushout approaches.

However, the pullback approach also has serious drawbacks.

From the technical point of view, the existence condition for pullback complements
is much more complicated than the gluing condition, and it is, in general, intractable to

16 1. Introduction

check by computer. Therefore, at least the double-pullback approach is not appropriate
as a model for implementations of graph rewriting.

Furthermore, the gain in expressiveness comes at the cost of a severe loss in compre-
hensibility and intuitiveness.

Let us consider a few example pullbacks. Starting from two morphisms R and S with
common target D, a pullback consists of a pullback object A and two morphisms P and Q
starting from A such that the resulting square commutes, and such that each commuting
candidate square can be uniquely factorised via A (see Def. 5.1.1 for the precise definition).

D
R¾ B

S
6

P
6

C
Q¾ A

A
A
A
A
A
A
A
A
AAK

P ′

HH
HH

HH
HH

HHY

Q
′

pppppppp
pppppppp

pppI
U

A′

Already the “simplest special case” of pullbacks, namely the categorical product, is only
simple to understand in special cases. The categorical product arises if D is a terminal
object. In the category of graphs, a terminal object is a graph consisting of a single node
with a single loop edge attached to it; such a graph is also called unit graph.

In the following diagram of functional graph morphisms, the common target A is such
a unit graph, and the graph B is a direct sum of the unit graph with itself.

R

S

The categorical product of B with C is therefore the direct sum of C with itself:

1.2. The Categoric Approaches to Graph Transformation 17

Q

P

R

S

This kind of replication is easy to comprehend, and is exactly what is missing from the
pushout approaches.

However, even slightly more general products are less understandable; consider the
following example setup:

S

R

Here, the B still contains a unit subgraph, but it also contains an edge from the node of
the unit subgraph to another node.

The direct product still includes a full copy of C, induced by the unit subgraph. All
vertices of C also have a second copy, corresponding to the second node of B, and this
second copy of node x has an edge from the unit-image copy of node y iff there is an edge
from y to x in C.

18 1. Introduction

Q

P

R

S

Edges in the opposite direction are not produced since there is no such edge in B.
If we include such a third edge into B, then all edges of C are triplicated, while the

nodes are still duplicated because of the two nodes in B.

Q

P

S

R

In general, the product construction involved here is known as the Kronecker product of
graphs [FW77]: The Kronecker product of B and C contains a node (b, c) for every pair of
nodes b of B and c of C, and for every pair of edges e : b1 → b2 in B and f : c1 → c2 in C
it contains an edge from (e, f) : (b1, c1)→ (b2, c2).

1.2. The Categoric Approaches to Graph Transformation 19

The intricate interlacing of the different aspects of the different copies we have seen
in the examples can be reconstructed and justified from this definition of the categorical
product of graphs, but can hardly be called intuitive.

Let us now show an example for a pullback which is not just a categorical product. From
the point of view of C, the part which S maps into the unit subgraph of D is preserved,
since R has only a unit subgraph as pre-image of the unit subgraph in D. The edge
mapped to an edge outside the range of R is deleted, while those edges mapped to an edge
that has two pre-images via R are duplicated:

S

Q

P

R

This shows that different parts of D can be considered as standing for different “rôles”
in the rewriting step. The rule morphism R decides the behaviour of each rôle, while the
morphism S from the application graph into D assigns rôles to all parts of the application
graph. For maximum flexibility in the treatment of these rôles, Bauderon and Jacquet
therefore provide an alphabet graph that contains items that each represent a different
treatment via rewriting, such as preservation, duplication, or deletion.

The following shows the translation of a simple NLC rule (“node-label-controlled graph
rewriting”, one variant of vertex replacement), where D is the alphabet graph for three
labels, which are represented by the horizontally flattened three-node clique in the middle.
The top node is the “context”, and the bottom node is the “redex”. The rule morphism
R rewrites the redex by splitting it into two nodes connected by a single edge, redirect-
ing incoming edges from one of the three kinds of neighbours to the source of that new
edge, and redirecting the source tentacles of outgoing edges directed at the same kind of
neighbours to the target of the new edge.

20 1. Introduction

Context:

Labels:

Redex:

R

Such a rule is applied by establishing what Bauderon and Jacquet call a “label” on an
application graph, that is, a graph morphism from the application graph to the alphabet
graph such that exactly one node is mapped to the “redex” node, precisely its neighbours
are mapped to label nodes in the alphabet graph (which are the neighbours of the redex
node), and all other nodes are mapped to the “context” node.

In the following example, the bottom node is mapped to the redex; its upper three
neighbours to the right-most label, and its left neighbour to the left-most label. The two
top nodes are mapped to the context node, and for every edge, its mapping is determined
by the mapping of its end nodes:

Context:

Labels:

Redex:

Context:

Neighbours:

Redex:

S

R

The pullback then can be understood to remove the redex node together with all edges
connecting it with its neighbours, to introduce a copy of the redex image (the original
vertex replacement rule’s right-hand side) and connect it with edges to and from the
neighbours of the redex, according to the prescriptions in the rule.

In our example, for each of the two edges connecting the redex image with its neigh-
bours there are two instances in the result, connected with different neighbours according
to the situation in the application graph.

1.3. Graph Transformation with Relational Matching 21

Q

P

R

S

This simple example should be sufficient to demonstrate that pullback rewriting “has too
much power for its own good”: Although pullback rules can be used to encode many
different kinds of graph rewriting rules, they are not intuitive enough to be considered as
a specification language for graph transformation.

1.3 Graph Transformation with Relational Matching

Rewriting in the presence of relational morphisms is extremely interesting and important,
since it offers a much higher degree of flexibility than rewriting with functional morphisms.
To date, rewriting with effects like those of relational matchings has usually been achieved
either via introducing some kind of substitutions, as in the purely substitution-based ap-
proach by Plump and Habel [PH96], or via intermediate steps that impose hierarchical
structure, allowing functions to match “variables” to targets at higher levels in the hier-
archy, as for example the following two approaches.

Drewes, Hoffmann and Plump extend the double-pushout approach to “hierarchical
graphs” where hyperedges called “frames” may “contain” a nested hierarchical graph as
contents [DHP00a, DHP00b]. Motivated by programming analogies, they propose “frame
variables” to allow arbitrary deletion and copying of frame contents, and solve the associ-
ated problems outside the algebraic approach, by considering “rule schemata”: instead of
allowing frame variables to match arbitrary frames, they first instantiate the rule schema
to produce a rule without frame variables, and then this rule is applied. Accordingly,
when discussing induced “flattened” transformation steps, they only consider rules, but
not rule schemata.

The present author proposed a similar mechanism for relational diagrams, where edges
are labelled with relation-algebraic expressions, and diagrams with designated interface
nodes are considered as a special kind of relation-algebraic expressions [Kah99]. Although
that approach went further towards directly considering relational matchings between (flat

22 1. Introduction

or hierarchical) diagrams, it also relied on the hierarchical view to perform the transfor-
mations themselves.

The root of the problem here seems to lie in an inappropriate concept of “variable” or
“parameters”. All these approaches essentially propose (hyper-)edge variables, and then
would allow these hyperedges to be matched to larger subgraphs, corresponding to the
hyperedge replacements of hyperedge replacement graph grammars.

However, such a view does not give rise to a natural graph morphism concept. Although
categories can be defined where morphisms contain “hyperedge substitution” components,
these do not generalise naturally to truly relational morphisms.

Consider the pullback in the last drawing above as a diagram with “all arrows turned
around”: It is then a diagram of relational graph homomorphisms. Such relational graph
homomorphisms are going to be defined in Def. 4.3.3 (see also Def. 3.2.2 and the discussion
preceeding it); they obey similar structure preservation constraints as standard, functional
homomorphisms, but can be partial, and multivalent.

In this new view, the converse of the morphism R maps the redex unit graph to the
subgraph that is going to replace it, a subgraph containing two vertices connected by a
left-to-right edge. Note that although the pullback encodes a vertex replacement rule, the
redex is a full unit subgraph, consisting of a vertex and an edge, and this edge is necessary
for relating the redex with the whole subgraph that is going to replace it.

Analogously, approaches that extend edge replacement to relational matching cannot
give rise to natural formulations as long as there are no vertices accompanying the variable
edges and “covering” the vertices in the replacement graph.

In Chapter 6 we are going to present a formalism that allows the abstract specification
of graph transformation with parameters and replication of parameter images. It will
superficially be modelled at the double-pushout approach, but works in the setting of
relational graph morphisms, and it incorporates elements of the pullback approach along
the lines of the above argument.

The following is an example rule:

PhiRPhiL

u0

This rule consists of left- and right-hand side morphisms as usual, and has an additional
component: a partial identity u0 on the gluing graph that indicates the interface. Here, the
interface consists only of the top-most node. Everything besides the interface is considered
as parameter , and we see that the right-hand side of the example rule duplicates the
parameter part.

A redex is a relational graph morphism, too, and is restricted to be total and univalent
besides the parameter part. (For simplicity, we leave further more technical conditions
to the detailed presentation in Chapter 6.) It may map the parameter part to a larger
subgraph, as in the following example:

1.3. Graph Transformation with Relational Matching 23

ChiL

PhiRPhiL

u0

The host construction is essentially the same as in the double-pushout approach (but we
are dropping a dangling edge here):

PsiL

Xi

u0

PhiL PhiR

ChiL

For the result, the parameter part is replicated according to the prescription of the rule’s
right-hand side:

24 1. Introduction

PsiL

ChiL

PhiRPhiL

u0

Xi

PsiR

ChiR

We are able to specify this kind of rewriting with fully abstract definitions that never need
to mention edges or nodes. This is made possible by working in a relation-algebraic setting,
which, we claim, is the right level of abstraction for graph-structure transformation.

Let us now briefly summarise the development and characteristics of relation-algebraic
formalisms.

1.4 Relation Algebras and Generalisations

Just as lattices are a convenient abstraction from the properties of subset and substructure
orderings, categories are a popular abstraction from the properties of functions between
sets.

Category theory is also the abstraction underlying the so-called “algebraic approach”
to graph transformation, including the slightly more abstract approach of “high-level re-
placement systems” [EHKPP91].

Since we are aiming at an approach to graph rewriting that allows relational matching,
we need a more appropriate class of structures.

Attempts at characterising the behaviour of relations between sets on a more abstract
level can be traced back to the roots of the “algebra of logic” in the second half of the
19th century, with landmark contributions by George Boole [Boo47], Augustus De Morgan
[DM60], Charles Sanders Peirce [Pei70], and Ernst Schröder [Sch95].

In its modern shape, the study of abstractions on the behaviour of relations goes back
to Alfred Tarski [Tar41, Tar52]. However, relation algebras as axiomatised by Tarski are
homogeneous, that is, they abstract from the notion of relations between objects of a single
universe.

Approaches to axiomatise relations between elements of different sets, that is, het-
erogeneous relation algebras, seem to have emerged only during the 1970’s and 1980’s,
approaching the topic from two different directions.

1.4. Relation Algebras and Generalisations 25

One direction directly generalises relation algebras to the heterogeneous setting, and
has Gunther Schmidt as main proponent [Sch76, Sch77, Sch81a, SS85]. One advantage of
this approach is that Gunther Schmidt and Thomas Ströhlein have written a very accessible
textbook [SS89, SS93] which is based on this definition of heterogeneous relation algebras
and aimed at computer scientists; a more recent, more compact account may be found in
a survey book chapter by Schmidt et. al. [SHW97], with applications in other chapters of
the same book [BKS97].

The other direction starts from the heterogeneous setting of category theory and adds
additional structure and axioms in order to be able to approach the elegance of relational
reasoning.

One of the earliest steps in this directions seems to have been by Kawahara [Kaw73c,
Kaw73a, Kaw73b], who established a relational calculus inside topos theory2. Unfortu-
nately, this work seems to have received little attention.

Olivier and Serrato [OS80] introduced “Dedekind categories” as a variant of relation
algebras without complementation, and proposed to use them for modelling “fuzzy rela-
tions” in [OS82].

The “∗-autonomous categories” of Michael Barr [Bar79] and the “cartesian bicate-
gories” of Carboni and Walters [CW87] are two, albeit quite different, attempts to harness
rather abstract category-theoretic machinery in order to gain certain approximations to
relational reasoning.

The current standard terminology for weaker variants of “relation categories” has been
established by the book “Categories, Allegories” by Peter Freyd and Andre Scedrov [FS90].
As a first approximation to relational reasoning they define allegories as a specialised kind
of categories. They then proceed to introduce a hierarchy of stronger structures, like
“locally complete unitary pretabular allegories” (LCUPAs); their main motivations are
representation theorems and to establish links with topos theory (i.e., with categorical
logic). Unfortunately, the very concise and abstract style of this book together with the
fact that it extensively uses notation and terminology that are not very wide-spread make
it rather inaccessible for most computer scientists who are not already quite versed in
category theory.

Backhouse and his group made extensive use of relators for their “Relational Theory of
Datatypes” [ABH+92]. Closely related is the “Algebra of Programming” as presented
in the book by Bird and de Moor [BdM97]; it extensively uses relational calculus for
program derivation. Bird and de Moor tend to avoid complementation of relations, but
do not definitely exclude it. So the preferred setting of the “Algebra of Programming” is
essentially that of: “complete tabular power allegories”, which can be regarded as a topos
setting, and also corresponds to Dedekind categories with unit, direct sums and products,
subobjects, and power objects.

Since the early 1990s, the “RelMiCS” initiative3 initiated by Gunther Schmidt brings to-
gether researchers from many different approaches to using relational methods in computer
science, and has also documented the foundations and their wide-ranging applications in a
book [BKS97] and an on-going series of conference proceedings [HF98, JS99, Orl98, Des00].

2A topos is a category equipped with structure that allows to translate logical reasoning into the
categorical language. Standard references include [Gol84, BW84].

3 “Relational Methods in Computer Science”, URL: http://ist.unibw-muenchen.de/relmics/

26 1. Introduction

1.5 Contrasting the Relational and the Categoric Approaches

Let us use the notion of direct product to illustrate the different characteristics of categoric
and relational characterisations.

In category theory, a (categorical) product of two objects A and B in a category is a
triple (P, π, ρ) consisting of an object P and two projections π : P → A and ρ : P → B,
such that

• for all objects C, and

• for all morphisms f : C → A and g : C → B,

• there is exactly one morphism h : C → P,

• such that f = h;π and g = h;ρ.

C

¡
¡

¡
¡

¡
¡ª

f !h

pppppppppppppppp?

@
@
@
@
@
@R

g

A π¾ P
ρ - B

This so-called universal characterisation is a “global” condition — for testing whether a
triple is a direct product, one needs to check for all objects of the category the complete
homsets between these objects as sources and A and B as targets.

In heterogeneous relation algebras (and appropriate allegories), a direct product of two
objects A and B is a triple (P, π, ρ) consisting of an object P and two projection relations
π : P ↔ A and ρ : P ↔ B for which the following conditions hold [Sch77, SS93] (we use
B to denote identity relations, C for universal relations, u for the meet (intersection) of

relations, and
`

for converse):

π
`
;π = B , ρ

`
;ρ = B , π

`
;ρ = C , π;π

`
u ρ;ρ

`
= B .

This is a perfectly “local” condition, which involves only the projection morphisms and
primitive relations, and no quantifications at all.

In addition, the relational characterisation is syntactically first-order, in that it only
involves equations, while the categorical characterisation is second-order, involving vari-
able bindings introduced by the quantifications. Therefore, relational arguments are much
more accessible both for human readers and to mechanised proof checking.

The way these semantically closely connected definitions differ in the two approaches is in
fact typical for the different characteristics of categorical and relational reasoning.

Besides the sheer power of graph rewriting with relational matching, these different
characteristics are another motivation for our relational approach to graph rewriting.

1.6. Overview 27

1.6 Overview

Chapter 2 first of all introduces graph structures as a special case of many-sorted algebras.
Basic facts about subalgebra lattices are established, and it is shown how substructure
lattices of graph structures are especially well-behaved. This allows to reason about parts
of graphs (or graph structures) and many aspects of relations between such parts purely
on the lattice-theoretic level. This is a useful introduction to abstract reasoning about
graphs, and also serves as a foundation that will be useful in later chapters.

The next two chapters show how graphs fit into relation-algebraic formalisms. Chap-
ter 3 establishes that relational morphisms between many-sorted algebras in general al-
ready obey the laws of allegories — one of the simplest variants of relation-algebraic
formalisms. For graph structures, many more laws hold. As is shown in Chapter 4, ev-
ery graph-structure signature gives rise to a strict Dedekind category of graph structures
with relational morphisms. This means that apart from laws that require the existence of
complements, all the laws of heterogeneous relation algebras hold.

The focus of these Chapters 2–4 is mainly to establish the lattice, allegory, and
Dedekind category laws for the respective classes of algebras on an elementary level, and
to promote an intuitive understanding how relational reasoning carries over to the set-
ting of graph structures. The theory mostly follows from established category-theoretic
facts, namely that every graph-structure category is a topos. However, we feel that using
topos theory for explaining relational graph morphisms and also graph transformation is
overkill, and the “natural” language of topos theory is in fact not well-suited for this task.
Therefore, we do not expose the reader to topos theory at all, and rather chose to present
the relation-algebraic approach to relational graph morphisms in a self-contained, more
textbook-like manner.

In Chapter 5 we show how the arsenal of the categoric approaches to graph transformation
can be recovered with relation-algebraic means. For the double-pushout approach, we
may build on the results of Kawahara, who used a relational calculus embedded in topos
theory to formulate the gluing condition; for the single-pushout approach and for pullback
complements we are not aware of any previous results in this direction. Already this
material should amply demonstrate that the language of relations is perfectly suited for
describing graph transformations in a fully abstract way, without ever having to resort to
concepts defined on the concrete level of nodes and edges, like for example the traditional
presentations of the gluing condition.

Finally, in Chapter 6 we show how the relational context makes it straightforward to
define rewriting concepts that integrate the intuitive understandability of the double-
pushout approach with the replicative power of the pullback approach. We first show a
straightforward amalgamation of the two approaches, and then continue to modify this
concept towards allowing more general relational matchings and rule morphisms.

Some auxiliary properties of allegories and Dedekind categories have been collected in
Appendix A, while Appendix B contains the lengthier proofs for Chapter 6.

28 1. Introduction

The following graph sketches the essential dependencies between different parts of this
thesis. The bold part on the left is the main development of a fully component-free
relation-algebraic approach to rewriting. The sections in italics provide concrete and
abstract algebras and graph structures that can serve as instantiations to the abstract
approach, and that serve as motivational examples and illustrations, as documented via
the dotted arrows.

2.1

2.2, 2.3

2.4

2.6, 2.7

2.8
2.9, 2.10

3.1

3.2
3.3

4.1
4.2

4.3
4.4

4.5

4.65.1, 5.4

5.2-5.4, 5.6

6

2.5

The three dashed arrows refer to the abstract relation-algebraic definitions of subobjects,
quotients and direct sums — these definitions are presented in the context of their algebraic
instantiations instead of inside sections 3.1 and 4.1, respectively.

The current investigation is aimed at computer scientists with an interest in graph trans-
formation and with a standard background in discrete mathematics, including some rela-
tional calculus. Some passages are intended to satisfy the needs of readers with a stronger
mathematical or category-theoretic background. Therefore, we strive to give self-contained
definitions before using advanced concepts, and state important properties; but for facts
that can be found in the standard literature, we only provide general links into that
literature and omit proofs and detailed attributions.

1.7. Eddi 29

1.7 Eddi

The graph diagram drawings in Sect. 1.2 and similar drawings throughout this thesis have
been generated using “Eddi”, a prototype editor for directed graph-structure diagrams,
that also supports relational graph-structure transformation.

It uses the library RATH [KS00], which provides datatypes and a framework for cate-
gories, allegories and relation algebras. This framework has been instantiated for Dedekind
categories of graph structures over unary signatures. A graphical front end allows to draw
diagrams of graph structures with relational morphisms between them in a WYSIWYG
manner, and to invoke relational operations including all the graph transformation con-
structions presented in this thesis.

More information about this tool is available from the Eddi home page:

URL: http://www.cas.mcmaster.ca/˜kahl/Eddi/

http://www.cas.mcmaster.ca/~kahl/Eddi/

Chapter 2

Graph Structures and Their Parts

Graphs are usually presented as tuples consisting of node and edge sets, and of two total
functions from edges to nodes, assigning every edge a source and a target node. Such a
tuple can equivalently be considered as a (two-sorted) algebra over a particular signature.

In computing, we are used to consider algebras over fixed signatures as implementations
of data types with a fixed interface. Data are then elements of the carriers of these algebras.
This view is the motivation of most of the study of algebras in computer science, see e.g.
[EM85].

However, there are also approaches that consider algebras themselves as data. A
rather general approach in this direction is that of abstract state machines, formerly called
“evolving algebras”, by [Gur91, GKOT00].

A more specialised instance is computing using graph-like structures. There are many
different graph-like structures, that all can be considered as algebras over appropriate
signatures. When looking for a precise definition what “graph-like” actually means, it
is useful to scrutinise the different signatures underlying “graph-like” structures. It then
turns out that one useful characteristic is that many of these signatures are unary, i.e.,
function symbols have only one argument. If we use this as characterisation, then graph-
like structures are unary algebras. Many well-known graph-like structures fall into this
class, among them standard graphs, and many different kinds of hypergraphs.

A category-theoretic approach to algebras was initiated by Lawvere in a pioneering
paper [Law63], and although we present concrete algebras in this chapter, we essentially
reflect Lawvere’s approach by generalising concrete algebras without real technical effort
to abstract algebras in Def. 3.2.1 in the next chapter.

In this chapter we study properties concerning substructures of graph-like structures.
Some properties are about individual substructures; others concern the relation between
substructures.

However, since graph-like structures can be algebras over many different signatures, we
use “nodes” and “edges” only in motivating discussions. For our definitions, we completely
rely on the lattice properties of the lattices of subalgebras of Σ-algebras — these lattices
have particularly useful properties in the case of unary signatures. We employ these
properties to define concepts like discreteness and borders of subgraphs, all only using
lattice operations.

We start out by fixing some notation and notions for sets and lattices. Then we intro-
duce signatures and algebras, and present general facts about subalgebra lattices. These
are then specialised in Sect. 2.4 to the case of unary signatures, which define graph-like
structures. A short detour introduces partial algebras together with a particular concept
of partial subalgebra, and we show that the resulting subalgebra lattices are isomorphic
to those induced by a translation into unary algebras.

Pseudo-complements are well-established in lattice theory and in particular in its ap-
plications to topology; they seem, however, not to have been intensively studied in the
context of graphs and subgraphs, let alone that of general subalgebras. For this reason we

30

2.1. Preliminaries: Sets, Lattices 31

present a definition of pseudo-complements that is slightly more general than usual, and
show a few basic properties in Sect. 2.6. An important fact is that pseudo-complements
can be used to formalise an abstract version of induced subgraphs.

In the discussion of subgraphs and their mutual relations, of similar importance as
pseudo-complements are their duals, which we call semi-complements.

Using semi-complements, in Sect. 2.8 we sketch how the lattice-theoretic approach to
subgraphs may already be used to produce a simple graph rewriting formalism. The —
hardly surprising — shortcomings of that approach serve as an additional motivation for
subsequent chapters.

Finally, we show how a whole range of (sub)graph properties, for example discreteness,
separable parts, and connectedness, can be defined in a component-free way in our lattice-
theoretic setting, based mostly on the definition and properties of semi-complements.

2.1 Preliminaries: Sets, Lattices

To a certain extent, our notation is oriented at that of Z [Spi89], a mathematical nota-
tion based on a typed set theory (and designed for specification purposes). However, no
previous knowledge of Z is required; we introduce all notation we use.

Sets

If A is a set, then we introduce a meta-variable x for elements of A by writing the
declaration “x : A”. Slightly more informally, this may be understood as introducing x as
an element of A. Multiple declarations are separated by semicolons, as in “x : A; y : B”.

The notation “x ∈ A” is understood as a formula, i.e., it is reserved for the statement
that x, which should already be introduced at that point (usually as an element of perhaps
some other set) is actually an element of A.

For set comprehensions, we use the Z pattern of “{declaration | predicate • term}”.
Here, “predicate” is a formula and “term” is an expression; both usually contain variables
introduced in the “declaration”. Such a set contains all those values of “term” that result
from variable assignments induced by “declaration” for which the “predicate” holds. For
example,

{x : N | x < 4 • x2} = {0, 1, 4, 9} .

The shape “{declaration • term}” is equivalent to “{declaration | 0 = 0 • term}”, and the
shape “{declaration | predicate}” should be understood as having as “term” the tuple of
all variables in the declaration, in the order of the declaration, for example:

{y, x : N | x < y < 4−x} = {y, x : N | x < y < 4−x • (y, x)} = {(1, 0), (2, 0), (3, 0), (2, 1)}

The empty set is denoted “∅”.
A relation from a set A to another set B is a subset of the Cartesian product of A

and B, that is, R is a relation from A to B iff R ⊆ A×B, or, equivalently, R ∈ P(A×B),
where P(X) denotes the powerset of set X . The Z notation introduces the abbreviation
A ↔ B for P(A× B); so we may introduce relations by writing R : A ↔ B.

From the next chapter on, we shall use more abstract concepts of relations and func-
tions, but in the present chapter we stick with this concrete view.

32 2. Graph Structures and Their Parts

In particular, a function (or partial function) is a univalent relation, where R : A ↔ B
is univalent iff

∀a : A; b1, b2 : B | {(a, b1), (a, b2)} ⊆ R • b1 = b2 .

(Quantified formulae follow the same pattern as set comprehensions, just with a body
formula instead of a body term.)

The set of partial functions from A to B is abbreviated A 7→ B, and that of total
functions, also called mappings, A → B (a relation R : A ↔ B is total iff for every element
a : A there is a b : B such that (a, b) ∈ R).

So elements of functions are pairs — it is a wide-spread convention to use special
notation for pairs in this context: “a 7→ b” is considered as equivalent to “(a, b)”.

A family of mathematical objects Xi indexed over indices i taken from some index
set I is written “(Xi)i:I” — mathematically, this is just a function X that might more
correctly be defined via either a set comprehension or a λ-abstraction:

X := {i : I • i 7→ Xi} = λ i : I • Xi

The “family” notion and notation are however so widespread in the mathematical literature
that we also apply them where usual.

The set of finite sequences of elements from A is denoted A∗. The sequence having
the elements x1, . . . , xn in that order is written 〈x1, . . . , xn〉. If s is a sequence, we write
si for the i-th element of s.

Lattices

An ordered set (A,≤) is a set A together with a relation ≤, which has to be an ordering
relation, i.e., it is

• reflexive: x ≤ x for all x : A,

• transitive: for all x, y, z : A, if x ≤ y and y ≤ z, then x ≤ z, and

• antisymmetric: for all x, y : A, if x ≤ y and y ≤ x, then x = y.

In an ordered set (A,≤), an upper bound of a subset X ⊆ A is an element u : A such that
x ≤ u for all x : X , and a lower bound of X is an element l : A such that l ≤ x for all
x : X .

A greatest element of a subset X ⊆ A is an element of that subset X that is also an
upper bound of X , and a least element of X is an element of X that is also a lower bound
of X . Greatest and least elements are uniquely determined if they exist.

The least upper bound of a subset X ⊆ A is the least element of the set of upper
bounds of X , and the greatest lower bound of X is the greatest element of the set of lower
bounds of X . If they exist, we write

∨

X for the least upper bound of X , and
∧

X for the
greatest lower bound of X .

A lower semi-lattice is an ordered set (L,6) where every finite non-empty set has a greatest
lower bound. Greatest lower bounds are called meets, and the meet of the set {x, y} is
denoted x∧y (existence of all binary meets is indeed sufficient for the existence of all finite
non-empty meets). The binary meet operator ∧ is

2.1. Preliminaries: Sets, Lattices 33

• idempotent: x ∧ x = x,

• commutative: x ∧ y = y ∧ x, and

• associative: x ∧ (y ∧ z) = (x ∧ y) ∧ z.

We call a lower semi-lattice complete if every subset X of L has a meet
∧

X . The meet of
the empty set, if it exists, is the greatest element of the whole semi-lattice, written >L.

An upper semi-lattice is an ordered set (L,6) where every finite non-empty set has a
least upper bound. Least upper bounds are called joins, and the join of {x, y} is denoted
x∨y (existence of all binary joins is indeed sufficient for the existence of all finite non-empty
joins). The binary join operator ∨ is

• idempotent: x ∨ x = x,

• commutative: x ∨ y = y ∨ x, and

• associative: x ∨ (y ∨ z) = (x ∨ y) ∨ z.

We call an upper semi-lattice complete if every subset X of L has a join
∨

X . The join of
the empty set, if it exists, is the least element of the whole semi-lattice, written ⊥L.

A lattice is a lower semi-lattice that is also an upper semi-lattice. In a lattice, in addition
to the idempotence, commutativity, and associativity laws listed above, also the following
absorption laws hold:

x ∧ (x ∨ y) = x ,

x ∨ (x ∧ y) = x .

The ordering can be regained from the binary operations:

x ∧ y = x ⇔ x ≤ y ⇔ x ∨ y = y .

The duality principle states that for every concept or law about all lattices, there is a dual
concept or law which is obtained by consistently exchanging > for 6, and vice versa, and
consequently also exchanging joins for meets and vice versa.

A complete lattice is a lattice in which all joins exist; this implies that all meets exist
(and vice versa).

A distributive lattice is a lattice where the following (equivalent) distributive laws hold:

x ∧ (y ∨ z) = (x ∧ y) ∨ (x ∧ z)

x ∨ (y ∧ z) = (x ∨ y) ∧ (x ∨ z)

A lattice is called completely upwards-distributive iff existence of the joins in the following
equality is equivalent, and the equality holds where the joins exist:

x ∧
∨

Y =
∨

{y : Y • x ∧ y} .

Dually, a lattice is called completely downwards-distributive iff

x ∨
∧

Y =
∧

{y : Y • x ∨ y} .

34 2. Graph Structures and Their Parts

A lattice is completely distributive iff it is both completely upwards-distributive and com-
pletely downwards-distributive.

In the literature, completely upwards-distributive complete lattices are considered
under many different names, for example frames, locales, Brouwerian lattices, or Heyt-
ing algebras (for careful distinctions, see for example [Vic89]). Completely downwards-
distributive lattices, however, are rarely mentioned, which may be related with the fact
that the open-set lattices of topologies, which have been motivating examples for much of
the research in this direction, are usually not completely downwards-distributive.

The concept of algebraic lattice will only be mentioned; an algebraic lattice is a complete
lattice where every element is the join of compact elements; an element c is compact iff
whenever c 6

∨

X for some set of elements X , then c 6
∨

X1 for some finite subset
X1 ⊆ X . (A similar definition defines compact elements in cpos and algebraic cpos in
domain theory.)

What is more important for us than this definition is that distributive algebraic lattices
are completely upwards-distributive.

A lattice element x : L is called join-irreducible iff x = y ∨ z implies x = y or x = z.
In a lattice with least element ⊥, an atom is an element a : L such that a 6= ⊥ and for

all x : L we have that x < a implies x = ⊥.
A lattice is called atomic iff for every element x : L with x 6= ⊥ there is an atom a : L

with a 6 x.

More information about lattices may be found for example in [Grä78].

2.2 Signatures

Signatures define the interface of abstract data types, or algebras. Signatures contain
the names of the visible types of data, called “sorts”, and the names of the available
operations, called “function symbols” or “operators”, and for these names, additional
information regarding their arities, which sorts are expected to provide the arguments,
and the sort of the result.

Definition 2.2.1 [←90] A signature is a tuple (S,F , src, trg) consisting of

• a set S of sorts,

• a set F of function symbols,

• a mapping src : F → S∗ associating with every function symbol the list of its source
sorts, and

• a mapping trg : F → S associating with every function symbol its target sort.

For a function symbol f : F , instead of the rather verbose “src(f) = 〈s1, . . . , sn〉 and
trg(f) = t” we usually employ the shorthand “f : s1 × · · · × sn → t”.

For a function symbol f : F , the length of the list src(f) is called the arity of f .
A function symbol c : F with arity zero is called a constant symbol , and we write c : t

if trg(c) = t.
A function symbol with arity one is called unary ; one with arity two binary, and so

on. A signature is called unary if all its function symbols are unary. In a context where

2.2. Signatures 35

a signature is known to be unary, we usually let src have just a sort as its result, instead
of a singleton list of sorts.

We present signatures in a special notation; a first example for this is a (unary) sig-
nature that will be used very frequently, namely that for graphs; it has two sorts, V for
vertices (or nodes), and E for edges, and two unary function symbols for source and target
vertices of edges:

sigGraph := sig begin

sorts: V, E

ops: s : E → V

t : E → V

sig end

A signature that is very important for mathematicians is that for groups. It is usually con-
sidered having only one sort, and three operators of different arities: the unit as constant,
inverse as unary operator, and multiplication as binary operator.

sigGroup := sig begin

sorts: G

ops: e : G

inv : G → G

∗ : G × G → G

sig end

For lattices, we present two different signatures: one with only one sort, and the usual
binary operations, and another one with an additional sort for sets of elements, and join
and meet as unary operations on these sets:

sigLat := sig begin

sorts: L

ops: ∧ : L × L → L

∨ : L × L → L

sig end

sigCLat := sig begin

sorts: L,S

ops:
∧

: S → L
∨

: S → L

sing : L → S

∪ : S × S → S

sig end

One kind of directed hypergraphs is built upon the following signature containing sepa-
rate sorts for vertices, hyperedges, source and target tentacles, and function symbols to
associate with every tentacle the hyperedge it starts from, and the vertex it reaches out
to:

36 2. Graph Structures and Their Parts

sigDHG := sig begin

sorts: V, E ,S, T

ops: VS : S → V

ES : S → E

VT : T → V

ET : T → E

sig end

For use in examples, we introduce further signatures:

sigLoop := sig begin

sorts: N

ops: n : N → N

sig end

sigB1 := sig begin

sorts: N

ops: f : N ×N → N

sig end

sigTwoSets := sig begin

sorts: P,Q

ops:

sig end

sigC1 := sig begin

sorts: N

ops: c : N

sig end

Every signature can be seen as a directed hypergraph, where sorts are vertices and every
function symbol f : s1×· · ·× sn → t is a hyperedge, with source node sequence s1, . . . , sn,
and target node t.

See here hypergraph presentations of sigGroup and sigCLat:

G

inv

*

e
SL sing

Constants are hyperedges with no source nodes and just one target node — such hyper-
edges are sometimes called “loops”, but since the word “loop” is also used for simple edges
with the same node as source and target, we avoid using this term here.

Unary operators are conventional edges with exactly one source and one target, and
therefore do not need “creative” graphical hyperedge treatment.

It is important to note that a unary signature simply is a directed graph.

2.3 Algebras and Subalgebras

An algebra over a signature is an interpretation of the syntactic material provided in that
signature in appropriate semantic domains. In the simplest case, semantic objects are
drawn from the realm of sets and functions between sets, and this is the standard concept
of many-sorted algebras that we introduce in the following definition. However, the same

2.3. Algebras and Subalgebras 37

mechanism of interpretation also works on more abstract domains, as we shall see in the
next chapter.

Definition 2.3.1 Given a signature Σ = (S,F, src, trg), a Σ-algebra A consists of the
following items:

• a sort-indexed family (sA)s:S of carrier sets, i.e., for every sort s : S, a set sA, and

• for every function symbol f : F with f : s1 × · · · × sn → t a total function fA from
the Cartesian product sA1 × · · · × sAn of the source sort carriers to tA, the target sort
carrier.

We extend the interpretation of sorts to sequences of sorts: If A is a Σ-algebra and s : S∗

with s = 〈s1, . . . , sn〉 is a sequence of sorts, then we define

sA := sA1 × · · · × sAn .

Therefore, for every function symbol f : F , its interpretation in A is a total function in
(src f)A → (trg f)A.

An important difference between our definition of an algebra and those usually found
in text books is that we allow empty carrier sets. As we shall see, this is not only useful,
but even necessary for obtaining a nice theoretical framework.

Most examples shall be graphs; and the Σ-algebra view on graphs is perfectly equivalent
to the view that a graph is a quadruple consisting of vertex set, edge set, source mapping,
and target mapping:

Definition 2.3.2 A graph is a sigGraph-algebra.

Many examples already have been seen in the introduction, so we here only show the graph
underlying the signature sigGraph, once with names attached to its nodes and edges, and
once as a “pure” graph:

EV
t

s

Definition 2.3.3 [←44] Given a signature Σ = (S,F, src, trg) and two Σ-algebras A and
B, we say that A is a subalgebra of B, written A 4 B, iff

• for every sort s : S, inclusion holds between the carriers: sA ⊆ sB, and

• for every function symbol f : F , inclusion holds between its interpretations: fA ⊆ fB.

The set of all subalgebras of B is denoted by B4.

It is obvious that 4 is an ordering — the ordering properties are inherited from those
of set inclusion ⊆.

If we know that A is a subalgebra of B, then we need to know only the carriers of A
in order to be able to derive its operations — for a function symbol f : s1 × · · · × sn → t,
its interpretation in A has to be precisely the restriction of fB to sA1 × · · · × sAn , since f

B

is univalent and therefore this restriction is the only possibility for fA to be total:

38 2. Graph Structures and Their Parts

Lemma 2.3.4 Given a signature Σ = (S,F, src, trg) and a Σ-Algebra B and a sort-
indexed family (sA)s:S where for every s : S we have sA ⊆ sB, there is at most one
Σ-algebra A with (sA)s:S as carriers.

This allows us to specify subalgebras of a given algebra by just specifying their carriers.

It is well-known that the restriction of this ordering to the subalgebras of a given algebra T
is an algebraic lattice ordering. The carriers of greatest lower bounds arise as intersection
of the respective carriers:

Theorem 2.3.5 Let a signature Σ = (S,F, src, trg), a Σ-algebra T , and a subset A of T4
be given. Then A has a greatest lower bound

∧

4,T A with respect to 4 in T4.
If A is empty, then T itself is the greatest lower bound of A, otherwise, the carriers of

∧

4,T A are (
⋂

{A : A • sA})s:S .

Proof : For empty A, the statement is obvious. For non-empty A, we define a structure
B as follows:

• the carriers of B are (
⋂

{A : A • sA})s:S , and

• for every function symbol f : F , the interpretation is the intersection of the corre-
sponding interpretations:

fB =
⋂

{A : A • fA} .

We have to show that B is a well-defined Σ-Algebra: Consider a function symbol f : F with
f : s1×· · ·×sn → t. If (x1, . . . , xn) ∈ sB1 ×· · ·×s

B
n , then (x1, . . . , xn) ∈ sA1 ×· · ·×s

A
n for all

A : A. Since all A : A are subalgebras of T , there is a y : tT such that y = fT (x1, . . . , xn).
This implies that for all A : A we have first y = fA(x1, . . . , xn) and therefore also y ∈ tA.
This implies that y ∈ tB, so fB is total and well-defined — note that this argument is also
valid for constants, i.e., for n = 0. Since univalence is obvious from the definition, B is
well-defined.

By construction, B is furthermore a subalgebra of every element of A, so it is a lower
bound of A. Since its components are greatest lower bounds, this also applies to B, which
is therefore equal to

∧

4,T A.

This theorem tells us that (T4,4) is a complete lower semi-lattice. For binary meet of
subalgebras A and B of T we write “A∧T4

B”, and where T is obvious from the context,
simply “A ∧ B”.

It is well-known that in every complete lower semi-lattice, arbitrary least upper bounds
exist, too. Assuming a set A of subalgebras of T , the least upper bound (or join)

∨

4,T A is
simply the greatest lower bound of the set containing those subalgebras of T that contain
all elements of A. (We correspondingly use “A ∨T4

B” resp. “A ∨ B” for binary joins.)
In addition to the existence of joins, the above theorem then also guarantees that all

general lattice laws hold.

It is obvious that the above definition of joins is not so useful in the computational context
— a direct definition corresponding to that of meets would be more desirable. However,
the analogous definition via component-wise joins is in general not correct, as we show
with a simple example: Let us define the following sigB1-algebra T3:

2.3. Algebras and Subalgebras 39

• N T3 = {0, 1, 2}

• fT3 =

(0, 0)7→0, (1, 0)7→2, (2, 0)7→1

(0, 1)7→2, (1, 1)7→1, (2, 1)7→0

(0, 2)7→1, (1, 2)7→0, (2, 2)7→2

Now consider the two subalgebras A and B defined as follows:

• NA = {0} and N B = {1};

• fA = {(0, 0) 7→ 0} and fB = {(1, 1) 7→ 1}.

Obviously, the carrier of their join will include both 0 and 1, but since f T3(0, 1) = 2, the
carrier also needs to contain 2, and it thus turns out that A ∨ B = T3.

A different effect may be observed for empty joins: consider the sigC1-algebra T1 defined
as follows:

• N T1 = {0},

• cT1 = 0.

Obviously, T1 is its only subalgebra, so
∨

4,T1
∅ = T1, i.e., the empty join has a non-empty

carrier.
The construction of joins is, in fact, a special case of the well-known closure of carrier

set families under the operations of the algebra. This closure of a family of carriers
X = (sX)s:S , in the universal algebra literature often written “Sg(X)” for “subuniverse
generated by X”, may be defined descriptively as the least family of carriers which defines
a subalgebra of T and at the same time contains X . (For two Σ-algebras or Σ-families of
carriers X and Y we write X ⊆ Y to mean that sX ⊆ sY for all sorts s : S.)

However, this closure may also be approximated systematically, and in finite cases
generated:

Theorem 2.3.6 [←43, 88, 93] Let a signature Σ = (S,F, src, trg) and a Σ-algebra T be
given. Let the subalgebra closure wrt. T , denoted SACT be the closure operator defined
as follows: for every family of carriers X = (sX)s:S with X ⊆ T define the Σ-algebra
SACT (X) as follows:

SACT (X) :=
∧

4,T
{A : T4 | X ⊆ A)} .

Then the carrier family of this closure may also be obtained via joins in the following way:

(
⋃

{n : N • (τn(X))s})s:S

where τ maps a Σ-family of carriers X = (sX)s:S to another Σ-family of carriers τ(X),
defined (slightly informally) as follows (where #s is the length of sequence s):

τ(X) = (tX ∪{s : S∗; f : s1× · · · × s#s → t; x1 : s
X
1 ; . . . ; x#s : s

X
#s • f

T (x1, . . . , x#s)})t:S

40 2. Graph Structures and Their Parts

Proof : Let Y be the family of carriers of SACT (X). Since X ⊆ Y and Y is the carrier
family of a Σ-algebra (as subalgebra of T), it is easy to see that for all n : N the inclusion
τn(X) ⊆ Y implies τn+1(X) ⊆ Y, so by induction we have

(
⋃

{n : N • (τn(X))s})s:S ⊆ Y .

Obviously, we also have X ⊆ τn(X) for all n : N, so

X ⊆ (
⋃

{n : N • (τn(X))s})s:S

By definition, (
⋃

{n : N • (τn(X))s})s:S also defines a subalgebra of T , so the stated
equality holds because Y defines the least subalgebra containing X .

This immediately provides us with the means to calculate joins and least elements in a
subalgebra lattice:

Theorem 2.3.7 Let a signature Σ = (S,F, src, trg) and a Σ-algebra T be given. If A is
a subset of T4, then

∨

4,T
A = SACT ((

⋃

{A : A • sA})s:S) .

For two subalgebras A and B of T , their binary join A∨B therefore is SACT ((s
A∪sB)s:S).

The least element in T4 is
∨

4,T ∅ = SACT ((∅)s:S) .

It is also well-known that for every algebraic lattice L there is a (one-sorted) algebra the
subalgebra lattice of which is isomorphic to L. This implies that we cannot expect more
properties to hold in general in subalgebra lattices, in particular not distributivity, for
which the algebra T3 of page 38 already is a counterexample: Its subalgebra lattice is
isomorphic to the lattice M5 which is a sublattice precisely of all non-distributive modular
lattices. We indicate subalgebras by their carriers:

{0, 1, 2}

{}

{0} {1} {2}
©©

©©
©©

HHHHHH

HH
HH

HH

©©©©©©

The situation changes, however, when we turn to restricted classes of algebras. For our
purposes, the most interesting restriction is that to unary algebras — note that all the
strange effects exhibited in the examples of this section were due either to the presence of
constants, or to the presence of (at least) binary operators.

2.4. Subalgebras in Graph Structures 41

2.4 Subalgebras in Graph Structures

We have seen that graphs can be considered as sigGraph-algebras. One of the special
properties of the signature sigGraph is that it is unary, that is, it contains only unary
operators. Σ-algebras over unary signatures are also called unary algebras.

Since unary algebras share so many properties with graphs, they are also given a special
name to reflect this:

Definition 2.4.1 A graph structure is a Σ-algebra over a unary signature.

However, we shall not strictly stick to using this name, but also use the name “unary
algebra”, depending mostly on the context.

In unary algebras, joins do not need application of the subalgebra closure:

Theorem 2.4.2 [←43] If T is a Σ-algebra over a unary signature Σ = (S,F, src, trg) and
A is a set of subalgebras of T , then the join over A has the carrier family

(
⋃

{A : A • sA})s:S .

Proof : We have to show closedness of the carriers under the operations. Consider a
function symbol f : s → t. For every x :

⋃

{A : A • sA}, there is at least one A : A with
x ∈ sA. Therefore, fT (x) = fA(x) ∈ tA, and thus also fT (x) ∈

⋃

{A : A • tA}. This
shows that the union of the carriers is already closed under f T , and thus under all unary
operations.

Since in unary algebras both joins and meets are defined component-wise via set joins and
meets, the properties of set joins and meets propagate to subalgebras and we have:

Theorem 2.4.3 If T is a Σ-algebra over a unary signature Σ, then the subalgebra order-
ing on T4 is a completely distributive lattice.

In fact, just as all algebraic lattices can be obtained as subalgebra lattices, there is a well-
defined subclass of algebraic lattices that can be obtained as subalgebra lattices of unary
algebras, as has been shown by Johnson and Seifert [JS67] (see also [Jón72, Theorem
3.8.9]):

Theorem 2.4.4 For a non-trivial algebraic lattice L there exists a unary algebra A such
that L is isomorphic to the subalgebra lattice of A if and only if the following conditions
are satisfied:

• L is distributive.

• Every element of L is the join of join-irreducible elements.

• Each join-irreducible element of L contains only countably many join-irreducible
elements.

42 2. Graph Structures and Their Parts

For examples of subgraph lattices, let us consider a graph with two nodes, one edge
connecting them, and one loop, and a two-edge cycle:

I

I

II

II

I I

I I

II

I
I

I I

I I

Both of these graphs have four items, so the lattice of subsets of these graph items has
sixteen elements. Their subgraph lattices, however, only have eight resp. seven elements.
The largest subgraph lattice for a graph with two nodes and two edges has ten elements;
that graph has two loops attached to the same node.

There are 31 different directed graphs with three nodes and three edges1. However,
the direction of the edges is irrelevant for the structure of the subgraph lattice. Therefore
these reduce to 14 different undirected graphs with three nodes and three edges. Among
these, the three-edge cycle has the smallest subgraph lattice with only 18 elements; this
lattice is in fact isomorphic to the free distributive lattice over three generators.

The largest subgraph lattice among the graphs with three nodes and three edges has
36 elements and results from the graph with two isolated vertices and three loops attached
to one vertex. Moving one of these loops to another vertex brings the lattice size down to
30; unwinding it instead brings it down to 28. The remaining ten graphs have subgraph
lattice sizes between 19 and 27 (without 20 and 23).

For the 197 different directed graphs with four vertices and four edges, at the top we
have 136 and 108, most graphs have 50 to 70 subgraphs, and those which are directed
variants of an undirected four-edge cycle have just 47.

All subgraph lattices are atomic, and single vertices are the atoms.

However, not all unary subalgebra lattices are atomic. A simple counterexample is the
sigLoop-algebra with the set of natural numbers as carrier and the successor function as
operation: the subalgebra lattice is the linear ordering of upwards-closed subsets of N; it
is an infinite downward chain with the empty set as least element, but no atom.

The source of the problem is the cycle in the signature:

Proposition 2.4.5 If Σ is acyclic, then the subalgebra lattices of all Σ-algebras are atom-
icatomic lattice.

1All the numbers presented here are computer-generated results.

2.4. Subalgebras in Graph Structures 43

In some contexts it is important to find the greatest subalgebra inside a given family of
carriers, if that exists. In the presence of binary operators, this is not always the case; for
an example consider T3 of page 38 and the carrier {0, 1}. In unary Σ-algebras, however,
such a greatest subalgebra always exists and is the result of an operator with a definition
dual to that of the subalgebra closure operator SACT ; at the same time, it is also the
result of a fixpoint iteration dual to that of Theorem 2.3.6.

Theorem 2.4.6 [←93] Let a unary Σ-algebra T be given. Let the subalgebra kernel
wrt. T , denoted SAKT be the operator defined as follows: for every family of carriers
X = (sX)s:S with X ⊆ T , define the Σ-algebra SAKT (X)

SAKT (X) :=
∨

4,T
{A : T4 | A ⊆ X} .

The carrier family of this kernel may also be obtained via meets in the following way:

(
⋂

{n : N • (τn(X))s})s:S

where τ maps a Σ-family of carriers X = (sX)s:S to another Σ-family of carriers τ(X)
defined as follows:

τ(X) = ({x : sX | (∀t : S; f : F | f : s→ t • fT (x) ∈ tX)})s:S

Proof : Let A := {A : T4 | A ⊆ X}. Then
∨

4,T A ∈ A since with Theorem 2.4.2 we have
for every sort s : S:

(
∨

4,T A)s =
⋃

{A : A • sA}
=

⋃

{A : A | (∀t : S • tA ⊆ tX) • sA} ⊆
⋃

{A : A | sA ⊆ sX • sA} ⊆ sX

Let Y be the carrier family of SAKT (X). Since Y ⊆ X and Y is the carrier family of a
Σ-algebra (as subalgebra of T), it is easy to see that for all n : N the inclusion Y ⊆ τ n(X)
implies Y ⊆ τn+1(X), so by induction we have

Y ⊆ (
⋂

{n : N • (τn(X))s})s:S .

Obviously, we also have τn(X) ⊆ X for all n : N, so

(
⋂

{n : N • (τn(X))s})s:S ⊆ X .

By definition, (
⋂

{n : N • (τn(X))s})s:S also defines a subalgebra of T , so the stated
equality holds because Y is the carrier family of the greatest subalgebra contained in X .

This fixpoint iteration also can be adapted to the case of arbitrary signatures; it then
produces the intersection of all maximal algebras among those contained in X . This
generalised operation is not a kernel operator anymore since it is not monotonic: In the
T3 example above, it contains the mappings {0, 1} 7→ {} and {0} 7→ {0}.

44 2. Graph Structures and Their Parts

2.5 Partial Algebras and Weak Partial Subalgebras

For an introduction to partial algebras see [Bur86] or [Grä79, Chapt. 2].

Definition 2.5.1 Given a signature Σ = (S,F, src, trg), a partial Σ-algebra A consists of
the following items:

• a sort-indexed family (sA)s:S of carrier sets, i.e., for every sort s : S, a set sA, and

• for every function symbol f : F with f : s1 × · · · × sn → t a (partial) function fA

from the Cartesian product sA1 × · · · × sAn of the source sort carriers to tA, the target
sort carrier.

There are different subalgebra concepts for partial algebras. The natural generalisation
of the subalgebra concept as usually formulated demands that operations of the subalge-
bra are defined for all arguments from the subalgebra’s carriers where the operations of
the super-algebra are defined. Such subalgebras are sometimes just called subalgebras,
sometimes “closed subalgebras”, for example in [BRTV96]. For this subalgebra concept,
carriers of subalgebras still have to be closed, joins need to employ this closure, and the
subalgebra lattices are arbitrary algebraic lattices (so need not be distributive).

An only slightly laxer concept is that of “relative subalgebras”, where operations in
the subalgebra need only be defined where the image of the super-algebra operation lies
in the target carrier of the subalgebra.

The natural generalisation of our definition 2.3.3 of subalgebras, however, gives rise
to a different subalgebra concept, which is called “weak subalgebra” already by Grätzer
[Grä79]; here, operations in subalgebras are never forced to be defined:

Definition 2.5.2 Given two partial Σ-algebras A and T , we say that A is a weak partial
subalgebra of T , written A ¿ T , iff

• for every sort s : S, inclusion holds between the carriers: sA ⊆ sT , and

• for every function symbol f : F , inclusion holds between its interpretations: fA ⊆ fT .

The set of all subalgebras of T is denoted by T¿.

The absence of the totality condition results in component-wise definitions of meets and
joins:

Theorem 2.5.3 If T is a partial Σ-algebra and A is a set of weak partial subalgebras of
T , then the greatest lower bound

∧

¿,T A and the least upper bound
∨

¿,T A of A in the
ordering (T¿,¿) exist. If A is empty, then

∧

¿,T A = T . Meets for non-empty A and
arbitrary joins are defined component-wise:

L :=
∧

¿,T A sL =
⋂

{A : A • sA} fL =
⋂

{A : A • fA}
U :=

∨

¿,T A sU =
⋃

{A : A • sA} fU =
⋃

{A : A • fA}

Proof : It is sufficient to show well-definedness, since the extremal properties follow from
the extremal properties of the set operations.

For empty meets, the statement is obvious; otherwise, we need to show two items for
well-definedness:

2.5. Partial Algebras and Weak Partial Subalgebras 45

• closedness under the operations: if (x1, . . . , xn) ∈ sL1 × · · · × sLn , then

fL(x1, . . . , xn) ∈
⋂

{A : A • tA} = tL ,

and in the same way for joins.

• univalence: since

fL =
⋂

{A : A • fA} ⊆
⋂

{A : A • fT } ⊆ fT , and

fU =
⋃

{A : A • fA} ⊆
⋃

{A : A • fT } ⊆ fT ,

and since fT is univalent, fL and fU are univalent, too.

Therefore, the properties of meets and joins on sets carry over to meets and joins wrt. ¿
on partial algebras, and it follows that (T¿,¿) is a completely distributive lattice.

This analogy to the situation with total unary algebras is not by chance: there is a
translation. The idea of this translation is to turn a partial algebra into a special kind
of hypergraph. Elements of the carriers are considered as nodes, and elements of the
interpretations of the operations — these elements are tuples of carrier elements — are
considered as hyperedges. Therefore, both sorts and function symbols are sorts of the
translation, and every operation of the translation associates targets with a specific kind
of tentacles of a specific kind of hyperedge. These careful distinctions are necessary in
order to obtain total unary algebras. Another possible translation would only provide one
projection for every source index, and these projections would then be partial operations,
defined only on hyperedges with at least that many source tentacles.

First we define the signature translation:

Definition 2.5.4 For every signature Σ = (S,F , src, trg), we define a unary signature
PtoU(Σ) = (S ′,F ′, src′, trg′) in the following way:

• S ′ = S + F

• F ′ = {f : F ; s : S∗; t : S; i : {1, . . . , n} | f : s1 × · · · × sn → t • π
f,i
}

∪ {f : F ; s : S∗; t : S | f : s1 × · · · × sn → t • ρ
f
}

• src′(π
f,i
) = f and trg′(π

f,i
= (src(f))i

• src′(ρ
f
) = f and trg′(ρ

f
) = trg(f)

The translation of partial algebras then is completely straightforward. Perhaps even sur-
prisingly so: Function symbols are sorts in the translated signature, so have to be inter-
preted as carrier sets; and the interpretations we assign to them are the original interpre-
tations as partial functions — this relies on the fact that every function is a set (more
specifically, a subset of a Cartesian product).

Definition 2.5.5 For every partial Σ-algebra A, we define a total unary PtoU(Σ)-algebra
UA in the following way:

• for every s : S, we let sUA := sA

46 2. Graph Structures and Their Parts

• for every f : F with f : s1 × · · · × sn → t, we let the carrier for the sort f be the set
of all tuples in the interpretation of f as an operation of A:

fUA := fA = {x1 : s
A
1 , . . . , xn : sAn , y : tA | ((x1, . . . , xn), y) ∈ fA • ((x1, . . . , xn), y)}

• for every f : F with f : s1 × · · · × sn → t, we let the interpretations of π
f,1

, . . . , πf,n
and ρ

f
be the corresponding projections:

πUA
f,i

((x1, . . . , xn), y) = xi ρUA
f

((x1, . . . , xn), y) = y

Well-definedness is obvious.
This translation function U is obviously injective; it is even bijective, and furthermore

an order-isomorphism, as is easily verified, so we have the following important result:

Theorem 2.5.6 For every partial Σ-algebra A, the weak subalgebra lattice (A¿,¿) is
isomorphic to the subalgebra lattice ((UA)4,4).

Therefore, all the machinery for unary total algebras can easily be made available to partial
algebras via this translation. This is particularly interesting for applications to abstract
state machines (ASMs, evolving algebras) [Gur91, GKOT00].

2.6 Pseudo-Complements

Recall that in completely upwards-distributive lattices finite meets distribute over arbi-
trary joins. This implies that they may also be seen as complete Heyting algebras, i.e.,
in completely upwards-distributive lattices the operation “→” defined in the following is
total:

Definition 2.6.1 [←86] In every lattice (L,6), given two elements B and A, the relative
pseudo-complement of A wrt. B is denoted as A→ B and defined in the following way:

X 6 A→ B ⇔ X ∧A 6 B

A lattice where all relative pseudo-complements exist is called pseudo-complemented .
If L has a least element, then the (absolute) pseudo-complement of A is defined to be

A¬ := A→ ⊥.

In the logical view of Heyting algebras, the “relative pseudo-complement” is also called
“implication”.

Among subgraphs of a whole graph >, the pseudo-complement of a subgraph A con-
tains all those items of >, that are not adjacent to items of A. In the following example,
we have P = A¬:

A P

From the shape of the property it follows immediately that the relative pseudo-comple-
ment, if it exists, is uniquely determined:

2.6. Pseudo-Complements 47

Lemma 2.6.2 [←50] If, in an arbitrary lattice (L,6), for two elements A,B : L a relative
pseudo-complement of A wrt. B exists, then it is uniquely determined.

Proof : Assume that P and P ′ are both relative pseudo-complement of A wrt. B. Then

P 6 P ⇔ P ∧A 6 B ⇔ P 6 P ′

and in the same way P ′ 6 P , so we have P ′ = P .

The definition of pseudo-complements defines A → B as the largest element X : L
such that X ∧ A 6 B, if such a largest element exists; it is well-known that this may be
then be obtained via a join:

Lemma 2.6.3 If, in an arbitrary lattice (L,6), for two elements A,B : L the join

P :=
∨

{X : L | X ∧A 6 B}

exists and P ∧A 6 B holds, then P = A→ B.

Proof : Assuming X 6 P , we have, according to the assumption, A ∧X 6 A ∧ P 6 B .
On the other hand, assuming X ∧A 6 B we obtain

X ≤ X ∨
∨

{X : L | X ∧A 6 B} =
∨

{X : L | X ∧A 6 B} = P ,

so P fulfils the defining property for the relative pseudo-complement of A wrt. B.

As an example that even in the absence of distributivity there may be pseudo-comple-
ments, we define a sigB1-algebra Td:

• N Td = {0, 1, 2, 3}

• fTd =

(0, 0)7→0, (1, 0)7→1, (2, 0)7→2, (3, 0)7→3

(0, 1)7→1, (1, 1)7→1, (2, 1)7→0, (3, 1)7→0

(0, 2)7→2, (1, 2)7→3, (2, 2)7→2, (3, 2)7→0

(0, 3)7→3, (1, 3)7→2, (2, 3)7→1, (3, 3)7→3

The subalgebra lattice of Td is not distributive. Nevertheless, the subalgebras {0}, {0, 2},
and {0, 3} have {1} as their pseudo-complement, and {0, 1} has the empty subalgebra
⊥ as its pseudo-complement. ⊥ and > are complements of each other; only {1} has no
pseudo-complement.

{0, 1, 2, 3}

{0}

{0, 1} {0, 2} {0, 3}

{1}

{}

©©
©©

©©

HHHHHH

HH
HH

HH

©©©©©©©©
©©

©©

©©
©©

©©

HH
HH

HH

48 2. Graph Structures and Their Parts

Lemma 2.6.4 [←50] If, in a completely upwards-distributive lattice, for two elements
A,B : L the join P :=

∨

{X : L | X ∧A 6 B} exists, then P ∧A 6 B.

Proof : We can show this property directly:

P ∧A = (
∨

{X : L | X ∧A 6 B}) ∧A

=
∨

{X : L | X ∧A 6 B • X ∧A} completely upwards-distributive

6
∨

{X : L | X ∧A 6 B • B} 6 B

These two lemmata together ensure existence of pseudo-complements in particular in sub-
algebra lattices for unary algebras:

Theorem 2.6.5 [←50] In a completely upwards-distributive complete lattice, for every
two elements A,B : L the relative pseudo-complement exists and obeys the following
equality:

A→ B =
∨

{X : L | X ∧A 6 B} .

Remember that an element C is a complement of an element A iff C∧A = ⊥ and C∨A = ∨;
a lattice where every element has a complement is called a Boolean lattice. In Boolean
lattices, the complement of an element A is written A, and we have A→ B = A ∨B.

In general, the pseudo-complement coincides with the complement where the latter
exists:

Lemma 2.6.6 [←55, 58] If A has a complement C in a distributive bounded lattice
(L,6,>,⊥), then C also is the pseudo-complement of A.

Proof : The proof is a slight variant of the proof of uniqueness of complements: Assuming
X 6 C, the complement properties immediately give us X ∧A 6 C ∧A = ⊥ .

On the other hand, whenever X ∧A 6 ⊥, then lattice distributivity gives us:

X = X ∧ > = X ∧ (C ∨A) = (X ∧ C) ∨ (X ∧A) = (X ∧ C) ∨ ⊥ = (X ∧ C) ,

and this implies X 6 C. Therefore, C is the pseudo-complement of A.

It turns out that the pseudo-complement, applied twice, give rise to a very useful closure
operator, which on graphs corresponds to the concept of “induced graph”. For any given
subgraph A of a graph T , the induced graph is the graph containing precisely the vertices
of A and precisely those edges of T that are incident only with vertices of A.

How can we arrive at an algebraic characterisation of the induced subgraph? Obviously,
it is the maximal subgraph of T that does not contain any vertices outside A. And it not
only contains no vertices outside A, it also cannot contain any edges incident only with
those vertices. Therefore it is safe to say that the subgraph induced by A is the maximal
subgraph that does not contain any items of the pseudo-complement of A. In other words,
the subgraph induced by A is the pseudo-complement of the pseudo-complement of A:

2.6. Pseudo-Complements 49

Definition 2.6.7 In a lattice (L,6) with least element ⊥, the element

Induced(A) := (A¬)¬ ,

if it exists, is called the element induced by A.

In the following drawing, we have P = A¬ and B = P¬ = Induced(A):

A

BP

Since in a pseudo-complemented lattice we always have A¬¬¬ = A¬, every pseudo-
complement is induced by itself.

In a pseudo-complemented lattice, elements that are pseudo-complements of other
elements are called skeletal elements by Grätzer [Grä78, p. 112], and the skeleton of a
lattice is the set of all skeletal elements. We shall, however, employ the name “regular”,
which is frequently used in the contexts of Heyting algebras and topologies. We also let
our definition be applicable to arbitrary lattices:

Definition 2.6.8 [←63] In a lattice (L,6), an element R : L is called regular iff R¬¬

exists and is equal to R.

It is well-known that for every pseudo-complemented lattice the regular elements form
a Boolean lattice2, which is, however, not a sublattice: In that lattice of regular ele-
ments, the union of two elements A and B may be calculated via the pseudo-complement
as (A¬ ∧B¬)¬; this works even for pseudo-complemented semi-lattices. In lattices, one
may alternatively apply the closure operator of double pseudo-complementation to obtain
Induced(A ∨B). This can be seen nicely in graphs:

A

C

B

Here we have C = Induced(A ∨ B); of the three edges that C has more than A ∨ B, only
one is contained in Induced(A) ∨ Induced(B).

Lemma 2.6.9 [←128, 180] If the relative pseudo-complement exists, then B 6 A→ B.

Proof : With the definition of relative pseudo-complements, B 6 A→ B ⇔ A∧B 6 B.

2see e.g. [Grä78, Theorem I.6.4]

50 2. Graph Structures and Their Parts

2.7 Semi-Complements

Since join-completeness of a lattice also implies meet-completeness, one may be tempted
to ask for a dual Heyting algebra.

Although it is well-known that complete downwards-distributivity does not follow from
complete upwards-distributivity, we have seen that subalgebra lattices for graph structures
are not only completely upwards-distributive, but also completely downwards-distributive
complete lattices.

Therefore, in the subalgebra lattices of graph structures, the dual to the relative
pseudo-complement is defined, too. Nevertheless we first introduce it as a partial op-
eration in arbitrary lattices, just like the pseudo-complement. Names proposed in the
literature for this “dual pseudo-complement” include “co-implication” [Wol98] (for co-
Heyting algebras), and “supplement” [But98]; it also occurs as operator “–” in [BdM97,
Ex. 4.30]. Since the lattice-theoretic aspects of complementation are closer to our consider-
ations than logical aspects, we shall not use the otherwise elegant name “co-implication”.
We decide to use “semi-complement”, since here, “complement” may be understood on
the one hand as the lattice-theoretical terminus technicus, so that semi-complements only
share half of the properties of proper complements (while pseudo-complements share the
other half), and on the other hand also in the more literal sense as “filling up together”
— semi-complements do this, while pseudo-complements don’t:

Definition 2.7.1 [←87] In every lattice (L,6), given two elements T,A : L, the relative
semi-complement of A wrt. T is denoted as T r A and defined in the following way:

T r A 6 X ⇔ T 6 X ∨A for all X : L.

A lattice where all relative semi-complements exist is called semi-complemented .
If L has a greatest element >, then the (absolute) semi-complement of A is defined as

A∼ := >r A.

We collect the dualisations of Lemmata 2.6.2 to 2.6.4 and Theorem 2.6.5 together into a
single lemma:

Lemma 2.7.2 [←54] Let an arbitrary lattice (L,6) and two elements A, T : L be given.

(i) If a relative semi-complement of A wrt. T exists, then it is uniquely determined, and
T r A 6 T .

(ii) If the meet S :=
∧

{X : L | T 6 X ∨ A} exists and T 6 S ∨ A holds, then this meet
is the relative semi-complement of A wrt. T , i.e., S = T r A.

(iii) If the lattice (L,6) is completely downwards-distributive, and if the meet
S :=

∧

{X : L | T 6 X ∨A} exists, then T 6 S ∨A.

(iv) If (L,6) is completely downwards-distributive complete lattice, then T r A exists
and obeys the following equality:

T r A =
∧

{X : L | T 6 X ∨A}

2.7. Semi-Complements 51

In Boolean lattices, we have T rA = T ∧A, so a reading “T without A” seems to have a
certain intuitive justification — the relative semi-complement takes A away from T as far
as possible without hurting other parts of T .

This is further illustrated by a concrete example taken again from subgraph lattices.

Among subgraphs of a whole graph >, the pseudo-complement of a subgraph A con-
tains all those items of >, that are not items of A or that are adjacent to items outside
A. In the following example, we have S = >r A:

A S

For an example of a lattice where not all semi-complements exist, we extend the sigB1-
algebra T3 from page 38 by adding a fourth element 3, yielding the sigB1-algebra T4:

• N T4 = {0, 1, 2, 3}

• fT4 =

(0, 0)7→0, (1, 0)7→2, (2, 0)7→1, (3, 0)7→0

(0, 1)7→2, (1, 1)7→1, (2, 1)7→0, (3, 1)7→1

(0, 2)7→1, (1, 2)7→0, (2, 2)7→2, (3, 2)7→2

(0, 3)7→0, (1, 3)7→1, (2, 3)7→2, (3, 3)7→2

This has the following subalgebra lattice:

{0, 1, 2, 3}

{2, 3}{0, 1, 2}

{}

{0} {1} {2}

©©
©©

©©

HH
HH

HH

©©
©©

©©

©©
©©

©©

HHHHHH

HH
HH

HH

©©©©©©

From this drawing it is immediately clear that the situation here is perfectly dual to that
with Td on page 47: {0}, {1}, and {0, 1, 2} have {2, 3} as semi-complement; {2} has >;
and > and ⊥ are complements of each other; only {2, 3} has no semi-complement.

Mostly for exhibiting the usual way of arguing with semi-complements, we prove a few
properties that shall be useful later on. All these are obvious as duals of well-known prop-
erties of pseudo-complements. However, since we shall mostly need semi-complements, we
hope that the reader will find these properties and their proofs instructive.

First of all, the relative semi-complement is monotonic in its first argument, and anti-
tonic in the second:

52 2. Graph Structures and Their Parts

Lemma 2.7.3 [←52, 54, 63, 133] For all A,B, T, U : L in a lattice (L,6), subject to the
existence of the semi-complements, the following hold:

(i) if T 6 U , then T r A 6 U r A;

(ii) if A 6 B, then T r B 6 T r A.

Proof : For all X : L we have:

(i) U r A 6 X ⇔ U 6 X ∨A ⇒ T 6 X ∨A ⇔ T r A 6 X

(ii) T r A 6 X ⇔ T 6 X ∨A ⇒ T 6 X ∨B ⇔ T r B 6 X

As illustrations why these implications are not equivalences, consider the following sub-
graph counterexamples to the opposite implications (which directly correspond to simple
set-theoretic examples):

AU

T

A B T

On the left, we have T rA 6 U = UrA, but T 66 U . On the right, we have T rB 6 T rA,
but A 66 B.

Lemma 2.7.4 In a lattice where T r A exists, if A 6 T r A, then T r A = T .

Proof : T r A 6 T 6 (T r A) ∨A = T r A.

We already have seen the duals of A∼∼ ≤ A and A∼∼∼ = A∼; we easily obtain the
generalisations to relative semi-complements:

Lemma 2.7.5 [←64, 65] For all T,A,B : L in a lattice (L,6), we have, subject to existence
of the semi-complements:

(i) T r T = ⊥ and T r⊥ = T

(ii) if A 6 T , then T r (T r A) 6 A

(iii) if A 6 T , then T r (T r (T r A)) = T r A

Proof : (i) is obvious from the definition of relative semi-complements.

(ii) Assume A 6 T . For all X : L, Lemma 2.7.3.ii) gives us:

A 6 X ⇒ T r X 6 T r A ⇔ T 6 X ∨ (T r A) ⇔ T r (T r A) 6 X

(iii) Assume A 6 T . From T r (T r A) 6 A follows T r (T r (T r A)) > T r A via
Lemma 2.7.3.ii), and (ii) directly implies T r (T r (T r A)) 6 T r A.

There is a number of useful interactions with lattice joins and meets:

2.7. Semi-Complements 53

Lemma 2.7.6 [←58, 61, 62, 64, 65, 132] In a lattice (L,6), for all elements T,A,B : L and
all sets of elements U : P(L), the following properties hold, subject to the existence of the
semi-complements:

(i) (U ∨ T) r A = (U r A) ∨ (T r A)

(ii) If (L,6) is complete, then: (
∨

U) r A =
∨

{U : U • U r A}

(iii) T r (A ∨B) = (T r A) r B

(iv) A ∨ (T r A) = A ∨ T

Proof : (i) (U ∨ T) r A 6 X ⇔ U ∨ T 6 X ∨A

⇔ U 6 X ∨A and T 6 X ∨A

⇔ U r A 6 X and T r A 6 X

⇔ (U r A) ∨ (T r A) 6 X

(ii) (
∨

U) r A 6 X ⇔
∨

U 6 X ∨A ⇔ ∀U : U • U 6 X ∨A

⇔ ∀U : U • U r A 6 X ⇔
∨

{U : U • U r A} 6 X

(iii) T r (A ∨B) 6 X ⇔ T 6 X ∨A ∨B ⇔ T r A 6 X ∨B ⇔ (T r A) r B 6 X

(iv) A∨(T rA) > T by definition of the semi-complement, and A∨(T rA) > A trivially.
The opposite inclusion follows from T r A 6 T .

Lemma 2.7.7 [←54, 58, 60, 61, 64] In a distributive lattice (L,6), for all elements T,A,B : L,
the following properties hold, subject to the existence of the semi-complements:

(i) T r (A ∧B) = (T r A) ∨ (T r B)

(ii) T r (A ∧ T) = T r A

(iii) (T ∧A) ∨ (T r A) = T

Proof : (i) T r (A ∧B) 6 X ⇔ T 6 X ∨ (A ∧B)

⇔ T 6 (X ∨A) ∧ (X ∨B)

⇔ T 6 X ∨A and T 6 X ∨B

⇔ T r A 6 X and T r B 6 X

⇔ (T r A) ∨ (T r B) 6 X

(ii) Using (i): T r (A ∧ T) = (T r A) ∨ (T r T) = (T r A) ∨ ⊥ = T r A

(iii) (T ∧A) ∨ (T r A) = (T ∨ (T r A)) ∧ (A ∨ (T r A)) = T ∧ (A ∨ T) = T

Lemma 2.7.8 [←55] In a distributive lattice (L,6) with greatest element >, for all
elements A,B : L, the following properties hold, subject to the existence of the semi-
complement:

(i) B r A 6 A∼ ∧B

(ii) B r A = A∼ ∧B iff A∼ ∧A ∧B 6 B r A.

54 2. Graph Structures and Their Parts

Proof :

(i) With 2.7.2.i) we have B r A 6 B, and with 2.7.3.i) also B r A 6 >r A = A∼.

(ii) Because of (i), we only need to consider one inclusion:

A∼ ∧B 6 B r A

⇔ A∼ ∧ ((B ∧A) ∨ (B r A)) 6 B r A Lemma 2.7.7.iii)

⇔ (A∼ ∧B ∧A) ∨ (A∼ ∧ (B r A)) 6 B r A distributivity

⇔ A∼ ∧B ∧A 6 B r A and A∼ ∧ (B r A) 6 B r A

⇔ A∼ ∧A ∧B 6 B r A

Here is a fact that may at first sight seem somewhat surprising: the meet between an
element and its relative semi-complement is inseparable from the context:

Lemma 2.7.9 [←63, 65] For all T,A : L in a distributive lattice (L,6), we have, subject
to existence of the semi-complements:

T = T r ((T r A) ∧A)

Proof : For all X : L we have:

T r ((T r A) ∧A) 6 X

⇔ T 6 X ∨ ((T r A) ∧A) semi-complement

⇔ T 6 (X ∨ (T r A)) ∧ (X ∨A) distributivity

⇔ T 6 X ∨ (T r A) and T 6 X ∨A definition of meet

⇔ T 6 X ∨ (T r A) and T r A 6 X semi-complement

⇔ T 6 X and T r A 6 X definition of join

⇔ T 6 X T r A 6 T

In order to make this more intuitive, consider again subgraph lattices, and for simplicity
assume T = >. Then the intersection (T r A) ∧ A = A∼ ∧ A, i.e., the border between A
and its semi-complement (S := A∼ in the following drawing), will always consist entirely
of non-isolated vertices.

A S

But non-isolated vertices cannot be taken away without taking away the incident edges,
too, so the semi-complement of such a border always is the whole graph.

Finally, we show two simple (dual) properties connecting semi-complements with
pseudo-complements:

2.7. Semi-Complements 55

Lemma 2.7.10 [←111, 180] In a completely distributive lattice (L,6) with top element >
and bottom element ⊥, the following inclusions always hold:

A→ B 6 A∼ ∨B

A¬ ∧B 6 B r A

Proof : For every element X : L the following implication chain holds:

X 6 A→ B ⇔ X ∧A 6 B

⇒ A∼ ∨ (X ∧A) 6 A∼ ∨B

⇔ (A∼ ∨X) ∧ (A∼ ∨A) 6 A∼ ∨B

⇔ (A∼ ∨X) ∧ > 6 A∼ ∨B

⇔ A∼ ∨X 6 A∼ ∨B

⇒ X 6 A∼ ∨B

For clarity, we spell out the dual argument, too:

B r A 6 X ⇔ B 6 X ∨A

⇒ A¬ ∧B 6 A¬ ∧ (X ∨A)

⇔ A¬ ∧B 6 (A¬ ∧X) ∨ (A¬ ∧A)

⇔ A¬ ∧B 6 (A¬ ∧X) ∨ ⊥

⇔ A¬ ∧B 6 A¬ ∧X

⇒ A¬ ∧B 6 X

Together with Lemma 2.7.8.i) and its dual, we can extend this to two-sided approximations
of relative pseudo- and semi-complements:

A¬ ∨B 6 A→ B 6 A∼ ∨B

A¬ ∧B 6 B r A 6 A∼ ∧B

Setting B to ⊥ in the first line, or to > in the second line shows that pseudo-complements
are contained in semi-complements:

A¬ 6 A∼

Finally, we explicitely state the dual of Lemma 2.6.6 — the dualised proof would not
provide any valuable insights, so we omit it.

Lemma 2.7.11 If A has a complement C in a distributive bounded lattice (L,6,>,⊥),
then C also is the semi-complement of A.

56 2. Graph Structures and Their Parts

2.8 Näıve Graph Rewriting

The key property of the relative semi-complement A r R in its application to graphs is
that it does not remove interface nodes between R and the part of A that is the result of
A r R. In the context of graph rewriting, the semi-complement may therefore be used to
delete an occurrence of the left-hand side of a rule, and these interface nodes are then the
anchors for attaching a copy of the right-hand side.

With the lattice-theoretic treatment of graphs and graph structures introduced in this
chapter, it is possible to specify such a rewriting step without a single mention of the
words “node” and “edge”.

Indeed, we would not even have to say “graph”, but could instead say “element of a
partial order” — we cannot operate in a single lattice here, but need the partial order of
all graphs (or unary Σ-algebras). In that partial order, every set containing all elements
that are smaller than a particular element is a semi-complemented lattice, and this is all
we need.

However, for better understandability we still use the words “graph” and “subgraph”.

We define a rule (U,L,R) to be a graph U together with two subgraphs L and R, the
left-hand side and the right-hand side, that share a common subgraph L∧R that we shall
call G for gluing graph.

a

b

e

d
cL R

An application of such a rule, transforming an application graph A into a result graph B,
now proceeds as follows:

• find an isomorphic image (U ′, L′, R′) of the original rule such that

– the left-hand side is contained in the application graph: L′ 6 A.

– the right-hand side is compatible with the host graph

H := A r L′ ,

that is, the join H∨R′ exists in the partial order of all graphs with the subgraph
ordering, and the right-hand side overlaps with the host graph only in the gluing
part:

H ∧R′ 6 L′ ∧R′ .

• The result of the rule application is then the join of the host graph with the right-
hand side:

B := H ∨R′

Here we show an example application of the above rule:

2.9. Discreteness in Graph Structures 57

U ′ =

3

4

9

8
5

L′ =

3

4
5 G′ =

3

4

R′ =

3

4

9

8

A =

3

4
5

1 2

6 7

H =

3

4

1 2

6 7

B =

3

4

1 2

6 7

9

8

Although this rewriting concept is very simple, it has a few significant draw-backs:

• There are no rules that perform “vertex amalgamation”, that is, that would redirect
all edges incident with two vertices in A to a single vertex in B.

• Rules have to match precisely, that is, it is not possible for one vertex in A to take
on the rôles of more than one vertex in L.

Besides these more practical considerations, which need not be a problem in all contexts,
there is also a problem with methodological hygiene:

• This rewriting concept is not purely lattice-theoretic: We needed the possibility to
produce isomorphic images of the rule.

All these reasons together suggest that we need to consider graph matchings in some
shape. This implies that we have to leave the simple lattice-theoretic framework. In the
next chapter, we therefore move into a category-theoretic context, where morphisms serve
as abstractions from graph matchings.

The conceptual framework established in the current chapter will then reappear in
different guises, and will still be central to the success of establishing a relational rewriting
concept.

2.9 Discreteness in Graph Structures

In the context of graph transformation, discrete graphs, i.e., graphs with no edges, play
a special rôle since they act as “borders” between semi-complementary subgraphs. This
is the main reason why the categoric approach to graph rewriting frequently uses discrete
graphs as gluing graphs.

58 2. Graph Structures and Their Parts

We now give an abstract characterisation of discreteness, recognising as characteristic
of discrete objects that there, the lattice of partial identities is Boolean. Since it makes
sense to talk about discrete subgraphs of arbitrary graphs, we anchor our definition of
discreteness at the level of lattices (recall that the ideal generated by a lattice element
Q : L is the sublattice containing all elements X : L with X 6 Q):

Definition 2.9.1 In a lattice (L,6), an element Q : L is called discrete iff the ideal
generated by Q is a Boolean lattice.

We show a criterion which is easier to handle in proofs:

Lemma 2.9.2 In a distributive lattice (L,6) with least element ⊥, an element Q : L is
discrete iff for all elements U : L the relative semi-complement Q r U exists and we have

(Q r U) ∧ U = ⊥ .

Proof : “⇒”: If Q is discrete, then for all U : L, the meet Q ∧ U is inside the ideal of
Q and therefore has a complement inside that ideal, say C. By the dual of Lemma 2.6.6
and by Lemma 2.7.7.ii) we know that

C = Q r (Q ∧ U) = Q r U ,

so, from the complement properties of C, we immediately obtain:

(Q r U) ∧ U = C ∧ U = ⊥ .

“⇐”: Since (L,6) is distributive, we only have to check that complements exist in the
ideal generated by Q. Assume U : L with U 6 Q. Then, by the assumption, the relative
semi-complement S := Q r U exists, and we have S ∧ U = ⊥. On the other hand, the
definition of semi-complements implies that S ∨ U = Q, which is the greatest element of
the ideal generated by Q, which shows that S is a complement of U in that ideal.

It is easy to see that in subgraph lattices, the discrete elements are exactly the discrete
graphs.

From the definition it is obvious that arbitrary meets of discrete elements are discrete,
since for a discrete element Q, every element R 6 Q is discrete, too. Even joins preserve
discreteness:

Lemma 2.9.3 [←63, 96] In a completely distributive complete lattice (L,6), let a set
Q : P(L) of elements be given. If all Q : Q are discrete, then

∨

Q is discrete, too.

Proof : For U 6
∨

Q, we have with Lemma 2.7.6.i):

((
∨

Q) r U) ∧ U =
∨

{Q : Q • (Q r U)} ∧ U

=
∨

{Q : Q • (Q r U) ∧ U}

=
∨

{Q : Q • ⊥}

= ⊥

This also shows that in completely distributive complete lattices, the join of all discrete
elements is again discrete, and therefore allows us to define:

2.9. Discreteness in Graph Structures 59

Definition 2.9.4 For a completely distributive complete lattice L, we denoted with DL :
L the discrete base of L, defined as the maximal discrete element of L:

DL :=
∨

{Q : L | Q discrete}

It is already clear that a discrete element in a subgraph lattice can only contain vertices,
but no edges. However, discreteness alone is not yet enough to be able to characterise
those subgraphs that contain only isolated vertices. This needs some further preparation.

On page 54 we have seen that in graphs, the border Q∧Q∼ is always discrete. However,
this is not always the case: In the four-element linear ordering a < b < c < d the border
for c is c itself:

c ∧ c∼ = c ∧ d = c .

However, only a and b are discrete. Therefore we define:

Definition 2.9.5 The semi-complemented lattice (L,6) is called border-discrete, if for
all elements Q : (L,6), the “border” Q ∧Q∼ is discrete.

Subgraph lattices are obviously border-discrete: borders consist only of vertices.
In general, subalgebra lattices for arbitrary unary algebras are border-discrete if no

sort is at the same time source and target of function symbols. For counter-examples
consider the following signatures:

sigL := sig begin

sorts: V, E ,L

ops: i : E → V

λ : V → L

sig end

sigGL := sig begin

sorts: V, E ,L

ops: s, t : E → V

λ : V → L

sig end

The only sigL-algebra D with VD = {v}, ED = {e}, and LD = {l} has a subalgebra lattice
which is isomorphic to the linear ordering above:

<

l
<

v lλ
<

e

v l
i

λ

To see how this can influence borders, consider a sigGL-algebra T with carriers VT =
{v1, v2, v3}, E

T = {e1, e2}, and L
T = {l1, l2, l3}:

s

λ

t

λλ

s t
1 2 3

1

1

2

2 3

e
v

l

v

l

v

l

e

SA B

60 2. Graph Structures and Their Parts

For the subgraph A, we have the semi-complement S := A∼, and therefore the non-discrete
border B := A ∧A∼.

Subalgebra lattices for algebras over signatures like sigL and sigGL are therefore in
general not border-discrete.

Since the presence of borders can be problematic, or at least needs special care, it is useful
to characterise cases where the border is empty. An empty border indicates that the
(relative) semi-complement is now a true (relative) complement:

Definition 2.9.6 [←95] Let a semi-complemented lattice (L,6) and two partial elements
P,Q : L be given.

• P is called a separable part of Q iff P 6 Q and (Q r P) ∧ P = ⊥.

• Q is called connected if there is, except ⊥, no separable part of Q.

• The lattice (L,6) is called connected iff > is connected.

Separable parts of Q are therefore parts of Q that have a true relative complement.
In graphs, there is no edge between separable parts. Therefore, our definition of

connectedness gives it its conventional meaning for graphs.

Now we are ready to characterise subgraphs containing only isolated vertices as being both
discrete and separable:

Definition 2.9.7 Let a semi-complemented lattice (L,6) and two elements P,Q : L be
given.

• P is called a discrete part of Q iff P is discrete and P is a separable part of Q.

• P is called a discrete part of (L,6) iff P is a discrete part of >.

• Q is called solid if there is, except ⊥, no discrete part of Q.

• (L,6) is called solid if > is solid.

Therefore, a subgraph Q is solid iff it contains incident edges for each of its vertices, that
is, iff it contains no (locally) isolated vertices. We can turn this into a useful criterion:

Lemma 2.9.8 [←61] In a semi-complemented lattice (L,6), an element Q : L is solid iff
for all discrete R : L we have Q r R = Q.

Proof : “⇐”: Assume that for all discrete R : L we have Q r R = Q. Assume further
that P is a discrete part of Q, so P is discrete, P 6 Q, and (Q r P) ∧ P = ⊥. Then the
first assumption implies: P = Q ∧ P = (Q r P) ∧ P = ⊥, so Q is solid.

“⇒”: Since Lemma 2.7.7.ii) gives us: QrR = Qr (R∧Q), it is sufficient to consider
only those R that are contained in Q.

Now assume that Q is solid and R discrete, with R 6 Q, and define

Z := (Q r R) ∧R .

Then Z 6 R and, with antitony of relative semi-complements, Z 6 QrR 6 QrZ. Since
Z is discrete because of Z 6 R, solidity of Q implies Q r Z = Q.

2.9. Discreteness in Graph Structures 61

Now let R′ := RrZ. Then we have: QrR = Qr (Z ∨R′) = (QrZ)rR′ = QrR′

and
(Q r R′) ∧R′ = (Q r R) ∧R′ = (Q r R) ∧R ∧R′ = Z ∧R′ = ⊥

This shows that R′ is a separable part of Q, but since Q is solid and R′ is discrete, it
implies R′ = ⊥. Therefore, Q r R = Q r R′ = Q r⊥ = Q.

Every discrete part of a join can be expressed as a join of corresponding discrete parts:

Lemma 2.9.9 In a completely distributive complete lattice (L,6), if the element P : L
is a discrete part of

∨

Q, then

P =
∨

{Q : Q • Q ∧ P}

and for every Q : Q, the meet P ∧Q is a discrete part of Q.

Proof : Obviously, P = P ∧
∨

Q =
∨

{Q : Q • P ∧ Q}. Since with P , all Q ∧ P are
discrete, too, we only have to check separability:

((
∨

Q) r P) ∧ P = ⊥

⇔ (
∨

{Q : Q • Q r P}) ∧ P = ⊥ Lemma 2.7.6.ii)

⇔
∨

{Q : Q • (Q r P) ∧ P} = ⊥ completely upwards distr.

⇔ ∀Q : Q • (Q r P) ∧ P = ⊥

⇔ ∀Q : Q • (Q r (Q ∧ P)) ∧ (Q ∧ P) = ⊥ Lemma 2.7.7.ii)

Solidity is closed under arbotrary joins:

Lemma 2.9.10 If for a set Q : P(L) of elements of a completely distributive complete
lattice (L,6), all elements Q : Q are solid, then

∨

Q is solid, too.

Proof : Assume P : PIdA is discrete. Then Lemma 2.7.6.ii) and Lemma 2.9.8 yield:

(
∨

Q) r P =
∨

{Q : Q • (Q r P) =
∨

{Q : Q • Q} =
∨

Q

This ensures that every element has a solid part, i.e., a maximal solid element below it,
and we may define this as a join:

Definition 2.9.11 For an element Q : L of a completely distributive complete lattice
(L,6), we let solQ : L denote its solid part , defined as

solQ :=
∨

{P : L | P 6 Q and P solid} .

However, a simple way to calculate the solid part is via taking the semi-complement with
respect to the discrete base of the lattice:

Lemma 2.9.12 For every element Q : L of a completely distributive complete lattice
(L,6) we have solQ = Q r DL.

62 2. Graph Structures and Their Parts

Proof : Obviously, Q r DL 6 Q.

Now assume any discrete element R : L. Then R 6 DL by definition of the latter, so

(Q r DL) r R = Q r (DL ∨R) = Q r DL

This shows that Q r DL is solid.

Now assume any solid partial identity P : L with P 6 Q. Then we may use that DL
is discrete, together with monotony of semi-complement in its first argument:

P = P r DL 6 Q r DL

This alone implies that solQ 6 Q r DL, and together with the above we have equality.

The following is an important property of borders: it states that borders between Q
and Q∼ are always contained in the solid part of the semi-complement Q∼ — the discrete
part of Q∼ comes into being only by the failure of Q to cover a discrete part of the whole
object, and never can contain part of the border.

Lemma 2.9.13 [←97] If Q : L is an arbitrary element of a semi-complemented lattice
with greatest element >, then

Q ∧Q∼ 6 sol (Q∼) .

Proof : First we have:

sol (Q∼) = Q∼ r DL
= (>r Q) r DL
= >r (Q ∨ DL) Lemma 2.7.6.iii)

= >r (Q ∨ (DL r Q)) Lemma 2.7.6.iv)

= (>r Q) r (DL r Q) Lemma 2.7.6.iii)

= Q∼ r (DL r Q)

Then: sol (Q∼) 6 Y ⇔ Q∼ r (DL r Q) 6 Y

⇔ Q∼ 6 Y ∨ (DL r Q)

⇒ Q ∧Q∼ 6 Q ∧ (Y ∨ (DL r Q))

⇔ Q ∧Q∼ 6 (Q ∧ Y) ∨ (Q ∧ (DL r Q))

⇔ Q ∧Q∼ 6 (Q ∧ Y) ∨ ⊥ DL discrete

⇔ Q ∧Q∼ 6 Y

This shows Q ∧Q∼ 6 sol (Q∼).

Several discrete parts form a join that continues to be a discrete part:

Lemma 2.9.14 If for some set P : P(L) of elements of a completely distributive complete
lattice (L,6), each element P : P is a discrete part of Q : L, then

∨

P is a discrete part
of Q, too.

2.10. Coregular Parts and Base Elements 63

Proof : Because of Lemma 2.9.3, we know that
∨

P is discrete.

For every P : P, Lemma 2.7.3.ii) gives us:

(Q r (
∨

P)) ∧ P 6 (Q r P) ∧ P = ⊥ .

From this, we obtain with complete upwards distributivity:

(Q r
∨

P) ∧
∨

P =
∨

{P : P • (Q r
∨

P) ∧ P} =
∨

{P : P • ⊥} = ⊥ .

Taking the semi-complement with respect to a discrete element does not change a solid
part:

Lemma 2.9.15 [←97] Let a discrete element Q : L and an arbitrary element R : L be
given. If there is a solid element P : L such that P 6 R and Q∧R 6 P , then P rQ = P
and R r Q = R, implying in particular Q∼ = >.

Proof : Since P is solid and Q is discrete, we have P r Q = P . Therefore,

R r Q = (P ∨ (R r P)) r Q

= (P r Q) ∨ ((R r P) r Q)

= P ∨ (R r (P ∨Q))

= P ∨ (R r P) Q ∧R 6 P

= R

2.10 Coregular Parts and Base Elements

On page 60, we have seen an example of a non-discrete border; it is easy to see that that
border is solid. However, Lemma 2.7.9 tells us that borders always are inseparable from
the context, so solid substructures still need not be “significant”. A “significant” part P
of Q should not contain any part that is an “insignificant” part of Q r P , which is the
dual of regularity (Def. 2.6.8):

Definition 2.10.1 Let a lattice (L,6) and two elements P,Q : L be given.

• P is called a coregular part of Q iff P 6 Q and Q r (Q r P) = P .

• P is called coregular iff P is a coregular part of >.

In connected graphs, coregular is the same as solid. In graphs that contain isolated
vertices, however, coregular parts can contain some of these. In general, coregular parts
need therefore not be solid, but may have discrete parts, but only if they are discrete parts
of the whole. So careful distinction of these concepts is necessary.

Coregular is, in general, not equal to regular. To see this, consider the graph consisting
of a single edge incident to two vertices. The single vertices are both regular, but not coreg-
ular: one single vertex is the pseudo-complement of the other, but the semi-complement
of a single vertex is the whole graph.

64 2. Graph Structures and Their Parts

On the other hand, in a graph consisting of two parallel edges, the single edges are
coregular, but not regular: one single edge (together with the two vertices) is the semi-
complement of the other, but the pseudo-complement of a single edge is the empty sub-
graph.

Coregular parts are not affected by taking the semi-complement with respect to their
border:

Lemma 2.10.2 [←64] If P is a coregular part of Q, then P r (Q r P) = P .

Proof : By direct calculation:

P = Q r (Q r P) P coregular part of Q

= ((Q r P) ∨ P) r (Q r P) P 6 Q

= ((Q r P) r (Q r P)) ∨ (P r (Q r P)) Lemma 2.7.6.i)

= P r (Q r P) Lemma 2.7.5.i)

Lemma 2.10.3 The relation “is a coregular part of” among elements of a completely
distributive complete lattice (L,6) is an ordering.

Proof : Reflexivity follows from reflexivity of 6 and P r (P r P) = P r⊥ = P .
For transitivity assume that P is a coregular part of Q, and Q is a coregular part of

R. Then P 6 R by transitivity of 6, and we first have:

R r P = ((R r Q) ∨Q) r P

= ((R r Q)) r P ∨ (Q r P) Lemma 2.7.6.i)

= (R r (Q ∨ P)) ∨ (Q r P) Lemma 2.7.6.iii)

= (R r Q) ∨ (Q r P) P 6 Q

Now we can show that P is a coregular part of Q:

R r (R r P) = R r (R r (Q ∧ P)) P 6 Q

= R r ((R r Q) ∨ (R r P)) Lemma 2.7.7.i)

= (R r (R r Q)) r (R r P) Lemma 2.7.6.iii)

= Q r (R r P) Q coregular part of R

= Q r (Q ∧ (R r P)) Lemma 2.7.7.ii)

= Q r (Q ∧ ((R r Q) ∨ (Q r P))) see above

= Q r ((Q ∧ (R r Q)) ∨ (Q ∧ (Q r P))) distributivity

= Q r ((Q ∧ (R r Q)) ∨ (Q r P)) Q r P 6 Q

= (Q r (Q ∧ (R r Q))) r (Q r P) Lemma 2.7.6.iii)

= (Q r (R r Q)) r (Q r P) Lemma 2.7.7.ii)

= Q r (Q r P) Lemma 2.10.2

= P P coregular part of Q

Antisymmetry directly follows from antisymmetry of 6.

2.10. Coregular Parts and Base Elements 65

The reason for the lengthy calculation in the proof of transitivity is the effect that, in
general, Q ∧ (R r P) 6= Q r P , as in the following example, where X := Q ∧ (R r P) has
a discrete part, which is not contained in Q r P :

P

R
X

Q

However this discrete part is a border of Q, and, as already explained after Lemma 2.7.9,
such borders can never be globally discrete, so they disappear below the next level of
relative semi-complements.

Definition 2.10.4 Let a semi-complemented lattice (L,6) and two elements P,Q : L be
given.

• P is called an essential part of Q iff P 6 Q and Q r P 6= Q.

• Q is called an base element of L iff Q has no essential part except itself.

In graphs, a base element is a subgraph either consisting of a single vertex, or of a single
edge together with its adjacent vertices. Since there are no smaller subgraphs contain-
ing single edges, these already represent single edges as far as possible. Therefore, base
elements are essentially single vertices and single edges, which justifies the choice of the
name “element”.

Obviously, vertex base elements are discrete, while edge base elements are solid.

Lemma 2.10.5 Q : L is a base element iff Q is join-irreducible.

Proof : “⇒”: Assume that Q is a base element, and that Q = A ∨ B. Then we have
A 6 Q and B 6 Q. Assuming A 6= Q, we have QrA = Q since A cannot be an essential
part of Q. But with Lemma 2.7.6.i) we have

Q = Q r A = (A ∨B) r A = A r A ∨B r A = ⊥ ∨B r A = B r A .

Therefore, Q 6 B, and finally Q = B.
In the same way we obtain Q = A from B 6= Q.
“⇐”: Assume that Q is join-irreducible, and that P is an essential part of Q, that is,

P 6 Q and Q r P 6= Q.
Then, by the definition of relative semi-complements, and by P 6 Q we have Q =

(QrP)∨P . From join-irreducibility and from QrP 6= Q we obtain P = Q, which shows
that Q is a base element.

The definition of essential parts mostly served to make base elements more accessible. The
following lemma shows that base elements might equally have been defined via coregular
parts:

Lemma 2.10.6 Q is a base element iff Q has no non-empty coregular part except itself.

Proof : “⇒”: this is obvious, since every non-empty coregular part is an essential part.
“⇐”: assume P 6 Q and Q r P 6= Q. Then Q r P is a coregular part of Q by

Lemma 2.7.5.iii), and if P 6= Q, then Q r P is non-empty.

Chapter 3

Allegories of Σ-Algebras

The discussion of parts of graphs in the previous chapter took place in the more abstract
setting of subgraph lattices, never mentioning nodes or edges in the definitions. This has
the advantage that all considerations are immediately valid for a large class of graph-like
structures, too.

In order to achieve the same for graph homomorphisms, we need an essentially
category-theoretic setting. Since we want to be able to admit relational matching, we
need an appropriate generalisation of relations, and find this in allegories, which are a rel-
atively weak kind of relation categories. However, they are general enough to admit even
relational homomorphisms between general Σ-algebras for a fixed, not necessarily unary,
signature Σ. For this reason, the introduction of relational homomorphisms will be for
algebras over arbitrary signatures, and we can show that these relational homomorphisms
give rise to a certain kind of allegories.

With unary algebras, we may move to stronger restrictions of allegories, and we do
this in the next chapter. Readers who are not interested in the complications arising in
general algebras may skip to the next chapter, perhaps best only after heaving read the
preliminaries section of this chapter up to Def. 3.1.8.

The current chapter starts with a section providing fundamental background on cate-
gories and allegories, including definitions related with direct products. We then define an
abstract variant of Σ-algebras, and relational homomorphisms for them, proving the alle-
gory properties. Finally we show how standard constructions like substructures, quotients
and product structures are available in this abstract and relational setting, too.

3.1 Preliminaries: Categories and Allegories

We recall the definition of a category.

Definition 3.1.1 A category C is a tuple (ObjC,MorC, : → , B, ;) where

• ObjC is a collection of objects.

• MorC is a collection of arrows or morphisms.

• “ : → ” is ternary predicate relating every morphism f univalently with two
objects A and B, written f : A → B, where A is called the source of f , and B the
target of f .

The collection of all morphisms f with f : A → B is denoted as MorC[A,B] and also
called a homset .

• “;” is the binary composition operator, and composition of two morphisms f : A → B
and g : B′ → C is defined iff B = B′, and then (f ;g) : A → C; composition is
associative.

• B associates with every object A a morphism BA which is both a right and left unit
for composition.

66

3.1. Preliminaries: Categories and Allegories 67

The composition operator “;” will bind with a higher priority than all other binary oper-
ators.

An object O in a category is called initial iff for every other object A there is exactly
one arrow from O to A. Dually, an object A is called terminal iff for every other object A
there is exactly one arrow from A to A.

Definition 3.1.2 An allegory is a tuple C = (ObjC,MorC, : ↔ , B, ;,` ,u) where:

• The tuple (ObjC,MorC, : ↔ , B, ;) is a category, the so-called underlying category
of C. The morphisms are usually called relations.

• Every homset MorC[A,B] carries the structure of a lower semi-lattice1 with uA,B for
meet , and inclusion ordering vA,B, all usually written without indices.

• “`” is the total unary operation of conversion of morphisms, where for R : A ↔ B
we have R` : B ↔ A, and the following properties hold:

(R
`
)
`
= R , (Q;R)

`
= R

`
;Q

`
, (Q uQ′)

`
= Q

`
uQ′̀ .

• For all Q : A ↔ B and R,R′ : B ↔ C, meet-subdistributivity holds:

Q;(R uR′) v Q;R uQ;R′ .

• For all Q : A ↔ B, R : B ↔ C, and S : A ↔ C, the modal rule holds:

Q;R u S v (Q u S;R
`
);R .

The following basic properties are easily deduced from the definition of allegories:

• Conversion is an isotone and involutive contravariant functor: In addition to the
properties from the definition, this comprises also B

`

A= BA and Q v Q′ ⇔ Q`v Q′̀ .

• Composition is monotonic: If Q v Q′ and R v R′, then Q;R v Q′;R′.

From the modal rule listed among the allegory axioms, we may — using properties of
conversion — obtain the other modal rule

Q;R u S v Q;(R uQ
`
;S) ,

which is used by Olivier and Serrato for their axiomatisation of Dedekind categories [OS80,
OS95] (see also next chapter) and there called “Dedekind formula” — however, Jacques
Riguet had much earlier attached the name “Dedekind formula” to the following formula
[Rig48]:

Q;R u S v (Q u S;R
`
);(R uQ

`
;S) .

The Dedekind formula is in fact equivalent to the modal rules, see Proposition A.1.1.
Another possible variation in the axiomatisation of allegories stems from the fact that

meet-subdistributivity of composition is equivalent to monotony of composition.

1A homset MorC[A,B] may be a class in [FS90], meaning that there, allegories are not restricted to be
locally small. The price of this generality, however, is that join, meet, etc. need to be characterised at a
more elementary level, while we can introduce these as lattice operators.

68 3. Allegories of Σ-Algebras

Many standard properties of relations can be characterised in purely allegorical lan-
guage:

Definition 3.1.3 In an allegory A, for a relation R : A ↔ B we define the following
properties:

• R is univalent iff R`
;R v BB,

• R is total iff BA v R;R`,

• R is injective iff R;R`v BA,

• R is surjective iff BB v R`
;R,

• R is a mapping iff R is univalent and total,

• R is bijective iff R is injective and surjective.

Furthermore, we denote the subcategory ofA that contains all objects ofA, but only map-
pings as arrows with MapA, and that with all partial functions (i.e., univalent relations)
with PfnA.

We call a relation homogoneous iff its source and target objects coincide. For homogeneous
relations, there are a few additional properties of interest:

Definition 3.1.4 In an allegory, for a relation R : A ↔ A we define the following prop-
erties:

• R is reflexive iff B v R,

• R is transitive iff R;R v R,

• R is symmetric iff R`v R,

• R is antisymmetric iff R`uR v B,

• R is an equivalence relation iff R is reflexive, transitive, and symmetric,

• R is an ordering iff R is reflexive, transitive, and antisymmetric.

For homsets that have least or greatest elements, we introduce corresponding notation:

Definition 3.1.5 In an allegory, for two objects A and B we introduce the following
notions:

• If the homset MorC[A,B] contains a greatest element, then this universal relation is
denoted CA,B.

• If the homset MorC[A,B] contains a least element, then this empty relation (or zero
relation) is denoted DA,B.

For these extremal relations and for identity relations we frequently omit indices where
these can be induced from the context.

In the presence of universal relations, totality of R is equivalent to the condition
R;C w C (see Lemma A.1.4); this is often easier to use in proofs.

In an allegory, every homset is a meet-semilattice, where binary meets interact in
a particular way with composition. Analogously, if arbitrary meets exist, they should
interact in a corresponding way with composition in order to make sense in the allegory
structure. The following property has, to our knowledge, not been considered before:

3.1. Preliminaries: Categories and Allegories 69

Definition 3.1.6 [←85] An allegory is called locally co-complete iff for every two objects
A and B and every set R of relations from A to B the greatest lower bound (wrt. v) uR
of R exists.

It is easily checked that in a locally co-complete allegory, for all relations Q : C ↔ A and
for every set R of relations from A to B the following properties hold:

• distributivity of converse: (uR)` = u{R : R • R`}

• subdistributivity of composition: Q;uR v u{R : R • Q;R}

Subdistributivity for composition from the right follows via conversion from that for com-
position from the left. If Q is univalent and R non-empty, we even have distributivity (=)
instead of subdistributivity (v) for composition with Q from the left (Lemma A.1.5).

The allegory of sets with concrete relations obviously is locally co-complete.
In locally co-complete allegories, all universal relations exist, since

u ∅ = C ,

and all empty relations exist, since

u(Mor[A,B]) = DA,B .

Relations that are contained in the identity are referred to by many different names in
the literature, such as “coreflexives” by Freyd and Scedrov [FS90], or “monotypes” by the
group of Backhouse [ABH+92, DvGB97]. They are particularly important since they are
the simplest mechanism available in all allegories that allows to characterise “parts” of
objects, corresponding to subsets of sets in the allegory of sets and concrete relations. We
stick to a less sophisticated name, which is also in wide-spread use in the literature (e.g.
in [SHW97, DMN97]):

Definition 3.1.7 A partial identity is a relation contained in an identity. For every object
A of an allegory, we denote the set of partial identities on A with PIdA.

Partial identities arise in particular as abstractions of the concrete concepts of “domain
of definition” and “range of values” of a relation (which should never be confused with
the categorical concepts of source and target of a morphism):

Definition 3.1.8 [←66] For every relation R : A ↔ B in an allegory, we define
domR : A ↔ A and ranR : B ↔ B as:

domR := BA uR;R
`

ranR := BB uR
`
;R

For useful properties concerning partial identities, see Sect. A.2.
According to [FS90, 2.15]:

Definition 3.1.9 [←72] An object U in an allegory is a partial unit if BU = CU ,U . The
object U is a unit if, further, every object is the source of a total morphism targeted at
U . An allegory is said to be unitary if it has a unit.

70 3. Allegories of Σ-Algebras

We usually use the symbol “A” for a unit object. From [FS90, 2.152] we cite the
following useful properties:

• A total morphism from any object A to a unit A is always the universal relation
CA,A, and is in addition univalent, and therefore a mapping.

• In the presence of a unit, all universal relations exist, and CA,B = CA,A;CA,B.

• In the presence of a unit, there is an isomorphism between PIdA and Mor[A, A],
so that morphisms to (or from) the unit may be used as an alternative to partial
identities in the rôle of identifiers of “parts” of objects.

Direct Products

It is well-known that the self-duality of categories of relations implies that categorical sums
are at the same time categorical products — in relation algebras with sets and concrete
relations, categorical sums are disjoint unions.

However, Cartesian products can be axiomatised on the relational level; most ap-
proaches are rooted in homogeneous relation algebras, such as [TG87, Mad95, ABH+92,
HFBV97].

We follow the “Munich approach” of Schmidt and coworkers [Sch77, Car82, BZ86,
Zie88, Zie91, SS93, BHSV94], but since we need to cover the case of empty products, we use
a variant that does not demand surjectivity of the projections. This slight generalisation
of the original Munich approach definition shown on page 26 brings us closer to the notions
of Freyd and Scedrov [FS90]; see also the discussion around Def. 5.1.2.

According to the following definition, two relations π and ρ are projections of a direct
product iff, in the language of Freyd and Scedrov, they “tabulate” a universal relation.

Definition 3.1.10 [←99] In an allegory, a direct product for two objects A and B is a
triple (P, π, ρ) consisting of an object P and two projections, i.e., relations π : P ↔ A and
ρ : P ↔ B for which the following conditions hold:

π
`
;π = dom (CA,B) , ρ

`
;ρ = ran (CA,B) , π

`
;ρ = CA,B , π;π

`
uρ;ρ

`
= BP .

This definition is a monomorphic characterisation of direct product. The fact that we do
not insist on surjective projections allows empty products.

For all direct products in allegories, the following inclusion holds:

P ;R uQ;S w (P ;π
`
uQ;ρ

`
);(π;R u ρ;S).

The opposite inclusion

P ;R uQ;S v (P ;π
`
uQ;ρ

`
);(π;R u ρ;S) ,

named sharpness condition by Gunther Schmidt (see [Car82]) does not always hold, not
even with surjective projections, and not even in relation algebras. A product for which
this condition holds is called a sharp product .2

2For a (homogenous) relation algebra with an unsharp product with surjective projections, together
with its history, see [Mad95]; a translation into a heterogeneous setting may be found in [KS00, Sect. 3.2].

3.1. Preliminaries: Categories and Allegories 71

For products of more than two objects, it is no problem to iterate the binary product
construction. However, it is more elegant to have a direct characterisation for n-ary prod-
uct. We modify the definition proposed by Desharnais [Des99] by providing for possibly
non-surjective projections, again (in [Des99], the first condition reads π`

k
;π
k
= BAk

):

Definition 3.1.11 For a positive natural number n : N+ and n objects A1, . . . ,An, an
n-ary direct product for A1, . . . ,An is a pair (P,Π) consisting of an object P and a family
Π = (π

i
)i:{1..n} of projections π

i
: P ↔ Ai fulfilling the following conditions:

• π`

k
;π
k
= domCAk,P for all k : {1 . . n},

• π`

k
;u{i : {1 . . n} | i 6= k • π

i
;π`

i
} = CAk,P , for all k : {1 . . n},

• u{k : {1 . . n} • π
k
;π`

k
} = BP .

Although Desharnais set this definition in the context of relation algebras, the paper
[Des99] in fact only uses the framework of allegories with universal relations. Desharnais
shows that n-ary direct products according to his definition are monomorphic. Unfortu-
nately, that proof relies on the surjectivity of at least one of the projections in a non-trivial
way. Since the above generalisation of the definition of Desharnais admits products with
only non-surjective projections (these exist; we give an example on page 83), it is not clear
whether monomorphism still holds.

Therefore, we resort to the usual mechanism of nesting products, and assuming asso-
ciativity for making the precise nesting structure irrelevant. For maximal flexibility, we
still provide for cases where not all products exist — this allows useful study of finite
models without sacrificing honesty.

Definition 3.1.12 In an allegory D, a partial choice of direct products is a tuple (×, π, ρ)
where

• ×, π and ρ are partial binary operations expecting two objects as arguments, and all
three having the same domain.

• × maps, where defined, two objects A and B to an object A× B.

• π maps, where defined, two objects A and B to a mapping π
A,B

: A× B → A.

• ρ maps, where defined, two objects A and B to a mapping ρ
A,B

: A× B → B.

• Where the components of the triple (A × B, π
A,B

, ρ
A,B

) are defined, the triple is a
direct product for A and B.

A partial choice (×, π, ρ) of direct products is called strictly associative iff for every three
objects A, B, and C, we have the equality and equivalence of definedness

A× (B × C) = (A× B)× C ,

and (where the corresponding products are defined):

π
A,B×C

= π
A×B,C

;π
A,B

, ρ
A,B×C

;π
B,C

= π
A×B,C

;ρ
A,B

, ρ
A,B×C

;π
B,C

= ρ
A×B,C

.

An object A is called a strict unit for a partial choice (×, π, ρ) of direct products iff for
every object A we have

72 3. Allegories of Σ-Algebras

• A × A and A×A are defined,

• A × A = A = A×A,

• π
A,A

= BA = ρ
A,A

.

An allegory D together with a partial strictly associative partial choice (×, π, ρ) of sharp
direct products and strict unit A will usually be abbreviated as allegory with some sharp
products.

It is easy to see that every unit according to Def. 3.1.9 can serve as a strict unit for
a choice of products, and that every strict unit for a choice of products is in fact a unit
according to Def. 3.1.9.

The wide-spread prejudice that strictly associative choices of direct products would
give rise to inconsistencies stems from the bad habit to write “π

A×B
” instead of “π

A,B
”.

With the latter, we can properly distinguish π
A×B,C

and π
A,B×C

and therefore do not
obtain any inconsistencies.

Usually, however, we omit indices also for π and ρ.
Given a choice of direct products, we may define parallel composition of relations: For

two relations Q : A ↔ C and R : B ↔ D, their direct product is relation from A × B to
C × D, defined as follows:

Q×R := π;Q;π
`
u ρ;R;ρ

`

In the context of a strictly associative choice of direct products, we shall write R1×· · ·×Rn

for the direct products of n relations R1, . . . , Rn, and we usually assume projections π
i
for

the i-th components of the involved direct products of objects. In the presence of a unit,
the direct product of zero relations can, of course, only be the identity on the unit object.

The following fact holds even without sharpness:

Lemma 3.1.13 [←79, 81, 82] If for two relations R : A ↔ C and S : B ↔ D in a locally
co-complete allegory the products A× B and C × D exist, then we have:

π
A,B

;R;CC,E u ρA,B
;S;CD,E = (R× S);CC×D,E

Proof :
π
A,B

;R;CC,E u ρA,B
;S;CD,E

v (π
A,B

;R u ρ
A,B

;S;CD,E ;CE,C);CC,E modal rule

v (π
A,B

;R u ρ
A,B

;S;CD,C);CC,E

= (π
A,B

;R u ρ
A,B

;S;ρ`

C,D
;π
C,D

);CC,E

= (π
A,B

;R;π`

C,D
u ρ
A,B

;S;ρ`

C,D
);π
C,D

;CC,E π
C,D

univalent

v (π
A,B

;R;π`

C,D
u ρ
A,B

;S;ρ`

C,D
);CC×D,E

= (R× S);CC×D,E

= (π
A,B

;R;π`

C,D
u ρ
A,B

;S;ρ`

C,D
);CC×D,E

v π
A,B

;R;π`

C,D
;CC×D,E u ρA,B

;S;ρ`

C,D
;CC×D,E

v π
A,B

;R;CC,E u ρA,B
;S;CD,E

3.2. Abstract Σ-Algebras and Relational Homomorphisms 73

3.2 Abstract Σ-Algebras and Relational Homomorphisms

In Sect. 2.3 we introduced conventional Σ-algebras, with sets as carriers and concrete total
functions between these sets as interpretations of the function symbols. Such an approach
has the advantage that it is more familiar to most readers, but it also has the disadvantage
that it unduly constrains possible interpretations. We have seen that categories are the
abstract version of settings with sets and total functions in-between, so we might define
abstract Σ-algebras over categories with categorical products (see page 26).

However, since we are interested in relational morphisms between abstract Σ-algebras,
we shall need an allegory setting as soon as we define morphisms. However, replacing a
category in a definition of abstract Σ-algebras with an allegory is non-trivial, since we do
not want to use the underlying category of the allegory for interpreting the signature, but
the category of mappings contained in the chosen allegory.

In order to avoid superfluous technicalities for moving to and fro between these two
levels, we base our definition of abstract Σ-algebras immediately on an allegory.

Instead of carrier sets, we then have arbitrary objects of the allegory, and instead of
total functions between sets, we have mappings in the allegory. Furthermore, we have to
use direct products and a unit for the domains of non-unary functions.

Definition 3.2.1 [←30, 77, 90] Given a signature Σ = (S,F, src, trg) and an allegory D
with some sharp products, an abstract Σ-algebra A over D consists of the following items:

• for every sort s : S, an object sA ∈ ObjD, such that for every function symbol f ∈ F ,
the product sA1 × · · · × sAn exists, and

• for every function symbol f ∈ F with f : s1× · · ·× sn → t a mapping fA : sA1 × · · ·×
sAn → tA in D.

Since we use this definition to construct an allegory with abstract Σ-algebras as objects,
the generality of discussing abstract Σ-algebras over allegories allows us to stack this
construction at no cost at all, with possibly different signatures at every level, building
for example graphs where the nodes and edges are hypergraphs.

The morphisms in allegories of Σ-algebras have to behave “essentially like relations”,
and so it is only natural that we consider a relational generalisation of conventional (func-
tional) Σ-homomorphisms.

This is closely related to the field of data refinement, where usually unary homogeneous
operations f : s→ s over a signature with single sort s are considered, and interpretations
are allowed to be arbitrary relations, see for example the book by de Roever and Engelhardt
[dRE98]. In that context, an “L-simulation” from A to B is a relation Φ : sA ↔ sB

satisfying the following inclusion:

Φ
`
;fA v fB;Φ

`

The name “L-simulation” is derived from the L-shape of the inclusion’s left-hand side in
the following sub-commuting diagram:

74 3. Allegories of Σ-Algebras

sB
fB - sB

Φ
6

v

6
Φ

sA -
fA

sA

The corresponding inclusion for n-ary operations in a multi-sorted signature is then the
following:

(Φ
`

s1
× · · · × Φ

`

sn
);fA v fB;Φ

`

t

If we wanted to include relational structures in our considerations, we would have to use
this as our relational homomorphism condition. However, relational structures with such
a relational homomorphism concept only give rise to a category, but not to an allegory,
since converse and meet do not preserve the above condition for interpretations fA and
fB that are not mappings.

This explains why we had to exclude relational structures from our considerations
and restrict ourselves to total algebras. (In the context of mappings as homomorphisms
between relational structures, [Sch77] contains probably the first relation-algebraic con-
siderations, see also [SS93, Chapt. 7]. Detailed discussions of different (functional) ho-
momorphism conditions for relational structures may be found in [WB98]. We are now
dealing with relational homomorphisms between functional structures.)

So we always know that fA and fB are mappings, and then Lemma A.1.2.iii) allows
us to move them to the respective other sides of the inclusion, yielding an equivalent
formulation that does not contain converse; this is the inclusion we are going to use as our
relational homomorphism condition:

Definition 3.2.2 [←22] Let a signature Σ = (S,F, src, trg), an allegory D, and two
abstract Σ-algebras A and B over D be given.

A Σ-compatible family of relations from A to B is a S-indexed family of relations
Φ = (Φs)s:S such that Φs : s

A ↔ sB for every sort s : S.
A relational Σ-algebra homomorphism from A to B is a Σ-compatible family of relations

from A to B such that for every function symbol f ∈ F with f : s1 × · · · × sn → t, the
following inclusion holds:

(Φs1 × · · · × Φsn
);fB v fA;Φt .

In the allegory D, this gives rise to the following sub-commuting diagrams, one for a
constant c : t, one for a unary function symbol g : s → t, and one for an n-ary function
symbol f : s1 × · · · × sn → t (arranged in a different way than above):

A cA - tA

BA

?

v

?

Φt

A -
cB

tB

sA
gA - tA

Φs

?

v

?

Φt

sB -
gB

tB

sA1 × · · · × sAn
fA - tA

Φs1 × · · · × Φsn

?

v

?

Φt

sB1 × · · · × sBn
-

fB
tB

3.2. Abstract Σ-Algebras and Relational Homomorphisms 75

Now we first justify the “homomorphism” part of the name of “relational Σ-algebra ho-
momorphisms”, that is, we show that we really obtain a category:

Proposition 3.2.3 Given an allegory D with some sharp products and a signature Σ,
relational Σ-algebra homomorphisms form a category, where composition and identities
are defined component-wise.

Proof : First we show that BA is a relational Σ-algebra homomorphism:

• (BA)s = BsA : sA ↔ sA, and

• for all f ∈ F with f : s1 × · · · × sn → t we have

((BA)s1 × · · · × (BA)sn
);fA = (BsA1

× · · · × BsAn)
;fA

= BsA1 ×···×sAn
;fA Def. direct product

= fA;BtA

= fA;(BA)t .

Now we show well-definedness of composition: Let Ψ : A → B and Ψ : B → B be relational
Σ-algebra homomorphisms, and Ξ := Φ;Ψ, then:

• Ξs = Φs;Ψs : s
A ↔ sC , and

• for all f ∈ F with f : s1 × · · · × sn → t we have

(Ξs1 × · · · × Ξsn
);fC

= (Φs1
;Ψs1 × · · · × Φsn

;Ψsn
);fC

v (Φs1 × · · · × Φsn
);(Ψs1 × · · · ×Ψsn

);fC sharp products

v (Φs1 × · · · × Φsn
);fB;Ψt Ψ relational homomorphism

v fA;Φt;Ψt Φ relational homomorphism

= fA;Ξt .

Associativity of composition and the identity laws follow via the component-wise defini-
tions.

In the same way, we can lift converse, meet and universal relations from the underlying
allegory to relational homomorphisms:

Definition 3.2.4 Given an allegory D with some sharp products and a signature Σ, we
define the following operations on relational Σ-algebra homomorphisms:

(i) If Φ : A → B is a relational homomorphism, then the converse of Φ = (Φs)s:S is
Φ` := (Φ`

s)s:S .

(ii) If Φ,Ψ : A → B are relational homomorphisms, then theirmeet is defined component-
wise: (Φ uΨ)s := Φs uΨs

(iii) CA,B := (CsA,sB)s:S , if the universal relations CsA,sB all exist.

76 3. Allegories of Σ-Algebras

Proof of well-definedness:

(i) ((Φ`)s1 × · · · × (Φ`)sn
);fA v fB;(Φ`)t

⇔ (Φ`

s1
× · · · × Φ`

sn
);fA v fB;Φ`

t

⇔ fB
`
;(Φ`

s1
× · · · × Φ`

sn
) v Φ`

t
;fA

`

fA, fB mappings, Lemma A.1.2.iii)

⇔ (Φs1 × · · · × Φsn
);fB v fA;Φt

(ii) ((Φ uΨ)s1 × · · · × (Φ uΨ)sn
);fB

= ((Φs1 uΨs1)× · · · × (Φsn
uΨsn

));fB

= ((Φs1 × · · · × Φsn
) u (Ψs1 × · · · ×Ψsn

));fB Lemma A.2.3

v (Φs1 × · · · × Φsn
);fB u (Ψs1 × · · · ×Ψsn

);fB

v fA;Φt u f
A;Ψt

= fA;(Φt uΨt) fA univalent

= fA;(Φ uΨ)t

(iii) (CsA1 ,s
B
1
× · · · ×CsAn ,sBn

);fB v CsA1 ×···×s
A
n ,tB = fA;CtA,tB , since f

A is total.

Inclusion between homomorphisms may therefore be defined as usual via

Φ v Ψ :⇔ Φ uΨ = Φ ,

and this then is equivalent to the component-wise definition of inclusion, because of the
component-wise definition of meet.

Proposition 3.2.5 [←88] Given a locally co-complete allegory D with some sharp
products, a signature Σ, and a set R of relational Σ-algebra homomorphisms such that
for every Φ ∈ R we have Φ : A → B, then the meet over the set R exists and can be seen
as defined component-wise:

(uR)s =u{Φ : R • Φs}

Proof : We show that the component-wise definition yields a well-defined relational
homomorphism; by the component-wise definition of inclusion this implies that this is in
fact the meet.

((uR)s1 × · · · × (uR)sn
);fB

= ((u{Φ : R • Φs1})× · · · × (u{Φ : R • Φsn
}));fB

= (u{Φ : R • Φs1 × · · · × Φsn
});fB Lemma A.2.3

v u{Φ : R • (Φs1 × · · · × Φsn
);fB} D locally co-complete

v u{Φ : R • fA;Φt}

= fA;(u{Φ : R • Φt}) fA mapping, Lemma A.1.5

= fA;(uR)t
Given the closedness of relational Σ-algebra homomorphisms under converse and arbitrary
meets, properties of relations for these operations are inherited by relational Σ-algebra
homomorphisms because of the component-wise definition, so we immediately see that
abstract Σ-algebras with relational homomorphisms form a locally co-complete allegory,
which justifies the “relational” part of the name:

3.3. Constructions in Σ-AlgD 77

Theorem 3.2.6 (Allegories of Σ-Algebras) Abstract Σ-algebras over an allegory D
with some sharp products together with relational Σ-algebra homomorphisms form an
allegory, denoted Σ-AlgD.

If D is locally co-complete, then so is Σ-AlgD.

This is an important first result; it also provides useful examples of allegories that are not
distributive, as we shall see in Sect. 4.2.

We may observe a few simple facts:

• If D contains a unit A, then AΣ with sAΣ = A for all sorts s and f AΣ = BA for all
function symbols f is an abstract Σ-algebra, and a unit in Σ-AlgD.

• If D contains an initial object ∅, and Σ contains no constants, then OΣ with sOΣ = ∅
for all sorts s and fOΣ = B∅ for all function symbols f is an abstract Σ-algebra, and
an initial object in Σ-AlgD.

Conventional Σ-algebra homomorphisms are just mappings between concrete Σ-algebras
— we denote the allegory of sets and concrete relations with Rel :

Proposition 3.2.7 [←79] For every signature Σ = (S,F, src, trg), conventional Σ-algebra
homomorphism are the mappings in Σ-AlgRel .

Proof : A conventional Σ-algebra homomorphism between A and B is a family (Φs)s:S
such that Φs is a mapping from sA to sB for every sort s : S, and for every function symbol
f : s1 × · · · × sn → t, the equation

(Φs1 × · · · × Φsn
);fB = fA;Φt

holds in Rel .
Since this equation implies the relational homomorphism condition of Def. 3.2.1, every

conventional Σ-algebra homomorphism is a relational homomorphism, and it is a map-
ping because of the component-wise definitions of converse, composition, identities and
inclusion.

In the same way, these component-wise definitions imply that if Φ is a mapping in
Σ-AlgRel , then Φs is a mapping in Rel for every sort s. Since then all Φsi

are mappings,
Φs1 × · · · × Φsn

is a mapping, too, and the homomorphism condition

(Φs1 × · · · × Φsn
);fB v fA;Φt

turns into an equality since both sides of the inclusion are mappings.

3.3 Constructions in Σ-AlgD

We now show how a few standard constructions on algebras can still be performed in our
abstract relational setting.

Essentially, these are well-known facts from universal algebra. There, however, carrier
sets are not allowed to be empty. Therefore we spell out the proofs and thus show that
this generalisation does not influence the results.

78 3. Allegories of Σ-Algebras

Subobjects

A partial identity on an object A determines a substructure of A. In the set-theoretic
setting of Chapter 2, a subalgebra immediately is as an algebra in its on right. In the
category-theoretic setting of this chapter, however, there need not exist an object corre-
sponding to such a substructure — for example in one-object allegories.

Therefore, one always has to consider whether a subobject induced by a partial identity
exists. In the language of Freyd and Scedrov, the question is whether a “coreflexive is split”
or not. We stick to a more intuitive language, and define:

Definition 3.3.1 In an allegory D, let a partial identity q : PIdA be given. A subobject
for q is a pair (S, λ) consisting of an object S and an injective mapping λ : S → A such
that ranλ = q.

The allegory D has subobjects iff for every partial identity q : PIdA there is a sub-
object.

Theorem 3.3.2 Given a signature Σ = (S,F, src, trg) and an allegory D. Let q : PIdA
be a partial identity on an object A in Σ-AlgD. If for every sort s ∈ S, there is a subobject
for qs in D, then there is a subobject for q in Σ-AlgD.

Therefore, if D has subobjects, then Σ-AlgD has subobjects, too.

Proof : For every sort s ∈ S, the relation qs is a partial identity on As and we may choose
a subobject (Ss, λs) for qs in D. Then we define S as follows:

• for every sort s ∈ S, the carrier is Ss;

• for every function symbol f : s1 × · · · × sn → t we define

fS := (λs1 × · · · × λsn
);fA;λ

`

t .

Then S is a Σ-algebra:

• Univalence of fS :

fS
`
;fS = λt;f

A`
;(λ`

s1
× · · · × λ`

sn
);(λs1 × · · · × λsn

);fA;λ`

t

v λt;f
A`

;(λ`

s1
;λs1 × · · · × λ`

sn

;λsn
);fA;λ`

t

= λt;f
A`

;(qs1 × · · · × qsn
);fA;λ`

t

v λt;f
A`

;fA;λ`

t qsi
v B

v λt;λ
`

t fA univalent

v B λt univalent

3.3. Constructions in Σ-AlgD 79

• Totality of fS :

fS ;C = (λs1 × · · · × λsn
);fA;λ`

t
;C

= (λs1 × · · · × λsn
);fA;qt;C

w (λs1 × · · · × λsn
);(qs1 × · · · × qsn

);fA;C q relational homom.

= (λs1 × · · · × λsn
);(qs1 × · · · × qsn

);C fA total

w (λs1 ;qs1 × · · · × λsn
;qsn

);C sharp products

= (λs1 × · · · × λsn
);C

w π
1
;λs1 ;C u · · · u πn ;λsn

;C Lemma 3.1.13

= C π
i
, λsi

total

In addition, λ := (λs)s:S is a relational homomorphism since:

(λs1 × · · · × λsn
);fA

= (λs1 ;qs1 × · · · × λsn
;qsn

);fA

v (λs1 × · · · × λsn
);(qs1 × · · · × qsn

);fA sharp products

v (λs1 × · · · × λsn
);fA;qt q relational homomorphism

= (λs1 × · · · × λsn
);fA;λ`

t
;λt λt univalent

= fS ;λt

In all these arguments, the n-ary products of relations have to be replaced by BA for
zero-ary function symbols, but this does not change the arguments.

Totality, univalence and injectivity of λ are obvious from its definition; we also have

ranλ = (ranλs)s:S = (qs)s:S = q

Direct Quotients

An injective mapping F always can be seen as establishing a subobject relation between
its source and target objects: the source is a subobject of the target for the partial identity
F`

;F .
Dually, for a surjective mapping G : A ↔ B, we obtain an equivalence relation G;G`,

and G acts as the projection of a quotient of A by this equivalence relation.
In the context of Σ-algebras, quotients are taken by congruences, so let us first present

the conventional definition of congruences, adapted to our abstract setting:

Definition 3.3.3 Let a signature Σ = (S,F, src, trg) be given. For an abstract Σ-algebra
A, a Σ-congruence is a family (Ξs)s:S of equivalence relations Ξs : s

A ↔ sA such that for
all function symbols f : s→ t in F the following holds:

Ξs;f
A v fA;Ξt

Just as, according to Proposition 3.2.7, conventional Σ-algebra homomorphisms turn into
simple mappings in our setting, conventional Σ-congruences turn into simple equivalence
relations:

80 3. Allegories of Σ-Algebras

Theorem 3.3.4 Let a signature Σ = (S,F, src, trg) be given. Ξ : A ↔ A is an equivalence
relation in Σ-AlgD iff Ξ is a Σ-congruence on the Σ-algebra A.

Proof : Assume Ξ is an equivalence relation in Σ-AlgD. Then for every sort s : S, the
component Ξs is an equivalence relation since reflexivity, transitivity and antisymmetry of
Ξ all propagate to the components via component-wise definitions of the involved opera-
tors, and for every function symbol f : s→ t in F the congruence inclusion Ξs;f

A v fA;Ξt

holds since Ξ is a relational homomorphism.

Now assume (Ξs)s:S is a Σ-congruence on A. Then Ξ is a relational homomorphism
because of the congruence condition, and Ξ is an equivalence relation in Σ-AlgD since
reflexivity, transitivity and antisymmetry all follow from the component-wise definitions
of the involved operators.

Definition 3.3.5 A direct quotient for an equivalence relation Ξ : A ↔ A is a pair (Q, θ)
consisting of an objectQ together with a surjective mapping θ : A → Q such that θ;θ` = Ξ.

An allegory D has direct quotients iff for every equivalence relation there is a direct
quotient.

Theorem 3.3.6 Let an allegory D and a signature Σ = (S,F, src, trg) be given, and let
Ξ : A ↔ A be an equivalence relation in Σ-AlgD. If for every sort s ∈ S, there is a direct
quotient (Qs, θs) for Ξs in D, then there is also a direct quotient (Q, θ) for Ξ in Σ-AlgD.

Therefore, if D has direct quotients, then Σ-AlgD has direct quotients, too.

Proof : For every sort s ∈ S, the relation Ξs is an equivalence relation inD, and according
to the assumption we may choose a direct quotient (Qs, θs) for Ξs in D.

Then we define Q as follows:

• for every sort s ∈ S, the carrier is Qs;

• for every function symbol f : s1 × · · · × sn → t we define

fQ := (θ
`

s1
× · · · × θ

`

sn
);fA;θt .

Then Q is a Σ-algebra:

• fQ is univalent since

fQ
`
;fQ = θ`

t
;fA

`
;(θs1 × · · · × θsn

);(θ`

s1
× · · · × θ`

sn
);fA;θt

v θ`

t
;fA

`
;(θs1 ;θ

`

s1
× · · · × θsn

;θ`

sn
);fA;θt product properties

= θ`

t
;fA

`
;(Ξs1 × · · · × Ξsn

);fA;θt

v θ`

t
;fA

`
;fA;Ξt;θt Ξ rel. hom.

= θ`

t
;fA

`
;fA;θt

v θ`

t
;θt fA univalent

v B θt univalent

3.3. Constructions in Σ-AlgD 81

• if f is nullary, then fQ is total since

fQ;C = BA;fA;θt;C = BA;fA;C = BA;C = C ;

otherwise, fQ is total since

fQ;C = (θ`

s1
× · · · × θ`

sn
);fA;θt;C

= (θ`

s1
× · · · × θ`

sn
);fA;C θt total

= (θ`

s1
× · · · × θ`

sn
);C fA total

= π
1
;θ`

s1
;C u . . . u πn ;θ`

sn

;C Lemma 3.1.13

= π
1
;C u . . . u πn ;C θsi

surjective

= C π
i
total.

Now let θ := (θs)s:S . Then θ is total, univalent and surjective because its components are,
and it is a relational homomorphism from Q to A:

(θs1 × · · · × θsn
);fQ

= (θs1 × · · · × θsn
);(θ`

s1
× · · · × θ`

sn
);fA;θt

v (θs1 ;θ
`

s1
× · · · × θsn

;θ`

sn
);fA;θt product properties

= (Ξs1 × · · · × Ξsn
);fA;θt

v fA;Ξt;θt Ξ relational homomorphism

= fA;θt

The equation θ;θ` = Ξ follows from the component-wise definition of θ, too.

Direct Products

Being careful not to unnecessarily assume existence of all direct products, we see that for
the existence of the direct product of two algebras, the direct products of the corresponding
carriers in the underlying allegory have to exist.

It is therefore possible that in some suitably chosen suballegory of Σ-AlgD all products
exist, although not all products exist in the corresponding suballegory of D. In such a
suballegory of Σ-AlgD, certain objects of D would occur as carriers only for certain sorts,
and other objects for other sorts. Since such a suballegory might be induced by laws, this
could give rise to interesting constellations.

Theorem 3.3.7 Let an allegory D, a signature Σ = (S,F, src, trg), and two objects A
and B in Σ-AlgD be given. If for every sort s ∈ S, there is a direct product for sA and sB

in D, then there is a direct product for A and B in Σ-AlgD.
Therefore, if D has direct products, then Σ−AlgD has direct products, too.

Proof : For every sort s : S, let us assume a direct product (Ps, πs , ρs) of sA and sB.
Then we let P be defined by these Ps as carriers and by defining for every function symbol
f : s1 × · · · × sn → t the mapping

fP := (πs1 × · · · × πsn
);fA;π

`

t
u (ρs1 × · · · × ρsn

);fB;ρ
`

t

(For zero-ary function symbols c : t, this degenerates to cB := cA;π`

t
u cB;ρ`

t
, but this does

not affect the following arguments.)

82 3. Allegories of Σ-Algebras

For showing totality of fP , we use essentially the argument of Lemma 3.1.13:

fP ;CtP ,X

= ((πs1 × · · · × πsn
);fA;π`

t
u (ρs1 × · · · × ρsn

);fB;ρ`

t
);CtA×tB,X

= ((πs1 × · · · × πsn
);fA;π`

t
u (ρs1 × · · · × ρsn

);fB;ρ`

t
);π

t
;CtA×tB,X π

t
total

= ((πs1 × · · · × πsn
);fA u (ρs1 × · · · × ρsn

);fB;ρ`

t
;π
t
);CtA,X π

t
univalent

= ((πs1 × · · · × πsn
);fA u (ρs1 × · · · × ρsn

);fB;CtB,tA);CtA,X

w ((πs1 × · · · × πsn
);fA u (ρs1 × · · · × ρsn

);fB;CtB,X
;CX ,tA);CtA,X

w (πs1 × · · · × πsn
);fA;CtA,X u (ρs1 × · · · × ρsn

);fB;CtB,X modal rule

= (πs1 × · · · × πsn
);CsA1 ×···×s

A
n ,X u (ρs1 × · · · × ρsn

);CsB1×···×s
B
n ,X

fA, fB total

= π
1
;πs1

;CsA1 ,X
u . . . u πn ;πsn

;CsAn ,X u π1
;ρs1

;CsB1 ,X
u . . . u πn ;ρsn

;CsBn ,X
3.1.13

= CsP1 ×···×s
P
n ,X π

i
, πsi

total

Univalence:

(fP)`;fP

= (π
t
;(fA)`;(π`

s1
× · · · × π`

sn
) u ρ

t
;(fB)`;(ρ`

s1
× · · · × ρ`

sn
));

((πs1 × · · · × πsn
);fA;π`

t
u (ρs1 × · · · × ρsn

);fB;ρ`

t
)

v π
t
;(fA)`;(π`

s1
× · · · × π`

sn
);(πs1 × · · · × πsn

);fA;π`

t
u

ρ
t
;(fB)`;(ρ`

s1
× · · · × ρ`

sn
);(ρs1 × · · · × ρsn

);fB;ρ`

t

v π
t
;(fA)`;(π`

s1
;πs1 × · · · × π`

sn

;πsn
);fA;π`

t
u

ρ
t
;(fB)`;(ρ`

s1
;ρs1 × · · · × ρ`

sn

;ρsn
);fB;ρ`

t
dir. prod. properties

v π
t
;(fA)`;fA;π`

t
u ρ

t
;(fB)`;fB;ρ`

t
πsi

, ρsi
univalent

v π
t
;π`

t
u ρ

t
;ρ
t

fA, fB univalent

= BtP

Furthermore, π
P
:= (πs)s:S and ρ

P
:= (ρs)s:S are by definition total, univalent and surjec-

tive, and they are also relational homomorphisms as we show only for π
P
:

(πs1 × · · · × πsn
);fA

= (πs1 × · · · × πsn
);fA uCsP ,tA

= (πs1 × · · · × πsn
);fA u (ρs1 × · · · × ρsn

);CsB,tA ρsi
total, Lemma 3.1.13

= (πs1 × · · · × πsn
);fA u (ρs1 × · · · × ρsn

);fB;CtB,tA fB total

= (πs1 × · · · × πsn
);fA u (ρs1 × · · · × ρsn

);fB;ρ`

t
;π
t

= ((πs1 × · · · × πsn
);fA;π`

t
u (ρs1 × · · · × ρsn

);fB;ρ
t
);π

t
π
t
univalent

= fP ;π
t

The direct product properties all follow from the component-wise definitions of the oper-
ations involved.

3.3. Constructions in Σ-AlgD 83

Interestingly, even if every product in D contains at least one surjective projection (as for
example in Rel), this need not be the case in Σ-AlgD.

For a simple example, consider the following two sigTwoSets-algebras A and B:

• PA = {0}, QA = ∅

• PB = ∅, QB = {1}

Their direct product has empty sets for both carriers, but neither of the projections is
surjective.

Chapter 4

Dedekind Categories of Graph Structures

While in general, subalgebra lattices need not even be modular, we have seen in Sect. 2.4
that subalgebra lattices of graph structures are completely distributive complete lat-
tices. In the last chapter, we have established that relational homomorphisms between
Σ-algebras form locally co-complete allegories — this implies that homsets are lattices,
but there is not very much known about the structure of these lattices.

In this section we show how for unary signatures, we obtain complete distributivity
in the homsets, and also the corresponding distributivity over composition. Therefore,
for every unary signature Σ, the unary Σ-algebras together with relational Σ-algebra
homomorphisms form a Dedekind category .

Dedekind categories are, informally speaking, heterogeneous relation algebras without
complement. So they still impose quite a lot of structure, and it is not obvious how
Dedekind categories might be a useful framework for the study of rewriting.

Hitherto, Dedekind categories have been studied mostly in the context of fuzzy rela-
tions, for which they form a useful abstraction, see [Fur98, KFM99]. There, representation
theorems are given which state that Dedekind categories where certain point axioms involv-
ing “crispness” concepts hold are equivalent to matrix algebras over lattices of “scalars”.
Crispness and this kind of point axioms turn out to be rather natural in the context of
fuzzy relations.

In the Dedekind categories of graph structures that we present in this chapter, fre-
quently only universal relations are crisp, and points are rare, so their additional structure
is relatively uncharted.

We start with introducing the necessary background on Dedekind categories. We then
show in Sect. 4.2 that even when considering general abstract Σ-algebras over a Dedekind
category, we do not obtain a Dedekind category again. For this, the restriction to unary
signatures is sufficient (and, in general, necessary), as we shall see in Sect. 4.3.

We then show how pseudo-complements and semi-complements can be calculated in
Dedekind categories of graph structures.

In addition to the constructions from Sect. 3.3, these Dedekind categories also permit
direct sum constructions, as we shall see in Sect. 4.5.

Finally, we explore how the concepts of discreteness and solidity behave in concert
with relational homomorphisms.

4.1 Preliminaries: Distributive Allegories and Dedekind Categories

To the structure presented so far, we now add the possibility of finding joins and a zero
together with distributivity of composition over joins.

Definition 4.1.1 A distributive allegory is a tuple
C = (ObjC,MorC, : ↔ , B, ;,` ,u,t, D) where the following hold:

84

4.1. Preliminaries: Distributive Allegories and Dedekind Categories 85

• The tuple (ObjC,MorC, : ↔ , B, ;,` ,u) is an allegory, the so-called underlying
allegory of C.

• Every homset MorC [A,B] carries the structure of a distributive lattice with tA,B for
join, and zero element DA,B.

• For all objects A, B and C and all morphisms Q : A ↔ B, the zero law holds:

Q;DB,C = DA,C .

• For all Q : A ↔ B and R,R′ : B ↔ C, join-distributivity holds:

Q;(R tR′) = Q;R tQ;R′ .

Interaction between arbitrary joins and composition is covered by the concept of local
completeness, for which we just reformulate the definition of [FS90, 2.22]:

Definition 4.1.2 A distributive allegory is locally complete if every homset is a completely
upwards-distributive complete lattice, and if composition distributes over arbitrary unions,
that is, given Q : A ↔ B and a subset R of Mor[B, C], one has

Q;(tR) =t{R : R • Q;R} .

For our concept of local co-completeness (Def. 3.1.6) to continue to make sense in dis-
tributive allegories, we have to cover the interaction between joins and arbitrary meets,
too:

Definition 4.1.3 A distributive allegory D is called locally co-complete iff its underly-
ing allegory is locally co-complete, and every homset lattice is completely downwards-
distributive.

Definition 4.1.4 Let a category C be given.

• C has right residuals if for every two morphisms P : A → B and R : A → C, their
right residual P\R : B → C exists, where the right residual is defined by

P ;X v R ⇔ X v P\R for all X : B → C.

• C has left residuals if for every two morphisms Q : B → C and R : A → C, their left
residual R/Q : A → B exists, where the left residual is defined by

Y ;Q v R ⇔ Y v R/Q for all Y : A → B.

In allegories, existence of left residuals follows via conversion from existence of right resid-
uals, and vice versa.

It is easy to see that locally complete distributive allegories have residuals.
Olivier and Serrato introduced Dedekind categories as categories with residuals, where

homsets are complete lattices, and where there is a conversion operation for which a modal
rule holds [OS80]. Today, it is well-known that Dedekind categories are exactly locally
complete distributive allegories with explicitly listed residuals.

For us, the precise distinction between primitive and derived operations is irrelevant,
so we define:

86 4. Dedekind Categories of Graph Structures

Definition 4.1.5 A Dedekind category is a locally complete distributive allegory.

In the sequel we use the name “Dedekind category” mostly because it is well-introduced,
and considerably shorter than “locally complete distributive allegory”.

Residuals allow us to directly define useful operations that provide access to that part of
a relation that is univalent respectively injective from the point of view of the domain:

Definition 4.1.6 In a Dedekind category, for a relation R : A ↔ B we define

• its univalent part upaR : A ↔ B as upaR := R uR`\B,

• its domain of injectivity injdomR : PIdA as injdomR := B u (R;R`)\B, and

• its injective part ipaR : A ↔ B as ipaR := (injdomR);R.

Note that with our definition here, the injective part is not just the converse of the
univalent part of the converse! The domain of injectivity injdomR may in general be
smaller than the range of upa (R`). In Lemma A.3.1 we show that the univalent part
deserves its name; see also [SS93, 4.2.8].

Lemma 4.1.7 [←192]

• If R is total, then injdomR = (R;R`)\B.

• ipaR is injective.

Proof :

• If R is total, then B v R;R`, and since the right residual is antitonic in its left
argument, we have (R;R`)\B v B\B = B.

• ipaR;(ipaR)` = (injdomR);R;R`
;injdomR

= (injdomR);R;R`
;(B u (R;R`)\B)

v (injdomR);R;R`
;((R;R`)\B)

v injdomR;B residual property

v B

Local completeness implies that in Dedekind categories, homsets are pseudo-complemented
lattices; however, we reserve shall rarely need relative pseudo-complements in the lattices
of complete homsets, and frequently need relative pseudo-complements in the sublattices
of partial identities. Therefore, we introduce a new symbol ⇒ to denote relative pseudo-
complement of arbitrary relations, and reserve the conventional notations for use in the
sublattices of partial identities. The notation p → q of Def. 2.6.1 will only be used for
partial identities p and q on the same object, say A, and denotes the partial identity on A
which is the relative pseudo-complements of p wrt. q in the lattice of partial identities on A.
In the same way, we restrict the notation r¬ for pseudo-complements to partial identities.
These operations can be defined via ⇒; for every two partial identities p, q : PIdA we
define:

p→ q := B u (p⇒ q) , p¬ := p→ D = B u (p⇒D) .

Since we even more frequently need semi-complements, we introduce a stronger variant of
Dedekind categories:

4.1. Preliminaries: Distributive Allegories and Dedekind Categories 87

Definition 4.1.8 A strict Dedekind category is a locally complete and locally co-complete
distributive allegory.

In a strict Dedekind category, homsets are therefore also semi-complemented lattices, and
we use the notation R r S of Def. 2.7.1 also for relative semi-complements of arbitrary
relations. If p, q : PIdA are partial identities, then p r q is a partial identity, too, so we
need not make a notational distinction here. However, we reserve the semi-complement
notation p∼ to be used only in lattices of partial identities, so we have p∼ := B r p.

We now introduce a concept that is closely related with semi-complements, and which is
going to be extremely important in the context of graph transformation.

When injectivity of a relation R : A ↔ B is required only on a part of A, the idiom “q;R
is injective” for some partial identity q is often not sufficiently expressive. For example,
the following relational graph homomorphism is injective on all edges, but there is no
partial identity that includes only edges, but no vertices.

R

This morphism is, however, almost-injective besides the partial identity containing all
vertices of A (the discrete base of A), in the sense of the following definition:

Definition 4.1.9 Given two partial identities u, v : PIdA, a relation R : A ↔ B is called
almost-injective on u besides v iff

u;R;R
`
v u t v;R;R

`
.

Furthermore, R is called

• almost-injective on u if R is almost-injective on u besides u∼,

• almost-injective besides v if R is almost-injective on v∼ besides v, and

• almost-injective if R is almost-injective on domR besides (domR)∼.

Note that this definition has a shape that does not allow to relate any kind of almost-
injectivity of R on u with injectivity of u;R.

Obviously, if R is almost-injective on u besides v and u v domR, then we have the
equality

u;R;R
`
= u t u;v;R;R

`
.

Furthermore, we have:

Lemma 4.1.10 For two partial identities u, v : PIdA with utv w B, a relation R : A ↔ B
is almost-injective on u besides v, iff

u;R;R
`
v u t v;R;R

`
;v ,

and therefore also iff
R;R

`
= u;domR t v;R;R

`
;v .

88 4. Dedekind Categories of Graph Structures

Proof : “⇐” is obvious, so we only need to show “⇒”:

u;R;R` v u t v;R;R` R almost-injective on u besides v

= u t v;R;R`
;u t v;R;R`

;v B = u t v

v u t u t v;R;R`
;v t v;R;R`

;v R almost-injective on u besides v

= u t v;R;R`
;v

4.2 Joins in General Σ-Algebra Allegories

The existence of arbitrary meets, as seen above in Proposition 3.2.5 for Σ-AlgD over locally
co-complete D, implies that, in analogy to Theorem 2.3.6, there also is a relational mor-
phism closure for Σ-compatible families of relations between to Σ-algebras. This closure
is, in the same way as the subalgebra closure, defined as a meet. If we now also have joins
available in D, then we may also obtain it via joins, similar to the joins in Theorem 2.3.6.

Theorem 4.2.1 [←93] Let a signature Σ = (S,F, src, trg) and a Dedekind category D be
given. If A and B are abstract Σ-algebras over D, and R := (Rt)t:S is a family of relations
such that Rt : t

A ↔ tB, then we define the relational morphism closure of R as the least
relational Σ-algebra homomorphism C from A to B such that Rt v Ct for every sort t : S,
or equivalently as the following meet:

RMCΣ,D(R) :=u{Q : A ↔ B | (∀s : S • Rs v Qs)} .

Then RMCΣ,D(R) is the least Σ-compatible family C := (Ct)t:S of relations such that for
every sort t : S the following holds:

Ct = Rt tt{~s : S∗; f : F | f : ~s→ t • (fA)
`
;C~s

;fB}

Proof : First we have to show that the two variants of the definition are equivalent, that
is, that the set Q := {Q : A ↔ B | (∀s : S • Rs v Qs)} does indeed have a least element.
For this, it is sufficient to show uQ ∈ Q. Since with Proposition 3.2.5, meets may be
taken component-wise, we have the following for every sort t : S:

(uQ)t = u{Q : Q • Qt} =u{Q : A ↔ B | (∀s : S • Rs v Qs) • Qt}

w u{T : tA ↔ tB | Rt v T} = Rt

Therefore, uQ ∈ Q, and we may turn to showing the join formulation:

R v C

⇔ (∀t : S • Rt v Ct) ∧ C is Σ-morphism

⇔ (∀t : S • Rt v Ct) ∧ (∀~s : S∗; t : S; f : F | f : ~s→ t • C~s
;fB v fA;Ct)

⇔ ∀t : S • Rt v Ct ∧ ∀~s : S∗; f : F | f : ~s→ t • C~s
;fB v fA;Ct

⇔ ∀t : S • Rt v Ct ∧ ∀~s : S∗; f : F | f : ~s→ t • (fA)`;C~s
;fB v Ct A.1.2.iii)

⇔ ∀t : S • Rt tt{~s : S∗; f : F | f : ~s→ t • (fA)`;C~s
;fB} v Ct

4.2. Joins in General Σ-Algebra Allegories 89

The importance of this join formulation lies in the fact that it can easily be used to
formulate algorithms for calculating relational morphism closures. If Σ is acyclic, then a
topological ordering of the sorts produces a program with a primitively-recursive top-level
structure on top of operations in D. This is the case for graphs since sigGraph is acyclic,
and we obtain the following (E and V are the sorts for edges and vertices, and s and t are
the function symbols for source and target of edges):

(RMCΣ,D(R))E = RE

(RMCΣ,D(R))V = RV t (sA)`;RE ;s
B t (tA)`;RE ;t

B

If the signature has cycles, then the necessary fixpoint iterations can be tamed by perform-
ing them separately inside every strongly connected component, and globally proceeding
along a topological ordering of the strongly connected components.

Since the existence of arbitrary meets in Σ-AlgD over locally co-complete D implies the
existence of arbitrary joins, the above theorem also provides the way to calculate these
joins:

Corollary 4.2.2 [←93] Let a signature Σ = (S,F, src, trg), a Dedekind category D, and
two abstract Σ-algebras A and B over D be given.

If R is a set of relational Σ-algebra homomorphisms from A to B, then

tR = RMCΣ,D((t{R : R • Rt})t:S) .

In particular, DA,B = RMCΣ,D((DtA,tB)t:S) and R t S = RMCΣ,D((Rt t St)t:S) .

Since the simplest join is the empty join, let us first consider least elements in the homsets
of Σ-algebra allegories. Here, the zero law of distributive allegories does not hold in the
presence of constants; for an example of this effect consider the algebraA over the signature
sigC1 where the carrier has two elements: NA = {0, 1}, and the constant is one of them:
cA = 1. Then it is easy to see that DNA,NA = {(1, 1)}, and with R := {(0, 1), (1, 1)} we
have R;D = R 6= D.

Non-empty joins are by their definition least upper bounds wrt. inclusion, and therefore
naturally obey the lattice laws. However, in the presence of binary operators, lattice dis-
tributivity need not hold: since the subalgebra lattice is isomorphic to the lattice of partial
identities, a counterexample has been seen on page 40. Join-distributivity of composition
need not hold, either, as the following (computer-generated) example demonstrates.

Example 4.2.3 Consider the sigB1-algebras A and B with NA = NB = {1, 2}, and the
following interpretations of the binary function symbol f :

fA(x, y) = 2 fB(x, y) =

{

1 if x = 2 and y = 1

2 otherwise

Let us now consider the following relational homomorphisms:

R :B ↔ B R = {(2, 1), (2, 2)}

S :B ↔ B S = {(1, 1), (2, 2)} = B

Q :A ↔ B Q = {(1, 1), (2, 1), (2, 2)}

Then Q;(R t S) = C 6v Q = Q;R tQ;S.

90 4. Dedekind Categories of Graph Structures

4.3 Relational Homomorphisms Between Graph Structures

Graph structures are Σ-algebras over unary signatures, and unary signatures have been
introduced in Def. 2.2.1 as special cases of general signatures. Since from now on, we
shall be concerned only with unary signatures, we may as well give a specialised, simpler
definition:

Definition 4.3.1 A unary signature is a graph (S,F , src, trg) consisting of

• a set S of sorts,

• a set F of function symbols,

• a mapping src : F → S associating with every function symbol its source sort, and

• a mapping trg : F → S associating with every function symbol its target sort.

Of course, we continue to write “f : s → t” for a function symbol f ∈ F with src(f) = s
and trg(f) = t. We now also consider all unary signatures introduced before as unary
signatures in the sense of this definition.

The definition of a signature as a graph (obviously, S is the interpretation of V, and
F that of E) allows us to use the fact that contained in every Dedekind category D there
is the category MapD having the same objects, but only all mappings as arrows, and
underlying this category is a graph that ignores composition and identities. This gives
rise to a slightly more abstract definition of abstract unary Σ-algebras:

Definition 4.3.2 Given an allegory D and a unary signature Σ, an abstract unary Σ-
algebra is a graph homomorphism from Σ to MapD.

More intuitively, this means that for every abstract unary Σ-algebra A, there are (we
continue to use the notation of Def. 3.2.1)

• for every sort s ∈ S, an object sA ∈ ObjD, and

• for every function symbol f ∈ F with f : s→ t a mapping fA : sA → tA in MapD.

This corresponds to the view of Def. 3.2.1, except that we do not need any products
anymore.

We also restate the definition of relational homomorphisms, since the homomorphism
condition now looks much simpler:

Definition 4.3.3 [←22] Given a unary signature Σ = (S,F, src, trg) and two abstract
unary Σ-algebras A and B over D, a relational Σ-algebra homomorphism from A to B is
an S-indexed family of relations Φ = (Φs)s∈S such that

• Φs : s
A ↔ sB, and

• for all f ∈ F with f : s→ t we have Φs;f
B v fA;Φt.

Accordingly, also the proofs of the category and allegory properties carry less syntactical
ballast; we restate them for the benefit of readers who skipped the last chapter:

4.3. Relational Homomorphisms Between Graph Structures 91

Proposition 4.3.4 Given an allegory D and a unary signature Σ = (S,F, src, trg), rela-
tional Σ-algebra homomorphisms form a category, where composition and identities are
defined component-wise.

Proof : First we show that BA is a relational Σ-algebra homomorphism:

• (BA)s = BsA : sA ↔ sA, and

• for all f ∈ F with f : s→ t we have (BA)s;f
A = BsA ;fA = fA;BtA = fA;(BA)t.

Now we show well-definedness of composition: Let Ψ : A → B and Ψ : B → B be relational
Σ-algebra homomorphisms, and Ξ := Φ;Ψ, then:

• Ξs = Φs;Ψs : s
A ↔ sC , and

• for all f ∈ F with f : s→ t we have

Ξs;f
C = Φs;Ψs;f

C v Φs;f
B;Ψt v fA;Φt;Ψt = fA;Ξt .

Associativity of composition and the identity laws follow via the component-wise defini-
tions.

Definition 4.3.5 [←91] Given a distributive allegory D and a unary signature Σ, we
define the following operations on relational Σ-algebra homomorphisms:

• If Φ : A → B, then the converse of Φ = (Φs)s∈S is Φ` := (Φ`

s)s∈S .

• If Φ,Ψ : A → B, then their meet and join are defined component-wise:

(Φ uΨ)s := Φs uΨs and (Φ tΨ)s := Φs tΨs

• DA,B := (DsA,sB)s∈S .

Proposition 4.3.6 The operations of Def. 4.3.5 are well-defined.

Proof : For converse, we need the fact that fA and fB are mappings, for being able to
apply Lemma A.1.2.iii):

(Φ
`
)s;f

A v fB;(Φ
`
)t ⇔ Φ

`

s
;fA v fB;Φ

`

t ⇔ fB
`
;Φ

`

s v Φ
`

t
;fA

`

⇔ Φs;f
B v fA;Φt

For meet, we need univalence of fA.

(Φ uΨ)s;f
B = (Φs uΨs);f

B v Φs;f
B uΨs;f

B v fA;Φt u f
A;Ψt = fA;(Φ uΨ)t

(Φ tΨ)s;f
B = (Φs tΨs);f

B = Φs;f
B tΨs;f

B v fA;Φt t f
A;Ψt = fA;(Φ tΨ)t

The zero law is essential for the empty relation: D;fB = D = fA;D.

Given the closedness of relational Σ-algebra homomorphisms under converse, meet, and
join, properties of relations for these operations are inherited by relational Σ-algebra ho-
momorphisms because of the component-wise definition.

92 4. Dedekind Categories of Graph Structures

Therefore, we immediately see that abstract unary Σ-algebras with relational homo-
morphisms form a distributive allegory, where the inclusion ordering between standard
homomorphisms is again defined component-wise (and we shall write v for this ordering,
too).

Theorem 4.3.7 Abstract unary Σ-algebras over a distributive allegory D together with
relational unary Σ-algebra homomorphisms form a distributive allegory.

It is easy to see that well-definedness of joins and meets continues to hold when generalised
to the infinite variants:

Definition 4.3.8 [←93] Given a strict Dedekind category D, a unary signature Σ =
(S,F, src, trg), and a set R of relational Σ-algebra homomorphisms such that for every
Φ ∈ R we have Φ : A → B, then the meet and join over the set R are defined component-
wise:

(uR)s =u{Φ : R • Φs} and (tR)s =t{Φ : R • Φs}

Proof of well-definedness:

(uR)s;fB = (u{Φ : R • Φs});f
B

v u{Φ : R • Φs;f
B} local co-completeness

v u{Φ : R • fA;Φt}

= fA;(u{Φ : R • Φt}) fA univalent, Lemma A.1.5

= fA;(uR)t
(tR)s;fB = (t{Φ : R • Φs});f

B

v t{Φ : R • Φs;f
B} local completeness

v t{Φ : R • fA;Φt}

= fA;(t{Φ : R • Φt}) local completeness

= fA;(tR)t
Therefore, we also inherit local (co-)completeness from the component relations.

Local completeness in turn implies existence of residuals. However, we do not inherit a
component-wise definition of residuals, since such a component-wise residual is in general
not a legal homomorphism. (Where the component-wise residual is a homomorphism, it
is of course also the residual of homomorphisms.)

Relational unary Σ-algebra homomorphisms, even between abstract unary Σ-algebras
over a relation algebra1, are also not (in general) closed under component-wise comple-
mentation. Even given the smallest and largest homomorphisms D and C, the ordering
v is not complementary.

Therefore we have:

Theorem 4.3.9 (Dedekind category of graph structures) For every unary signa-
ture Σ = (S,F, src, trg), abstract unary Σ-algebras over a strict Dedekind category D
together with relational unary Σ-algebra homomorphisms form a strict Dedekind cate-
gory, a Dedekind category of graph structures, denoted Σ-GSD.

1A relation algebra is a Dedekind category where every homset is a Boolean lattice.

4.4. Pseudo- and Semi-Complements in Σ-GSD 93

4.4 Pseudo- and Semi-Complements in Σ-GSD

Remember that subalgebra closure (Theorem 2.3.6) is natural for arbitrary signatures,
while the subalgebra kernel (Theorem 2.4.6) required unary signatures. In the same way,
the dual of Theorem 4.2.1 only works well for unary signatures:

Theorem 4.4.1 Let a unary signature Σ = (S,F, src, trg) and a Dedekind category D
be given. If A and B are abstract Σ-algebras over D, and R := (Rt)t:S is a family of
relations such that Rt : t

A ↔ tB, then we define the relational morphism kernel of R as
the greatest relational Σ-algebra homomorphism K from A to B such that Ks v Rs for
every sort s : S, or equivalently as the following join:

RMKΣ,D(R) :=t{Q : A ↔ B | (∀t : S • Qt v Rt)} .

Then RMKΣ,D(R) is the greatest Σ-compatible family K := (Ks)s:S of relations such that
for every sort s : S the following holds:

Ks = Rs uu{t : S; f : F | f : s→ t • fA;Kt;(f
B)

`
}

Proof : First we have to show that the two variants of the definition are equivalent, that
is, that the set Q := {Q : A ↔ B | (∀t : S • Qt v Rt)} does indeed have a greatest
element. For this, it is sufficient to show tQ ∈ Q. Since with Def. 4.3.8, joins may be
taken component-wise, we have the following for every sort s : S:

(tQ)s = t{Q : Q • Qs} =t{Q : A ↔ B | (∀t : S • Qt v Rt) • Qs}

v t{S : sA ↔ sB | S v Rs}

= Rs

Therefore, tQ ∈ Q, and we may turn to showing the join formulation:

K v R

⇔ (∀s : S • Ks v Rs) ∧ K is Σ-morphism

⇔ (∀s : S • Ks v Rs) ∧ (∀s, t : S; f : F | f : s→ t • Ks;f
B v fA;Kt)

⇔ ∀s : S • Ks v Rs ∧ ∀t : S; f : F | f : s→ t • Ks;f
B v fA;Kt

⇔ ∀s : S • Ks v Rs ∧ ∀t : S; f : F | f : s→ t • Ks v fA;Kt;(f
B)` A.1.2.iii)

⇔ ∀s : S • Ks v Rs uu{t : S; f : F | f : s→ t • fA;Kt;(f
B)`}

For non-unary signatures, what fails is the equivalence of the two definition variants: as we
have seen in Corollary 4.2.2, for non-unary signatures, joins are not defined component-
wise, and Q will, in general, not have a greatest element. In such a case, the join in
the definition of RMKΣ,D(R) is not contained in R, while the meet formulation always is
contained in R — it then calculates the intersection of all maximal elements of Q.

For unary signatures, the relational morphism kernel can, by this theorem, be calcu-
lated essentially in the same way as the closure, and reduces to a simple shape for acyclic
signatures. For graphs, we have:

(RMKΣ,D(R))V = RV

(RMKΣ,D(R))E = RE u s
A;RV ;(sB)`u tA;RV ;(tB)`

Because of the dual definitions of pseudo-complements and semi-complements we then
obviously have the following dual expressions:

94 4. Dedekind Categories of Graph Structures

Corollary 4.4.2 [←96] Let a unary signature Σ = (S,F, src, trg) and a strict Dedekind
category D be given. If A and B are abstract Σ-algebras over D, and Q,R are relational
Σ-algebra homomorphisms from A to B, then

Q⇒R = RMKΣ,D((Qs⇒Rs)s:S) and Q r R = RMCΣ,D((Qs r Rs)s:S) .

4.5 Constructions in Σ-GSD

The constructions of Sect. 3.3 can of course all be used for graph structures, too. Direct
definitions of the constructions and proofs of their correctness would be much simpler
since with unary signatures, there is no need to handle argument tuples. However, there
is no additional insight to be gained, so we do not re-state the definitions and proofs for
subobjects, quotients, and direct products.

Let us only mention that in a direct product graph structure P for A and B, the
interpretation of a function symbol f : s → t is now a simple direct product of the
interpretations in A and B:

fP = fA × fB = πs;f
A;π

`

t u ρs;f
B;ρ

`

t

One construction has been conspicuously missing in Sect. 3.3, namely that of direct sums:
Since the characterisation of direct sums involves joins, it could not be treated in the raw
allegory setting.

Definition 4.5.1 In a distributive allegory, a direct sum for two objects A and B is a
triple (S, ι, κ) consisting of an object S and two injections, i.e., relations ι : A ↔ S and
κ : B ↔ S for which the following conditions hold:

ι;ι
`
= BA , κ;κ

`
= BB , ι;κ

`
= DA,B , ι

`
;ι t κ

`
;κ = BS .

For graph structures, direct sums can be constructed component-wise2:

Theorem 4.5.2 Let a unary signature Σ = (S,F, src, trg) and a strict Dedekind category
D be given. Let A and B be two objects of Σ-GSD. If for every sort s ∈ S there is a direct
sum (Cs, ιCs , κCs) for As and Bs in D, then there is also a direct sum (C, ιC , κC) for A and
B in Σ-GSD.

Therefore, if D has direct sums, then Σ-GSD has direct sums, too.

Proof : For every sort s ∈ S, choose a direct sum (Cs, ιCs , κCs). Let C be defined by these
Cs as carriers and by defining for every function symbol f : s→ t the mapping

fC := ι
`

Cs
;fA;ιCt t κ

`

Cs
;fB;κCt

All these fC are by definition total and univalent.

2It is well-known that in the category Map (Σ-AlgSet) of conventional Σ-homomorphisms, there are
categorical sums, but they cannot be constructed component-wise: the carriers have to be closed recursively
under the images of more-than-unary operators in their applications to elements of different components.

4.6. Discrete Relations 95

Furthermore, ιC := (ιCs)s∈S and κC := (κCs)s∈S are by definition total, univalent and
injective, and they are also relational homomorphisms, as we show only for ιC :

ιCs ;fC = ιCs ;ι
`

Cs
;fA;ιCt t ιCs ;κ

`

Cs
;fB;κCt = fA;ιCt

The direct sum properties all follow from the component-wise definitions of the operations
involved.

4.6 Discrete Relations

In Sect. 2.9, we introduced concepts like discreteness and solid parts for elements of com-
pletely distributive complete lattices. Now we have such lattices as homsets of strict
Dedekind categories, so we could also use all these concepts for arbitrary relations. How-
ever, it seems more natural to keep the application of these concepts restricted to the
domain of substructures they had been designed for. Therefore, we shall use all the con-
cepts of Sect. 2.9 only inside lattices of partial identities in Dedekind categories, so we
may talk about discrete partial identities, or about one partial identity being a solid part of
another. Since we have a one-to-one correspondence between subalgebras of a (concrete)
algebra A and partial identities on A in the corresponding concrete Dedekind category,
the explanations of Sect. 2.9 carry directly over to this setting.

Furthermore, predicates that have been declared for whole lattices in Sect. 2.9, are
now carried over to objects, too. For example, A is connected iff (PIdA,v) is connected
as a lattice (see Def. 2.9.6).

Starting from this basis, we now introduce further concepts in this context for mor-
phisms of Dedekind categories, i.e., for (abstract) relations.

Definition 4.6.1 A relation Q : A ↔ B is called range-discrete iff ranQ is discrete, and
domain-discrete iff domQ is discrete.

Definition 4.6.2 A Dedekind category is called discreteness-preserving iff for all relations
Q : A ↔ B and S : B ↔ C we have

Q range-discrete ⇒ Q;S range-discrete

S domain-discrete ⇒ Q;S domain-discrete

In a discreteness-preserving Dedekind category we have equivalence of domain- and range-
discreteness:

Q range-discrete ⇒ Q;Q` range-discrete

⇔ ran (Q;Q`) discrete

⇔ ranQ` discrete

⇔ domQ discrete

⇔ Q domain-discrete

⇒ Q range-discrete analogously

Therefore, we define a common name:

Definition 4.6.3 In a discreteness-preserving Dedekind category, a relation Q is called
discrete if it is range-discrete.

96 4. Dedekind Categories of Graph Structures

Note that this notion of discreteness concepts for (heterogeneous) relational (graph) ho-
momorphisms is not related with discreteness concepts for homogeneous relations that
directly represent graphs, as for example in [SS93, Def. 6.5.4].

From the definition it is obvious that for a discrete relation Q in a discreteness-
preserving Dedekind category also its converse Q` and arbitrary compositions P ;Q and
Q;S are discrete, and also arbitrary meets, since every relation R v Q is discrete, too.
Even joins preserve discreteness:

Lemma 4.6.4 If for a subset Q of a homset Mor[A,B,] every element of Q is range-
discrete, than tQ is range-discrete, too.

Proof : Range-discreteness of tQ follows from Lemma 2.9.3 since

ran (tQ) =t{Q : Q • ranQ} .

This demonstrates that the join over all discrete partial identities on an object is discrete,
too, and therefore allows us to define:

Definition 4.6.5 For an object A in a Dedekind category, we denoted with DA : PIdA
the discrete base of A, defined as the maximal discrete partial identity on A:

DA :=t{q : PIdA | q discrete}

When we consider Σ-GSR over a relation algebra R, then Φt r Ξt = Φt u Ξt, and also

Φt r (Φt r Ξt) = Φt u Φt u Ξt = Φt u (Φt t Ξt) = Φt u Ξt .

However, from the relational morphism closure formulation for the semi-complement
(Corollary 4.4.2) we easily see that

Φ r (Φ r Ξ) = Φ u Ξ

will hold in general only under the following restrictions:

(i) Σ is acyclic

(ii) Φs = D if s is not a sink sort, i.e., Φs = D whenever there is some f ∈ F such that
f : s→ t for some t ∈ S.

Item (ii) characterises discrete morphisms in Σ-GSR if Σ is acyclic, and the following result
is then obvious:

Theorem 4.6.6 If R is a relation algebra and Σ is an acyclic graph, then Σ-GSR is
discreteness-preserving.

Nevertheless, Σ-GSR will only be border-discrete if in addition there are no sorts in Σ that
are source and target of different function symbols:

4.6. Discrete Relations 97

Theorem 4.6.7 If R is a relation algebra and Σ is a bipartite graph, then Σ-GSR is
border-discrete.

One way to obtain such strong results for more complicated signatures Σ is to restrict the
unary algebras under consideration: Together with Σ-GSD, also every full subcategory is
a Dedekind category.

For example, simple sink sorts may be replaced by strongly connected components for
which all internal cycles are always interpreted as identities.

Definition 4.6.8 For a partial identity q : PIdA, we let sol q : PIdA denote its solid part ,
defined as

sol q :=t{p : PIdA | p v q, and p solid} .

Lemma 4.6.9 If R : A ↔ B is an arbitrary relation in a border-discrete Dedekind cate-
gory, then

ran (R;(ranR)∼) v sol ((ranR)∼)

Proof : This follows immediately from Lemma 2.9.13.

Lemma 4.6.10 Let a discrete relation Q : A ↔ B and a partial identity r : PIdB be
given. If there is a solid partial identity q : PIdB such that q v r and ranQ u r v q, then
q r ranQ = q and r r ranQ = r, implying in particular (ranQ)∼ = B.

Proof : Since discreteness of Q means that ranQ is discrete, this follows immediately
from Lemma 2.9.15.

Lemma 4.6.11 [←97] If q : PIdA is solid and R : A ↔ B is univalent and q v domR,
then ran (q;R) is solid, too.

Proof : Assume u : PIdB is discrete, and u v ran (q;R). Then:

(ran (q;R)) r u v Y ⇔ ran (q;R) v Y t u

⇒ q v ran (Y ;R`) t ran (u;R`) q v domR

⇔ q v ran (Y ;R`) t dom (R;u)

⇔ q r dom (R;u) v ran (Y ;R`)

⇔ q v ran (Y ;R`) q solid, R;u discrete

⇒ ran (q;R) v Y R univalent

This shows ran (q;R) v (ran (q;R)) r u, and we have equality since the opposite inclusion
is trivial. Therefore, ran (q;R) is solid, too.

Definition 4.6.12 A relation R : A ↔ B is called solid iff for every solid partial identity
q : PIdA, its image ran (q;R) is solid, too.

Lemma 4.6.11 shows that mappings are solid. In general, however, we need not demand
totality; it is sufficient if sol B v domR, and it should also be possible to find a more general
condition than univalence.

Chapter 5

Categoric Rewriting in a Relational Setting

Most of the categoric approach to graph transformation relies on the category-theoretic
notion of pushouts, and our aim is, roughly, to provide a variant of the double-pushout
approach that accommodates “graph variables” and relational matching, and where repli-
cation of the images of variables will be possible.

Replication is notoriously impossible with pushouts, but is inherent in the dual concept
of pullbacks. Accordingly, there is a lesser-known variant of the categoric approach that
uses pullbacks for graph transformation, put forward by Bauderon and Jacquet [Jac99,
Bau97, BJ96, BJ01].

However, that approach never really gained popularity, probably mostly because its
rules as such appear to be quite unintuitive and usually have to be regarded as “en-
codings” of the rules of other approaches. With that encoding attitude, however, the
pullback approach is able to cover most popular approaches to graph rewriting, including
the double-pushout approach.

We now study pushouts and pullbacks of mappings and the respective complements,
and also pushouts of partial functions, in the relational setting. Pullbacks are covered by
the concept of tabulation, a name introduced by Freyd and Scedrov [FS90, 2.14]. Relational
characterisations of pushouts and pushout complements have been achieved by Kawahara
[Kaw90], using the setting of relations in a countably complete topos. This setting can, at
least for our purposes here, safely be considered as a special case of the Dedekind category
setting.

For pullback complements and pushouts of partial functions we are not aware of any
previous relational characterisation.

Although pushouts are more wide-spread in graph rewriting and maybe easier to un-
derstand, it turns out that pullbacks can already be handled appropriately on the allegory
level while pushouts require transitive closures, and thus local completeness. Therefore,
we start with pullbacks in an allegory setting, and thereafter treat pushouts in a Dedekind
category setting.

Throughout this chapter, we employ the simple but useful category-theoretic concepts of
span and cospan to achieve more concise formulations.

A span is an ordered pair (f, g) of morphisms f : A → B and g : A → C with the same

source. Such a span is often written B f¾ A g-C.
Analogously, a cospan is an ordered pair (h, k) of morphisms h : B → D and k : C → D

with the same target, written B h-D k¾ C.
Since allegories and Dedekind categories are categories, too, we may use these notions

for arbitrary relations with common source or target, respectively. Usually, the com-
ponents of a (co)span are taken from the allegory or Dedekind category of the current
discussion.

In this chapter we investigate category-theoretic concepts in their application to the
category of mappings contained in an allegory. Therefore, we frequently have to explicitly

98

5.1. Pullbacks 99

state if a span is intended to be in the mapping category MapD instead of in the allegory
or Dedekind category D of the current discussion.

5.1 Pullbacks

The category-theoretic notion of pullback is one special case of what is called a “limit” in
category theory:

Definition 5.1.1 [←16] In a category C, a pullback for a cospan B h-D k¾ C is a

span B f¾ A g-C, such that f ;h = g;k, and that for every span B f ′¾ A g′-C with
f ′;h = g′;k there is a unique morphism u : A′ → A such that f ′ = u;f and g′ = u;g.

D
h¾ B

k
6

f
6

C
g¾ A

A
A
A
A
A
A
A
A
AAK

f ′

HH
HH

HH
HH

HHY

g
′

pppppppp
pppppppp

pppI
u

A′

D
R¾ B

S
6 ¡

¡
¡

¡¡ª

W P
6

C
Q¾ A

A
A
A
A
A
A
A
A
AAK

P ′

HH
HH

HH
HH

HHY

Q
′

pppppppp
pppppppp

pppI
U

A′

By a standard argument over this universal characterisation, pullbacks are unique up to

isomorphism: Assume two pullbacks B f¾ A g-C and B f ′¾ A′ g′-C for B h-D k¾ C,
then there are u : A′ → A with f ′ = u;f and g′ = u;g and v : A → A′ with f = v;f ′

and g = v;g′. Then f ′ = u;f = u;v;f ′ and g′ = u;g = u;v;g′. Therefore, u;v factorises
the second pullback via itself, but since BA′ also does this, unique factorisation implies
u;v = BA′ . In the same way one obtains v;u = BA, so u and v are isomorphisms.

An extreme case of pullbacks is where D is a terminal object in C — the pullback of two
(unique) morphisms to a terminal object is a categorical product.

Correspondingly, a relational characterisation of pullbacks should generalise the rela-
tional characterisation of direct products. This generalisation is called tabulation by Freyd
and Scedrov [FS90, 2.14]; we here give a definition that is equivalent, but has a shape that
is a direct generalisation of the definition of direct products we use (Def. 3.1.10, page 70).

Definition 5.1.2 [←70, 146] In an allegory D, let W : B ↔ C be an arbitrary relation.

The span B P¾ A Q-C in the allegory D (i.e., P and Q are not yet specified as
mappings) is a direct tabulation for W iff the following equations hold:

P
`
;Q = W P

`
;P = domW Q

`
;Q = ranW P ;P

`
uQ;Q

`
= B

Even though P and Q were not specified as mappings to start with, their totality follows
from the last equation, and their univalence from the second and third.

100 5. Categoric Rewriting in a Relational Setting

Freyd and Scedrov specify P and Q as mappings and omit our second and third
equations — they follow via univalence and totality from the first.

However, on the one hand these equations establish the correspondence with our direct
product characterisation, which is just a direct tabulation for a universal relation, and on
the other hand we feel that they are also useful in calculations using tabulations, as we
shall see below.

First we show a generalised factorisation property that unifies part of the proofs of the
following two theorems.

Lemma 5.1.3 [←100, 101] In an allegory D, let W : B ↔ C be an arbitrary relation.

If the span B P¾ A Q-C is a direct tabulation of W , and if the span B P ′¾ A′ Q′-C
of mappings satisfies the following conditions:

Q′ v P ′;W and P ′ v Q′;W
`
,

then U := P ′;P`uQ′;Q` is a mapping from A′ to A such that P ′ = U ;P and R′ = U ;R.

Proof : We only show factorisation of P ′; factorisation of Q′ follows in the same way.

U ;P = (P ′;P`uQ′;Q`);P

= P ′ uQ′;Q`
;P P univalent, Lemma A.1.2.ii)

= P ′ uQ′;W` direct tabulation

= P ′ P ′ v Q′;W`

Via factorisation, totality of U follows from totality of P ′ (or Q′):

domU w dom (U ;P) = domP ′ = B

With univalence of P ′ and Q′ we obtain univalence of U :

U`
;U = (P ;P ′

`
uQ;Q′

`
);(P ′;P`uQ′;Q`)

v P ;P ′
`
;P ′;P`uQ;Q′

`
;Q′;Q` v P ;P`uQ;Q` = B

The characterisation of direct tabulations is monomorphic; the following theorem corre-
sponds to [FS90, 2.144]:

Theorem 5.1.4 In an allegory D, let W : B ↔ C be an arbitrary relation.

If the spans B P¾ A Q-C and B P ′¾ A′ Q′-C (as spans of relations in D) are both
direct tabulations of W , then U := P ′;P` u Q′;Q` is a bijective mapping from A′ to A
such that P ′ = U ;P and R′ = U ;R.

Proof : Since B P ′¾ A′ Q′-C is a direct tabulation, P ′ and Q′ are mappings and we have
P ′

`
;Q′ = W ; so we easily obtain the preconditions of Lemma 5.1.3:

Q′ v P ′;P ′
`
;Q′ = P ′;W and P ′ v Q′;Q′

`
;P ′ = Q′;W

`
.

Lemma 5.1.3 then shows that U is a mapping that factorises P ′ and Q′; since the same
argument is valid for U`, too, we also know that U is bijective.

5.1. Pullbacks 101

The connection with pullbacks arises since given a cospan B R-D S¾ C, every tabu-
lation for the relation R;S` is a pullback in the category of mappings:

Theorem 5.1.5 Let B, C, and D be objects in an allegory D, and let B R-D S¾ C be
a cospan in MapD, i.e., R : B ↔ D and S : C ↔ D are mappings. A direct tabulation

B P¾ A Q-C for W := R;S` is then a pullback in MapD for B R-D S¾ C.

Proof : The mapping properties of P and Q follow directly from the tabulation properties.
Totality of P and Q and univalence of R and S together with the first tabulation property
show commutativity:

P ;R v Q;Q`
;P ;R = Q;W`

;R = Q;S;R`
;R v Q;S

v P ;P`
;Q;S = P ;W ;S = P ;R;S`

;S v P ;R

Assume that there is a span B P ′¾ A′ Q′-C in MapD with P ′;R = Q′;S. Then define:

U := P ′;P
`
uQ′;Q

`

With totality of R and S and commutativity for B P ′¾ A′ Q′-C we easily obtain the
preconditions of Lemma 5.1.3:

Q′ v Q′;S;S` = P ′;R;S` = P ′;W

P ′ v P ′;R;R` = Q′;S;R` = Q′;W`

Lemma 5.1.3 then shows that U is a mapping that factorises P ′ and Q′. So we only need
to show that U is uniquely determined. Assume a mapping U ′ : A′ → A with U ′;P = P ′

and U ′;Q = Q′. Univalence of U ′ and the fourth tabulation property then yield equality
with U :

U ′ = U ′;(P ;P
`
uQ;Q

`
) = U ′;P ;P

`
u U ′;Q;Q

`
= P ′;P

`
uQ′;Q

`
= U .

We now show how the usual pullback construction of the category Set of sets and concrete
mappings may be reformulated in the allegory-theoretic setting, relying only on one direct
product and one subobject.

Definition 5.1.6 Let W : B ↔ C be a relation in an allegory D. If there exists a sharp
direct product (P, π, ρ) for B and C, and if a subobject injection λ : A ↔ P exists for the
partial identity

dom (π;W u ρ)

(this means that λ is an injective mapping and ranλ = dom (π;W u ρ)), we call the span

B P¾ A Q-C with

P := λ;π and Q := λ;ρ

a constructed tabulation for W .

It is straightforward to show that constructed tabulations are well-defined:

102 5. Categoric Rewriting in a Relational Setting

Theorem 5.1.7 Every constructed tabulation B P¾ A Q-C for W is a direct tabulation
for W .

Proof : P and Q are mappings by definition. With Lemma A.2.2.v) we have:

ranλ = dom (π;W u ρ) = B u π;W ;ρ
`
= B u ρ;W

`
;π

`
.

With univalence of π and ρ and Lemma A.1.2.ii) this implies:

(ranλ);ρ = (B u π;W ;ρ`);ρ = ρ u π;W

(ranλ);π = (B u ρ;W`
;π`);π = π u ρ;W`

For P`
;Q = W we may use the fact that there is a universal relation between B and C

because of existence of the direct product:

W = W uCB,C = W u π
`
;ρ = π

`
;(π;W u ρ) = π

`
;(ranλ);ρ = π

`
;λ

`
;λ;ρ = P

`
;Q

The tabulation equation follows from the tabulation equation in the definition of the direct
product:

P ;P
`
uQ;Q

`
= λ;π;π

`
;λ

`
u λ;ρ;ρ

`
;λ

`
= λ;(π;π

`
u ρ;ρ

`
);λ

`
= λ;λ

`
= B

Finally we have, using (ranλ);π = π u ρ;W` from above:

P`
;P = π`

;λ`λ;π

= (π`uW ;ρ`);λ`λ;(π u ρ;W`)

= (π`uW ;ρ`);ranλ;(π u ρ;W`)

= (π`uW ;ρ`);(π u ρ;W`) dom (π u ρ;W`) = ranλ

= B uW ;W` sharp product

= domW

In the same way, we also obtain Q`
;Q = ranW .

Note that this construction requires the existence of the sharp direct product B × C as an
intermediate object. In non-standard allegories, it is perfectly possible that a tabulation
exists although this product may not exist.

In addition, in extreme cases there may be some cospan in MapD which has a pullback
(inMapD) which is not a tabulation, in the same way as there may be categorical products
in MapD which are not direct products. However, these foundational issues will not be
of importance in our context.

5.2 Transitive and Difunctional Closures

In Dedekind categories, local completeness implies that the transitive closure exists for
every morphism R : A ↔ A, since it can be defined in the following way:

R+ :=u{X : A ↔ A | R v X ∧X ;X v X} =t{i : N | i ≥ 1 • Ri}

The reflexive and transitive closure is then, as usual, R∗ := B t R+. We now define
three derived operations which are useful abbreviations, especially when their operands
are larger terms:

5.3. Pushouts 103

Definition 5.2.1 For R : A ↔ B we define R∗B : A ↔ A and R ∗C : B ↔ B, and the
difunctional closure R ∗¡ : A ↔ B as

R∗B := (R;R
`
)∗ , R ∗C := (R

`
;R)∗ , R ∗¡ := R∗B;R = R;R ∗C .

A relation R is called difunctional iff R;R`
;R v R (this inclusion is equivalent to equality).

It is easy to see that the difunctional closure deserves its name: If R v Q and Q is
difunctional, then Q;Q`

;Q v Q implies R;R`
;R v Q, and further R;R`

;R;R`
;R v Q, and

so on, and therefore
R ∗¡ = (R;R

`
)∗;R v Q .

On the other hand, we have

R ∗¡;(R ∗¡)
`
;R ∗¡ = (R;R

`
)∗;R;R

`
;(R;R

`
)∗;(R;R

`
)∗;R = (R;R

`
)+;R v R ∗¡ ,

so R ∗¡ is itself difunctional, and therefore R ∗¡ is the least difunctional relation containing
R. (See [SS93, 4.4] for more about difunctionality.)

By definition, we furthermore have R ∗C = (R`)∗B.

5.3 Pushouts

Much of the categoric approach to graph rewriting is based on the concept of pushout,
which is just the dual of the pullback:

Definition 5.3.1 [←4] In a category, a pushout for a span B f¾ A g-C is a cospan

B h-D k¾ C, such that f ;h = g;k, and that for every cospan B h′-D′ k′¾ C with f ;h′ =
g;k′ there is a unique morphism u : D → D′ such that h′ = h;u and k′ = k;u.

A
g - C

f

?

k

?
B h - D

A
A
A
A
A
A
A
A
AAU

k′

HHHHHHHHHHj
h′

p p p p p p p p p p p p p p p p p p pR
u

D′

A
Q - C

P

?¡
¡
¡
¡¡µ

W S

?
B R - D

A
A
A
A
A
A
A
A
AAU

S′

HHHHHHHHHHj
R′

p p p p p p p p p p p p p p p p p p pR
U

D′

In the same way as pullbacks, pushouts are also unique up to isomorphism.
And, dual to the definition of categorical products, one obtains the definition of cat-

egorical sums (coproducts) as pushouts of (unique) morphisms with an initial object as
source.

Although the relational characterisation of direct sums is obviously dual to that of
direct products, too, a näıve relational dualisation of the tabulation conditions does not
yield a concept that would give rise to pushouts as tabulations give rise to pullbacks.

The reason for this is that for a cospan B R-D S¾ C of mappings, the relation R;S`

is always difunctional, while for a span B P¾ A Q-C the relation P`
;Q can essentially

be arbitrary. (More precisely, in a tabular allegory there is such a span for every relation:
its tabulation.)

104 5. Categoric Rewriting in a Relational Setting

We now abstract Kawahara’s relational characterisation of pushouts of mappings [Kaw90,

Thm. 3.1] away from the span B P¾ A Q-C, and instead use the relation P`
;Q as our

starting point. Given the rôle of pushouts in graph transformation to glue together parts
of rules and parts of host graphs, we choose the name “gluing” for this concept:

Definition 5.3.2 [←127, 146] In a Dedekind category D, let W : B ↔ C be an arbitrary
relation.

The cospan B R-D S¾ C in the Dedekind category D is a direct gluing for W iff the
following equations hold:

R;S
`
= W ∗¡ R;R

`
= W ∗B S;S

`
= W ∗C R

`
;R t S

`
;S = BD .

The last equation implies univalence of R and S, and the second and third imply totality.

Just as direct products are direct tabulations for universal relations, direct sums are direct
gluings for empty relations. Because of the zero law, we do not get deviations from the
original definition.

We again establish a generalised factorisation property:

Lemma 5.3.3 [←105] In a Dedekind category D, let W : B ↔ C be an arbitrary relation.

If the cospan B R-D S¾ C is a direct gluing for W , and if the cospan B R′-D′ S′¾ C
consists of mapping that satisfy the following condition:

W ;S′ v R′ and W
`
;R′ v S′ ,

then U : D → D′ with U := R`
;R′ tS`

;S′ is a mapping such that R′ = R;U and S′ = S;U .

Proof : Factorisation follows easily from the assumptions:

R;U = R;R`
;R′ tR;S`

;S′ = W ∗B;R′ tW ∗¡;S′ = R′ tW ;S′ = R′

S;U = S;R`
;R′ t S;S`

;S′ = (W`) ∗¡;R′ t (W`) ∗C;S′ = W`
;R′ t S′ = S′

Univalence follows from factorisation and univalence of R′ and S′:

U
`
;U = (R′

`
;R t S′

`
;S);U = R′

`
;R;U t S′

`
;S;U = R′

`
;R′ t S′

`
;S′ v B

Totality uses the fourth gluing condition:

domU = dom (R`
;R′ t S`

;S′) = dom (R`
;R′) t dom (S`

;S′)

= dom (R`
;domR′) t dom (S`

;domS′) = dom (R`) t dom (S`)

= (B uR`
;R) t (B u S`

;S) = B u (R`
;R t S`

;S) = B

Direct gluings are unique up to isomorphism, too:

Theorem 5.3.4 In a Dedekind category D, let W : B ↔ C be an arbitrary relation.

If the cospans B R-D S¾ C and B R′-D′ S′¾ C are both direct gluings for W , then
there is a bijective mapping U : D → D′ such that R′ = R;U and S′ = S;U .

5.3. Pushouts 105

Proof : With the gluing conditions for B R′-D′ S′¾ C we obtain:

W ;S′ vW ∗¡;S′ = R′;S′
`
;S′ v R′ and W

`
;R′ v (W

`
) ∗¡;R′ = S′;R′

`
;R′ v S′ .

With Lemma 5.3.3 we then know that U := R`
;R′ t S`

;S′ is a mapping that factorises R′

and S′.
By the same argument for U`, we obtain that U is also bijective.

And direct gluings are pushouts:

Theorem 5.3.5 [←106] Let D be a Dedekind category, and let B P¾ A Q-C be a span
in MapD, that is, P and Q are mappings.

If the cospan B R-D S¾ C in the Dedekind category D is a direct gluing for W :=

P`
;Q, then it is a pushout for B P¾ A Q-C in MapD.

Proof : The gluing properties imply that R and S are mappings. For commutativity, we
first show one inclusion:

P ;R w P ;R;ranS = P ;R;S
`
;S = P ;(P

`
;Q) ∗¡;S w P ;P

`
;Q;S w Q;S

The opposite inclusion is derived in the same way, so we have equality.

Now assume another cospan B R′-D′ S′¾ C in MapD such that P ;R′ = Q;S′. This
commutativity together with univalence of P and Q implies

W ;S′ = P
`
;Q;S′ = P

`
;P ;R′ v R′ and W

`
;R′ = Q

`
;P ;R′ = Q

`
;Q;S′ v S′ .

With Lemma 5.3.3 we then know that U := R`
;R′ t S`

;S′ is a mapping that factorises R′

and S′. So we only have to show that U is uniquely determined. Assume U ′ : D → D′

with R;U ′ = R′ and S;U ′ = S′. Then:

U ′ = (R
`
;R t S

`
;S);U ′ = R

`
;R;U ′ t S

`
;S;U ′ = R

`
;R′ t S

`
;S′ = U

As for pullbacks, we now reconstruct the set-theoretic pushout construction in relational
terms. Here, we need a direct sum, which involves working with joins and thus requires
the setting of a distributive allegory. Furthermore, we need a quotient, and for defining
the equivalence relation for the quotient construction we need equivalence closure (which
we formulate using reflexive transitive closure). Therefore, we need a locally complete
distributive allegory, which for us means a Dedekind category setting.

Definition 5.3.6 [←106] Let D be a Dedekind category, and let W : B ↔ C be an
arbitrary relation.

If (S, ι, κ) is a direct sum for B and C, then define:

V := ι
`
;W ;κ , Θ := (V t V

`
)∗

If there exists a quotient (D, θ) for Θ, then the cospan B R-D S¾ C is called a constructed
gluing for W , where R := ι;θ and S := κ;θ.

Well-definedness is shown easily:

106 5. Categoric Rewriting in a Relational Setting

Theorem 5.3.7 If B R-D S¾ C is a constructed gluing for W : B ↔ C, then it is a
direct gluing for W .

Proof : We first show the fourth equation:

R
`
;R t S

`
;S = θ

`
;ι;ι

`
;θ t θ

`
;κ;κ

`
;θ = θ

`
;(ι;ι

`
t κ;κ

`
);θ = θ

`
;θ = B

From the definition of Θ it is easy to see that we have the following decomposition:

Θ = ι
`
;W ∗B;ι t κ

`
;W ∗C;κ t ι

`
;W ∗¡;κ t κ

`
;(W ∗¡)

`
;ι

From this, the remaining three equations follow directly:

R;S` = ι;θ;θ`
;κ` = ι;Θ;κ` = W ∗¡

R;R` = ι;θ;θ`
;ι` = ι;Θ;ι` = W ∗B

Q;Q` = κ;θ;θ`
;κ` = κ;Θ;κ` = W ∗C

As in the case of pullbacks, this construction involves an intermediate object, here the
direct sum for B and C, which need not exist even if there is a direct gluing in D. And it
is also possible that there are categorical pushouts in MapD which are not direct gluings,
but this kind of setting is not relevant for our investigations.

A simple corollary of the relational view of pushouts is the well-known and important
fact that pushouts “preserve monos”; here we show that they preserve the relational
property of injectivity (which is slightly stronger than monicity, even in its restriction to
mappings):

Lemma 5.3.8 [←113] Let a Dedekind category D and a span B P¾ A Q-C in MapD
be given. If the cospan B R-D S¾ C in MapD is a direct gluing for P`

;Q, and if Q is
injective, then so is R. (And, analogously, if P is injective, then so is S.)

Proof : By a gluing property, injectivity of Q, and univalence of P :

R;R
`
= (P

`
;Q)∗B = (P

`
;Q;Q

`
;P)∗ v (P

`
;P)∗ v B

Injectivity of S follows in the same way from injectivity of P .

Summarising the relation between direct gluings in a Dedekind category and pushouts in
its category of mappings, we have:

Theorem 5.3.9 In a Dedekind category D, let B P¾ A Q-C be a span in MapD.
If there is a direct gluing for P`

;Q, then the categorical pushouts in MapD for

B P¾ A Q-C and the direct gluings in D for P ;Q` coincide.

Proof : If there is a direct gluing B R-D S¾ C, then by Theorem 5.3.5 it is also a
pushout. Since pushouts are unique up to isomorphism, all other pushouts are isomorphic
to it.

Therefore, if the construction of Def. 5.3.6 is always possible, then it creates all pushouts
(up to isomorphism):

Corollary 5.3.10 If the Dedekind category D has all direct sums and quotients, then
the categorical pushouts in MapD are direct gluings.

5.4. Pushout Complements 107

5.4 Pushout Complements

The problem of constructing pushout complements arises in the double-pushout approach
to graph rewriting, where the left-hand side of a rule, a morphism Φ from a gluing object G
to a left-hand side object L and a matching morphism Φ from L into an application graph
A are given, and a host graph H together with morphisms Ξ : G → H and Ψ : H → A
needs to be constructed in such a way that the resulting diagram is a pushout.

L Φ¾ G

X

?

Ξ

?
A Ψ¾ H

This is a problem since such a pushout complement G Ξ-H Ψ-A does not exist for all
constellations G Φ-L X-A

In the category of graphs, the gluing condition of Def. 1.2.3 is a necessary and sufficient
condition for the existence of pushout complements. Although the node-and-edges-level
formulation of Def. 1.2.3 is standard in the literature on categoric graph transformation,
it is very much “against the style” of the categoric approach. Kawahara’s component-
free formulation [Kaw90] employs an embedding of relational calculus in topos theory,
so, apart from notation, there are also some minor technical differences to the Dedekind
category setting we are using here. On the whole, however, the material of [Kaw90] is
easily translated into the present context.

Let us first state a relational variant of the gluing condition, using essentially Kawahara’s
identification condition, but a different formulation of the dangling condition, and an
additional condition that is important in the single-pushout approach:

Definition 5.4.1 Let two relations Φ : G ↔ L and X : L ↔ A in a strict Dedekind
category D be given.

• We say that the identification condition holds iff X is almost-injective besides ranΦ:

X;X
`
v B t (ranΦ);X;X

`
;ranΦ .

• We say that the dangling condition holds iff

X;(ranX)∼ v (ranΦ);X

• We call X : L → A is called conflict-free for Φ iff ran (Φ;X;X`) v ranΦ.

Kawahara, whose framework does not provide semi-complements, formulates the dangling
condition via a pseudo-complement:

ranX t (ranX→ ran (Φ;X)) = B

We consider our formulation using a semi-complement as easier to relate with the original
definition, and also as easier to use in proofs. It is, however, equivalent to Kawahara’s
definition, when put into the context of the gluing definition, and even in the weaker
context of conflict-freeness:

108 5. Categoric Rewriting in a Relational Setting

Lemma 5.4.2 (i) The identification condition implies that X is conflict-free for Φ.

(ii) If X is conflict-free for Φ, then

X;(ranX)∼ v (ranΦ);X iff ranX t (ranX→ ran (Φ;X)) = B

Proof :

(i) Obvious.

(ii) Via the definition of semi-complements, Kawahara’s formulation is equivalent to

(ranX)∼ v ranX→ ran (Φ;X) ,

and via the definition of pseudo-complements this is equivalent to

(ranX)∼ u ranX v ran (Φ;X) .

With A.2.2.ii) and (iii), this transforms into

ran (X;(ranX)∼) v ran ((ranΦ);X) ,

which is obviously implied by our formulation; the opposite implication may be
shown as follows:

X;(ranX)∼ = X;(ranX)∼;X`
;X;(ranX)∼ univalence of X

= X;ran (X;(ranX)∼) univalence of X

v X;ran ((ranΦ);X) assumption

= X;X`
;(ranΦ);X univalence of X

= (ranΦ);X;X`
;(ranΦ);X conflict-free

= (ranΦ);X univalence of X

It is well known that the pushout complement is uniquely determined (up to isomorphism)
if Φ is injective. In general, it is possible that different, non-isomorphic pushout comple-
ments exist. The construction given by Kawahara as part of [Kaw90, Thm. 3.6] builds a
pushout complement which is the subobject of A for ranX → ran (Φ;X), so even in am-
biguous cases, where Φ is not injective, the morphism Ψ from host to application graph
constructed in this way will be injective. As we shall see below, an equivalent definition of
this subobject uses (ranX)∼t ran (Φ;X), which is perhaps easier to understand intuitively:
The whole context (ranX)∼ of the image of the left-hand side is preserved, and the image
ran (Φ;X) of the gluing graph G.

A further alternative, which would construct a different pushout complement in cases
where Φ is not injective, would not extract the image of G from A, but rather glue G
directly with the context (ranX)∼ and then transfer identification induced by X, but not
transfer identifications induced only by Φ. In the following drawing, this is shown in the
right part for a two-node discrete gluing graph G, while the standard pushout complement
is in the left part:

5.4. Pushout Complements 109

PsiL

ChiL

PhiL

Xi
XiChiL

PhiL

PsiL

If the application graph A contains edges incident to such identified nodes, then these
edges may be redirected to any of the interface nodes in the gluing graphs, and therefore
this under-determination gives rise to significantly different results.

In the following example application, the edge inserted by the rule’s right-hand side
turns into a loop attached to the identified redex node under the standard pushout com-
plement construction:

Xi

PhiL

ChiL

PhiR

PsiL PsiR

ChiR

Alternative pushout complements do not identify the interface nodes, and may attach the
edges incident to the redex node in different ways to the interface nodes in the host graphs,
which the gives rise to quite different results:

ChiR

PsiR

Xi

PhiR

ChiRXi

PhiR

PsiR

110 5. Categoric Rewriting in a Relational Setting

For this reason, double-pushout graph rewriting usually insists on injective left-hand side
morphisms of rules (see also [HMP00]).

In addition we shall see below (Theorem 5.4.11) that the standard construction is also
useful in other contexts, and it is also much simpler to formulate, so we stick with it.

In this context, the following property is helpful:

Lemma 5.4.3 [←110] [Kaw90, Lemma 3.3] In a Heyting algebra (i.e., in a pseudocom-
plemented lattice) with maximum element >, let A and B be elements such that B 6 A.
Then there exists an element C satisfying A∨C = > and A∧C = B iff A∨ (A→ B) = >.
When this is the case, then C = A→ B.

Proof : “⇒”: Assume that there exists an element C satisfying A∨C = > and A∧C = B.

With the definition of relative pseudo-complements, A ∧ C v B is equivalent to
C v A → B. Then > = A ∨ C v A ∨ (A → B), so that the latter is equal to >,
too. Together with A ∧ C = B = A ∧ (A→ B) this implies A→ B = C:

A→ B = > u (A→ B) = (A ∨ C) u (A→ B)

= (A u (A→ B)) ∨ (C u (A→ B)) = B ∨ C = C

“⇐” is trivial.

It allows to show that the range of Ψ is completely determined by Φ and X:

Lemma 5.4.4 [←113] [Kaw90, Cor. 3.2 (PO.4)] If L X-A Ψ¾ H is a pushout for

G Ξ-H Ψ-A in MapD for a Dedekind category D, then ranΨ = ranX→ ran (Φ;X).

Proof : ranΨ u ranX = Ψ`
;Ψ uX`

;X

= X`
;(X;Ψ`

;Ψ uX) X univalent

= X`
;((Φ`

;Ξ) ∗¡;Ψ uX)

v X`
;ranΦ;X

= ran (Φ;X)

Since the opposite inclusion follows from commutativity, we have ranΨuranX = ran (Φ;X).

Since the gluing properties imply ranΨt ranX = B, we can apply 5.4.3 to the Heyting
algebra of partial identities on H, and obtain ranΨ = ranX→ ran (Φ;X).

As mentioned above, we also have an alternative formulation for that range:

Lemma 5.4.5 Under the gluing condition, we have

ranX→ ran (Φ;X) = (ranX)∼ t ran (Φ;X) .

5.4. Pushout Complements 111

Proof : (ranX)∼ t ran (Φ;X) v ranX→ ran (Φ;X)

⇔ ((ranX)∼ t ran (Φ;X)) u ranX v ran (Φ;X)

⇔ ((ranX)∼ u ranX) t ran (Φ;X) v ran (Φ;X)

⇔ (ranX)∼ u ranX v ran (Φ;X)

⇔ ranX;(ranX)∼ v ran (Φ;X)

⇔ ran (X;(ranX)∼) v ran (Φ;X)

⇐ ran ((ranΦ);X) v ran (Φ;X) dangling

⇔ ran (Φ;X) v ran (Φ;X)

The opposite inclusion follows from Lemma 2.7.10.

In the presence of the gluing condition, there is therefore no difference between the two
formulations. In the absence of the gluing condition, the relative pseudo-complement
deletes dangling edges, while the semi-complement preserves them together with the nodes
they are attached to. We transfer Kawahara’s construction into our setting:

Definition 5.4.6 [←115, 130, 138, 139, 150] Let two relations Φ : G ↔ L and X : L ↔ A in a
strict Dedekind category D be given.

If q : PIdA is a partial identity on A, then a subobject host construction for G Φ-L X-A
by q is a diagram G Ξ-H Ψ-A where Ψ is a subobject injection for q and Ξ := Φ;X;Ψ`.

A straight host construction is a subobject host construction by ranX→ ran (Φ;X).

A sloppy host construction is a subobject host construction by (ranX)∼ t ran (Φ;X).

L Φ¾ G

X

? ?

Ξ

A Ψ¾ H

Since we are going to employ the straight host construction in different settings, we first
show a few general properties:

Lemma 5.4.7 [←112, 113, 115, 179, 181, 199] If G Ξ-H Ψ-A is a subobject host construction
for G Φ-L X-A by q : PIdA with ran (Φ;X) v q, then the following properties hold:

(i) Φ`
;Ξ;Ξ`

;Φ = Φ`
;Φ;X;X`

;Φ`
;Φ

(ii) If Φ is univalent, then (Φ`
;Ξ)∗B = (ranΦ;X)∗B

(iii) If Φ is difunctional and Φ;X is univalent, then Ξ`
;Φ;Φ`

;Ξ v B and therefore also
(Φ`

;Ξ) ∗C = B and

(Φ
`
;Ξ) ∗¡ = Φ

`
;Ξ = Φ

`
;Φ;X;Ψ

`
= ranΦ;X;Ψ

`
.

(iv) If Φ;X is univalent, then Ξ is univalent.

112 5. Categoric Rewriting in a Relational Setting

(v) If Φ;X is total, then Ξ is total.

(vi) For a straight host construction only: If X is conflict-free on ranΦ, then X;Ψ` =
ranΦ;X;Ψ`.

Proof :

(i) Φ`
;Ξ;Ξ`

;Φ = Φ`
;Φ;X;Ψ`

;Ψ;X`
;Φ`

;Φ

= Φ`
;Φ;X;ranΨ;X`

;Φ`
;Φ = Φ`

;Φ;X;X`
;Φ`

;Φ

(ii) follows from (i).

(iii) Ξ`
;Φ;Φ`

;Ξ = Ψ;X`
;Φ`

;Φ;Φ`
;Φ;X;Ψ`v Ψ;X`

;Φ`
;Φ;X;Ψ`v Ψ;Ψ` = B

(iv) Ξ`
;Ξ = Ψ;X`

;Φ`
;Φ;X;Ψ`v Ψ;Ψ` = B

(v) domΞ = dom (Φ;X;Ψ`) = dom (Φ;X;ranΨ) = dom (Φ;X) = B

(vi) By definition of Ψ in a straight host construction we have

ranΨ u ranX v ran (Φ;X) .

Therefore, the fact that X is conflict-free on ranΦ gives us

X;Ψ` = X;ran (Φ;X);Ψ`

= X;X`
;ranΦ;X;Ψ`

= ranΦ;X;X`
;ranΦ;X;Ψ`

= ranΦ;X;Ψ` .

In a setting where all pushouts of mappings are gluings, we have:

Theorem 5.4.8 (Pushout Complement) [Kaw90, Thm. 3.6] If Φ : G → L and X :
L → A are two mappings in a strict Dedekind category D, such that the gluing condition
holds, then a straight host construction G Ξ-H Ψ-A for G Φ-L X-A is a pushout
complement for G Φ-L X-A in MapD.

Proof : We first show that G Ξ-H Ψ-A is a pushout complement, that is, we have to
show that L X-A Ψ¾ H is a gluing for W := Φ`

;Ξ.

With Lemma 5.4.7.iv) we have univalence of Ξ, which implies that Φ`
;Ξ;Ξ`

;Φ is idem-
potent, so we have with Lemma 5.4.7.i):

(Φ`
;Ξ;Ξ`

;Φ)+ = Φ`
;Ξ;Ξ`

;Φ = ranΦ;X;X`
;ranΦ

(Φ`
;Ξ;Ξ`

;Φ)∗ = B t ranΦ;X;X`
;ranΦ = X;X`

The last equation follows from the identification condition; therefore, one of the gluing
properties is already shown:

X;X
`
= (Φ

`
;Ξ;Ξ

`
;Φ)∗ = (Φ

`
;Ξ)∗B = W ∗B

5.4. Pushout Complements 113

Lemma 5.4.7.iii) shows Ψ;Ψ` = B = (Ξ`
;Φ;Φ`

;Ξ)∗ = (Φ`
;Ξ) ∗C = W ∗C. For the mixed

composition we use Lemma 5.4.7.vi) and (iii):

X;Ψ
`
= ranΦ;X;Ψ

`
= (Φ

`
;Ξ) ∗¡ = W ∗¡

Finally, we also have ordinary commutativity:

Ξ;Ψ = Φ;X;Ψ
`
;Ψ = Φ;X;(ranX→ ran (Φ;X)) = Φ;X .

Obviously, even where Φ is not injective, this construction delivers a pushout complement
with injective Ψ. One of the consequences is that a simplified variant X;Ψ` = Φ`

;Ξ of
“alternative commutativity” holds, as can be seen via (iii).

For completeness’ sake, we show why the pushout complement is uniquely determined
when Φ is injective (this is missing in [Kaw90]):

Proposition 5.4.9 If Φ is injective, then there is only one pushout complement up to
isomorphism.

Proof : Let Φ : G → L and X : L → A be two mappings in a strict Dedekind category

D, and assume that G Ξ-H Ψ-A and G Ξ′-H′ Ψ
′-A are two pushout complements for

G Φ-L X-A. Define:
Y := Ψ;Ψ′

`

Since 5.4.4 implies that ranΨ = ranΨ′, and since with 5.3.8, Ψ and Ψ′ are injective, we
obtain

Y
`
;Y = Ψ′;Ψ

`
;Ψ;Ψ′

`

= Ψ′;ranΨ;Ψ′
`

= Ψ′;Ψ′
`

= B ,

and in the same way also Y;Y` = B, so Y is an isomorphism. Factorisation follows easily:

Y;Ψ′ = Ψ;Ψ′
`
;Ψ′ = Ψ;ranΨ′ = Ψ

Ξ;Y = Ξ;Ψ;Ψ′
`

= Φ;X;Ψ′
`

= Ξ′;Ψ′;Ψ′
`

= Ξ′;W ∗C

= Ξ′;(Ξ′
`
;Φ;Φ`

;Ξ′)∗

= Ξ′;(Ξ′
`
;Ξ′)∗ = Ξ′ Φ total and injective

Even if the gluing condition does not hold, our host constructions still produce commuting
squares in MapD:

Theorem 5.4.10 If Φ : G → L and X : L → A are two mappings in a strict Dedekind
categoryD, and G Ξ-H Ψ-A is a straight or sloppy host construction for G Φ-L X-A,
then Ξ and Ψ are mappings, and Φ;X = Ξ;Ψ.

Proof : Ψ is a mapping by construction, and Ξ by Lemma 5.4.7.iv) and Lemma 5.4.7.v).
Commutativity holds by definition of Ξ since ran (Φ;X) v ranΨ:

Ξ;Ψ = Φ;X;Ψ
`
;Ψ = Φ;X

Because of the pushout property, the pushout for L Φ¾ G Ξ- (if it exists) then factors
this square via a uniquely determined mapping Y .

This shows that the straight and sloppy host constructions without the gluing condition
give rise to the left-hand side of “restricting derivations” (see 1.2.5): a pushout square with
an additional morphism tacked onto its tip:

114 5. Categoric Rewriting in a Relational Setting

L Φ¾ G

¡
¡

¡
¡¡ª

X X0

? ?

Ξ

A Y¾ A0
Ψ0¾ H

An example for a sloppy host is the following, shown together with the resulting pushout:

PsiL

PhiL

Psi0

Xi

Chi0

ChiL

For implementing restricting derivations, the sloppy host construction can be a useful
alternative to the straight host construction, representing a slightly more careful approach
that does not perform implicit deletions.

Certain restricting derivation steps implement single-pushout derivation steps. The
single-pushout approach uses a single pushout in a category of partial graph morphisms
as its rewriting step, see 1.2.6. For a node-and-edges-level formulation of conflict-freeness it
is well-known that the induced single-pushout squares have a total embedding of the right-
hand side into the application graph [Löw90, Cor. 3.18.5]. In a restricting derivation step,
we always have a total right-hand side morphism, so we need conflict-freeness to obtain
a pushout of partial functions with a restricting derivation. With our component-free
definition of conflict-freeness we can prove this result for arbitrary Dedekind categories:

Theorem 5.4.11 [←110, 130] In a Dedekind category D, let three mappings in the

constellation A XL¾ L ΦL¾ G ΦR-R be given.

If XL is conflict-free on ranΦL, then a straight host construction of A ΨL¾ H Ξ¾ G for

A XL¾ L ΦL¾ G followed by a pushout R XR-B ΨR¾ H for R ΦR¾ G Ξ-H in MapD yields
a pushout in PfnD.

5.4. Pushout Complements 115

Proof : Define: Φ := Φ`

L
;ΦR and Ψ := Ψ`

L
;ΨR. Then we have commutativity:

Φ;XR = Φ`

L
;ΦR;XR

= Φ`

L
;Ξ;ΨR commutativity of rhs-pushout

= Φ`

L
;ΦL;XL;Ψ`

L
;ΨR Def. Ξ in Def. 5.4.6

= ranΦL;XL;Ψ`

L
;ΨR ΦL univalent

= XL;Ψ`

L
;ΨR Lemma 5.4.7.vi)

= XL;Ψ

As a preparation for the remainder of the proof, let us first reformulate the setup of the
right-hand-side pushout:

Φ`

R
;Ξ = Φ`

R
;ΦL;XL;Ψ`

L = Φ`
;XL;Ψ`

L

Φ`

R
;Ξ;Ξ`

;ΦR = Φ`
;XL;Ψ`

L
;ΨL;X`

L
;Φ = Φ`

;XL;X`

L
;Φ

For the last equality, we used ran (Φ`
;XL) = ran (ΦL;XL) v ranΨL. Now we can use this

to simplify the gluing properties of the right-hand side pushout:

XR;Ψ` = XR;Ψ`

R
;ΨL = (Φ`

R
;Ξ) ∗¡;ΨL = (Φ`

R
;Ξ;Ξ`

;ΦR)
∗;Φ`

R
;Ξ;ΨL

= (Φ`
;XL;X`

L
;Φ)∗;Φ`

;XL;Ψ`

L
;ΨL = (Φ`

;XL;X`

L
;Φ)∗;Φ`

;XL = (Φ`
;XL)

∗¡

XR;X`

R = (Φ`

R
;Ξ)∗B = (Φ`

R
;Ξ;Ξ`

;ΦR)
∗ = (Φ`

;XL;X`

L
;Φ)∗ = (Φ`

;XL)
∗B

Ψ;Ψ` = Ψ`

L
;ΨR;Ψ`

R
;ΨL = Ψ`

L
;(Φ`

R
;Ξ) ∗C;ΨL = Ψ`

L
;Φ`

R
;Ξ;(Φ`

R
;Ξ) ∗¡;ΨL tΨ`

L
;ΨL

= Ψ`

L
;ΨL;X`

L
;Φ;(Φ`

;XL)
∗¡ tΨ`

L
;ΨL = Ψ`

L
;ΨL;(Φ`

;XL)
∗C

For showing the pushout property, assume the existence of an object B′ and two partial
functions Ψ′ : A 7→ B′ and X′R : R 7→ B′ such that Φ;X′R = XL;Ψ′. Then we define:

Y := X
`

R
;X′R tΨ

`
;Ψ′

L
ΦL¾ G ΦR- R

¡
¡

¡
¡¡ª

XL Ξ

?

XR

?
A

ΨL¾ H
ΨR- B

A
A
A
A
A
A
A
A
AAU

X′Rp p p p p p p p p p p p p p p p p p pRY

Ψ′ - B′

We have:
ranXL u domΨ′ = dom ((ranXL);Ψ

′)

v dom (X`

L
;XL;Ψ′)

= dom (X`

L
;Φ;X′R) commutativity

= dom (X`

L
;Φ`

L
;ΦR;X′R)

v dom (X`

L
;Φ`

L)

= ran (ΦL;XL)

116 5. Categoric Rewriting in a Relational Setting

Now, domΨ′ u ranXL v ran (ΦL;XL) is by definition of relative pseudo-complements equi-
valent to domΨ′ v ranXL → ran (ΦL;XL), so we have domΨ′ v ranΨL by definition of the
latter.

For factorisation, the following equalities are essential:

X`

L
;Φ;X′R = X`

L
;XL;Ψ′ = ranXL;Ψ′

Φ`
;XL;Ψ′ = Φ`

;Φ;X′R = ranΦ;X′R

These imply:

XR;Y = XR;X`

R
;X′R tXR;Ψ`

;Ψ′ = (Φ`
;XL)

∗B;X′R t (Φ`
;XL)

∗¡;Ψ′ = X′R
Ψ;Y = Ψ;X`

R
;X′R tΨ;Ψ`

;Ψ′

= (X`

L
;Φ) ∗¡;X′R tΨ`

L
;ΨL;(Φ`

;XL)
∗C;Ψ′ = ranXL;Ψ′ t ranΨL;Ψ′ = Ψ′

For the last equation we used domΨ′ v ranΨL, shown above. With factorisation, it is
easy to show that Y is univalent:

Y
`
;Y = X′R

`
;XR;Y tΨ′

`
;Ψ;Y v X′R

`
;X′R tΨ′

`
;Ψ′ v B

Uniqueness: Assume a univalent relation Y ′ : R ↔ B′ with XR;Y ′ = X′R and Ψ;Y ′ = Ψ′.
Then Y ′ = Y :

Y ′ = ranΨR;Y ′ t ranXR;Y ′ = Ψ`

R
;ΨR;Y ′ tX`

R
;XR;Y ′

= Ψ`

R
;ΨL;Ψ`

L
;ΨR;Y ′ tX`

R
;X′R = Ψ`

;Ψ;Y ′ tX`

R
;X′R = Ψ`

;Ψ′ tX`

R
;X′R = Y

A general discussion of the single-pushout approach follows in Sect. 5.6.

5.5 Pullback Complements

Just like in the double-pushout approach, the left-hand-side square of a rewriting step in
the double-pullback approach also poses the problem that the “wrong” arrows are to be
constructed.

Assuming two mappings D P-B R-A to be given, we are therefore looking for a

pullback complement D Q-C S-A, that is, an object C and two mappings Q : D → C
and S : C → A such that the resulting square is a pullback for R and S.

B R - A

P
6

S
6

D
Q - C

The shape and names of this diagram will be used throughout the remainder of this section.
A necessary and sufficient condition for the existence of pullback complements in the

category of concrete graphs has been given by Bauderon and Jacquet [BJ96, Jac99, BJ01].
This is an extremely complex condition formulated on the level of edges and nodes, pos-
tulating enumerations of pre-images satisfying certain compatibility conditions, and using

5.5. Pullback Complements 117

quite intricate notation. Just to give an impression of the complexity of this component-
wise approach to this problem, we cite the definition of Bauderon and Jacquet [BJ01,
Def. 5] verbatim (without introducing the notation):

A pair (A a-B b-C) of arrows is coherent if it has the three following prop-
erties:

1. for all u ∈ VC , for all i, j ∈ [1 . . .#[u]b], #[u]iba = #[u]jba

2. for all [u]iba, i ∈ [1 . . .#[u]b], there exists an enumeration,

[u]iba = {ui1ba, u
i2
ba, . . . , u

in
ba} for n = #[[u]ib]a

such that for any edge [uii1ba , v
jj1
ba] ∈ EA and any i′, j′:

[u]i
′

baAdjA[v]
j′

ba implies [ui
′i1
ba , vj

′j1
ba] ∈ EA

3. given any two vertices u, v ∈ VC , if one of the vertices vijba is adjacent to

[u]i
′

ba then every edge of B | ([v]b ∪ [u]b) has a preimage under a.

In the relational approach, we can replace this with an abstract, component-free condition
that is necessary and sufficient for the existence of pullback complements in the subcat-
egory of mappings in arbitrary allegories. This condition is extremely simple, and thus
offers valuable insight into the essence of pullback complements (we continue to use the
name “coherent” proposed by Bauderon and Jacquet):

Definition 5.5.1 [←118] Two mappings D P-B R-A are called coherent iff there exists
an equivalence relation Θ : D ↔ D such that the following conditions hold:

(i) P ;P`uΘ v B,

(ii) Θ;P = P ;R;R`.

We also say then P and R are coherent via Θ.

Note that (ii) implies Θ;P ;P` = P ;R;R`
;P`. Since with the right-hand side, also the left-

hand side is an equivalence relation, and since the composition of two equivalence relations
is always contained in their equivalence join, but not in any smaller equivalence relation,
this means that P ;R;R`

;P` is the equivalence join of Θ and P ;P`. Together with (i) it
then follows that Θ is a complement of P ;P` in the lattice of all equivalence relations
contained in P ;R;R`

;P`. Since this lattice is, in general, not distributive, this complement
need not be uniquely determined even if it exists. And not all complements in addition
fulfil (ii). (For a counterexample, consider the equivalence relation joining just “1b” and
“2b” in the drawing on page 119, where the relevant lattice of equivalence relations is not
even modular.)

Proposition 5.5.2 If B P¾ D Q-C is a pullback for B R-A S¾ C, then P and R are
coherent via Θ := Q;Q`.

118 5. Categoric Rewriting in a Relational Setting

Proof : With commutativity and alternative commutativity we obtain (ii):

P ;R;R
`
= Q;S;R

`
= Q;Q

`
;P = Θ;P

The condition (i) is part of the tabulation properties.

If we know that Q is surjective, then such an equivalence relation Θ already uniquely
determines Q (up to isomorphism) as a quotient projection for Θ. In general, however, we
only have the following:

Proposition 5.5.3 [BJ96, Prop. 10] If B P¾ D Q-C is a pullback for B R-A S¾ C and
R is surjective, then Q is surjective, too.

Proof : With a tabulation property, surjectivity of R, and totality of S:

Q
`
;Q = ran (R;S

`
) = ran ((ranR);S

`
) = ran (S

`
) = domS = B

If R is not surjective, then Q need not be surjective, either, and the pullback complement
object is not uniquely determined. However, for the pullback complement with surjective
Q, the pullback complement object is a subobject of every other candidate. When look-
ing for pullback complements, we shall therefore restrict our search to candidates with
surjective Q.

With this restriction, surjectivity and univalence of Q together with commutativity
then also determine S:

S = Q
`
;Q;S = Q

`
;P ;R .

Showing that all this then gives rise to a pullback complement is routine:

Theorem 5.5.4 If there exists an equivalence relation Θ : D ↔ D such that P and R are

coherent via Θ, then a pullback complement D Q-C S-A for D P-B R-A is obtained
as follows:

• Let C be a quotient of D for Θ, with projection

Q : C ↔ D Q;Q
`
= Θ Q

`
;Q = B .

• Define S : C ↔ A as S := Q`
;P ;R.

Proof : Q is total, univalent and surjective by construction. For S, univalence and totality
are shown as follows:

S`
;S = R`

;P`
;Q;Q`

;P ;R = R`
;P`

;P ;R;R`
;R = R`

;P`
;P ;R v B 5.5.1.ii)

S;S` = Q`
;P ;R;R`

;P`
;Q = Q`

;Q;Q`
;P ;P`

;Q w Q`
;Q;Q`

;Q = B 5.5.1.ii), P total

Commutativity and the tabulation conditions:

Q;S = Q;Q`
;P ;R = P ;R;R`

;R = P ;R 5.5.1.ii)

S;R` = Q`
;P ;R;R` = Q`

;Q;Q`
;P = Q`

;P 5.5.1.ii)

ran (S;R`) = ran (Q`
;P) = ranP = P`

;P alt. comm., Q tot., P univ.

dom (S;R`) = dom (Q`
;P) = dom (Q`) = ranQ = Q`

;Q alt. comm., P tot., Q univ.

B = P ;P`uQ;Q` P , Q total; 5.5.1.i)

5.5. Pullback Complements 119

In comparison with Bauderon and Jacquet’s, ours is a much simpler formulation of the
pullback complement condition. Although we do not attempt a proof of direct equivalence
of the two conditions (too much notation would have to be introduced), they both share
the property that they are in general not efficiently implementable — searching for an
appropriate equivalence relation is as intractable as the equivalent search for a “coherent
enumeration” of Bauderon and Jacquet.

Bauderon and Jacquet also show that a pullback complement for D P-B R-A with
surjective R, if it exists, is unique up to isomorphism [BJ01, Prop. 4]. They do however
not mention that this isomorphism need not be “natural”, that is, it does not necessarily
factorise the two pullback complements. This can be seen already with a simple direct
product of discrete graphs:

1a 2a1b2b

x y 1 2 a b

0

P

R
S

S’

Q Q’

Here, the targets of Q and Q′ are clearly isomorphic, but no isomorphism Y exists such
that Q′ = Q;Y .

So there are two reasons that make working with general pullback complements un-
satisfactory: finding an equivalence relation determining the second projection Q is, in
general, computationally inefficient, and the resulting diagram is not even unique up to
isomorphism.

However, if we consider how we want to use a pullback complement, then we notice
that R corresponds to the arrow mapping variable occurrences in a rule’s left-hand side L
to variables in the gluing object G. If we restrict ourselves to left-linear rules, then there is
only one occurrence in L for every variable in G, and R is injective. Fortunately, pullback
complements for this special case are much simpler, as we are now going to see.

If R is injective, then Q is injective, too, so with the assumption that Q is also surjec-
tive, we may set Q = B when constructing a pullback complement:

Theorem 5.5.5 [←138] Given two mappings D P-B R-A, if R is injective, then a

pullback complement D Q-C S-A is obtained as follows:

• Let C := D and Q := B.

• Define S : C ↔ A as S := P ;R.

Proof : Q is a bijective mapping by definition. S is a mapping by its definition as
composition of two mappings. The tabulation properties follow easily with the properties

120 5. Categoric Rewriting in a Relational Setting

of P and R:

Q;S = P ;R

S;R` = P ;R;R` = P = Q`
;P R total and inj.

ran (S;R`) = ran (P ;R;R`) = ranP = P`
;P R tot., inj.; P univ.

dom (S;R`) = dom (P ;R;R`) = domP = B = Q`
;Q R, P total

P ;P`uQ;Q` = P ;P`u B = B P total

In contrast to the general case, this trivial pullback complement is also more “well-
behaved” in that it factorises other candidates:

Proposition 5.5.6 If D Q-C S-A and D Q′-C′ S′-A are two pullback complements
for D P-B R-A, and if Q is injective and surjective, then

Y := Q
`
;Q′

is a mapping and Q′ = Q;Y and S = Y ;S′.

Proof : Injectivity of Q transfers univalence from Q′ to Y :

Y
`
;Y = Q′

`
;Q;Q

`
;Q′ = Q′

`
;Q′ v B

Surjectivity of Q transfers totality from Q′ to Y :

Y ;Y
`
= Q

`
;Q′;Q′

`
;Q w Q

`
;Q = B

For factorisation of S, we additionally need commutativity:

Q;Y = Q;Q`
;Q′ = Q′

Y ;S′ = Q`
;Q′;S′ = Q`

;P ;R = Q`
;Q;S = S

5.6 Pushouts of Partial Functions

As mentioned in the introduction, the single-pushout approach of [Löw90, Löw93, EL93]
employs pushouts in categories of partial graph homomorphisms for its derivation steps.

If A is an object in a Dedekind categoryD such that for every partial identity u : PIdA
a subobject exists, then partial morphisms starting from A, where partial morphisms are
taken with respect to the category MapD of mappings, are equivalent (up to isomorphism
of subobjects) to univalent relations starting from A in D.

Therefore, we are now considering the category PfnD of partial functions in D, which
is the subcategory of D with all objects of D, and as arrows only univalent relations.

With an eye to the application of the pushout in PfnD as rewriting step, we shall use
the following names throughout this section:

5.6. Pushouts of Partial Functions 121

L Φ - R

Ξ

?

X

?
A Ψ - B

A
A
A
A
A
A
A
A
AAU

X′

HHHHHHHHHHj
Ψ′

p p p p p p p p p p p p p p p p p p pR
Y

B′

For illustration, we show a span R Φ¾ L Ξ-A of two non-total morphisms in the cate-
gory Pfn (sigGraph-GSRel) of partial graph homomorphisms, and its pushout — not yet
involving any complicated effects.

Phi

Xi

Phi

Xi

Psi

Chi

Now we show a variant where we add to the central group of the L above a single node
with no image via Φ, and we let it share its image via Ξ with one of the other nodes. This
partiality then propagates to the whole group:

Xi

Phi

Chi

Phi

Xi

Psi

In view of such subtle effects, an important question is whether the pushout construction
in categories of partial morphisms can be reduced to simpler constructions.

For relating the pushout in categories of partial Σ-algebra morphisms to simpler con-
cepts, Löwe originally proposed the following construction [Löw90, LE91, Löw93] (slightly
adapted to our formalism):

122 5. Categoric Rewriting in a Relational Setting

• Assume a span R Φ¾ L Ξ-A of partial morphisms.

• Construct the “gluing object” L′ as a subobject of L with injection λ such that

– ranλ v domΦ u domΞ, and

– for all items x of L′ and y of L, if Φ or Ξ identifies λ(x) with y, then y is in
ranλ, too.

• Construct the “scopes” R′ and A′ via

– ι : R′½ R as subobject injection for ranΦ→ ran (λ;Φ), and

– κ : A′½ A as subobject injection for ranΞ→ ran (λ;Ξ).

Φ′ := λ;Φ;ι` and Ξ′ := λ;Ξ;κ` are then the resulting total restrictions of Φ and Ξ.

• Let R′ X0-B Ψ0¾ A′ be a pushout in the category of total morphisms for the span

R′ Φ
′¾ L′ Ξ

′-A′. (This is a gluing for Φ′
`
;Ξ′.)

• Define X := ι`;X0 and Ψ := κ`
;Ψ0.

• Then R X-B Ψ¾ A is a pushout for R Φ¾ L Ξ-A in the category of partial mor-
phisms.

L Φ - R

@
@

@
@@I

λ ι
6

Ξ

?

L′ Φ′- R′

¯

°¾

X

Ξ′

?

X0

?
A κ¾

± °6
Ψ

A′
Ψ0- B

In our reformulated definition of the scopes, we obtained an obvious analogy to the pushout
complement. However, the construction of the gluing object is still on the component level.
Achieving a component-free definition of the gluing object requires a solution via different
tools than those used for the scopes.

In fact, it turns out that it is not even necessary to consider a gluing object, as long
as the relevant restrictions are imposed.

A purely category-theoretic formulation can be found in the graph transformation
handbook chapter about the single-pushout approach [EHK+97]. Here, pushouts in cat-
egories of partial morphisms are constructed using two pushouts in the corresponding
category of total morphisms and one co-equaliser in the category of partial morphisms:

• Assume a span R Φ¾ L Ξ-A of partial morphisms, factored via appropriate sub-
objects as follows: Ξ = ι`;Ξ0 and Φ = κ`

;Φ0.

5.6. Pushouts of Partial Functions 123

• Let L Ξ1-A′ υ¾ A be a pushout of total morphisms for L ι¾ domΞ Ξ0-A. (This
is just a gluing for Ξ.)

• LetR X0-B0
Ψ0¾ A′ be a pushout of total morphisms forR Φ0¾ domΦ κ;Ξ1-A′. (This

is a gluing for Φ`
;Ξ1.)

• Let E : B0 7→ B be a co-equaliser in the category of partial morphisms for Φ;X0 and
Ξ1;Ψ0.

• Let X := X0;E and Ψ := υ;Ψ0;E.

• Then R X-B Ψ¾ A is a pushout for R Φ¾ L Ξ-A in the category of partial mor-
phisms.

domΞ ι - L κ¾

²
?̄

Φ

domΦ Φ0- R

Ξ0

?

¡
¡

¡
¡¡ª

Ξ Ξ1

?

X0

?
A υ - A′

Ψ0 - B0

A
A
A
A
A
A
A
A
AAU

Xp p p p p p p p p p p p p p p p p p pRE

Ψ - B

Although it may not be immediately obvious, it is the co-equaliser that now takes on the
rôle of domain restriction that is played by the gluing object in Löwe’s original construc-
tion. (It is, however, quite unsatisfactory that this co-equaliser still has to be taken in the
category of partial morphisms.)

This co-equaliser implements a restriction that is very close to that implemented by
a symmetric quotient. Symmetric quotients have originally been introduced by Gunther
Schmidt and his group in the context of heterogeneous relation algebras, and were then
used to formalise power objects in relation algebras and other domain constructions useful
for programming language semantics, see [BSZ86, BSZ89, Zie91]. In this context, the
definition is usually given using the complement operation:

syq(Q,S) := Q ;̀S uQ ;̀S

However, symmetric quotients can already be defined in arbitrary allegories, albeit they
do not necessarily exist for all arguments:

Definition 5.6.1 In an allegory, the symmetric quotient syq(Q,S) : B ↔ C of two rela-
tions Q : A↔ B and S : A↔ C is defined by

X v syq(Q,S) ⇐⇒ Q;X v S and X ;S
`
v Q

`
for all X : B ↔ C .

124 5. Categoric Rewriting in a Relational Setting

In Dedekind categories, symmetric quotients are always defined and the following hold:

syq(Q,S) = Q\S uQ`/S` = Q\S u (S\Q)`

= t{X | Q;X v S and X ;S`v Q`} .

Modulo conversion of the arguments, the symmetric quotient is exactly the symmetric
division as defined by Freyd and Scedrov for division allegories [FS90, 2.35]. (Riguet
had introduced the unary operation of “noyeau”, which can now be seen as defined by
noy(R) = syq(R,R), in [Rig48].)

Used for concrete relations, the symmetric quotient relates elements from the ranges
of the two relations R and S iff they have the same inverse image under R respectively S:

(r, s) ∈ syq(R,S) ⇐⇒ ∀x : (x, r) ∈ R↔ (x, s) ∈ S

For a few properties of symmetric quotients relevant in the remainder of this section see
Sect. A.5; more information can also be found in [SS93, Sect. 4.4] and in [FK98].

For application in the single-pushout construction, we shall need a special variant of
symmetric quotients:

Definition 5.6.2 Let two morphisms Φ : L → R and Ξ : L → A in a strict Dedekind
category be given.

Let W := Φ`
;Ξ. The saturated symmetric quotient satSyq(Φ,Ξ) : R ↔ A of Φ and Ξ

is defined by the following:

satSyq(Φ,Ξ) := ranΦ;syq(Φ;W ∗B,Ξ;W ∗C);ranΞ .

Put into the context of the single-pushout approach, the saturated symmetric quotient
relates every node in ranΦ with all those nodes in ranΞ that will share the image with
this node. In the following drawing, we show the saturated symmetric quotient Q :=
satSyq(Φ,Ξ) for the two examples from above:

Xi

Phi

Q

Xi

Phi

Chi
Q

Psi

We have seen in the introduction that in the single-pushout approach, deletion takes
priority over preservation. In the second example above, this has relatively far-reaching
consequences and is reflected by the fact that Q := satSyq(Φ,Ξ) = D, so only the node
outside the image of ranΦ is copied into the result of the single-pushout step.

5.6. Pushouts of Partial Functions 125

Using the fact that symmetric quotients are always difunctional, we easily see that satu-
rated symmetric quotients are difunctional, too — letting Q := satSyq(Φ,Ξ) and Q0 :=
syq(Φ;W ∗B,Ξ;W ∗C) we have that Q0 is difunctional, and then we obtain:

Q;Q`
;Q = ranΦ;Q0;ranΞ;Q`

0
;ranΦ;Q0;ranΞ

v ranΦ;Q0;Q
`

0
;Q0;ranΞ = ranΦ;Q0;ranΞ = Q

Before we go on to show more properties of saturated symmetric quotients, we first show
some useful facts that hold in the single-pushout setup:

Lemma 5.6.3 [←126, 128] Let two univalent relations Φ : L → R and Ξ : L → A in a strict
Dedekind category be given, and let W := Φ`

;Ξ.
If for a cospan R X-B Ψ¾ L of univalent relations, commutativity Φ;X = Ξ;Ψ holds,

then the following hold, too:

(i) W ;Ψ = ranΦ;X and W`
;X = ranΞ;Ψ.

(ii) W ∗B;X = X , W ∗C;Ψ = Ψ , W ∗¡;Ψ = ranΦ;X.

(iii) Φ;domX v Ξ;Ξ`
;Φ and Ξ;domΨ v Φ;Φ`

;Ξ.

(iv) Φ;W ∗B and Ξ;W ∗C are difunctional.

Proof :

(i) W ;Ψ = Φ`
;Ξ;Ψ = Φ`

;Φ;X = ranΦ;X and W`
;X = Ξ`

;Φ;X = Ξ`
;Ξ;Ψ = ranΞ;Ψ

(ii) follows immediately from (i).

(iii) With univalence of Φ, commutativity, and a modal rule we obtain:

Φ;domX = Φ;(B uX;X
`
) = Φ u Φ;X;X

`
= Φ u Ξ;Ψ;X

`
v Ξ;Ξ

`
;Φ

(iv) With univalence of Φ, we obtain:

Φ;W ∗B;W ∗B;Φ
`
;Φ;W ∗B v Φ;W ∗B;W ∗B;W ∗B = Φ;W ∗B

Difunctionality of Ξ;W ∗C is shown in the same way.

Lemma 5.6.4 [←126, 127, 129] Let two morphisms Φ : L → R and Ξ : L → A in a strict
Dedekind category be given, and define W := Φ`

;Ξ. Then the following holds for the
saturated symmetric quotient Q := satSyq(Φ,Ξ):

domQ;W ∗¡ = Q = W ∗¡;ranQ

Proof : Q = ranΦ;syq(Φ;W ∗B,Ξ;W ∗C);ranΞ

= ran (Φ;W ∗B);syq(Φ;W ∗B,Ξ;W ∗C);ranΞ ranΦ = ran (Φ;W ∗B)

= W ∗B;Φ`
;Φ;W ∗B;syq(Φ;W ∗B,Ξ;W ∗C);ranΞ Φ;W ∗B difctl., A.5.2

= W ∗B;Φ`
;Ξ;W ∗C;ran (syq(Φ;W ∗B,Ξ;W ∗C));ranΞ A.5.1.ii)

= W ∗¡;ran (syq(Φ;W ∗B,Ξ;W ∗C);ranΞ)

= W ∗¡;ran (ranΦ;syq(Φ;W ∗B,Ξ;W ∗C);ranΞ) A.5.1.iii)

= W ∗¡;ranQ

The other equation is shown in the same way.

126 5. Categoric Rewriting in a Relational Setting

Lemma 5.6.5 [←127] Let two univalent relations Φ : L → R and Ξ : L → A in a strict
Dedekind category be given, and let Q := satSyq(Φ,Ξ).

If for a cospan R X-B Ψ¾ L of univalent relations, commutativity Φ;X = Ξ;Ψ holds,
then Q;Ψ = domQ;X and Q`

;X = ranQ;Ψ hold, too.

Proof : Q;Ψ = domQ;W ∗¡;Ψ 5.6.4

= domQ;ranΦ;X Lemma 5.6.3.i)

= domQ;X domQ v ranΦ

The equation Q`
;X = ranQ;Ψ follows in the same way.

We now propose a construction that preserves part of the structure of Löwe’s original
construction, but for which we are able to give a component-free definition that replaces
Löwe’s “gluing object” in its rôle as determining the “scopes” with the saturated symmetric
quotient:

Definition 5.6.6 Let two univalent relations Φ : L → R and Ξ : L → A in a strict
Dedekind category be given, and let Q := satSyq(Φ,Ξ).

Let R′ be the subobject for ranΦ→ domQ, with subobject injection ι : R′ → R, and
let A′ be the subobject for ranΞ→ ranQ, with subobject injection κ : A′ → A.

Then let R′ X0-B Ψ0¾ A′ be a gluing for ι`;Q;κ, and define

X := ι
`
;X0 and Ψ := κ

`
;Ψ0 .

Then R X-B Ψ¾ A is called the reduced gluing for Φ and Ξ.

L Φ - R

ι
6

Ξ

?

¡
¡

¡
¡

¡
¡

¡
¡

¡
¡ª

Q R′

¯

°¾

X
¡

¡
¡

¡
¡ª

ι`;Q;κ X0

?

A κ¾

± °6
Ψ

A′
Ψ0 - B

Obviously, the detailed behaviour of Φ and Ξ enters this definition only via their ranges
and saturated symmetric quotient, so the corresponding algebraic characterisation may
start from there — gathering the range information into U := Φ`

;C;Ξ.

5.6. Pushouts of Partial Functions 127

Definition 5.6.7 [←128] Let two difunctional relations Q,U : R ↔ A with Q v U be
given.

A cospan R X-B Ψ¾ A is called a restricted gluing for Q in U if:

X;Ψ` = Q

X;X` = (domU → domQ) tQ;Q`

Ψ;Ψ` = (ranU → ranQ) tQ`
;Q

X`
;X tΨ`

;Ψ = B

Since Q is difunctional we have B tQ;Q` = Q∗B, which helps to show how close this is to
the gluing definition of Def. 5.3.2.

Lemma 5.6.8 Let two univalent relations Φ : L → R and Ξ : L → A in a strict Dedekind
category be given, and let W := Φ`

;Ξ and Q := satSyq(Φ,Ξ).

A restricted gluing R X-B Ψ¾ A for Q in Φ`
;C;Ξ is then a pushout of partial func-

tions.

Proof : Assume that for a cospan R X′-B Ψ′¾ L of univalent relations, commutativity
Φ;X′ = Ξ;Ψ′ holds. Then we have to show that there exists a unique univalent relation
Y : B 7→ B′ such that X;Y = X′ and Ψ;Y = Ψ′.

Define:
Y := Ψ

`
;Ψ′ tX

`
;X′

Then Lemma 5.6.5 together with S v R→ S yields:

X;Y = X;Ψ`
;Ψ′ tX;X`

;X′

= Q;Ψ′ t ((ranΦ→ domQ) tQ;Q`);X′

= Q;Ψ′ t (ranΦ→ domQ);X′ tQ;Q`
;X′

= Q;Ψ′ t (ranΦ→ domQ);X′ tQ;ranQ;Ψ′

= Q;Ψ′ t (ranΦ→ domQ);X′

= domQ;X′ t (ranΦ→ domQ);X′ = (ranΦ→ domQ);X′ ,

Ψ;Y = Ψ;Ψ`
;Ψ′ tΨ;X`

;X′

= ((ranΞ→ ranQ) tQ`
;Q);Ψ′ tQ`

;X′ = (ranΞ→ ranQ);Ψ′ .

For showing the factorisation equalities we therefore have to show the inclusions domX′ v
(ranΦ→ domQ) and domΨ′ v (ranΞ→ ranQ). We only show the first:

domX′ v (ranΦ→ domQ)

⇔ ranΦ u domX′ v domQ

⇔ dom (Φ`
;Φ;X′) v domQ

⇔ dom (Φ`
;Φ;X′);W ∗¡ v domQ;W ∗¡ dom (Φ`

;Φ;X′) v domW

⇔ dom (Φ`
;Φ;X′);W ∗¡ v Q Lemma 5.6.4

⇔ dom (Φ`
;Φ;X′);W ∗¡ v syq(Φ;W ∗B,Ξ;W ∗C) ranW v ranΞ

128 5. Categoric Rewriting in a Relational Setting

By the definition of symmetric quotients, this is equivalent to the conjunction of the
following two inclusions:

Φ;W ∗B;dom (Φ
`
;Φ;X′);W ∗¡ v Ξ;W ∗C and dom (Φ

`
;Φ;X′);W ∗¡;W ∗C;Ξ

`
vW ∗B;Φ

`
,

which we now show separately:

Φ;W ∗B;dom (X′);W ∗¡ = Φ;dom (X′);W ∗B;dom (X′);W ∗¡ 5.6.3.ii)

v Ξ;Ξ`
;Φ;W ∗¡ Lemma 5.6.3.iii)

= Ξ;W ∗C

dom (Φ`
;Φ;X′);W ∗¡;W ∗C;Ξ` = dom (X′);W ∗¡;Ξ`

= W ∗¡;dom (Ψ′);Ξ` 5.6.3.ii)

v W ∗¡;Ξ`
;Φ;Φ` Lemma 5.6.3.iii)

= W ∗B;Φ`

This proves domX′ v (ranΦ → domQ), and therewith X;Y = X′. Factorisation of Ψ′ is
obtained analogously.

With the factorisation equations, univalence of Y is straightforward:

Y
`
;Y = (Ψ′

`
;Ψ tX′

`
;X);Y = Ψ′

`
;Ψ;Y tX′

`
;X;Y = Ψ′

`
;Ψ′ tX′

`
;X′ v B

Now assume the existence of another relation Y′ : B 7→ B′ such that X;Y′ = X′ and
Ψ;Y′ = Ψ′. Then these equations, together with the last equation of Def. 5.6.7, imply:

Y = Ψ
`
;Ψ′ tX

`
;X′ = Ψ

`
;Ψ;Y′ tX

`
;X;Y′ = (Ψ

`
;Ψ tX

`
;X);Y′ = Y′

The pushout property also implies that our definition of restricted gluings is monomorphic.

Finally, we can prove that the reduced gluing construction, which we think is simpler
than the categorical construction using a co-equaliser of partial morphisms, and also than
the (component-wise) gluing-object construction of Löwe, indeed produces a pushout of
partial functions:

Theorem 5.6.9 Let two univalent relations Φ : L → R and Ξ : L → A in a strict
Dedekind category be given, and let W := Φ`

;Ξ and Q := satSyq(Φ,Ξ).

A reduced gluing R X-B Ψ¾ A for R Φ¾ L Ξ-A then commutes and is a restricted
gluing for Q in Φ`

;C;Ξ.

Proof : X and Ψ are by definition partial functions. Since Q is difunctional, ι;Q;κ` is
difunctional, too, because of univalence of ι and κ:

ι;Q;κ
`
;κ;Q

`
;ι

`
;ι;Q;κ

`
v ι;Q;Q

`
;Q;κ

`
= ι;Q;κ

`

With 2.6.9, we obtain:

domQ v ran ι and ranQ v ranκ (∗)

5.7. Summary 129

For commutativity, we first consider one inclusion:

Ξ;Ψ v Φ;X ⇔ Ξ;κ`
;Ψ0 v Φ;ι`;X0

⇔ Φ`
;Ξ;κ`v ι`;X0;Ψ

`

0 Lemma A.1.2.iii)

⇔ W ;κ`v ι`;(ι;Q;κ`) ∗¡

⇔ W ;κ`v ι`;ι;Q;κ`

⇔ W ;κ`
;κ v ι`;ι;Q Lemma A.1.2.iii)

⇔ W ;ranQ v Q (∗)

This last inclusion holds because of Lemma 5.6.4. The opposite inclusion is shown in the
same way, so we have commutativity Ξ;Ψ = Φ;X.

The gluing properties translate into the following, using (∗):

X;Ψ` = ι`;X0;Ψ
`

0
;κ = ι`;(ι;Q;κ`) ∗¡;κ = ι`;ι;Q;κ`

;κ = Q

X;X` = ι`;X0;X
`

0
;ι = ι`;(B t (ι;Q;κ`) ∗¡;κ;Q`

;ι`);ι = ι`;(B t ι;Q;κ`
;κ;Q`

;ι`);ι

= ι`;(B t ι;Q;Q`
;ι`);ι = ι`;ι t ι`;ι;Q;Q`

;ι`;ι = ι`;ι tQ;Q`

= (ranΦ→ domQ) tQ;Q`

In the same way, we obtain Ψ;Ψ` = κ`
;κ t Q`

;Q = (ranΞ → ranQ) t Q`
;Q. Finally, we

obtain:
X

`
;X tΨ

`
;Ψ = X

`

0
;ι;ι

`
;X0 tΨ

`

0
;κ;κ

`
;Ψ0 = X

`

0
;X0 tΨ

`

0
;Ψ0 = B

5.7 Summary

In this chapter, we have presented component-free formalisations for the basic repertoire
of the categorical approaches to graph transformation.

In particular, we achieved original component-free formulations for the existence con-
dition for pullback complements, and for conflict-freeness and the original more intuitive
single-pushout construction.

It is important that we have achieved all these formulations in a single, relational
framework that makes no essential distinction between partial arrows and total arrows, or,
by virtue of the self-duality of relation categories, between forward arrows and backward
arrows.

As we have already seen in the different applications of the straight host construction,
this enables combining the different approaches and re-using conditions and constructions
in different contexts. An example for this is also the use of the straight and sloppy
host constructions, that allowed to identify useful classes of restricting derivations — that
approach had previously suffered from the apparent arbitrariness of the “tacked-on arrow”
that inhibited automation and systematic application.

Approaches we have not covered are, to our knowledge, double-pullback transitions and
the fibred approaches.

Double-pullback transitions were introduced by Heckel [Hec98] to supplement the double-
pushout approach of systems modelling with a way to describe situations where simul-
taneously with the application of a specified rule, concurrent threads may change the

130 5. Categoric Rewriting in a Relational Setting

context by, for example, applying unspecified rules to other parts of the graph, see also
[HEWC97, EHTE97, EHL+00].

The resulting double-pullback squares can be seen as a symmetric variant of restricting
derivations, where an additional morphism is allowed after result construction, and cer-
tain restrictions are imposed on both sides. Translating the different kinds of restrictions
from the double-pullback transition literature (like weak and horizontal injectivity wrt.
commutative squares) into component-free form is a simple transfer exercise. It then be-
comes obvious that the “maximal pullback complement” of [EHL+00, Prop. 3] is precisely
our straight host construction (Def. 5.4.6), and the “lazy double-pullback transition” of
[EHL+00, Def. 6] is the construction of Theorem 5.4.11.

The opfibration approach of Banach [Ban93, Ban94] and the fibred approach of the present
author [Kah96, Kah97] had as their main motivation applications in the domain of term
graphs, where the “horizontal” arrows, representing rule application or deletion and addi-
tion, are intrinsically different from the “vertical” arrows representing rule matching.

Therefore, different categories needed to be identified: a substrate category S ac-
commodating both horizontal and vertical morphisms, a subcategory H of S, containing
the horizontal morphisms, and a subcategory V of the arrow-category over S, designat-
ing essentially the allowed vertical arrows, and offering the additional ability to impose
constraints on whole commuting squares in S. The approach then concentrates on the
functor from V to H (for definitions concerning (op)cartesian arrows and (op)fibrations
see for example [BW90, Chapt. 11]:

• opcartesian arrows replace those pushouts that produce results, for Banach in a
modification of the single-pushout approach, and for our own in a modification of
the double-pushout approach, and

• cartesian arrows play the rôle of the left-hand side pushout, including additional
tacked-on arrows as in restricting derivations or “lazy double-pullback transitions”.

Applications of this general framework crucially depend on the necessary instantiations of
S, H, and V.

The fibred approaches therefore do not offer themselves to a general relational treat-
ment as easily as the standard categorical approaches. However, as we have seen for
example in the context of straight and sloppy host constructions, the relational treat-
ment allows considerable flexibility in adapting the categoric approaches, so it might be
more interesting to replace applications of fibred approaches with fine-tuned relational
approaches.

To a certain extent we are following this spirit when, in the next chapter, we build on the
basis of the formalisations of this chapter to present an unprecedented amalgamation of
the double-pushout and double-pullback approaches.

Chapter 6

Relational Rewriting in Dedekind Categories

In this chapter we show that it is possible to obtain a rule concept that combines the
intuitive understandability of pushout rules with the replicative power of pullback rules.
We achieve this by starting from the general setup of the double-pushout approach, and
designating a part of the rule as parameters. It is actually sufficient to partition the gluing
object into a parameter part and an interface part ; the parameter and interface parts
of the rule sides are then just the images of the parameter resp. interface parts of the
gluing object; each rule side will in addition have a context outside the image of the rule
morphisms.

The central idea is then to replace the double-pushout regime on the parameter part
with a double-pullback regime, and to achieve this by just imposing appropriate constraints
on relational morphisms.

In this way, all morphisms in the resulting double square diagram should essentially
be total and univalent on interface and context parts, and injective and surjective on
parameter parts. We showed a simple example of how this can work in the introduction,
starting on page 22.

The first section of this chapter is devoted to the elaborating the issue of how the gluing
object may be partitioned into parameter and interface parts, and how morphisms start-
ing from the gluing object should respect this partitioning. In Sect. 6.2 we then define
pullouts that can be understood as amalgamations of pushouts and pullbacks along the
lines sketched above. The question of pullout complements is investigated in Sect. 6.3 —
it turns out that for left-linear rules, the straight host construction continues to serve well.

Finally, we present one first possibility of adapting “double-pullout rewriting” towards
slightly more general relational matchings in Sect. 6.5.

6.1 Gluing Setup

As mentioned above, we are going to present a generalisation of the pushout construction
that incorporates elements of the behaviour of pullbacks. These pullback characteristics
are needed for replication of the images of “variables” or parameters, while on the “non-
variable” interface parts, the construction should behave essentially as a pushout.

This different treatment of two complementary parts is anchored at the rôle of the
gluing object, and we therefore enrich the gluing object with a partial identity indicating
the interface. The parameter part is then obtained as the semi-complement of the interface.
This asymmetric setup has the advantage that the interface, which typically has a “border
rôle”, need not be coregular, while the parameter part typically has a “body rôle”, which
harmonises with the fact that, as a semi-complement, it is automatically coregular.

In graphs, this means that the interface may contain single nodes that are incident to
variable edges, which is intuitively sensible, while it is less than clear what it should mean
for a single node incident to an interface edge that it is at the same time a variable.

131

132 6. Relational Rewriting in Dedekind Categories

Throughout the following, we are working in a strict Dedekind category D.

Definition 6.1.1 Let an object G0 and a partial identity u0 : PIdG0 be given. The pair
(G0, u0) is then called a gluing object G0 along u0, and u0 is called the interface component
of G0.

Furthermore, we define v0 := u∼0 and consider it as part of the gluing setup; we may
now talk about a gluing object G0 along u0 over v0, and we call v0 the parameter component
of G0.

The morphisms starting at the gluing object should respect this interface-parameter-setup
in a way that is now to be made precise.

First of all, a morphism Φ : G0 → G1 starting at a gluing object along u0 over v0
gives rise to images u1 and v1 of the respective components. Then we demand that Φ
“preserves” the interface rôle as far as possible; this means that the border between the
parameter component of G1 and its semi-complement should be contained in the interface
component of G1, that Φ is total on the interface part, and does not map any parameter
items outside the border to interface parts. In addition, we have to demand that Φ is
univalent on the pre-image of the parameter image border.

Definition 6.1.2 [←135, 149, 185, 188, 190, 191] Let a gluing object G0 along u0 over v0 and a
morphism Φ from G0 to another object G1 be given.

In such a context, we shall use the following abbreviations: Let u1 := ran (u0;Φ) and
v1 := ran (v0;Φ) be the images of the gluing components; let b0 := v0 u u0 be the border
between parameter part and interface part in the gluing object, and let b1 := v1 u u1 be
the border of the parameter image.

Φ is called interface preserving if the following conditions are satisfied:

(i) v1 u v
∼
1 v u1

(ii) dom (Φ;(v∼1 t u1)) = u0

(iii) b1;Φ
`
;Φ v b1.

This leads to many useful properties, most of which are “propagation of interface compo-
nent” in other shapes:

Lemma 6.1.3 [←144, 192]

(i) (ranΦ)∼ t u1 = v∼1 t u1

(ii) ranΦ u (ranΦ)∼ v u1

(iii) u1 v v∼1 t b1

Proof :

(i) With Lemma 2.7.6.iii) we obtain:

(ranΦ)∼ t u1 = (u1 t v1)
∼ t u1 = (v∼1 r u1) t u1 = v∼1 t u1

6.1. Gluing Setup 133

(ii) ranΦ u (ranΦ)∼ = (u1 t v1) u (u1 t v1)
∼

v (u1 t v1) u v
∼
1 Lemma 2.7.3.ii)

v u1 t (v1 u v∼1)

v u1 t u1 (i)

= u1

(iii) v∼1 t b1 = v∼1 t (v1 u u1) = (v∼1 t v1) u (v∼1 t u1) = B u (v∼1 t u1) = v∼1 t u1

The starting point for our generalisation of pushouts is then a span of interface preserving
relations starting from a common gluing object.

Definition 6.1.4 A gluing setup (G0, u0, v0,Ξ,Φ) consists of a gluing object G0 along

u0 over v0, and a span of interface-preserving morphisms G2
Ξ¾ G0

Φ-G1, where G2 is
called the host object and G1 is called the rule side.

In a gluing setup with names as above, we additionally define the following names for
the interface, parameter, and target specific components in the target objects:

v1 := ran (v0;Φ) u1 := ran (u0;Φ) r1 := (ranΦ)∼

v2 := ran (v0;Ξ) u2 := ran (u0;Ξ) h2 := (ranΞ)∼

In addition, we define names for the borders between the interface and parameter parts,
and for the whole non-parameter parts:

b1 := u1 u v1 c1 := u1 t r1

b2 := u2 u v2 c2 := u2 t h2 q2 := b2 t h2

The next step will now be to complete such a gluing setup to a commuting square of the
following shape:

G0
Φ - G1

Ξ

?

X

?

G2
Ψ - G3

In order to enable relational rewriting with parameters, this square is to include charac-
teristics of the pushout of forward components of the arrows restricted to the interface
and context parts, and of the pullback of backward components of the arrows restricted
to the parameter parts.

In the next section we directly perform such an amalgamation of the relational variants
of pushout and pullback. Since this is still very close to the categorical setup of mappings,
it has certain shortcomings from a relational rewriting point of view, so we present a “more
relational” variant in Sect. 6.5.

134 6. Relational Rewriting in Dedekind Categories

6.2 Amalgamating Pushouts and Pullbacks to Pullouts

A simple first approach to completing a gluing setup to a full square starts with producing
a pushout for the interface parts u0;Φ and u0;Ξ, and a pullback for the converses of the
parameter parts, i.e., for Φ`

;v0 and Ξ`
;u0. To make these pushouts and pullbacks possible,

Φ and Ξ have to behave “essentially like mappings” in the forward direction on the interface
part, and in the backward direction on the parameter part:

Definition 6.2.1 [←180, 182] Given a gluing object G0 along u0, a morphism Φ : G0 ↔ G1
is called a standard gluing morphism iff the following conditions are satisfied:

(i) Φ is interface preserving,

(ii) Φ is total on u0, that is, u0 v domΦ,

(iii) Φ is univalent on u0, that is, u0;Φ is univalent, and

(iv) Φ is almost-injective besides u0.

Once we have the pushout of the interface part and the pullback of the parameter part,
the two result objects then have to be glued together along a gluing relation induced by
the restrictions of the pushout and pullback morphisms to the borders b1 and b2.

The following diagram should help with orientation:

u0 ¾ u0 u v0 - v0

¡
¡

¡
¡¡ª

u0;Ξ
@
@
@
@@R

u0;Φ

¡
¡
¡
¡¡µ

Ξ`
;v0

@
@

@
@@I

Φ`
;v0

c2 PO c1 v2 PB v1

@
@
@
@@R

c2;Ψ

¡
¡

¡
¡¡ª

c1;X

@
@

@
@@I

Ψ`
;v2

¡
¡
¡
¡¡µ

X`
;v1

c3 B¾ v3

@
@
@
@
@
@
@R

Λu

gluing
¡

¡
¡

¡
¡

¡
¡ª

Λv

G3

According to this intuition, the specification of this construction also has to join the
specifications of pushout and pullback into a single specification. We have to be careful to
restrict the reflexive transitive closures to those parts of G1 and G2 that are governed by
the pushout construction, since otherwise the reflexive part would override the pullback
domains. The final gluing is not directly reflected in these conditions since interface
preservation keeps the border part inside the interface part, so the gluing components for
the interface part already cover the final gluing.

6.2. Amalgamating Pushouts and Pullbacks to Pullouts 135

Definition 6.2.2 Given a gluing setup G1
Φ¾ G0

Ξ-G2 along u0 over v0 in a Dedekind
category D, a cospan G1

X-G3
Ψ¾ of relations in D is a pullout for G1

Φ¾ G0
Ξ-G2

along u0 iff the following conditions are satisfied:

Φ;X = Ξ;Ψ

X;Ψ` = (Φ`
;u0;Ξ)

∗¡ t Φ`
;v0;Ξ

X;X` = c1;(Φ
`
;u0;Ξ)

∗B;c1 t dom (Φ`
;v0;Ξ)

Ψ;Ψ` = c2;(Φ
`
;u0;Ξ)

∗C;c2 t ran (Φ`
;v0;Ξ)

B = X`
;c1;X tΨ`

;c2;Ψ t (X`
;v1;X uΨ`

;v2;Ψ)

From the shape of these conditions it is obvious that most of the details about Φ and Ξ are
completely irrelevant, and we only need access to the resulting parameter and interface
parts. In the spirit of the definitions of tabulations and gluings, we therefore can abstract
away from Φ and Ξ, and substitute

U := Φ
`
;u0;Ξ , V := Φ

`
;v0;Ξ .

With this, the essential effects of interface preservation are the following consequences of
Def. 6.1.2.ii):

c1;V = c1;Φ
`
;v0;Ξ = c1;Φ

`
;u0;v0;Ξ v U

V ;c2 = Φ`
;v0;Ξ;c2 = Φ`

;v0;u0;Ξ;c2 v U

Reflecting the fact that in the pullback component, Φ`
;v0 and Ξ`

;v0 need not be surjective
on v0, we have to take the possibility into account that domain and range of V are strictly
included in v1 respectively v2. Therefore, we still have to supply the partitioning into
parameter part and non-parameter part as additional parameter. As for the gluing setup,
we take the non-parameter part as primitive; here, this comprises not only the interface
part, but also the context parts, that is, the parts corresponding to (ranΦ)∼ and (ranΞ)∼.

Definition 6.2.3 [←136, 137] Let two relations U, V : G1 ↔ G2 and two partial identities
c1 : PIdG1 and c2 : PIdG2 be given. Define:

v1 := c∼1 , v2 := c∼2 .

If we have direct interface preservation:

domU v c1 domV v v1 c1;V v U

ranU v c2 ranV v v2 V ;c2 v U ,

then a cospan G1
X-G3

Ψ¾ G2 is called a glued tabulation for V along U on c1 and c2
iff the following conditions hold:

X;Ψ` = U ∗¡ t V

X;X` = c1;U
∗B;c1 t domV

Ψ;Ψ` = c2;U
∗C;c2 t ranV

B = X`
;c1;X tΨ`

;c2;Ψ t (X`
;v1;X uΨ`

;v2;Ψ)

136 6. Relational Rewriting in Dedekind Categories

The main advantage of this more abstract formulation is that it is more concise, and that
fewer components and conditions have to be dealt with in proofs.

Since the setup of the glued tabulation is implied by the gluing setup, the following
theorem also shows monomorphy of pullouts.

Theorem 6.2.4 [←184] The characterisation of glued tabulations is monomorphic.

Proof : In the context of Def. 6.2.3, let G1
X′-G4

Ψ′¾ be a second glued tabulation for
V along U on c1 and c2. Define:

Y := X
`
;c1;X

′ tΨ
`
;c2;Ψ

′ t (X
`
;v1;X

′ uΨ
`
;v2;Ψ

′)

The key tools are the first three glued tabulation conditions, which imply:

X;Ψ
`
= X′;Ψ′

`

X;X
`
= X′;X′

`

Ψ;Ψ
`
= Ψ′;Ψ′

`

Factorisation: Let v4 := X`
;v1;X uΨ`

;v2;Ψ and c4 := X`
;c1;X tΨ`

;c2;Ψ, then:

X;Y

= X;X`
;c1;X

′ tX;Ψ`
;c2;Ψ

′ tX;(X`
;v1;X

′ uΨ`
;v2;Ψ

′)

= X;X`
;c1;X

′ tX;Ψ`
;c2;Ψ

′ t v1;X;(X`
;v1;X

′ uΨ`
;v2;Ψ

′) X almost-inj. bes. c1

= X′;X′
`
;c1;X

′ tX′;Ψ′
`
;c2;Ψ

′ t (v1;X
′ u v1;X;Ψ`

;v2;Ψ
′) X almost-inj. bes. c1

= X′;c4 t (v1;X
′ u v1;X

′;Ψ′
`
;v2;Ψ

′)

= X′;c4 t v1;X
′;(X′

`
;v1;X

′ uΨ′
`
;v2;Ψ

′) X′ almost-inj. bes. c1

= X′;c4 t v1;X′;v4

= X′

In the same way, we also obtain Ψ;Y = Ψ′. This helps with univalence:

Y`
;Y = X′

`
;c1;X;Y tΨ′

`
;c2;Ψ;Y t (X′

`
;v1;X uΨ′

`
;v2;Ψ);Y

v X′
`
;c1;X

′ tΨ′
`
;c2;Ψ

′ t (X′
`
;v1;X;Y uΨ′

`
;v2;Ψ;Y)

= X′
`
;c1;X

′ tΨ′
`
;c2;Ψ

′ t (X′
`
;v1;X

′ uΨ′
`
;v2;Ψ

′)

= B

The following fills in the gap towards surjectivity:

ran (X`
;v1;X

′ uΨ`
;v2;Ψ

′) = ran (v1;X
′ uX;Ψ`

;v2;Ψ
′)

= ran (v1;X
′ uX′;Ψ′

`
;v2;Ψ

′)

= ran (X′
`
;v1;X

′ uΨ′
`
;v2;Ψ

′)

= v4

Since for Y ` the same argument is valid, too, Y is a bijective mapping.

6.2. Amalgamating Pushouts and Pullbacks to Pullouts 137

Adapting the above sketch of a construction to this abstract setting is straightforward.
The only minor technical complication arises from the restriction of the non-parameter
gluing to c1 and c2 which is necessary for preserving the possibility that the parameter
parts of X and Ψ may be partial. For achieving this cleanly, we have to construct this first
gluing from appropriate subobjects. For the parameter part, however, no such subobjects
are necessary since the tabulation does not reach beyond the domain and range of V .

Definition 6.2.5 [←141, 142, 173] Under the preconditions of Def. 6.2.3, a cospan
G1

X-G3
Ψ¾ G2 is a constructed pullout if it may be obtained by the following steps:

• Let λ1 : C1½ G1 be a subobject for c1, and let λ2 : C2½ G2 be a subobject for c2.

• Let C1
Xu-Gu

Ψu¾ C2 be a gluing for λ1;U ;λ`

2.

• Let G1
Xv¾ Gv

Ψv-G2 be a tabulation for V .

• Define B := Xv;λ`

1
;Xu tΨv;λ`

2
;Ψu.

• Let Gv
Λv-G3

Λu¾ Gu be a gluing for B.

• Define: X := λ`

1
;Xu;Λu tX`

v
;Λv Ψ := λ`

2
;Ψu;Λu tΨ`

v
;Λv

C2
λ1;U ;λ`

2¾ C1 v2 V¾ v1

@
@
@
@@R

Ψu

gluing
¡

¡
¡

¡¡ª

Xu

@
@

@
@@I

Ψv

tabulation

¡
¡
¡
¡¡µ

Xv

Gu
B¾ Gv

@
@
@
@
@
@
@R

Λu

gluing
¡

¡
¡

¡
¡

¡
¡ª

Λv

G3

The stacked gluing construction induces large expressions, so proving the correctness of
this construction involves lengthy tedious calculations which are relegated to Appendix
B.1 starting on page 173; these calculations show the following:

Theorem 6.2.6 [←173] A constructed pullout is a well-defined glued tabulation.

We have already shown an example pullout in the introduction (page 24); we now show a
slight variation that has non-empty contexts in R and H.

138 6. Relational Rewriting in Dedekind Categories

PhiR

u0

Xi ChiR

PsiR

We still have to show that constructed pullout for a gluing setup with standard gluing
morphisms is well-defined, and produces a commuting square:

Theorem 6.2.7 [←177] Let a gluing setup (G0, u0, v0,Ξ,Φ) be given where Φ and Ξ both
are standard gluing morphisms. Defining U := Φ`

;u0;Ξ and V := Φ`
;v0;Ξ then ensures

direct interface preservation, and a constructed pullout G1
X-G3

Ψ¾ G2 commutes, that
is, Φ;X = Ξ;Ψ.

Proof : Direct interface preservation follows from interface preservation as we have seen
on page 135. The proof of commutativity may be found in Appendix B.1 on page 177.

6.3 Pullout Complements

For pullout complements, let us first consider the case that v0;Φ is univalent, that is, that
the rule is left-linear. For the pullback-part of the construction, Theorem 5.5.5 is then
applicable and the parameter image may just be copied from the application graph to the
host graph and does not need any special treatment. As a result, we may use the straight
host construction of Def. 5.4.6 to obtain a pullout complement, as proven in Sect. B.2:

Theorem 6.3.1 [←139, 140, 142, 150, 179, 183, 200] Let a gluing object G0 along u0 over v0 and a
standard gluing morphism Φ : G → L be given, and a morphism X : L → A. Define:

v1 := ran (v0;Φ) u1 := ran (u0;Φ) c1 := u1 t (ranΦ)∼

v3 := ran (v1;X) u3 := ran (u1;X) c3 := u3 t (ranX)∼

If the following conditions are satisfied:

(i) Φ is univalent

(ii) c1;X is univalent, and c1 v domX,

6.3. Pullout Complements 139

(iii) X is almost-injective besides u1,

(iv) X;(ranX)∼ v u1;X,

then the straight host construction of Def. 5.4.6 delivers a pullout complement.

Furthermore, Ξ is a standard gluing morphism if the following additional conditions are
satisfied:

(v) v3 u v
∼
3 v u3 and

(vi) X;u3 v u1;X.

In the general case, however, we need the same equivalence relation complement as for
general pullback complements, only in the appropriate restriction to the parameter part.
In the preconditions of the following theorem, the only differences to the preconditions
of Theorem 6.3.1 are the omission of 6.3.1.i), so that now, by Φ being a standard gluing
morphism, only u0;Φ needs to be univalent instead of the whole of Φ, and insertion of a
new condition (iv).

Theorem 6.3.2 [←140, 142, 143, 181, 182] Let a gluing object G along u0 over v0 and a standard
gluing morphism Φ : G → L be given, and a morphism X : L → A. Define:

v1 := ran (v0;Φ) u1 := ran (u0;Φ) c1 := u1 t (ranΦ)∼

v3 := ran (v1;X) u3 := ran (u1;X) c3 := u3 t (ranX)∼

If the following conditions are satisfied:

(i) c1;X is univalent, and c1 v domX,

(ii) X is almost-injective besides u1,

(iii) X;(ranX)∼ v u1;X,

(iv) there is a partial equivalence relation Θ : A ↔ A such that

ranΘ = v3 X`
;v1;X uΘ v B

u3;Θ v u3 v1;X;Θ = Φ`
;v0;Φ;X ,

then there is a pullout complement A Ξ-H Ψ-L constructed as follows:

• Let V contain the variable instantiation, characterised as a combined quotient and
subobject by ν : A ↔ V with:

ν
`
;ν = B , ν;ν

`
= Θ .

• Let C be the subobject of A containing the context:

λ : C ↔ A λ;λ
`
= B λ

`
;λ = c3

• Let C ι-H κ¾ V be the gluing of Z : C ↔ V with Z := λ;ν

• Define: Ψ := ι`;λ t κ`
;ν` and Ξ := Φ;X;Ψ`.

140 6. Relational Rewriting in Dedekind Categories

L Φ¾ G

X

?

Ξ

?
A Ψ¾ H

λ
6@
@
@
@@R

ν

©©
©©

©©
©©

©©*

ι

¡
¡
¡
¡¡µ

κ

S Z - V

Furthermore, Ξ is a standard gluing morphism if the following additional conditions are
satisfied:

(v) v3 u v
∼
3 v u3 and

(vi) X;u3 v u1;X.

The proof of this theorem may be found in Sect. B.2, starting on page 181.

6.4 Pullout Rewriting

With pullouts and pullout complements in place, it is straightforward to set up a double-
pullout approach in analogy to the double-pushout approach.

Definition 6.4.1 In a Dedekind category D, a double-pullout rule L ΦL¾ (G, u0)
ΦR-R

consists of a gluing object G along u0, the left-hand side and right-hand side objects L
and R, and two standard gluing morphisms ΦL : G ↔ L and ΦR : G ↔ R.

Such a double-pullout rule is called left-linear iff ΦL is univalent.

Given such a rule, if for an application object A and a morphism XL : L ↔ A all pre-
conditions of Theorem 6.3.2 hold, then the rule is applicable to A via XL, and application

first calculates a pullout complement G Ξ-H ΨL-A for (G, u0)
ΦL-L XL-A, and then

constructs a pullout R XR-B ΨR¾ H for R ΦR¾ (G, u0)
Ξ-H, where B is the result of the

application.

The following left-linear rule will be used below:

u0

PhiRPhiL

The condition that XL is almost-injective besides ran (u0;ΦL), used as precondition 6.3.1.iii)
and 6.3.2.ii) in the pullout complement constructions, is in fact an extended identification
condition that forbids identifications via XL not only in the context (ranΦL)

∼, but also in

6.4. Pullout Rewriting 141

the parameter part ran (v0;ΦL) of the rule’s left-hand side. If this extended identification
condition is violated, the parameter part of the resulting host morphism is not necessarily
(almost-)injective anymore. This happens for example in the following setup:

u0

ChiL

PhiL

Here, ΦL is an identity, and the straight host construction also lets ΨL be an identity and
Ξ = XL, where the parameter part is not injective.

For the right-hand side, the pullout construction of Def. 6.2.5 continues to be possible,
but it does not produce a pullout:

u0

PhiR

Xi

ChiR

PsiR

Commutativity fails: Ξ;ΨR relates both “strands” of the parameter part of the gluing
graph with their joint image in the result graph, while ΦR;XR relates each “strand” only
with its own image.

142 6. Relational Rewriting in Dedekind Categories

In the Theorems 6.3.1 and 6.3.2, additional conditions ensure that the resulting host
morphism Ξ will be a standard gluing morphism. These conditions, together with the
original dangling condition that here occurs as 6.3.1.iv) and 6.3.2.iii), give rise to an
extended dangling condition that forbids edges between the context of the application
graph and not only the image of that part of the left-hand side not covered by ΦL, but
also the image of the parameter part of the left-hand side. In the following example, this
last condition fails: the preserved context edge is incident with a parameter node outside
the border:

ChiR

PhiR

Xi

u0

PhiL

ChiL

PsiRPsiL

The pullout construction of Def. 6.2.5 is still possible, but again does not deliver a pullout:
this time it is the equation for XR;X`

R that fails, since the context edge “inhibits replication”
of its incident node, so XR is not almost-injective besides u1.

Since with u0 = D, the double-pullout approach reduces to the double-pullback approach,
it inherits all the expressivity of the double-pullback approach, which comprises that of
most well-known graph rewriting systems, see [BJ01, JKH00]. On the other hand, with
u0 = B the double-pullout approach reduces to the double-pushout approach, so it can
be employed in contexts where this more popular approach was employed, with “full
backwards compatibility”.

Already the simple rules we have shown so far should give some understanding how the
double-pullout approach allows to harness the replicative power of the pullback approaches
inside the intuitive setting of the double-pushout approach. The way parameters are
handled is, due to its relation with pullback rewriting, of course quite different from more
substitution-based variable concepts, but still reasonably easy to grasp. When emulating
hyperedge substitution, it is probably most natural to do this in the context of hypergraphs
considered as sigDHG-algebras.

6.5. The Weak Pullout Construction 143

Apart from this “standard” double-pullout rewriting approach, other approaches are of
course possible. Certain constrained variants of the restricted derivations approach may
seem most attractive — the following all tackle restrictions imposed by the (extended)
dangling condition:

• Use the straight host construction (or the sloppy host construction) in all cases where
it produces a host morphism that is a standard gluing morphism.

• Adapt the straight host construction so that it deletes edges that are incident with
the parameter part (ranΨ = (ranX→ ran (u0;Φ;X))tran (v0;Φ;X)), and then proceed
as above.

• Analogously adapt the sloppy host construction, or the construction of Theorem
6.3.2, which is a generalisation of it, so that it deletes edges that are incident with
the parameter part.

The fact that it is possible to exert such fine-grained control over the rewriting mechanism
while staying on the component-free level all the time is clearly a major advantage of the
relation-algebraic approach.

6.5 The Weak Pullout Construction

The pullout construction quite obviously cannot hide its genesis from constructions in-
tended for mappings.

In particular, the result morphisms X and Ψ are univalent on the interface part and
(besides border identification) injective on the parameter part. The latter implies that
overlaps between the images of different parameters forbid application of double-pullout
rules, and applying the constructions nevertheless will not preserve this overlap, as has
been seen in the example on page 141.

Since such a limitation may not always be acceptable, we now explore a variant that
allows slightly more general relations. In particular, we are going to allow identifications
between the images of different parameters as prescribed by the host, and right-hand
side morphisms that are not univalent on the interface part, both, however, with certain
restrictions, that we are now going to introduce.

First of all, let us consider what kinds of gluing setups we would like to start with.

According to the discussion above, we will not require that the parameter part of XL be
injective. In comparison with the “pure” double-pullout approach, this means that we also
drop univalence of the converse of the parameter part of the host morphism Ξ. However,
we preserve totality and univalence of the interface part, since for host morphisms, the
interface should essentially be embedded as-is, and we formulate this as univalence.

Definition 6.5.1 Let a gluing object G0 along u0 over v0 and an interface preserving
morphism Ξ from G0 to another object G2 be given.

Ξ is called a host morphism along u0 over v0 if the following condition holds:

• interface univalence: u0;Ξ is univalent

144 6. Relational Rewriting in Dedekind Categories

As another motivation one can argue that for parameters, the host morphism specifies
instantiation, and therefore need not be restricted.

The morphism from the gluing object to a rule’s right-hand side specifies replication of
parameters, and therefore must not identify different parameters, since this would involve
unification of their instantiation, which will in general not be possible. Therefore, we
are going to forbid such identification. However, we cannot enforce this via injectivity
on the parameter component, since we still want to allow the right-hand side morphism
to specify identification of variable borders. Therefore, almost-injectivity is the natural
choice. The difference with the functional setting is that we do not prescribe univalence
on the interface part.

Definition 6.5.2 Let a gluing object G0 along u0 over v0 and an interface preserving
morphism Φ from G0 to another object G1 be given.

Φ is called an rhs-morphism along u0 over v0 if the following condition holds:

• parameter injectivity : Φ is almost-injective (on v0) besides u0.

Putting these two together, we obtain a special kind of span that is going to be the starting
point for our result construction:

Definition 6.5.3 A gluing setup (G0, u0, v0,Ξ,Φ) is called a result gluing setup if Ξ is a
host morphism along u0 over v0 and Φ is an rhs-morphism along u0 over v0.

The following figure now summarises a few important aspects about our desired result
construction.

We start from a gluing object over a gluing graph G, with interface component u and
parameter component v, a host morphism Ξ : G→ H from G to a host graph H, and an
rhs-morphism Φ : G→ R from G to a right-hand side R.

Because of interface preservation (see Lemma 6.1.3.ii), the parts h2 := (ranΞ)∼ and
r1 := (ranΦ)∼ can be attached to the respective image of G only at the interface parts
— including of course the border between interface and parameter parts, but this is not
made very explicit in the drawing.

The parameter part of the host graph H will contain what is considered as an instan-
tiation of the parameter component of G, while the parameter part of R may indicate the
need for replication of the parameters — this should explain the different graphical effects
used for the parameter parts of H and R.

The interface part of H has to be a univalent image of the interface component of G,
but it may contain identifications — the possibility of identifications is nowhere indicated
in the drawing. In contrast, the interface part of R will be considered as an instantiation
of the interface component of G, and is not subject to any particular constraints, except
those imposed by interface preservation, mostly concerning the border with the other
parts. (In practical applications, the interface component will frequently be discrete and
therefore only designate legitimate borders; the scope of possible instantiations via Φ is
then of course restricted to identifications.)

6.5. The Weak Pullout Construction 145

G

H

R

B

Ξ

Φ

Χ

Ψ

univalent

univalent, almost inj.

almost-injective

u u

u u

v v

v v

hh

r

r

The result graph B then should contain copies of r and h, which may, however, suffer
identification of different parts of their borders, therefore we can demand only almost-
injectivity for the result morphisms on these parts.

Almost the same applies for the interface part of R, but there we cannot even demand
almost-injectivity, since the host morphism Ξ may dictate internal identifications in the
interface part, which then carry over to the result.

For the parameter part of the host graph H, we do not just need a single copy, but a
“replicated copy”, according to the replication prescription in the parameter part of Φ.

We need to impose an additional condition that slightly restricts the liberties of the
result gluing setups of Def. 6.5.3 in order to ensure well-definedness of the result construc-
tion:

Definition 6.5.4 [←195] A gluing setup (G0, u0, v0,Ξ,Φ) is called reasonable if the whole
of G0 is covered by the domains of the univalent part of Φ and of the injective part of Ξ:

B v dom (upaΦ) t injdomΞ , (spurious)

and if

dom (Ξ;(ranΞ)∼) v dom (upaΦ) .

These two conditions could be unified into the following single inclusion:

(injdomΞ)∼ t dom (Ξ;(ranΞ)∼) v dom (upaΦ)

The first condition in particular ensures univalence of Φ on the pre-image of u2 u v2; the
second condition extends univalence of Φ also to the pre-image of the last border of ranΞ
(or, equivalently because of interface preservation, of u2).

In the following example (with empty interface u0), injdomΞ is empty, and Φ is univa-
lent only on the top node, so (spurious) does not hold, and the result construction we are
going to define below delivers a result that does not even commute:

146 6. Relational Rewriting in Dedekind Categories

PsiR

Xi

PhiR

ChiR

u0

In order to make (spurious) superfluous, we would need some way to find out whether
different graph parts in R lie in the same “replication component” of replication via Φ.

G R

VH

Ξ

Φ

π

ρ

different
same ‘‘index’’ /
same ‘‘component’’

should be
 identified

Since the identification of “replication components” would be similarly non-constructive
as the equivalence relation complements needed for pullback complements, we rather keep
the condition (spurious).

For obtaining a result, we use the intuition established above to merge aspects of the
relational characterisations of pushouts (Def. 5.3.2) and pullbacks (Def. 5.1.2) into the
amalgamated “weak pullout” construction:

Definition 6.5.5 Given a gluing setup (G0, u0, v0,Ξ,Φ), then a weak pullout for this

setup is a cospan of morphisms G2
Ψ-G3

X¾ G1 that completes the given span to a weak
pullout diagram along u0 (over v0), which is a square

6.5. The Weak Pullout Construction 147

G0
Φ - G1

Ξ

?

X

?
G2

Ψ - G3

where the conditions below hold.
First we define two additional abbreviations:

v3 := ran (v1;X) w2 := v2 t (ranΞ)∼

In addition, let f0 := dom (upaΦ) denote the domain of the univalent part of Φ. Finally,
we introduce the following abbreviations:

Ω := Φ`
;u0;f0;Ξ

Ωf := Φ`
;f0;Ξ

Ωu := Φ`
;u0;Ξ

Ωv := Φ`
;v0;Ξ

For a weak pullout diagram, we demand that the following conditions hold:

– commutativity: Φ;X = Ξ;Ψ

– the combination property : B = X`
;c1;X tΨ`

;q2;Ψ t (Ψ`
;v2;Ψ uX`

;v1;X)

– alternative commutativity : X;Ψ` = Ω∗B;Φ`
;Ξ

– semi-injectivity of X: X;X` = c1 t domΩv tX;Ψ`
;Ω`

f

– semi-injectivity of Ψ: Ψ;Ψ` = c2 t ranΩv t Ω`

u
;X;Ψ`

The combination property implies that X is univalent on c1 and Ψ is univalent on q2.
The semi-injectivity conditions imply that Ψ is almost-injective besides u2 and, to-

gether with (spurious), that X is almost-injective besides ran (upaΦ).
For reasonable gluing setups, the weak pullout characterisation is monomorphic:

Theorem 6.5.6 [←186] Given a weak pullout diagram for a reasonable gluing setup, then
for every weak pullout diagram for the same setup there is a bijective mapping factoring
it, if the Dedekind category underlying the discussion may be embedded in a Dedekind
category with sharp products.

The very technical proof is relegated to Sect. B.3. The indirect availability of sharp
products is necessary only for establishing the parameter part of the combination property
(Lemma B.3.3 on page 185), essentially because X is not even almost-injective on v1. In
fact, we do not need the availability of all products, but those products we need have to
be sharp.

The weak pullout construction itself now may proceed along the intuition established with
the figure on page 145. We make this construction precise in the following definition, which
is also intended to serve as a guideline for implementations. Therefore, we implement a
further optimisation: that part of the host parameter instantiation that is only in the
image of the univalent part of Φ will not be replicated, so we remove it from the factor
for the tabulation and include it in the directly copied part.

148 6. Relational Rewriting in Dedekind Categories

Definition 6.5.7 [←150, 190] Let a reasonable gluing setup (G0, u0, v0,Ξ,Φ) be given,
consisting of a gluing object G0 along u0 over v0, a host morphism Ξ : G0 → G2, and an
rhs-morphism Φ : G0 → G1.

Then the following defines the direct result construction for this setting as a cospan
G1

X-G3
Ψ¾ G2.

We continue to use the abbreviations from Def. 6.1.4 and Def. 6.5.5, and we introduce
a few additional abbreviations for further important partial identities:

• y0 := injdomΞ is the domain of injectivity of Ξ; according to (spurious), it is possible
that Φ is not univalent on y0.

• f2 := B2 u Ξ\(f0;C0,2) is a partial identity describing the maximal part of G2 for
which the pre-image wrt. Ξ lies completely in f0 = dom (upaΦ).

• k2 := h2 t (v2 u f2)t b2 is that part of G2 that will be directly copied into the result,
consisting of the context and that part of the parameter instantiation that, because
of univalence of Φ, will not be replicated.

Including the border b2 between u2 and v2 is not strictly necessary — it will be identi-
fied with its other instances in the quotient construction below — but it considerably
facilitates proofs.

For the parameter parts, we construct a direct tabulation G1
π¾ V3

ρ-G2 for

W := Φ
`
;v0;Ξ;(v2 r f2)

Then G4 is the three-part direct sum via injections characterised as follows:

ι :G1 7½ G4 ι;ι` = c1 ι;κ` = D

κ :V3½ G4 κ;κ` = B κ;λ` = D ι`;ι t κ`
;κ t λ`

;λ = B

λ :G2 7½ G4 λ;λ` = k2 λ;ι` = D

(It would be possible to use subobjects and standard direct sums for the same purpose,
but this single definition allows to work with fewer relations and laws and thus shortens
proofs.)

G0
Φ - G1

Ξ

?

π
6

G2
ρ¾ V3

A
A
A
A
A
A
A
A
AAU

ι
HHHHHHHHHHj

λ
@
@
@
@@R

κ

G4

@
@
@
@@R

θ

G3

6.5. The Weak Pullout Construction 149

At this stage, we may define X0 : G1 → G4 and Ψ0 : G2 → G4 to obtain a first square
completion of the starting diagram; this does, however, not yet commute:

X0 := ι t π`
;κ t Φ`

;Ξ;λ

Ψ0 := Ξ`
;Φ;ι t ρ`

;κ t λ

Note that we have Ψ0 = Ξ`
;u0;Φ;ι t ρ`

;κ t λ because of Def. 6.1.2.ii). For making the
result commute, we now have to identify borders between the different components of the
three-part sum in G4. For this purpose we first define separate relations each relating one
pair of borders:

Q1 := ι`;π`
;κ

Q2 := λ`
;ρ`

;κ

Q3 := ι`;Φ`
;Ξ;λ

Q4 := ι`;Φ`
;y∼0 ;Ξ;Ξ`

;y∼0 ;Φ;ι

The following drawing documents the typing of the essential parts of these Qi, leaving out
the leading and trailing injections for the sum in G4.

Q
c

Q

V

Q
Q

1
1

2

3

3

4

k2

Q4 transfers interface identifications from u0;Ξ to c1;X. Without the y∼0 , it would overly
destroy injectivity inside u1. Because of (spurious), we have y∼0 v f0, so the effect of Q4 is
limited to the image of the univalent part of Φ.

Since Φ is almost-injective on v0, no corresponding identification relation needs to be
established for v2.

Now we define Θ : G4 ↔ G4 as the equivalence relation connecting the border compo-
nents that are replicated in different parts of the sum:

Θ := (Q tQ
`
)∗ , where Q := Q1 tQ2 tQ3 tQ4 .

Finally, G3 is the quotient of G4 by Θ, with total, univalent and surjective projection
θ : G4 →→ G3, and we define

X := X0;θ and Ψ := Ψ0;θ .

Even though there are relatively many components to take care of, the reader will no-
tice that the “gluing together” is essentially straightforward and strictly oriented at the
guidelines lined out along the drawing on page 145.

The proof of correctness is therefore not very creative, but rather lengthy because of
the many interconnections involved; it has been relegated to Sect. B.4, starting on page
190. It proves the following:

150 6. Relational Rewriting in Dedekind Categories

Theorem 6.5.8 If for a reasonable gluing setup the tabulation, sub-direct sum, and quo-
tient of Def. 6.5.7 exist, then this direct result construction produces a weak pullout.

For left-linear rules, we may again use the straight host construction for obtaining a weak
pullout complement. The preconditions are slightly changed, again: In the following, the
difference to the preconditions of Theorem 6.3.1 is in (ii), where X need not be almost-
injective on v1 anymore:

Theorem 6.5.9 [←199] Let a gluing object G along u0 over v0 and a standard gluing
morphism Φ : G → L be given, and a morphism X : L → A. Define:

v1 := ran (v0;Φ) u1 := ran (u0;Φ) c1 := v∼1 t u1

v3 := ran (v1;X) u3 := ran (u1;X) c3 := (ranX)∼ t u3

If the following conditions are satisfied:

(i) c1;X is univalent, and c1 v domX,

(ii) X is almost-injective besides ranΦ,

(iii) X;(ranX)∼ v u1;X,

(iv) v3 u v
∼
3 v u3 and

(v) X;u3 v u1;X.

then the straight host construction of Def. 5.4.6 delivers a weak pullout complement.

The proof of this theorem may be found in Sect. B.5.

For a double-weak-pullout approach, these last two theorems together establish the
technicalities, limited to left-linear rules. However, this double-weak-pullout approach
allows and preserves overlap between parameters.

Chapter 7

Conclusion and Outlook

In Chapters 2–4 we showed how unary signatures naturally give rise to strict Dedekind
categories of graph structures. This means that a concept of “relational graph-structure
homomorphism” makes sense, and allows the full range of relation-algebraic reasoning as
far as complements are not involved.

We then limited ourselves to an abstract setting of strict Dedekind categories. In
Chapter 5 we investigated the main categorical approaches to graph rewriting, namely
the double- and single-pushout approach, and the single- and double-pullback approach,
and in summary, the relation-algebraic approach turns out to be a good middle road for
formalising categoric graph-structure transformation:

• Much of the literature of the categoric approaches to graph rewriting uses a “sim-
plistic category-theoretic setting”: pushouts, pullbacks, monomorphisms, and other
concepts on that level are used, and contribute to attaining a useful level of abstrac-
tion, while still being accessible from a reasonable level of prerequisites.

However, not all important concepts can be formalised on this level: that part of
the literature then resorts to component-wise definitions of, for example, the gluing
condition or conflict-freeness.

• It is well-known, and frequently pointed out in the literature, that graph structures
with conventional graph-structure homomorphisms give rise to topoi. However, not
many of those interested in applications of graph transformations are equipped with
the prerequisites for being able to follow topos-theoretic arguments. Therefore, most
of the literature abstains from actually using the power of graph-structure topoi.

• The Dedekind category approach put forward in this thesis, although formally em-
bedded in category theory, in fact offers itself more to a typical relational style of
reasoning than to the typical category-theoretic style.

This kind of relational reasoning, with its inherent vicinity to matrix calculations and
linear algebra, is probably much more accessible to many people with diverse back-
grounds and an interest in graph transformation than even the “simplistic category-
theoretic setting”. Although in comparison with the latter, Dedekind categories
come equipped with more operations and laws, many of these operations and laws
are actually more familiar to prospective users of graph transformation than even
pushouts or pullbacks.

In addition, as we have shown, (strict) Dedekind categories allow to capture all the
central concepts of the categoric approaches to graph transformation in a component-
free manner.

Furthermore, the relation-algebraic approach allows rather fine-grained customisation and
combination of different approaches, as we documented with the pullout approaches of

151

152 7. Conclusion and Outlook

Chapter 6, which served as a “natural” incorporation of variable concepts into the double-
pushout approach, achieved via an amalgamation of pushouts and pullbacks, and made
possible through the unifying view of relational graph-structure homomorphisms.

For reasons of space we omitted discussion of labelled structures — in the unary algebra
approach, there are two possibilities to formalise labelled structures:

• Some sorts are designated as “label sorts”, and only those morphisms are considered
that for all label sorts have identities as the corresponding components.

• A special “label algebra” (similar to the alphabet graph on page 20) is selected, and
mappings from other algebras to this label algebra are considered as objects, and re-
lational morphisms respecting these label mappings as morphisms. This corresponds
to the comma-category approach that is also used under the name “typed graphs”,
see for example [RB88, BC99].

In both cases it is easy to establish that labelled unary algebras again give rise to Dedekind
categories, and that the standard construction of subobjects, quotients, direct sums and
direct products remain possible.

Some more work will need to deal with partial labellings and interactions between
labellings and parameter parts.

Future work will also have to tackle the usual body of questions about interaction of
and relations between several direct derivation steps, so that parallel and sequential inde-
pendence conditions, and embedding, amalgamation and distribution conditions may be
established, see [CMR+97, Sect. 3.2].

In addition, it will be interesting to investigate categories of hierarchical graphs, and
how these may be incorporated into our approach in such a way that parameters can be
matched across different levels of the hierarchy.

Also, one may want to investigate applications of Dedekind categories of graph struc-
tures over bases that are not just the Dedekind category Rel of concrete relations, but
perhaps fuzzy relations, or other Dedekind categories of abstract or concrete graph struc-
tures.

Bibliography

[ABH+92] Chritiene Aarts, Roland C. Backhouse, Paul Hoogendijk, Ed Voer-
mans, and Jaap van der Woude. A relational theory of data-
types. Working document, December 1992. 387 pp., available at
http://www.cs.nott.ac.uk/˜rcb/MPC/book.ps.gz. 25, 69, 70

[Ban93] Richard Banach. A fibration semantics for extended term graph rewriting.
In Sleep et al. [SPvE93], chapter 7, pages 91–100. 130

[Ban94] Richard Banach. Term graph rewriting and garbage collection using opfibra-
tions. Theoretical Computer Science, 131(1):29–94, August 1994. 130

[Bar79] M. Barr. ∗-Autonomous Categories, volume 752 of Lect. Notes in Math.
Springer, 1979. 25

[Bau95] Michel Bauderon. Parallel rewriting through the pullback approach. Elec-
tronic Notes in Computer Science, 2, 1995. SEGRAGRA ’95. 15

[Bau97] Michel Bauderon. A uniform approach to graph rewriting: The pullback
approach. In Manfred Nagl, editor, Graph Theoretic Concepts in Computer
Science, WG ’96, volume 1017 of LNCS, pages 101–115. Springer, 1997. 3,
15, 98

[BC99] Richard Banach and Andrea Corradini. Abstract diagrams and an opfibration
account of typed graph transformations, 1999. submitted to TCS. 152

[BdM97] Richard S. Bird and Oege de Moor. Algebra of Programming, volume 100 of
International Series in Computer Science. Prentice Hall, 1997. 25, 50

[BFH85] Paul Boehm, Harald-Reto Fonio, and Annegret Habel. Amalgamation of
graph transformations with applications to synchronization. In H. Ehrig,
C. Floyd, M. Nivat, and J. Thatcher, editors, Mathematical Foundations of
Software Development, volume 185 of LNCS, pages 267–283. Springer, 1985.
1

[BHSV94] Rudolf Berghammer, Armando M. Haeberer, Gunther Schmidt, and Paulo
A. S. Veloso. Comparing two different approaches to products in abstract
relation algebra. In Nivat et al. [NRRS94], pages 167–176. 70

[BJ96] Michel Bauderon and Hélène Jacquet. Categorical product as a generic graph
rewriting mechanism. Technical Report 1166–97, LaBRI, University of Bor-
deaux, 1996. see also [BJ01]. 15, 98, 116, 118

[BJ97] Michel Bauderon and Hélène Jacquet. Node rewriting in hypergraphs. In
Fabrizio d’Amore, Paola G. Franciosa, and Alberto Marchetti-Spaccamela,
editors, Graph Theoretic Concepts in Computer Science, WG ’96, volume
1197 of LNCS, pages 31–43. Springer, 1997. 15

153

154 BIBLIOGRAPHY

[BJ01] Michel Bauderon and Hélène Jacquet. Pullback as a generic graph rewriting
mechanism. Applied Categorical Structures, 9(1):65–82, 2001. 3, 15, 98, 116,
117, 119, 142, 153

[BKS97] Chris Brink, Wolfram Kahl, and Gunther Schmidt, editors. Relational Meth-
ods in Computer Science. Advances in Computing Science. Springer, Wien,
New York, 1997. 25, 156, 158, 163

[BMST99] R. Bardohl, M. Minas, A. Schuerr, and G. Taentzer. Application of graph
transformation to visual languages. In Ehrig et al. [EEKR99], chapter 3,
pages 105–180. 1

[Boo47] George Boole. The Mathematical Analysis of Logic, Being an Essay Toward
a Calculus of Deductive Reasoning. Macmillan, Cambridge, 1847. 24

[BRTV96] P. Burmeister, F. Rosselló, J. Torrens, and G. Valiente. Algebraic transfor-
mation of partial algebras I: Double-pushout approach, February 1996. 44

[BS99] E. Barendsen and S. Smetsers. Graph rewriting aspects of functional pro-
gramming. In Ehrig et al. [EEKR99], chapter 2, pages 63–102. 1

[BSZ86] Rudolf Berghammer, Gunther Schmidt, and Hans Zierer. Symmetric quo-
tients. Technical Report TUM-INFO 8620, Technische Universität München,
Fakultät für Informatik, 1986. 18 p. 123

[BSZ89] Rudolf Berghammer, Gunther Schmidt, and Hans Zierer. Symmetric quo-
tients and domain constructions. Inform. Process. Lett., 33(3):163–168, 1989.
123

[Bur86] Peter Burmeister. A Model Theoretic Oriented Approach to Partial Alge-
bras (Introduction to Theory and Application of Partial Algebras — Part I),
volume 32 of Mathematical Research. Akademie-Verlag Berlin, 1986. 44

[But98] Carsten Butz. Finitely presented Heyting algebras.
http://euclid.math.mcgill.ca/butz/publications/abstracts.html#heyting, Octo-
ber 1998. 50

[BW84] Michael Barr and Charles Wells. Toposes, Triples and Theories, volume 278
of Grundlehren Math. Wiss. Springer, Berlin, 1984. 25

[BW90] Michael Barr and Charles Wells. Category Theory for Computing Science.
Prentice Hall International Series in Computer Science. Prentice Hall, 1990.
130

[BZ86] Rudolf Berghammer and Hans Zierer. Relational algebraic semantics of de-
terministic and nondeterministic programs. Theoretical Computer Science,
43:123–147, 1986. 70

[C+96] J. Cuny et al., editors. Graph-Grammars and Their Application to Com-
puter Science, 5th International Workshop, Williamsburg, VA, USA, Novem-
ber 1994, Selected Papers, volume 1073 of LNCS. Springer, November 1996.
1, 162

BIBLIOGRAPHY 155

[Car82] Rodrigo Cardoso. Untersuchung paralleler Programme mit relationenalgebra-
ischen Methoden. Diplomarbeit under supervision of Gunther Schmidt, TU
München, 1982. 70

[CER78] Volker Claus, Hartmut Ehrig, and Grzegorz Rozenberg, editors. Graph-
Grammars and Their Application to Computer Science and Biology, Inter-
national Workshop, volume 73 of LNCS. Springer, November 1978. 1, 156

[CMR+97] Andrea Corradini, Ugo Montanari, Francesca Rossi, Hartmut Ehrig, Reiko
Heckel, and Michael Löwe. Algebraic approaches to graph transformation,
part I: Basic concepts and double pushout approach. In Rozenberg [Roz97],
chapter 3, pages 163–245. 3, 12, 152

[CR93a] Andrea Corradini and Francesca Rossi. Hyperedge replacement jungle rewrit-
ing for term-rewriting systems and logic programming. In Courcelle and
Rozenberg [CR93b], pages 7–48. Theoretical Computer Science 109 (1–2).
1

[CR93b] B. Courcelle and G. Rozenberg, editors. Selected Papers of the International
Workshop on Computing by Graph Transformation, Bordeaux, France, March
21–23, 1991. Elsevier, 1993. Theoretical Computer Science 109 (1–2). 1,
155, 157, 161

[CW87] Aurelio Carboni and Robert F. C. Walters. Cartesian bicategories I. Annals
of Pure and Applied Algebra, 49:11–32, 1987. 25

[Des99] Jules Desharnais. Monomorphic characterization of n-ary direct products.
Information Sciences, 119(3–4):275–288, December 1999. 71

[Des00] Jules Desharnais, editor. Fifth International Seminar on Relational Methods
in Computer Science, 10–14 January 2000, Valcartier, Québec, Canada, Par-
ticipant’s Proceedings. Université Laval, Département d’informatique, 2000.
25

[DG00] Dan Dougherty and Claudio Gutiérrez. Normal forms and reduction for
theories of binary relations. In Leo Bachmair, editor, Rewriting Techniques
and Applications, Proc. RTA 2000, volume 1833 of LNCS, pages 95–109.
Springer, 2000. 167

[DHP00a] F. Drewes, B. Hoffmann, and Detlef Plump. Hierarchical graph transforma-
tion. In Jerzy Tiuryn, editor, FoSSaCS 2000, volume 1784 of LNCS, pages
98–113. Springer, 2000. 21

[DHP00b] Frank Drewes, Berthold Hoffmann, and Detlef Plump. Hierarchical graph
transformation. Technical Report 1/00, Fachbereich Mathematik / Infor-
matik, Universität Bremen, 2000. 21

[DKH97] Frank Drewes, Hans-Jörg Kreowski, and Annegret Habel. Hyperedge replace-
ment graph grammars. In Rozenberg [Roz97], chapter 2, pages 95–162. 2

156 BIBLIOGRAPHY

[DM60] Augustus De Morgan. On the Syllogism: IV; and on the Logic of Relations.
Trans. of the Cambridge Philosophical Society, 10:331–358, 1860. (dated 12
November 1859) Reprinted in [DM66]. 24

[DM66] Augustus De Morgan. On the Syllogism, and Other Logical Writings. Yale
Univ. Press, New Haven, 1966. 156

[DMN97] Jules Desharnais, Ali Mili, and Thanh Tung Nguyen. Refinement and de-
monic semantics. In Brink et al. [BKS97], chapter 11, pages 166–183. 69

[dRE98] Willem-Paul de Roever and Kai Engelhardt. Data Refinement: Model-
Oriented Proof Methods and their Comparison, volume 47 of Cambridge
Tracts Theoret. Comput. Sci. Cambridge Univ. Press, 1998. 73

[DvGB97] Henk Doornbos, Netty van Gasteren, and Roland Backhouse. Programs and
datatypes. In Brink et al. [BKS97], chapter 10, pages 150–165. 69

[EB94] Hartmut Ehrig and Roswitha Bardohl. Specification techniques using dy-
namic abstract data types and application to shipping software. In Proc.
Shanghai Workshop on Software Technology, pages 70–85, 1994. 1

[EEKR99] Hartmut Ehrig, Gregor Engels, Hans-Jörg Kreowski, and Grzegorz Rozen-
berg, editors. Handbook of Graph Grammars and Computing by Graph Trans-
formation, Vol. 2: Applications, Languages and Tools. World Scientific, Sin-
gapore, 1999. 1, 154, 162, 163, 164

[EEKR00] Hartmut Ehrig, Gregor Engels, Hans-Jörg Kreowski, and Grzegorz Rozen-
berg, editors. Theory and Application of Graph Transformations, 6th Interna-
tional Workshop, TAGT’98, Paderborn, Germany, November 1998, Selected
Papers, volume 1764 of LNCS. Springer, 2000. 1, 156, 159

[EHK+97] Hartmut Ehrig, Reiko Heckel, Martin Korff, Michael Löwe, Leila Ribeiro, An-
nika Wagner, and Andrea Corradini. Algebraic approaches to graph trans-
formation, part II: Single pushout approach and comparison with double
pushout approach. In Rozenberg [Roz97], chapter 4, pages 247–312. 3, 122

[EHKPP91] Hartmut Ehrig, Annegret Habel, Hans-Jörg Kreowski, and Francesco Parisi-
Presicce. From graph grammars to high level replacement systems. In Ehrig
et al. [EKR91], pages 269–287. 24

[EHL+00] Hartmut Ehrig, Reiko Heckel, Mercè Llabreés, Fernando Orejas, Julia Pad-
berg, and Grzegorz Rozenberg. Double-pullback graph transitions: A rule-
based framework with incomplete information. In Ehrig et al. [EEKR00],
pages 85–102. 130

[Ehr78] Hartmut Ehrig. Introduction to the algebraic theory of graph grammars. In
Claus et al. [CER78], pages 1–69. 3

[Ehr87] Hartmut Ehrig. Tutorial Introduction to the Algebraic Approach of Graph-
Grammars. In Ehrig et al. [ENRR87], pages 3–14. 3

BIBLIOGRAPHY 157

[EHTE97] Gregor Engels, Reiko Heckel, Gabriele Taentzer, and Hartmut Ehrig. A com-
bined reference model- and view-based approach to system specification. Intl.
Journal of Software and Knowledge Engineering, 7(4):457–477, 1997. 130

[EKL91] Hartmut Ehrig, Martin Korff, and Michael Löwe. Tutorial introduction to the
algebraic approach of graph grammars based on double and single pushouts.
In Ehrig et al. [EKR91], pages 24–37. 3

[EKR91] Hartmut Ehrig, Hans-Jörg Kreowski, and Grzegorz Rozenberg, editors.
Graph-Grammars and Their Application to Computer Science, 4th Interna-
tional Workshop, volume 532 of LNCS. Springer, March 1991. 1, 156, 157,
160

[EL93] Hartmut Ehrig and Martin Löwe. The ESPRIT Basic Research Working
Group COMPUGRAPH “Computing by Graph Transformation”: a survey.
In Courcelle and Rozenberg [CR93b], pages 3–6. Theoretical Computer Sci-
ence 109 (1–2). 120

[EM85] Hartmut Ehrig and Bernd Mahr. Fundamentals of Algebraic Specification
(Volumes 1 and 2). Springer, 1985. 30

[ENR82] Hartmut Ehrig, Manfred Nagl, and Grzegorz Rozenberg, editors. Graph-
Grammars and Their Application to Computer Science, 2nd International
Workshop, volume 153 of LNCS. Springer, 1982. 1

[ENRR87] Hartmut Ehrig, Manfred Nagl, Grzegorz Rozenberg, and Azriel Rosenfeld,
editors. Graph-Grammars and Their Application to Computer Science, 3rd
International Workshop, volume 291 of LNCS. Springer, December 1987. 1,
156, 160

[EPP94] Hartmut Ehrig and Francesco Parisi-Presicce. Interaction between algebraic
specification grammars and modular system design. In Nivat et al. [NRRS94],
pages 217–224. 12

[EPS73] Hartmut Ehrig, M. Pfender, and H. J. Schneider. Graph grammars: An
algebraic approach. In Proc. IEEE Conf. on Automata and Switching Theory,
SWAT ’73, pages 167–180, 1973. 1, 3, 7

[ER97] Joost Engelfriet and Grzegorz Rozenberg. Node replacement graph gram-
mars. In Rozenberg [Roz97], chapter 1, pages 1–94. 2

[ET00] Hartmut Ehrig and Gabriele Taentzer, editors. Proc. Joint APPLIGRAPH /
GETGRATS Workshop on Graph Transformation Systems (GRATRA 2000).
TU Berlin, Fachbereich 13: Informatik, 2000. Report Nr. 2000-2. 1

[FK87] Joseph H. Fasel and Robert M. Keller, editors. Graph Reduction: Proceedings
of a Workshop, volume 279 of LNCS, Santa Fé, New Mexico, 1987. Springer.
1

158 BIBLIOGRAPHY

[FK98] Hitoshi Furusawa and Wolfram Kahl. A study on symmetric quotients. Tech-
nical Report 1998-06, Fakultät für Informatik, Universität der Bundeswehr
München, December 1998. 124

[FS90] Peter J. Freyd and Andre Scedrov. Categories, Allegories, volume 39 of
North-Holland Mathematical Library. North-Holland, Amsterdam, 1990. 25,
67, 69, 70, 85, 98, 99, 100, 124

[Fur98] Hitoshi Furusawa. Algebraic Formalisations of Fuzzy Relations and Their
Representation Theorems. PhD thesis, Department of Informatics, Kyushu
University, March 1998. 84

[FW77] M. Farzan and D.A. Waller. Kronecker products and local joins of graphs.
Can. J. Math., XXIX(2):255–269, 1977. 18

[GKOT00] Yuri Gurevich, Philipp W. Kutter, Martin Odersky, and Lothar Thiele, edi-
tors. Abstract State Machines, Theory and Applications, International Work-
shop ASM 2000, Monte Veritá, Switzerland, volume 1912 of LNCS. Springer,
2000. 30, 46

[Gol84] Robert Goldblatt. Topoi, The Categorical Analysis of Logic, volume 98 of
Studies in Logic and the Foundations of Mathematics. North-Holland, Ams-
terdam, revised edition, 1984. 12, 25

[Grä78] George Grätzer. General Lattice Theory. Birkhäuser, Basel, 1978. 34, 49

[Grä79] George Grätzer. Universal Algebra. Springer, New York, second edition
edition, 1979. (first edition 1968). 44

[Gur91] Yuri Gurevich. Evolving algebras: A tutorial introduction. Bull. of the
European Association for Theoretical Computer Science (EATCS), 43:264–
286, 1991. 30, 46

[Gut99] Claudio Gutiérrez. The Arithmetic and Geometry of Allegories: Normal
Forms and Complexity of a Fragment of the Theory of Relations. PhD thesis,
Wesleyan University, 1999. 167

[Hec98] Reiko Heckel. Open Graph Transformation Systems, A New Approach to the
Compositional Modelling of Concurrent and Reactive Systems. PhD thesis,
Fachbereich 13 — Informatik der Technischen Universität Berlin, 1998. 129

[HEWC97] Reiko Heckel, Hartmut Ehrig, Uwe Wolter, and Andrea Corradini. Loose se-
mantics and constraints for graph transformation systems. Technical Report
97/7, Fachbereich Informatik, TU Berlin, 1997. 130

[HF98] Armando Haeberer and Marcelo Frias. Relational methods in computer sci-
ence, special issue devoted to RelMiCS 2 in Paraty, July 1995. Journal of the
IGPL, 6(2), March 1998. 25

[HFBV97] Armando Haeberer, Marcelo Frias, Gabriel Baum, and Paulo Veloso. Fork
algebras. In Brink et al. [BKS97], chapter 4, pages 54–69. 70

BIBLIOGRAPHY 159

[HMP00] Annegret Habel, Jürgen Müller, and Detlef Plump. Double-pushout graph
transformation revisited. Technical report, Fachbereich Mathematik und In-
formatik, Universität Bremen, 2000. 110

[HMP01] Annegret Habel, Jürgen Müller, and Detlef Plump. Double-pushout graph
transformation revisited. Mathematical Structures in Computer Science,
11(4), 2001. 8

[HP91] B. Hoffmann and Detlef Plump. Implementing term rewriting by jungle eval-
uation. Informatique théorique et applications/Theoretical Informatics and
Applications, 25(5):445–472, 1991. 1

[Jac99] Hélène Jacquet. Une approche catégorique de la réécriture de sommets dans
les graphes. PhD thesis, Université Bordeaux 1, January 1999. 15, 98, 116

[JKH00] Hélène Jacquet and Renate Klempien-Hinrichs. Node replacement in hyper-
graphs: Translating NCE rewriting into the pullback approach. In Ehrig
et al. [EEKR00], pages 117–130. 142

[Jón72] Bjarni Jónsson. Topics in Universal Algebra, volume 250 of Lect. Notes in
Math. Springer, 1972. 41

[Jon90] C. V. Jones. An introduction to graph-based modeling systems, part I:
Overview. ORSA Journal on Computing, 2(2):136–151, 1990. 1

[Jon91] C. V. Jones. An introduction to graph-based modeling systems, part II:
Graph-grammars and the implementation. ORSA Journal on Computing,
3(3):180–206, 1991. 1

[Jon92] C. V. Jones. Attributed graphs, graph-grammars, and structured modeling.
Annals of OR, 38:281–324, 1992. 1

[JS67] J. Johnson and R. L. Seifert. A survey of multi-unary algebras. Mimeo-
graphed seminar notes, U. C. Berkeley, 1967. 26 pages. 41

[JS99] Ali Jaoua and Gunther Schmidt. Relational methods in computer science,
special issue devoted to RelMiCS 3 in Hammamet, January 1997. Information
Sciences, 119(3–4):131–314, December 1999. 25

[Kah96] Wolfram Kahl. Algebraische Termgraphersetzung mit gebundenen Variablen.
Reihe Informatik. Herbert Utz Verlag Wissenschaft, München, 1996. ISBN 3-
931327-60-4; also Doctoral Diss. at Univ. der Bundeswehr München, Fakultät
für Informatik. 1, 130, 185

[Kah97] Wolfram Kahl. A fibred approach to rewriting — how the duality between
adding and deleting cooperates with the difference between matching and
rewriting. Technical Report 9702, Fakultät für Informatik, Universität der
Bundeswehr München, May 1997. 130

[Kah99] Wolfram Kahl. Relational matching for graphical calculi of relations. Infor-
mation Sciences, 119(3–4):253–273, December 1999. 21

160 BIBLIOGRAPHY

[Kaw73a] Yasuo Kawahara. Matrix calculus in I-categories and an axiomatic charac-
terization of relations in a regular category. Mem. Fac. Sci. Kyushu Univ.
Ser. A, 27(2):249–273, 1973. 25

[Kaw73b] Yasuo Kawahara. Notes on the universality of relational functors. Mem. Fac.
Sci. Kyushu Univ. Ser. A, 27(2):275–289, 1973. 25

[Kaw73c] Yasuo Kawahara. Relations in categories with pullbacks. Mem. Fac. Sci.
Kyushu Univ. Ser. A, 27(1):149–173, 1973. 25

[Kaw90] Yasuo Kawahara. Pushout-complements and basic concepts of grammars in
toposes. Theoretical Computer Science, 77:267–289, 1990. 12, 98, 104, 107,
108, 110, 112, 113

[Ken87] Richard Kennaway. On “On Graph Rewritings”. Theoretical Computer Sci-
ence, 52:37–58, 1987. 3

[Ken91] Richard Kennaway. Graph rewriting in some categories of partial morphisms.
In Ehrig et al. [EKR91], pages 490–504. 3, 14

[KFM99] Yasuo Kawahara, Hitoshi Furusawa, and Masao Mori. Categorical represen-
tation theorems of fuzzy relations. Information Sciences, 119(3–4):235–251,
December 1999. 84

[Kre87] Hans-Jörg Kreowski. Is Parallelism Already Concurrency? Part 1: Deriva-
tions in Graph Grammars. In Ehrig et al. [ENRR87], pages 343–360. 1

[KS00] Wolfram Kahl and Gunther Schmidt. Exploring (finite) Relation Algebras
using Tools written in Haskell. Technical Report 2000-02, Fakultät für Infor-
matik, Universität der Bundeswehr München, October 2000. http://ist.unibw-
muenchen.de/relmics/tools/RATH/. 29, 70

[KSW94] Peter Kempf, Gunther Schmidt, and Michael Winter. Konstruktion seman-
tischer Bereiche aus algebraischen Spezifikationen. Technical Report 94/04,
Univ. der Bundeswehr München, Fakultät für Informatik, 1994.

[KW87] Hans-Jörg Kreowski and Anne Wilharm. Is Parallelism Already Concur-
rency? Part 2: Non Sequential Processes in Graph Grammars. In Ehrig
et al. [ENRR87], pages 361–377. 1

[Law63] F. William Lawvere. Functorial semantics of algebraic theories. Proc. Nat.
Acad. Sci. USA, 50:869–872, 1963. 30

[LC79] Aristid Lindenmayer and Karel Culik II. Growing cellular systems: Genera-
tion of graphs by parallel rewriting. Int. J. General Systems, 5:45–55, 1979.
1

[LE91] Michael Löwe and Hartmut Ehrig. Algebraic approach to graph transforma-
tion based on single pushout derivations. In R. H. Möhring, editor, Graph-
Theoretic Concepts in Computer Science, WG ’90, volume 484 of LNCS,
pages 338–353. Springer, 1991. 3, 121

BIBLIOGRAPHY 161

[Löw90] Michael Löwe. Algebraic approach to graph transformation based on single
pushout derivations. Technical Report 90/05, TU Berlin, 1990. 3, 114, 120,
121

[Löw93] Martin Löwe. Algebraic approach to single-pushout graph transformation.
In Courcelle and Rozenberg [CR93b], pages 181–224. Theoretical Computer
Science 109 (1–2). 3, 120, 121

[Mad95] Roger Duncan Maddux. On the derivation of identities involving projection
functions. In Csirmaz, Gabbay, and de Rijke, editors, Logic Colloquium ’92,
pages 145–163, Stanford, January 1995. Center for the Study of Language
and Information Publications. 70

[NRRS94] Maurice Nivat, Charles Rattray, Teodore Rus, and Giuseppe Scollo, editors.
Proc. 3rd Internat. Conf. Algebraic Methodology and Software Technology,
Enschede, June 21–25, Workshops in Computing. Springer, 1994. 153, 157

[NSM00] Manfred Nagl, Andreas Schürr, and Manfred Münch, editors. Applications
of Graph Transformations with Industrial Relevance, Proc. AGTIVE’99,
Kerkrade, The Netherlands, Spt. 1999, volume 1779 of LNCS. Springer, 2000.
1

[Orl98] Ewa Orlowska, editor. Relational Methods in Logic, Algebra and Com-
puter Science, 4th International Seminar RelMiCS, Warsaw, Poland, 14–20
September 1998, Extended Abstracts. Stefan Banach International Mathemat-
ical Center, Warsaw, 1998. 25

[OS80] Jean-Pierre Olivier and Dany Serrato. Catégories de Dedekind. Morphismes
dans les catégories de Schröder. C. R. Acad. Sci. Paris Ser. A-B, 290:939–
941, 1980. 25, 67, 85

[OS82] Jean-Pierre Olivier and Dany Serrato. Approach to an axiomatic study on
the fuzzy relations on finite sets. In M. M. Gupta and E. Sanchez, editors,
Fuzzy Information and Decision Processes. North-Holland, 1982. 25

[OS95] Jean-Pierre Olivier and Dany Serrato. Squares and rectangles in relation
categories – three cases: Semilattice, distributive lattice and boolean non-
unitary. Fuzzy Sets and Systems, 72:167–178, 1995. 67

[Pad82] Peter Padawitz. Graph grammars and operational semantics. Theoretical
Computer Science, 19(1):117–141, 1982. 1

[Pei70] Charles Sanders Peirce. Description of a notation for the logic of relatives,
resulting from an amplification of the conceptions of Boole’s calculus of logic.
Memoirs of the American Academy of Sciences, 9:317–378, 1870. Reprint by
Welch, Bigelow and Co., Cambridge, MA, 1870, pp. 1–62. Also reprinted in
[Pei33] and [Pei84]. 24

[Pei33] Charles Sanders Peirce. C. S. Peirce Collected Papers. Harvard Univ. Press,
Cambridge, 1933. edited by C. Hartshorne and P. Weiss. 161

162 BIBLIOGRAPHY

[Pei84] Charles Sanders Peirce. Writings of Charles S. Peirce, A Chronological Edi-
tion. Indiana Univ. Press, Bloomington, 1984. edited by Edward C. Moore,
Max H. Fisch, Christian J. W. Kloesel, Don D. Roberts, and Lynn A. Ziegler.
161

[PH96] Detlef Plump and Annegret Habel. Graph unification and matching. In Cuny
et al. [C+96], pages 75–89. 15, 21

[PL90] P. Prusinkiewicz and A. Lindenmayer. The Algorithmic Beauty of Plants.
Springer, New York, 1990. 1

[Plu99] Detlef Plump. Term graph rewriting. In Ehrig et al. [EEKR99], chapter 1,
pages 3–61. 1

[PP93] Francesco Parisi-Presicce. Single vs. double pushout derivation of graphs.
In Ernst Mayr, editor, Graph Theoretic Concepts in Computer Science, WG
’92, volume 657 of LNCS, pages 248–262. Springer, 1993. 12

[PR69] John L. Pfaltz and A. Rosenfeld. Web grammars. In Proc. Int. Joint Conf.
Art. Intelligence, pages 609–619, Washington, 1969. 1

[PvE93] Rinus Plasmeijer and Marko van Eekelen. Functional Programming and
Parallel Graph Rewriting. International Computer Science Series. Addison-
Wesley, 1993. 1

[Rao84] J. C. Raoult. On graph rewritings. Theoretical Computer Science, 32:1–24,
1984. 3

[RB88] D.E. Rydeheard and R.M. Burstall. Computational Category Theory. Pren-
tice Hall, 1988. 152

[Rig48] Jacques Riguet. Relations binaires, fermetures, correspondances de Galois.
Bull. Soc. Math. France, 76:114–155, 1948. 67, 124

[Roz97] Grzegorz Rozenberg, editor. Handbook of Graph Grammars and Computing
by Graph Transformation, Vol. 1: Foundations. World Scientific, Singapore,
1997. 1, 3, 12, 155, 156, 157, 163

[Sch95] Ernst Schröder. Vorlesungen über die Algebra der Logik (exacte Logik). Teub-
ner, Leipzig, 1895. Vol. 3, Algebra und Logik der Relative, part I, 2nd edition
published by Chelsea, 1966. 24

[Sch70] H. J. Schneider. Chomsky-Systeme für partielle Ordnungen. Arbeitsber.
d. Inst. f. Math. Masch. u. Datenver. 3, 3, Friedrich-Alexander-Universität
Erlangen-Nürnberg, 1970. 1

[Sch76] Gunther Schmidt. Eine relationenalgebraische Auffassung der Graphentheo-
rie. In H. Noltemeier, editor, Graphen, Algorithmen, Datenstrukturen (WG
’76), pages 315–325. Hanser, 1976. 25

BIBLIOGRAPHY 163

[Sch77] Gunther Schmidt. Programme als partielle Graphen. Habil. Thesis, Fachbere-
ich Mathematik der Technischen Univ. München, Bericht 7813, 1977. English
as [Sch81a, Sch81b]. 25, 26, 70, 74

[Sch81a] Gunther Schmidt. Programs as partial graphs I: Flow equivalence and cor-
rectness. Theoretical Computer Science, 15:1–25, 1981. 25, 163

[Sch81b] Gunther Schmidt. Programs as partial graphs II: Recursion. Theoretical
Computer Science, 15(2):159–179, 1981. 163

[Sch90] Hans Jürgen Schneider. Describing distributed systems by categorical graph
grammars. In Manfred Nagl, editor, Graph-Theoretic Concepts in Computer
Science, WG ’89, volume 411 of LNCS, pages 121–135. Springer, 1990. 1

[Sch97] Andy Schürr. Programmed graph replacement systems. In Rozenberg
[Roz97], pages 479–546. 3

[SE93] Hans Jürgen Schneider and Hartmut Ehrig, editors. Graph Transformations
in Computer Science, Proc. International Workshop Dagstuhl Castle, Ger-
many, January 1993, volume 776 of LNCS. Springer-Verlag, 1993. 1

[SHW97] Gunther Schmidt, Claudia Hattensperger, and Michael Winter. Heteroge-
neous relation algebra. In Brink et al. [BKS97], chapter 3, pages 39–53. 25,
69

[Spi89] J. M. Spivey. The Z Notation: A Reference Manual. Prentice Hall Interna-
tional Series in Computer Science. Prentice-Hall, 1989. Out of print; available
via URL: http://spivey.oriel.ox.ac.uk/˜mike/zrm/. 31

[SPvE93] M.R. Sleep, M.J. Plasmeijer, and M.C.J.D. van Eekelen, editors. Term Graph
Rewriting: Theory and Practice. Wiley, 1993. 1, 153

[SS85] Gunther Schmidt and Thomas Ströhlein. Relation algebras — concept of
points and representability. Discrete Math., 54:83–92, 1985. 25

[SS89] Gunther Schmidt and Thomas Ströhlein. Relationen und Graphen. Mathe-
matik für Informatiker. Springer, Berlin, 1989. English as [SS93]. 25

[SS93] Gunther Schmidt and Thomas Ströhlein. Relations and Graphs, Discrete
Mathematics for Computer Scientists. EATCS-Monographs on Theoretical
Computer Science. Springer, 1993. 25, 26, 70, 74, 86, 96, 103, 124, 163

[SWZ99] Andy Schürr, Andreas J. Winter, and A. Zündorf. The PROGRES approach:
Language and environment. In Ehrig et al. [EEKR99], chapter 13, pages 487–
550. 3

[Tar41] Alfred Tarski. On the calculus of relations. Journal of Symbolic Logic,
6(3):73–89, 1941. 24

[Tar52] Alfred Tarski. On representable relation algebras. Bull. Amer. Math. Soc.,
58:172, 1952. Abstract 145. 24

164 BIBLIOGRAPHY

[TG87] Alfred Tarski and Steven Givant. A Formalization of Set Theory without
Variables, volume 41 of Amer. Math. Soc. Colloq. Publ. Amer. Math. Soc.,
Providence, 1987. 70

[Vic89] Steven Vickers. Topology via Logic, volume 5 of Cambridge Tracts Theoret.
Comput. Sci. Cambridge Univ. Press, 1989. 34

[WB98] MichaÃlWalicki and Marcin BiaÃlasik. Categories of relational structures. In
F. Parisi-Presicce, editor, WADT’97, 12th workshop on Recent Trends in
Algebraic Development Techniques, volume 1376 of LNCS. Springer, 1998.
74

[WG96] Annika Wagner and Martin Gogolla. Defining operational behaviour of object
specifications by attributed graph transformations. Fundamenta Informati-
cae, 26:407–431, 1996. 1

[WG99] Annika Wagner and Martin Gogolla. Semantics of object-oriented languages.
In Ehrig et al. [EEKR99], chapter 4, pages 181–211. 1

[Wol98] Frank Wolter. On logics with coimplication. Journal of Philosophical Logic,
27(4):353–387, 1998. 50

[Zie88] Hans Zierer. Programmierung mit Funktionsobjekten: Konstruktive Erzeu-
gung semantischer Bereiche und Anwendung auf die partielle Auswertung.
Dissertation, Technische Univ. München, Fakultät für Informatik, 1988. Re-
port TUM-I8803. 70

[Zie91] Hans Zierer. Relation-algebraic domain constructions. Theoretical Computer
Science, 87:163–188, 1991. 70, 123

Appendix A

Proofs of Auxiliary Properties

A.1 Allegory Properties

Proposition A.1.1 [←67] Both modal rules

Q;R u S v Q;(R uQ`
;S) (m1)

Q;R u S v (Q u S;R`);R (m2)

together are equivalent to the Dedekind rule

Q;R u S v (Q u S;R
`
);(R uQ

`
;S) .

Proof : The modal rules follow immediately from the Dedekind rule:

Q;R u S v (Q u S;R
`
);(R uQ

`
;S) v

{

(Q u S;R`);R

Q;(R uQ`
;S)

Conversely, assume that the modal rules hold. Then we have

Q;R u S v Q;(R uQ`
;S) u S (m1)

v (Q u S;(R uQ`
;S)`);(R uQ`

;S) (m2)

v (Q u S;R`);(R uQ`
;S) . meet properties: R uQ`

;S v R

Lemma A.1.2 [←74, 76, 88, 91, 93, 100, 102, 129, 171, 176, 190–192] In every allegory, the following
hold:

(i) If F is univalent, then F ;(R u S) = F ;R u F ;S

(ii) If F is univalent, then (R;F`u S);F = R u S;F

(iii) If F is a mapping (i.e., total and univalent), then:

R;F v S ⇔ R v S;F`

F`
;R v S ⇔ R v F ;S

Proof :

(i) “v” follows from meet-subdistributivity. For “v” we use a modal rule and univalence
of F :

F ;R u F ;S v F ;(R u F
`
;F ;S) v F ;(R u S)

(ii) “w” is an instance of a modal rule. For “v” we use univalence of F :

(R;F
`
u S);F v R;F

`
;F u S;F v R u S;F

165

166 A. Proofs of Auxiliary Properties

(iii) “⇒”: since F is total, we have: R v R;F ;F` v S;F`

“⇐”: since F is univalent, we have: R;F v S;F`
;F v S

The second statement follows by conversion.

Lemma A.1.3 If CA,A and CA,B exist, we always have: CA,A;CA,B = CA,B.

Proof : “v” is immediate since CA,B is the greatest element of Mor[A,B].
For “w”, we know BA v CA,A, so we obtain:

CA,B = BA;CA,B v CA,A;CA,B

In the presence of universal relations, totality may equivalently be defined in an alternative
way which is frequently easier to handle in proofs:

Lemma A.1.4 [←68] If for two objects A and B of an allegory, the universal relations
CA,A and CA,B exist, then for every relation R : A ↔ B, the following three conditions
are equivalent:

(i) BA v R;R`

(ii) CA,A v R;CB,A

(iii) CA,C v R;CB,C for all objects C for which CA,C and CB,C exist.

Proof : iii) ⇒ ii) is trivial. ii) ⇒ i) follows with a modal rule:

BA = BA uCA,A v BA uR;CB,A v R;(R
`
;BA uCB,A) = R;R

`

i) ⇒ iii): For any object C, we have: CA,C = BA;CA,C v R;R`
;CA,C v R;CB,C .

We do not mention use of this lemma when proving or using totality in this way.

Lemma A.1.5 [←69, 76, 92, 168] For three objects A, B, and C in a locally co-complete
allegory, let R be a set of relations from B to C, and let F : A ↔ B be a univalent relation.
If R is non-empty or if F is total, then

u{R : R • F ;R} v F ;uR

(Equality then follows from co-completeness.)

Proof : First assume that R is non-empty and R0 ∈ R. Then:

u{R : R • F ;R} = F ;R0 uu{R : R • F ;R}

v F ;(R0 u F
`
;u{R : R • F ;R}) modal rule

v F ;(R0 uu{R : R • F`
;F ;R}) co-completeness

v F ;(R0 uu{R : R • R}) F univalent

= F ;uR

If R is empty, then, using totality of F :

u{R : R • F ;R} =u ∅ = C = F ;C = F ;u ∅ = F ;uR

A.2. Partial Identities 167

A.2 Partial Identities

With respect to partial identities, in all allegories, the following laws hold (some of them
can be used for an alternative axiomatisation of allegories, see [Gut99, DG00]):

Lemma A.2.1 [←168]

(i) (B uR);(B u S) = B uR u S

(ii) (B uR);(B u S) = (B u S);(B uR)

(iii) Q uR;(B u S) = (Q uR);(B u S)

(iv) B uQ;(R u S) = B u (Q uR`);S

(v) Q uQ;S;S` = Q;(B u S;S`)

Proof : (i) (B uR);(B u S) v B;(B u S) uR;(B u S)

v B uR u S

= (B uR);B u S

v (B uR);(B u (B uR)`;S) modal rule

v (B uR);(B u S)

(ii) follows from (i) together with commutativity of meet.

(iii) Q uR;(B u S) v (Q;(B u S)`uR);(B u S) modal rule

v (Q uR);(B u S)

v Q;(B u S) uR;(B u S) v Q uR;(B u S)

(iv) B uQ;(R u S) = B u (Q u B;(R u S)`);(R u S) modal rule

= B u (Q uR`u S`);(R u S)

v B u (Q uR`);S

The opposite inclusion is shown analogously.

(v) Q uQ;S;S` = Q;B uQ;S;S`

v Q;(B uQ`
;Q;S;S`) modal rule

= Q;(B u (S uQ`
;Q;S);S`) (iv)

v Q;(B u S;S`)

The opposite inclusion is trivial.

Lemma A.2.2 [←102, 108, 169, 187]

(i) dom ((Q uR);S) = B uQ;domS;R` and ran (Q;(R u S)) = B uR`
;ranQ;S

(ii) dom (Q;S) = dom (Q;domS) and ran (Q;S) = ran (ranQ;S)

(iii) dom (domR;S) = domR u domS and ran (R;ranS) = ranR u ranS

(iv) dom (Q uR;S) = dom (Q;S`uR)

(v) dom (Q uR) = B uQ;R`

168 A. Proofs of Auxiliary Properties

Proof : We only show the proofs for the respective first equalities:

(i) dom ((Q uR);S) = B u (Q uR);S;S`
;(Q`uR`)

= B u ((Q uR);S;S`uQ));R` Lemma A.2.1.iv)

= B u ((Q uR);S;S`u (Q uR));R` Lemma A.2.1.iv)

= B u (Q uR);(B u S;S`);R` Lemma A.2.1.v)

= B u (Q;(B u S;S`) uR);R` Lemma A.2.1.iii)

= B uQ;(B u S;S`);R` Lemma A.2.1.iv)

= B uQ;domS;R` Def. dom

(ii) dom (Q;S) = dom ((Q uQ);S)

= B uQ;domS;Q` (i)

= B uQ;domS;domS`
;Q`

= dom (Q;domS) Def. dom

(iii) With (ii): dom (domR;S) = dom (domR;domS) = domR;domS = domR u domS

(iv) dom (Q uR;S) v dom ((Q;S`uR);S) modal rule

= dom ((Q;S`uR);domS) (ii)

v dom (Q;S`uR)

The opposite inclusion is shown analogously.

(v) With (i): dom (Q uR) = dom ((Q uR);B) = B uQ;dom B;R` = B uQ;R`

Lemma A.2.3 [←76] (P uQ)× (Ru S) = (P ×R)u (Q× S), and analogously, given two
I-indexed families (Ri)i:I and (Si)i:I with Ri : A ↔ C and Si : B ↔ D for all i : I,

u{i : I • Ri} ×u{i : I • Si} =u{i : I • Ri × Si}

Proof :

(P uQ)× (R u S) = π;(P uQ);π`u ρ;(R u S);ρ`

= π;P ;π`u π;Q;π`u ρ;R;ρ`u ρ;S;ρ` π, ρ univalent

= (P ×R) u (Q× S)

u{i : I • Ri} ×u{i : I • Si}
= π;u{i : I • Ri};π

`u ρ;u{i : I • Si};ρ`

= u{i : I • π;Ri;π
`} uu{i : I • ρ;Si;ρ

`} Lemma A.1.5

= u({i : I • π;Ri;π
`} ∪ {i : I • ρ;Si;ρ

`}) meet comm. and assoc.

= u{i : I • π;Ri;π
`u ρ;Si;ρ

`} meet comm. and assoc.

= u{i : I • Ri × Si}

A.3. Dedekind Category Properties 169

Note that this property crucially relies on the associativity of the meets in the product
factors with the meet in the definition of the relational product×. Therefore, the analogous
property for joins cannot be shown; in general, we have

(P tQ)× (R t S) 6v (P ×R) t (Q× S) .

What can be shown is the opposite inclusion, or even the equality

(P tQ)× (R t S) = (P ×R) t (P × S) t (Q×R) t (Q× S) ;

however, this is not very useful in the contexts where we might seem to need such a
property.

A.3 Dedekind Category Properties

Lemma A.3.1 [←86] For the domain of the univalent part of R : A ↔ B, we have:
dom (upaR) = domR u dom (R`\B).

Furthermore, for all Y v domR we have

Y ;R is univalent ⇔ Y v dom (upaR)

Proof : The inclusion dom (upaR) = dom (R u R`\B) v domR u dom (R`\B) is obvious.
The opposite inclusion is obtained in the following way:

domR u dom (R`\B) = (B uR;R`) u (B u (R`\B);(R`\B)`)

= B uR;R`u (R`\B);(B/R)

v B uR;(R`uR`
;(R`\B);(B/R)) modal rule

v B uR;R`
;(R`\B);(B/R)

v B uR;B;(B/R) residual

= B uR;(B/R)

= B uR;(R`\B)`

= dom (R uR`\B) Lemma A.2.2.v)

= dom (upaR)

Furthermore, we have:

(domR);(R`\B) v R;R`
;(R`\B) v R;B = R

(dom (R`\B));R v (R`\B);(R`\B)`;R = (R`\B);(B/R);R v (R`\B);B = (R`\B)

170 A. Proofs of Auxiliary Properties

Then, assuming Y v domR, we have:

Y ;R is univalent

⇔ R`
;Y ;R v B

⇔ Y ;R v R`\B

⇔ Y v dom (R`\B) “⇐”: dom (R`\B);R v (R`\B) from above
“⇒”: Y v domR

⇔ Y v domR u dom (R`\B) Y v domR

⇔ Y v dom (R uR`\B)

⇔ Y v dom (upaR)

A.4 Semi-Complements and Partial Identities in Dedekind Categories

Lemma A.4.1 [←171]

(i) If F is univalent, then

(ranR)∼ = ran (((domF) r ran (R;F
`
));F) t (ranR t ranF)∼ ,

(ii) If F is total and univalent, then (ran (R;F`))∼ v ran ((ranR)∼;F`),

Proof :

(i) (ranR)∼ v Y ⇔ B v Y t ranR

⇔ ranF t (ranF)∼ v Y t ranR

⇔ ranF v Y t ranR and (ranF)∼ v Y t ranR

For the second inclusion, we have:

(ranF)∼ v Y t ranR ⇔ B v Y t ranR t ranF

⇔ (ranR t ranF)∼ v Y

For the first inclusion:

ranF v Y t ranR ⇔ F`
;F v Y t ranR F univalent

⇔ domF v F ;Y ;F`t F ;ranR;F` F univalent

⇔ domF v F ;Y ;F`t ran (R;F`) F univalent

⇔ (domF) r ran (R;F`) v F ;Y ;F`

⇔ F`
;((domF) r ran (R;F`));F v Y F univalent

⇔ ran (((domF) r ran (R;F`));F) v Y F univalent

(ii) First we have:

(ranR)∼ = ran (((domF) r ran (R;F`));F) t (ranR t ranF)∼

= ran ((ran (R;F`))∼;F) t (ranR t ranF)∼ domF = B

w ran ((ran (R;F`))∼;F)

= F`
;(ran (R;F`))∼;F F univalent

The whole inclusion is then equivalent to: (ran (R;F`))∼ v F ;(ranR)∼;F`.

A.4. Semi-Complements and Partial Identities in Dedekind Categories 171

Lemma A.4.2 [←179]

(i) If F is total, univalent and surjective, then

(ranR)∼ = ran ((ran (R;F
`
))∼;F) and (ran (R;F

`
))∼ v ran ((ranR)∼;F

`
)

(ii) If F is univalent and injective, then

(ran (R;F))∼ = ran (((domF) r ranR);F) t (ranF)∼

(iii) If F is total, univalent and injective, then

(ran (R;F))∼ = ran ((ranR)∼;F) t (ranF)∼

Proof :

(i) We start from Lemma A.4.1.i):

(ranR)∼

= ran (((domF) r ran (R;F`));F) t (ranR t ranF)∼

= ran ((ran (R;F`))∼;F) F surj.: (ranF)∼ = D

= F`
;(ran (R;F`))∼;F F univalent

With Lemma A.1.2.iii) we then obtain: (ran (R;F`))∼ v F ;(ranR)∼;F`.

(ii) (ran (R;F))∼ v Y ⇔ B v Y t ran (R;F)

⇔ ranF t (ranF)∼ v Y t ran (R;F)

⇔ ranF v Y t ran (R;F) ∧ (ranF)∼ v Y t ran (R;F)

The second inclusion easily resolves in the following way:

(ranF)∼ v Y t ran (R;F)

⇔ B v Y t ran (ranR;F) t ranF

⇔ B v Y t ranF ran (ranR;F) v ranF

⇔ (ranF)∼ v Y

For the first inclusion, we calculate:

ranF v Y t ran (R;F)

⇔ ranF v ranF ;Y ;ranF t ran (R;F)

⇔ ranF v F`
;F ;Y ;F`

;F t F`
;ranR;F

⇔ F`
;domF ;F v F`

;(F ;Y ;F`t ranR);F

⇔ domF v F ;Y ;F`t ranR F injective

⇔ (domF) r ranR v F ;Y ;F`

⇔ F`
;((domF) r ranR);F v Y F univalent and injective

⇔ ran (((domF) r ranR);F) v Y F univalent

(iii) follows immediately from (ii).

172 A. Proofs of Auxiliary Properties

A.5 Symmetric Quotients

The following properties of symmetric quotients are shown here using only the setting of
locally complete distributive allegories.

Lemma A.5.1 [←125]

(i) (syq(R,S))` = syq(S,R)

(ii) R;syq(R,S) = S;ran (syq(R,S))

(iii) syq(R,S);ranS v R`
;S

Proof :

(i) (syq(R,S))` = t{X | Q;X v S and X ;S`v Q` • X`}

= t{Y | Q;Y `v S and Y `
;S`v Q`}

= t{Y | S;Y v Q and Y ;Q`v S`} = syq(S,R)

(ii) R;syq(R,S) = R;syq(R,S);ran (syq(R,S))

v S;ran (syq(R,S)) Def. syq

v S;(syq(R,S))`;syq(R,S) Def. ran

= S;syq(S,R);syq(R,S) (i)

v R;syq(R,S) Def. syq

(iii) syq(R,S);ranS v syq(R,S);S`
;S v R`

;S

Lemma A.5.2 [←125] If R is difunctional, then R`
;R;syq(R,S) v syq(R,S), and

R`
;R;syq(R,S) = ranR;syq(R,S).

Proof : X v syq(R,S) ⇔ R;X v S and X ;S`v R`

⇒ R;X v S and R`
;R;X ;S`v R`

;R;R`

⇔ R;R`
;R;X v S and R`

;R;X ;S`v R`

⇔ R`
;R;X v syq(R,S)

The second statement easily follows from this:

R
`
;R;syq(R,S) = ranR;R

`
;R;syq(R,S) v ranR;syq(R,S) v R

`
;R;syq(R,S)

Appendix B

Proofs for Relational Rewriting, Chapter 6

B.1 Correctness of the Glued Tabulation Construction

For showing Theorem 6.2.6, let us first summarise the properties resulting from the sub-
constructions of Def. 6.2.5:

• C1
Xu-Gu

Ψu¾ C2 is a gluing for λ1;U ;λ`

2:

Xu;Ψ`

u = (λ1;U ;λ`

2)
∗¡ = λ1;U

∗¡;λ`

2 λ`

1
;Xu;Ψ`

u
;λ2 = c1;U

∗¡;c2

Xu;X`

u = (λ1;U ;λ`

2)
∗B = λ1;U

∗B;λ`

1 λ`

1
;Xu;X`

u
;λ1 = c1;U

∗B;c1

Ψu;Ψ`

u = (λ1;U ;λ`

2)
∗C = λ2;U

∗C;λ`

2 λ`

2
;Ψu;Ψ`

u
;λ2 = c2;U

∗C;c2

X`

u
;Xu tΨ`

u
;Ψu = B

(When using the porperties to the right, we immediately drop the c1 respectively c2
where they are imlied by the context.)

• G1
Xv¾ Gv

Ψv-G2 is a tabulation for V :

X
`

v
;Ψv = V X

`

v
;Xv = domV Ψ

`

v
;Ψv = ranV Xv;X

`

v uΨv;Ψ
`

v = B

• Gv
Λv-G3

Λu¾ Gu is a gluing for B:

Λv;Λ
`

u = B ∗¡ Λv;Λ
`

v = B∗B Λu;Λ
`

u = B ∗C Λ
`

v
;Λv t Λ

`

u
;Λu = B

C2
λ1;U ;λ`

2¾ C1 v2 V¾ v1

@
@
@
@@R

Ψu

gluing
¡

¡
¡

¡¡ª

Xu

@
@

@
@@I

Ψv

tabulation

¡
¡
¡
¡¡µ

Xv

Gu
B¾ Gv

@
@
@
@
@
@
@R

Λu

gluing
¡

¡
¡

¡
¡

¡
¡ª

Λv

G3

We first of all simplify the different compositions with B, in order to be able to eliminate
B ∗¡, B∗B, and B ∗C from later considerations.

X`

v
;B = X`

v
;Xv;λ`

1
;Xu tX`

v
;Ψv;λ`

2
;Ψu = domV ;λ`

1
;Xu t V ;λ`

2
;Ψu

Ψ`

v
;B = Ψ`

v
;Xv;λ`

1
;Xu tΨ`

v
;Ψv;λ`

2
;Ψu = V `

;λ`

1
;Xu t ranV ;λ`

2
;Ψu

Xu;B` = Xu;X`

u
;λ1;X

`

v tXu;Ψ`

u
;λ2;Ψ

`

v = λ1;U
∗B;X`

v t λ1;U
∗¡;Ψ`

v

Ψu;B` = Ψu;X`

u
;λ1;X

`

v tΨu;Ψ`

u
;λ2;Ψ

`

v = λ2;(U
`) ∗¡;X`

v t λ2;U
∗C;Ψ`

v

173

174 B. Proofs for Relational Rewriting, Chapter 6

X`

v
;B;B` = domV ;λ`

1
;Xu;B`t V ;λ`

2
;Ψu;B`

= domV ;λ`

1
;λ1;U

∗B;X`

v t domV ;λ`

1
;λ1;U

∗¡;Ψ`

v t

V ;λ`

2
;λ2;(U

`) ∗¡;X`

v t V ;λ`

2
;λ2;U

∗C;Ψ`

v

= domV ;c1;U
∗B;X`

v t domV ;c1;U
∗¡;Ψ`

v t V ;c2;(U
`) ∗¡;X`

v t V ;c2;U
∗C;Ψ`

v

= domV ;c1;U
∗B;X`

v t domV ;U ∗¡;Ψ`

v

Ψ`

v
;B;B` = V `

;λ`

1
;Xu;B`t ranV ;λ`

2
;Ψu;B`

= V `
;λ`

1
;λ1;U

∗B;X`

v t V
`
;λ`

1
;λ1;U

∗¡;Ψ`

v t

ranV ;λ`

2
;λ2;(U

`) ∗¡;X`

v t ranV ;λ`

2
;λ2;U

∗C;Ψ`

v

= V `
;c1;U

∗B;X`

v t V
`
;c1;U

∗¡;Ψ`

v t ranV ;c2;(U
`) ∗¡;X`

v t ranV ;c2;U
∗C;Ψ`

v

= ranV ;(U`) ∗¡;X`

v t ranV ;c2;U
∗C;Ψ`

v

Xu;B`
;B = λ1;U

∗B;X`

v
;B t λ1;U

∗¡;Ψ`

v
;B

= λ1;U
∗B;domV ;λ`

1
;Xu t λ1;U

∗B;V ;λ`

2
;Ψu t

λ1;U
∗¡;V `

;λ`

1
;Xu t λ1;U

∗¡;ranV ;λ`

2
;Ψu

= λ1;U
∗B;domV ;λ`

1
;Xu t λ1;U

∗¡;ranV ;λ`

2
;Ψu

Ψu;B`
;B = λ2;(U

`) ∗¡;X`

v
;B t λ2;U

∗C;Ψ`

v
;B

= λ2;(U
`) ∗¡;domV ;λ`

1
;Xu t λ2;(U

`) ∗¡;V ;λ`

2
;Ψu t

λ2;U
∗C;V `

;λ`

1
;Xu t λ2;U

∗C;ranV ;λ`

2
;Ψu

= λ2;(U
`) ∗¡;domV ;λ`

1
;Xu t λ2;U

∗C;ranV ;λ`

2
;Ψu

For Xu and Ψu, the third steps are contained in the first:

Xu;B`
;B;B` = λ1;U

∗B;domV ;λ`

1
;Xu;B`t λ1;U

∗¡;ranV ;λ`

2
;Ψu;B`

= λ1;U
∗B;domV ;λ`

1
;λ1;U

∗B;X`

v t λ1;U
∗B;domV ;λ`

1
;λ1;U

∗¡;Ψ`

v t

λ1;U
∗¡;ranV ;λ`

2
;λ2;(U

`) ∗¡;X`

v t λ1;U
∗¡;ranV ;λ`

2
;λ2;U

∗C;Ψ`

v

= λ1;U
∗B;domV ;c1;U

∗B;X`

v t λ1;U
∗B;domV ;U ∗¡;Ψ`

v t

λ1;U
∗¡;ranV ;(U`) ∗¡;X`

v t λ1;U
∗¡;ranV ;U ∗C;Ψ`

v

v λ1;U
∗B;X`

v t λ1;U
∗¡;Ψ`

v

= Xu;B`

Ψu;B`
;B;B` = λ2;(U

`) ∗¡;domV ;λ`

1
;Xu;B`t λ2;U

∗C;ranV ;λ`

2
;Ψu;B`

= λ2;(U
`) ∗¡;domV ;λ`

1
;λ1;U

∗B;X`

v t λ2;(U
`) ∗¡;domV ;λ`

1
;λ1;U

∗¡;Ψ`

v t

λ2;U
∗C;ranV ;λ`

2
;λ2;(U

`) ∗¡;X`

v t λ2;U
∗C;ranV ;λ`

2
;λ2;U

∗C;Ψ`

v

= λ2;(U
`) ∗¡;domV ;U ∗B;X`

v t λ2;(U
`) ∗¡;domV ;U ∗¡;Ψ`

v t

λ2;U
∗C;ranV ;(U`) ∗¡;X`

v t λ2;U
∗C;ranV ;c2;U

∗C;Ψ`

v

v λ2;(U
`) ∗¡;X`

v t λ2;U
∗C;Ψ`

v

= Ψu;B`

This implies Xu;(B`) ∗¡ = Xu;B` and Ψu;(B`) ∗¡ = Ψu;B`, and Xu;B ∗C = XutXu;B`
;B and

Ψu;B ∗C = Ψu tΨu;B`
;B.

B.1. Correctness of the Glued Tabulation Construction 175

For Xv and Ψv, the fourth is contained in the second:

X`

v
;B;B`

;B;B` = domV ;c1;U
∗B;X`

v
;B;B`t domV ;U ∗¡;Ψ`

v
;B;B`

= domV ;c1;U
∗B;domV ;c1;U

∗B;X`

v t domV ;c1;U
∗B;domV ;U ∗¡;Ψ`

v t

domV ;U ∗¡;ranV ;(U`) ∗¡;X`

v t domV ;U ∗¡;ranV ;c2;U
∗C;Ψ`

v

v domV ;c1;U
∗B;X`

v t domV ;U ∗¡;Ψ`

v

= X`

v
;B;B`

Ψ`

v
;B;B`

;B;B` = ranV ;(U`) ∗¡;X`

v
;B;B`t ranV ;c2;U

∗C;Ψ`

v
;B;B`

= ranV ;(U`) ∗¡;domV ;c1;U
∗B;X`

v t ranV ;(U`) ∗¡;domV ;U ∗¡;Ψ`

v t

ranV ;c2;U
∗C;ranV ;(U`) ∗¡;X`

v t ranV ;c2;U
∗C;ranV ;c2;U

∗C;Ψ`

v

v ranV ;(U`) ∗¡;X`

v t ranV ;c2;U
∗C;Ψ`

v

= Ψ`

v
;B;B`

So we have Ψ`

v
;B∗B = Ψ`

v tΨ`

v
;B;B` and X`

v
;B∗B = X`

v tX`

v
;B;B`.

These facts help to simplify the different components arising from the left-hand sides
of the glued tabulation conditions:

λ`

1
;Xu;B ∗C;X`

u
;λ1 = λ`

1
;Xu;X`

u
;λ1 t λ

`

1
;Xu;B`

;B;X`

u
;λ1

= c1;U
∗B t c1;U

∗B;domV ;λ`

1
;Xu;X`

u
;λ1 t U

∗¡;ranV ;λ`

2
;Ψu;X`

u
;λ1

= c1;U
∗B

λ`

1
;Xu;B ∗C;Ψ`

u
;λ2 = λ`

1
;Xu;Ψ`

u
;λ2 t λ

`

1
;Xu;B`

;B;Ψ`

u
;λ2

= λ`

1
;λ1;U

∗¡;λ`

2
;λ2 t c1;U

∗B;domV ;λ`

1
;Xu;Ψ`

u
;λ2 t U

∗¡;ranV ;λ`

2
;Ψu;Ψ`

u
;λ2

= U ∗¡ t c1;U
∗B;domV ;U ∗¡ t U ∗¡;ranV ;U ∗C

= U ∗¡

λ`

1
;Xu;(B`) ∗¡;Xv = λ`

1
;Xu;B`

;Xv = c1;U
∗B;X`

v
;Xv t U

∗¡;Ψ`

v
;Xv

= c1;U
∗B;domV t U ∗¡;V ` = U ∗¡;V `

λ`

1
;Xu;(B`) ∗¡;Ψv = λ`

1
;Xu;B`

;Ψv = c1;U
∗B;X`

v
;Ψv t U

∗¡;Ψ`

v
;Ψv

= c1;U
∗B;V t U ∗¡;ranV = U ∗¡;ranV

X`

v
;B ∗¡;Ψ`

u
;λ2 = X`

v
;B;Ψ`

u
;λ2 = X`

v
;Xv;U ∗¡ tX`

v
;Ψv;U ∗C;c2

= domV ;U ∗¡ t V ;U ∗C;c2 = domV ;U ∗¡

λ`

2
;Ψu;(B`) ∗¡;Ψv = λ`

2
;Ψu;B`

;Ψv = (U`) ∗¡;X`

v
;Ψv t c2;U

∗C;Ψ`

v
;Ψv

= (U`) ∗¡;V t c2;U
∗C;ranV = c2;U

∗C;ranV

λ`

2
;Ψu;B ∗C;Ψ`

u
;λ2 = λ`

2
;Ψu;Ψ`

u
;λ2 t λ

`

2
;Ψu;B`

;B;Ψ`

u
;λ2

= c2;U
∗C t (U`) ∗¡;domV ;λ`

1
;Xu;Ψ`

u
;λ2 t c2;U

∗C;ranV ;λ`

2
;Ψu;Ψ`

u
;λ2

= c2;U
∗C t (U`) ∗¡;domV ;U ∗¡ t c2;U

∗C;ranV ;U ∗C;c2

= c2;U
∗C

X`

v
;B∗B;Xv = X`

v
;Xv tX`

v
;B;B`

;Xv

= domV t domV ;c1;U
∗B;X`

v
;Xv t domV ;U ∗¡;Ψ`

v
;Xv

= domV t domV ;c1;U
∗B;domV t domV ;U ∗¡;V `

= domV t domV ;c1;U
∗B;domV

176 B. Proofs for Relational Rewriting, Chapter 6

X`

v
;B∗B;Ψv = X`

v
;Ψv tX`

v
;B;B`

;Ψv

= V t domV ;c1;U
∗B;X`

v
;Ψv t domV ;U ∗¡;Ψ`

v
;Ψv

= V t domV ;c1;U
∗B;V t domV ;U ∗¡;ranV

= V t domV ;U ∗¡;ranV

Ψ`

v
;B∗B;Ψv = Ψ`

v
;Ψv tΨ`

v
;B;B`

;Ψv

= ranV t ranV ;(U`) ∗¡;X`

v
;Ψv t ranV ;c2;U

∗C;Ψ`

v
;Ψv

= ranV t ranV ;(U`) ∗¡;V t ranV ;c2;U
∗C;ranV

= ranV t ranV ;c2;U
∗C;ranV

This allows us to show the first three glued tabulation properties:

X;Ψ` = (λ`

1
;Xu;Λu tX`

v
;Λv);(Λ

`

u
;Ψ`

u
;λ2 t Λ`

v
;Ψv)

= λ`

1
;Xu;Λu;Λ`

u
;Ψ`

u
;λ2 t λ

`

1
;Xu;Λu;Λ`

v
;Ψv tX`

v
;Λv;Λ`

u
;Ψ`

u
;λ2 tX`

v
;Λv;Λ`

v
;Ψv

= λ`

1
;Xu;B ∗C;Ψ`

u
;λ2 t λ

`

1
;Xu;(B`) ∗¡;Ψv tX`

v
;B ∗¡;Ψ`

u
;λ2 tX`

v
;B∗B;Ψv

= U ∗¡ t U ∗¡;ranV t domV ;U ∗¡ t V t domV ;U ∗¡;ranV

= U ∗¡ t V

X;X` = (λ`

1
;Xu;Λu tX`

v
;Λv);(Λ

`

u
;X`

u
;λ1 t Λ`

v
;Xv)

= λ`

1
;Xu;Λu;Λ`

u
;X`

u
;λ1 t λ

`

1
;Xu;Λu;Λ`

v
;Xv tX`

v
;Λv;Λ`

u
;X`

u
;λ1 tX`

v
;Λv;Λ`

v
;Xv

= λ`

1
;Xu;B ∗C;X`

u
;λ1 t λ

`

1
;Xu;(B`) ∗¡;Xv tX`

v
;B ∗¡;X`

u
;λ1 tX`

v
;B∗B;Xv

= c1;U
∗B t U ∗¡;V `t V ;U ∗¡ t domV t domV ;c1;U

∗B;domV

= domV t c1;U
∗B;c1

Ψ;Ψ` = (λ`

2
;Ψu;Λu tΨ`

v
;Λv);(Λ

`

u
;Ψ`

u
;λ2 t Λ`

v
;Ψv)

= λ`

2
;Ψu;Λu;Λ`

u
;Ψ`

u
;λ2 t λ

`

2
;Ψu;Λu;Λ`

v
;Ψv tΨ`

v
;Λv;Λ`

u
;Ψ`

u
;λ2 tΨ`

v
;Λv;Λ`

v
;Ψv

= λ`

2
;Ψu;B ∗C;Ψ`

u
;λ2 t λ

`

2
;Ψu;(B`) ∗¡;Ψv tΨ`

v
;B ∗¡;Ψ`

u
;λ2 tΨ`

v
;B∗B;Ψv

= c2;U
∗C t c2;U

∗C;ranV t ranV ;U ∗C;c2 t ranV t ranV ;c2;U
∗C;ranV

= ranV t c2;U
∗C;c2

We now prepare to show the last property, namely:

X
`
;c1;X tΨ

`
;c2;Ψ t (X

`
;v1;X uΨ

`
;v2;Ψ) = B .

With Lemma A.1.2.iii), we have:

Λ`

v
;Xv;λ`

1
;Xu;Λu v c3 ⇔ Xv;λ`

1
;Xu v Λv;Λ`

u ⇔ Xv;λ`

1
;Xu v B ∗¡

Λ`

v
;Xv;c1;X

`

v
;Λv v B ⇔ Xv;c1;X

`

v v Λv;Λ`

v ⇔ Xv;c1;X
`

v v B∗B

The last inclusion of the first row holds true by definition of B; the last inclusion of the
second row is shown as follows:

Xv;c1;X
`

v = Xv;λ`

1
;λ1;X

`

v = Xv;λ`

1
;λ1;λ

`

1
;λ1;X

`

v v Xv;λ`

1
;Xu;X`

u
;λ1;X

`

v v B;B`v B∗B

With these preparations, we get:

X`
;c1;X = (Λ`

u
;X`

u
;λ1 t Λ`

v
;Xv);c1;(λ

`

1
;Xu;Λu tX`

v
;Λv)

= Λ`

u
;X`

u
;λ1;λ

`

1
;Xu;Λu t Λ`

u
;X`

u
;λ1;X

`

v
;Λv t Λ`

v
;Xv;λ`

1
;Xu;Λu t Λ`

v
;Xv;c1;X

`

v
;Λv

= Λ`

u
;X`

u
;Xu;Λu t Λ`

u
;X`

u
;λ1;X

`

v
;Λv t Λ`

v
;Xv;λ`

1
;Xu;Λu t Λ`

v
;Xv;c1;X

`

v
;Λv

B.1. Correctness of the Glued Tabulation Construction 177

The corresponding inclusions for Ψ are shown in the same way, so we have the following
two-sided approximations for X`

;c1;X and Ψ`
;c2;Ψ:

Λ`

u
;X`

u
;Xu;Λu v X`

;c1;X v Λ`

u
;X`

u
;Xu;Λu t B ,

Λ`

u
;Ψ`

u
;Ψu;Λu v Ψ`

;c2;Ψ v Λ`

u
;Ψ`

u
;Ψu;Λu t B .

Taking the join, this yields:

c3 = Λ`

u
;Λu = Λ`

u
;(X`

u
;Xu tΨ`

u
;Ψu);Λu = Λ`

u
;X`

u
;Xu;Λu t Λ`

u
;Ψ`

u
;Ψu;Λu

v X`
;c1;X tΨ`

;c2;Ψ v Λ`

u
;X`

u
;Xu;Λu t Λ`

u
;Ψ`

u
;Ψu;Λu t B = B

Now let us consider the parameter components. We have:

X`
;v1;X = (Λ`

u
;X`

u
;λ1 t Λ`

v
;Xv);v1;(λ

`

1
;Xu;Λu tX`

v
;Λv)

= Λ`

u
;X`

u
;λ1;v1;λ

`

1
;Xu;Λu t Λ`

u
;X`

u
;λ1;X

`

v
;Λv t Λ`

v
;Xv;λ`

1
;Xu;Λu t Λ`

v
;Xv;X`

v
;Λv

The first join component of this is contained in c3:

Λ`

u
;X`

u
;λ1;v1;λ

`

1
;Xu;Λu v c3 ⇔ X`

u
;λ1;v1;λ

`

1
;Xu v Λu;Λ`

u

⇔ X`

u
;λ1;X

`

v
;Xv;λ`

1
;Xu v B ∗C

⇐ X`

u
;λ1;X

`

v
;Xv;λ`

1
;Xu v B`

;B

With these preparations, we then have (the inclusions for Ψ are obtained in the same
way):

Λ`

v
;Xv;X`

v
;Λv v X`

;v1;X v c3 t Λ`

v
;Xv;X`

v
;Λv

Λ`

v
;Ψv;Ψ`

v
;Λv v Ψ`

;v2;Ψ v c3 t Λ`

v
;Ψv;Ψ`

v
;Λv

From this, we may form the intersection and obtain:

v3 = Λ`

v
;Λv = Λ`

v
;(Xv;X`

v uΨv;Ψ`

v);Λv = Λ`

v
;Xv;X`

v
;Λv u Λ`

v
;Ψv;Ψ`

v
;Λv

v X`
;v1;X uΨ`

;v2;Ψ v c3 t (Λ`

v
;Xv;X`

v
;Λv u Λ`

v
;Ψv;Ψ`

v
;Λv) v c3 t v3

Now we may take both components together:

B = c3 t v3 v X
`
;c1;X tΨ

`
;c2;Ψ t (X

`
;v1;X uΨ

`
;v2;Ψ) v B

This completes the proof of the glued tabulation properties.

Proof of commutativity of pullouts (Theorem 6.2.7): The pullout construction
gives us:

Φ;X = Ξ;Ψ ⇔ Φ;λ
`

1
;Xu;Λu t Φ;X

`

v
;Λv = Ξ;λ

`

2
;Ψu;Λu t Ξ;Ψ

`

v
;Λv

178 B. Proofs for Relational Rewriting, Chapter 6

We only show one inclusion; the opposite inclusion follows in the same way.

Φ;λ`

1
;Xu;Λu v Ξ;λ`

2
;Ψu;Λu ⇔ Φ;λ`

1
;Xu v Ξ;λ`

2
;Ψu;Λu;Λ`

u

⇔ Φ;λ`

1
;Xu v Ξ;λ`

2
;Ψu;Λu;Λ`

u

⇔ Φ;λ`

1
;Xu v Ξ;λ`

2
;Ψu;B ∗C

⇐ Φ;λ`

1
;Xu v Ξ;λ`

2
;Ψu

⇔ Φ;λ`

1 v Ξ;λ`

2
;Ψu;X`

u

⇔ Φ;λ`

1 v Ξ;λ`

2
;λ2;(U

`) ∗¡;λ`

1

⇔ Φ;λ`

1 v Ξ;c2;(U
`) ∗¡;λ`

1

⇔ u0;Φ;λ`

1 v u0;Ξ;c2;(Ξ;u0;Φ
`) ∗¡;λ`

1 interf. pres.

⇔ u0;Φ;λ`

1 v u0;Ξ;(Ξ;u0;Φ
`) ∗¡;λ`

1 Def. c2

⇐ u0 v domΞ

For the variable component, we have to be rather careful, since we do not have full injec-
tivity of v0;Φ, but only almost-injectivity. We first show the inclusion of the v0-component
of the variable part in the right-hand side’s variable part:

v0;Φ;X`

v
;Λv v Ξ;Ψ`

v
;Λv

⇔ v0;Φ;X`

v v Ξ;Ψ`

v
;Λv;Λ`

v

⇔ v0;Φ;X`

v v Ξ;Ψ`

v
;B∗B

⇔ v0;Φ;X`

v v Ξ;Ψ`

v t Ξ;Ψ`

v
;B;B`

⇔ v0;Φ;X`

v v Ξ;Ψ`

v t Ξ;ranV ;(U`) ∗¡;X`

v t Ξ;ranV ;c2;U
∗C;Ψ`

v

⇐ v0;Φ;X`

v v Ξ;Ψ`

v t Ξ;ranV ;c2;U
∗C;Ψ`

v

⇔ v0;Φ;X`

v
;Ψv v Ξ t Ξ;ranV ;c2;U

∗C

⇔ v0;Φ;V v Ξ t Ξ;ranV ;c2;U
∗C

⇔ v0;Φ;Φ`
;v0;Ξ v Ξ t Ξ;v2;c2;(Φ

`
;u0;Ξ)

∗C

⇐ u0;v0;Φ;Φ`
;v0;u0;Ξ v Ξ;v2;c2;(Ξ

`
;u0;Φ;Φ`

;u0;Ξ)
∗ Φ almost-inj. bes. u0

⇐ u0;v0 v dom (Ξ;v2;c2)

To finish, it is sufficient to show inclusion of the u0-component in the right-hand side’s
interface part:

u0;Φ;X`

v
;Λv v Ξ;λ`

2
;Ψu;Λu ⇔ u0;Φ;X`

v v Ξ;λ`

2
;Ψu;Λu;Λ`

v

⇔ u0;Φ;X`

v v Ξ;λ`

2
;Ψu;(B`) ∗¡

⇔ u0;Φ;X`

v v Ξ;λ`

2
;Ψu;B`

⇔ u0;Φ;X`

v v Ξ;λ`

2
;λ2;(U

`) ∗¡;X`

v t Ξ;λ`

2
;λ2;U

∗C;Ψ`

v

⇔ u0;Φ;X`

v v Ξ;c2;(U
`) ∗¡;X`

v t Ξ;c2;U
∗C;Ψ`

v

⇐ u0;Φ;X`

v v Ξ;c2;U
`
;X`

v

⇔ u0;Φ;X`

v v Ξ;c2;Ξ
`
;u0;Φ;X`

v

⇐ u0 v dom (Ξ;c2)

B.2. Correctness of the Pullout Complement Construction 179

B.2 Correctness of the Pullout Complement Construction

Proof of Theorem 6.3.1: We have:

Φ`
;v0;Ξ = Φ`

;v0;Φ;X;Ψ` = v1;X;Ψ`

Φ`
;u0;Ξ = Φ`

;u0;Φ;X;Ψ` = u1;X;Ψ`

Φ`
;u0;Ξ;Ξ`

;u0;Φ = u1;X;Ψ`
;Ψ;X`

;u1 = u1;X;X`
;u1 ran (u1;X) v ranΨ

Ξ`
;u0;Φ;Φ`

;u0;Ξ = Ψ;X`
;u1;X;Ψ` v Ψ;Ψ` = B u1;X univalent

For the parameter component, we additionally have the following:

dom (Φ`
;v0;Ξ) = dom (v1;X;Ψ`) = dom (v1;X)

ran (Φ`
;v0;Ξ) = ran (Φ`

;v0;Φ;X;Ψ`) = ran (v1;X;Ψ`) = ran (v3;Ψ
`)

The partitioning of G2 into parameter part v2 and non-parameter part c2 can be copied
from G3:

c2 := ran (c3;Ψ
`)

v2 := ran (v3;Ψ
`) = ran (v0;Φ;X;Ψ`) = ran (v0;Ξ)

v3 = ran (v0;Φ;X) = ran (v0;Φ;X;Ψ`
;Ψ) = ran (v0;Ξ;Ψ) = ran (v2;Ψ)

c2 t v2 = ran (c3;Ψ
`) t ran (v3;Ψ

`) = ran ((c3 t v3);Ψ
`) = ran (Ψ`) = B

With all this, we can derive the four pullout conditions:

X;X` = c1 t u1;X;X`
;u1 t v1;domX

= c1 t (u1;X;X`
;u1)

+ t dom (v1;X) (ii)

= c1 t (Φ`
;u0;Ξ;Ξ`

;u0;Φ)
+ t dom (Φ`

;v0;Ξ)

= c1;(Φ
`
;u0;Ξ)

∗B;c1 t dom (Φ`
;v0;Ξ)

Ψ;Ψ` = B = c2 t ran (Φ
`
;v0;Ξ) = c2;(Φ

`
;u0;Ξ)

∗C;c2 t ran (Φ
`
;v0;Ξ)

X;Ψ` = ranΦ;X;Ψ` = u1;X;Ψ`t v1;X;Ψ` 5.4.7.vi)

= Φ`
;u0;Ξ t Φ`

;v0;Ξ = (Φ`
;u0;Ξ)

∗¡ t Φ`
;v0;Ξ

B = ranX t ranΨ (iii), (iv) imply gluing cond.

= ran (c1;X) t ran (v1;X) t ran (c2;Ψ) t ran (v2;Ψ)

= ran (c1;X) t ran (c2;Ψ) t (ran (v1;X) u ran (v2;Ψ)) ran (v1;X) = v3 = ran (v2;Ψ)

= ran (c1;X) t ran (c2;Ψ) t (X`
;v1;X u ran (v2;Ψ)) ran (v2;Ψ) v ran (v1;X)

= X`
;c1;X tΨ`

;c2;Ψ t (X`
;v1;X uΨ`

;v2;Ψ) c1;X and Ψ univalent

For showing that Ξ is a standard gluing morphism, we first show interface preservation of
Ξ, and we start with calculating v∼2 :

v∼2 = (ran (v3;Ψ
`))∼

= ran (((ranΨ) r v3);Ψ
`) t (domΨ)∼ Lemma A.4.2.ii)

= ran (((ranΨ) r v3);Ψ
`) Ψ total

= Ψ;((ranΨ) r v3);Ψ
` Ψ univalent

180 B. Proofs for Relational Rewriting, Chapter 6

Furthermore, the inclusion

((ranΨ) r v3) = ((ranX→ ran (Φ;X)) r v3) Def. Ψ

v (((ranX)∼ t ran (Φ;X)) r v3) Lemma 2.7.10

= (((ranX)∼ t (u3 t v3)) r v3)

v (ranX)∼ t u3 ,

together with (iv) and (vi) implies the following:

X;((ranΨ) r v3) v u1;X . (∗)

This allows us to obtain the second interface preservation condition:

dom (Ξ;(v∼2 t u2))

= dom (Ξ;Ψ;((ranΨ) r v3);Ψ
`t Ξ;Ψ;u3;Ψ

`)

= dom (Φ;X;Ψ`
;Ψ;((ranΨ) r v3);Ψ

`t Φ;X;Ψ`
;Ψ;u3;Ψ

`)

= dom (Φ;X;((ranΨ) r v3) t Φ;X;u3) u3 v ranΨ

= dom (Φ;X;((ranΨ) r v3) t Φ;u1;X) (vi), (ii)

= dom (Φ;u1;X) (∗)

= dom (Φ;u1) (ii)

= u0 Φ interface pres.

The first interface preservation condition follows from (v):

v2 u v
∼
2 = Ψ;v3;Ψ

`uΨ;((ranΨ) r v3);Ψ
`

= Ψ;(v3 u ((ranΨ) r v3));Ψ
` v Ψ;(v3 u v

∼
3);Ψ

` v Ψ;u3;Ψ
` = u2

Univalence of Ξ;b2 = Ξ;(u2 u v2) follows from the second interface preservation condition
together with univalence of Φ (i) and of u1;X (ii).

Univalence of u0;Ξ:

Ξ
`
;u0;Ξ = Ψ;X

`
;Φ

`
;u0;Φ;X;Ψ

`
= Ψ;X

`
;u1;X;Ψ

`
= Ψ;u2;Ψ

`
= u3

Totality of Ξ on u0:

domΞ = dom (Φ;X;Ψ`)

= dom (Φ;X;ranΨ)

= dom (Φ;X;(ranX→ ran (Φ;X)))

w dom (Φ;X;(ranX→ ran (Φ;X)))

w dom (Φ;X;ran (Φ;X)) Lemma 2.6.9

= dom (Φ;X)

= dom (Φ;domX)

w dom (Φ;u1) (ii)

= dom (Φ;ran (u0;Φ))

w dom (u0;Φ)

= u0 Def. 6.2.1.ii)

B.2. Correctness of the Pullout Complement Construction 181

Ξ almost-injective besides u0:

Ξ;Ξ` = Φ;X;Ψ`
;Ψ;X`

;Φ`

v Φ;X;X`
;Φ` Ψ univalent

v Φ;(B t u1;X;X`
;u1);Φ

` X alm. inj.

= Φ;Φ`t Φ;u1;X;X`
;u1;Φ

`

v B t u0;Φ;Φ`
;u0 t u0;Φ;X;X`

;Φ`
;u0 Φ alm. inj. and inf. pres.

= B t u0;Φ;X;X`
;Φ`

;u0 (ii)

= B t u0;Φ;X;Ψ`
;Ψ;X`

;Φ`
;u0 ran (Φ;X) v ranΨ

= B t u0;Ξ;Ξ`
;u0

For showing the correctness of the general pullout complement construction, we assume
throughout the remainder of this section the setup of the statement of Theorem 6.3.2,
where the construction proceeded along the following diagram:

L Φ¾ G

X

?

Ξ

?
A Ψ¾ H

λ
6@
@
@
@@R

ν

©©
©©

©©
©©

©©*

ι

¡
¡
¡
¡¡µ

κ

S Z - V

References (i) to (vii) refer to the preconditions of Theorem 6.3.2.

First of all, we show the analogon of Lemma 5.4.7.vi):

Lemma B.2.1 [←182, 183] X;c3 v u1;X , X;v3 = v1;X t u1;X;v3 , X;Ψ` = ranΦ;X;Ψ` .

Proof : X;c3 = X;(ranX)∼ tX;ran (u1;X)

v u1;X tX;X`
;u1;X (iii)

v u1;X t u1;X;X`
;u1;X (ii)

v u1;X (i)

X;v3 = X;ran (v1;X)

v X;X`
;v1;X;v3

v v1;X t u1;X;X`
;v1;X;v3 (ii)

v v1;X t u1;X;v3 (i)

X;Ψ` = X;ranΨ;Ψ` = X;(c3 t v3);Ψ
` = X;c3;Ψ

`tX;v3;Ψ
`

= u1;X;c3;Ψ
`t u1;X;v3;Ψ

`t v1;X;v3;Ψ
`

= u1;X;Ψ`t v1;X;Ψ` = (u1 t v1);X;Ψ` = ranΦ;X;Ψ`

182 B. Proofs for Relational Rewriting, Chapter 6

Lemma B.2.2 [←183] ranΨ = (ranX)∼ t ran (Φ;X)

Proof: ranΨ = ran (ι`;λ) t ran (κ`
;ν`) = ranλ t ran ν`

= (ranX)∼ t u3 t v3 = (ranX)∼ t ran (Φ;X)

Lemma B.2.3 [←182] c3;Θ = u3;v3

Proof : Because of image preservation, we have:

c3;Θ = ((ranX)∼ t u3);v3;Θ = u3;v3;Θ = u3;v3

Proof of Theorem 6.3.2: Z is univalent and injective:

Z`
;Z = ν`

;λ`
;λ;ν v ν`

;ν = B

Z;Z` = λ;ν;ν`
;λ` = λ;Θ;λ` = λ;u3;v3;λ

` v B Lemma B.2.3

This implies the following simpler shapes for the gluing properties for Z:

ι;κ` = Z ∗¡ = Z

ι;ι` = Z ∗B = B t Z;Z` = B

κ;κ` = Z ∗C = B

ι`;ι t κ`
;κ = B

Then we have:

Ψ`
;Ψ = (λ`

;ι t ν;κ);(ι`;λ t κ`
;ν`)

= λ`
;ι;ι`;λ t λ`

;ι;κ`
;ν`t ν;κ;ι`;λ t ν;κ;κ`

;ν`

= λ`
;λ t λ`

;λ;ν;ν`t ν;ν`
;λ`

;λ t ν;ν`

= c3 t c3;Θ tΘ;c3 tΘ

= c3 tΘ Lemma B.2.3

Ξ;Ξ` = Φ;X;Ψ`
;Ψ;X`

;Φ`

= Φ;X;(c3 tΘ);X`
;Φ`

= u0;Φ;X;c3;X
`
;Φ`

;u0 t v0;Φ;X;Θ;X`
;Φ`

;v0

= u0;Φ;X;X`
;Φ`

;u0 t v0;Φ;Φ`
;v0;Φ;X;X`

;Φ`
;v0 B.2.1, intf. pres., (iv)

= u0;Φ;X;X`
;Φ`

;u0 t v0;Φ;Φ`
;v0;Φ;Φ`

;v0 (ii)

= u0;Φ;X;X`
;Φ`

;u0 t v0;domΦ Def. 6.2.1.iv)

Univalence of u0;Φ shows Φ`
;u0;Ξ;Ξ`

;u0;Φ = Φ`
;u0;Φ;X;X`

;Φ`
;u0;Φ = u1;X;X`

;u1. The last
term is idempotent because of (i), so we have

X;X` = c1 t u1;X;X`
;u1 t v1;domX

= c1 t Φ`
;u0;Ξ;Ξ`

;u0;Φ t dom (v1;X)

= c1 t (Φ`
;u0;Ξ;Ξ`

;u0;Φ)
+ t dom (Φ`

;v0;Ξ)

= c1;(Φ
`
;u0;Ξ)

∗B;c1 t dom (Φ`
;v0;Ξ)

B.2. Correctness of the Pullout Complement Construction 183

Here, we have used the following result, obtained using Lemma B.2.2:

dom (Φ`
;v0;Ξ) = dom (Φ`

;v0;Φ;X;Ψ`) = dom (Φ`
;v0;Φ;X)

= dom (v1;X;Θ) = dom (v1;X;domΘ) = dom (v1;X;v3) = dom (v1;X)

Ψ is total and injective:

Ψ;Ψ` = (ι`;λ t κ`
;ν`);(λ`

;ι t ν;κ)

= ι`;λ;λ`
;ι t ι`;λ;ν;κ t κ`

;ν`
;λ`

;ι t κ`
;ν`

;ν;κ

= ι`;ι t ι`;ι;κ`
;κ t κ`

;κ;ι`;ι t κ`
;κ

= B univalence of ι and κ

Φ`
;u0;Ξ = Φ`

;u0;Φ;X;Ψ` = u1;X;Ψ` u0;Φ univalent

Ξ`
;u0;Φ;Φ`

;u0;Ξ = Ψ;X`
;u1;X;Ψ` v Ψ;Ψ` = B u1;X univalent

Ψ;Ψ
`
= B = c2 t ran (Φ

`
;v0;Ξ) = c2;(Φ

`
;u0;Ξ)

∗C;c2 t ran (Φ
`
;v0;Ξ)

For this, we have used the following result:

ran (Φ`
;v0;Ξ) = ran (Φ`

;v0;Φ;X;Ψ`) = ran (v1;X;Θ;Ψ`)

= ran (v1;X;Θ;ν;κ) t ran (v1;X;Θ;λ`
;ι)

= ran (v1;X;ν;κ) t ran (v1;X;u3;λ
`
;ι) = ranκ t ran (v3;u3;λ

`
;ι)

For “alternative commutativity”, we calculate:

X;Ψ` = ranΦ;X;Ψ` Lemma B.2.1

= u1;X;Ψ`t v1;X;Ψ`

= u1;X;Ψ`t v1;X;Ψ`
;Ψ;Ψ` Ψ injective

= u1;X;Ψ`t v1;X;Θ;Ψ`

= Φ`
;u0;Ξ t Φ`

;v0;Φ;X;Ψ`

= (Φ`
;u0;Ξ)

∗¡ t Φ`
;v0;Ξ Def. Ξ

The combination property needs only slightly more attention than in the proof of Theorem
6.3.1:

B = ranX t ranΨ (ii), (iii) imply gluing cond.

= ran (c1;X) t ran (v1;X) t ran (c2;Ψ) t ran (v2;Ψ)

= ran (c1;X) t ran (c2;Ψ) t (ran (v1;X) u ran (v2;Ψ)) ran (v1;X) = v3 = ran (v2;Ψ)

= ran (c1;X) t ran (c2;Ψ) t (X`
;v1;X u ran (v2;Ψ)) ran (v2;Ψ) v ran (v1;X)

= ran (c1;X) t ran (c2;Ψ) t (X`
;v1;X uΘ) (iv)

= X`
;c1;X tΨ`

;c2;Ψ t (X`
;v1;X uΨ`

;v2;Ψ) c1;X univalent, Ψ`
;Ψ = c3 tΘ

Standard commutativity uses (iii) and interface preservation of Φ in the last step:

Ξ;Ψ = Φ;X;Ψ`
;Ψ = Φ;X;c3 t Φ;X;Θ

= Φ;X;c3 t Φ;Φ`
;v0;Φ;X = Φ;X;c3 t v0;Φ;X;v2 = Φ;X

The proof that with the additional conditions Ξ is a standard gluing morphism proceeds
in essentially the same way as in the proof of Theorem 6.3.1.

184 B. Proofs for Relational Rewriting, Chapter 6

B.3 Monomorphy of Weak Pullouts

The ease with which monomorphy of pullouts (Theorem 6.2.4) could be proved essentially
depended on the fact that both X and Ψ were almost-injective on the respective parameter
parts.

In the case of weak pullouts, we do not have almost-injectivity of X on the whole of
the parameter part, and therefore the argument will be more complicated.

In this context it is important to note that, given only almost-injectivity of Φ on
v0 besides u0, neither the pullout nor the weak pullout guarantee “strong alternative
parameter commutativity” v1;X;Ψ`

;v2 = Φ`
;v0;Ξ, because identifications between border

nodes of the parameter images may be induced by other parts of the interface. Consider
the following situation, where the interface u0 consists of everything but the two loop
edges, and the interface node that is not incident with one of the variables is identified
with one border node via Φ, and with the other border node via Ξ:

Chi

u0

Xi

Phi

Psi

This forces the result of the (weak) pullout construction to identify the two border nodes,
which implies that the inclusion Φ`

;v0;Ξ v v1;X;Ψ`
;v2 is strict in this case.

Outside the borders, however, we do have parameter commutativity via the parameter
part of the gluing object.

Lemma B.3.1 In weak pullouts, we have alternative parameter commutativity :

v1;X;Ψ`
;v2 = Φ`

;v0;Ξ t b1;X;Ψ`
;b2 .

Proof: v1;X;Ψ`
;v2

= v1;(Φ
`
;u0;f0;Ξ)

∗B;Φ`
;Ξ;v2

= v1;Φ
`
;Ξ;v2 t v1;(Φ

`
;u0;f0;Ξ;Ξ`

;u0;f0;Φ)
+;Φ`

;Ξ;v2

= v1;Φ
`
;v0;Ξ;v2 t v1;Φ

`
;u0;Ξ;v2 t v1;u1;(Φ

`
;u0;f0;Ξ;Ξ`

;u0;f0;Φ)
+;Φ`

;Ξ;u2;v2

= v1;Φ
`
;v0;Ξ;v2 t v1;u1;Φ

`
;u0;Ξ;u2;v2 t b1;(Φ

`
;u0;f0;Ξ;Ξ`

;u0;f0;Φ)
+;Φ`

;Ξ;b2

= Φ`
;v0;Ξ t b1;Φ

`
;Ξ;b2 t b1;(Φ

`
;u0;f0;Ξ;Ξ`

;u0;f0;Φ)
+;Φ`

;Ξ;b2

= Φ`
;v0;Ξ t b1;X;Ψ`

;b2

B.3. Monomorphy of Weak Pullouts 185

Lemma B.3.2 [←189]

c1;X;Ψ
`
= c1;X;Ψ

`
;u2 , c1;X;X

`
= c1;X;X

`
;u1 , c2;Ψ;Ψ

`
= c2;Ψ;Ψ

`
;u2 .

Proof : Obvious from alternative commutativity and the semi-injectivity properties to-
gether with Def. 6.1.2.ii).

The following lemma is the only place that employs the possible presence of sharp products.
It is open whether a proof without product exists; however, we conjecture that the typical
“cut-across diamond shape” of the constellation in the proof makes this impossible.

Lemma B.3.3 [←147, 188, 189] If the Dedekind category underlying the discussion may be
embedded in a Dedekind category with sharp products, the following holds:

X
`
;v1;X;X

`
;v1;X uΨ

`
;v2;Ψ v B

Proof : First we have:

X`
;v1;X;X`

;v1;X uΨ`
;v2;Ψ

v X`
;v1;(B t Φ`

;v0;Ξ;f2;Ξ
`
;v0;Φ t u1;X;X`

;u1);v1;X uΨ`
;v2;Ψ

= (X`
;v1;X uΨ`

;v2;Ψ) t (X`
;v1;Φ

`
;v0;Ξ;f2;Ξ

`
;v0;Φ;v1;X uΨ`

;v2;Ψ) t

(X`
;v1;u1;X;X`

;u1;v1;X uΨ`
;v2;Ψ)

= v3 t (X`
;v1;Φ

`
;v0;Ξ;f2;Ξ

`
;v0;Φ;v1;X uΨ`

;v2;Ψ) t (X`
;b1;X;X`

;b1;X uΨ`
;v2;Ψ)

v v3 t (Ψ`
;Ξ`

;v0;Ξ;f2;Ξ
`
;v0;Φ;v1;X uΨ`

;v2;Ψ) t (B;B uΨ`
;v2;Ψ)

= { Ψ almost-inj, besides u2, and u2-component covered by b1-term }

B tΨ`
;(Ξ`

;v0;Ξ;f2;Ξ
`
;v0;Φ;v1;X u v2;Ψ)

This calculation mainly served to show that everything where a non-empty intersection
with u0, u1, or u2 is involved, is already contained in the identity. Therefore, we may
restrict further considerations to the v-parts only — even in cases like using almost-
injectivity of Ψ besides u2, the u-component may be ignored since the u would always
propagate to the outside and there it is already covered.

We now give a sketch of a graphical proof — this kind of proof is justified by having a
translation into the language of allegories with sharp products (see e.g. [Kah96]), so this
is the reason we need sharp products in the assumption.

The proof is explained along the following drawing:

v3

v1

v0

v2
v3

v3

v0

v1

Φ

Χ

Ψ

Ξ
1

2 3
4

1 2

1

2

1

2

v2
3

f0

v2

3

186 B. Proofs for Relational Rewriting, Chapter 6

When writing e.g. Φ1, this indicates that we refer to the arrow numbered 1 in the Φ-group.
Otherwise, the relational expressions are to be read as if these indices were absent.

• Start with a graph (with bold edges) representing the expression

X
`

1
;v1;X2;X

`

3
;v1;X4 uΨ

`

1
;v2;Ψ2 .

The thick grey arrow represents this expression as a whole.

• Via semi-injectivity of X (ignoring the u-parts) we get: X2;X
`

3 = Φ`

2
;f0;Ξ2;Ξ

`

1
;f0;Φ1 .

• Commutativity: Φ2;X1 = Ξ3;Ψ3

• Now, almost-injectivity of Ψ gives us Ψ3;Ψ
`

1 = B (up to u2, which may be ignored, as
explained above). This allows us to identify the arrows Ψ3 and Ψ1, and their source
vertices:

v3

v1

v0

v2
v3

v3

v0

v1

Φ

Χ

Ψ

Ξ
1

2 5 4

1

2

1

2

1

2

v2

f0

3

3

• Univalence of Φ on f0 together with commutativity now produces. Ξ3;Ψ2 = Φ2;X5

• Finally, parameter tabulation gives us X`

1
;v1;X5uΨ

`

1
;v2;Ψ2 v B. This identifies source

and target of the thick grey arrow and thus completes the proof of the lemma.

Proof of Theorem 6.5.6: Assume that for the reasonable gluing setup (G0, u0, v0,Ξ,Φ),

there are two weak pullouts G2
Ψ-G3

X¾ G1 and G2
Ψ′-G3

X′¾ G1. Then we define:

Y := X
`
;c1;X

′ tΨ
`
;(ranΞ)∼;Ψ′ t (X

`
;v1;X

′ uΨ
`
;v2;Ψ

′)

Note that the weak pullout properties imply the following:

X;Ψ` = X′;Ψ′
`

X;X` = X′;X′
`

domX = domX′

Ψ;Ψ` = Ψ′;Ψ′
`

domΨ = domΨ′

When using these properties, we refer at most to the corresponding weak pullout property.

B.3. Monomorphy of Weak Pullouts 187

Totality:

domY

= dom (X`
;c1;X

′) t dom (Ψ`
;(ranΞ)∼;Ψ′) t dom (X`

;v1;X
′ uΨ`

;v2;Ψ
′)

= dom (X`
;c1;domX′) t dom (Ψ`

;(ranΞ)∼;domΨ′) t dom (X`
;v1;X

′ uΨ`
;v2;Ψ

′)

= { semi-injectivity }

dom (X`
;c1;domX) t dom (Ψ`

;(ranΞ)∼;domΨ) t dom (X`
;v1;X

′ uΨ`
;v2;Ψ

′)

= dom (X`
;c1) t dom (Ψ`

;(ranΞ)∼) t dom (X`
;v1;X

′ uΨ`
;v2;Ψ

′)

= ran (c1;X) t ran ((ranΞ)∼;Ψ) t dom (X`
;v1;X

′ uΨ`
;v2;Ψ

′)

= { Lemma A.2.2.iv) }

ran (c1;X) t ran ((ranΞ)∼;Ψ) t dom (X`
;v1;X

′;Ψ′̀ ;v2 uΨ`)

w { alternative parameter commutativity }

ran (c1;X) t ran ((ranΞ)∼;Ψ) t dom (X`
;Φ`

;v0;Ξ uΨ`)

= { Lemma A.2.2.iv) }

ran (c1;X) t ran ((ranΞ)∼;Ψ) t dom (X`
;Φ`

;v0 uΨ`
;Ξ`)

= { commutativity }

ran (c1;X) t ran ((ranΞ)∼;Ψ) t dom (Ψ`
;Ξ`

;v0 uΨ`
;Ξ`)

= ran (c1;X) t ran ((ranΞ)∼;Ψ) t ran (v2;Ψ)

= { combination }

B

Factorisation: We start with factorisation of Ψ′.

Ψ;Y = Ψ;X
`
;c1;X

′ tΨ;Ψ
`
;(ranΞ)∼;Ψ′ tΨ;(X

`
;v1;X

′ uΨ
`
;v2;Ψ

′)

For the first term we have:

Ψ;X
`
;c1;X

′ = Ψ′;X′
`
;c1;X

′ v Ψ′

For the second term, (ranΞ)∼ v q2 v domΨ and univalence of Ψ′ on (ranΞ)∼ give us:

(ranΞ)∼;Ψ′ v Ψ;Ψ
`
;(ranΞ)∼;Ψ′ v Ψ′

For the third term, we have:

v2;Ψ
′ = v2;Ψ

′;X′
`
;v1;X

′ u v2;Ψ
′ parameter tabulation and commutativity

= v2;Ψ;X`
;v1;X

′ u v2;Ψ
′ alternative commutativity

v Ψ;(X`
;v1;X

′ uΨ`
;v2;Ψ

′) modal rule

v Ψ;Ψ`
;v2;Ψ

′

v v2;Ψ
′ t u2;Ψ;Ψ`

;u2;v2;Ψ
′ Ψ almost injective besides u2

= v2;Ψ
′ t u2;Ψ

′;Ψ′
`
;b2;Ψ

′ semi-inj. Ψ, Def. b2

v v2;Ψ
′ t u2;Ψ

′ Ψ′ univalent on b2

v Ψ′

188 B. Proofs for Relational Rewriting, Chapter 6

So altogether we have Ψ;Y v Ψ′ and:

Ψ;Y

w Ψ′;ran (c1;X
′) t (ranΞ)∼;Ψ′ t v2;Ψ′

= Ψ′;ran (c1;X
′) t w2;Ψ

′ Def. w2

= Ψ′;ran (c1;X
′) t w2;Ψ

′;ran (w2;Ψ
′)

= u2;Ψ
′;ran (c1;X

′) t w2;Ψ
′;ran (c1;X

′) t w2;Ψ
′;ran (w2;Ψ

′)

= u2;Ψ
′ t w2;Ψ

′;(ran (c1;X
′) t ran (w2;Ψ

′)) ran (u2;Ψ
′) v ran (c1;X

′)

= u2;Ψ
′ t w2;Ψ

′ result coverage

= Ψ′ ,

which shows Ψ;Y = Ψ′. For factorisation of X′ we proceed in the same way:

X;Y = X;X
`
;c1;X

′ tX;Ψ
`
;(ranΞ)∼;Ψ′ tX;(X

`
;v1;X

′ uΨ
`
;v2;Ψ

′)

For the first part we use semi-injectivity of X and univalence of X′ on c1:

X;X
`
;c1;X

′ = X′;X′
`
;c1;X

′ = X′;ran (c1;X
′)

For the second part, alternative commutativity and univalence of Ψ′ on (ranΞ)∼ immedi-
ately yield:

X;Ψ
`
;(ranΞ)∼;Ψ′ = X′;Ψ′

`
;(ranΞ)∼;Ψ′ v X′

For the third part we have:

v1;X
′

v X;X`
;v1;X

′ domX = domX′

v X;(X`
;v1;X

′ uΨ`
;v2;Ψ

′)

v X;X`
;v1;X

′ uX;Ψ`
;v2;Ψ

′

= X;X`
;v1;X

′ u (c1 t v1);X;Ψ`
;v2;Ψ

′

v c1;X;Ψ`
;v2;Ψ

′ t (X;X`
;v1;X

′ u v1;X;Ψ`
;v2;Ψ

′)

= c1;X
′;Ψ′

`
;u2;v2;Ψ

′ t (X;X`
;v1;X

′ u v1;X;Ψ`
;v2;Ψ

′) Def. 6.1.2.ii), alt. intf. comm.

v c1;X
′ t (X;X`

;v1;X
′ u v1;X;Ψ`

;v2;Ψ
′) b2;Ψ

′ unival.

= c1;X
′ t (X;X`

;v1;X
′ u v1;X

′;Ψ′
`
;v2;Ψ

′) alt. comm.

v c1;X
′ t v1;X

′;(X′
`
;v1;X;X`

;v1;X
′ uΨ′

`
;v2;Ψ

′) modal rule

v c1;X
′ t v1;X

′ Lemma B.3.3

= X′

Altogether, with an argument essentially as above, we therefore have X;Y = X′.

Univalence of Y:

Y`
;Y = (X′

`
;c1;X tΨ′

`
;(ranΞ)∼;Ψ t (X′

`
;v1;X uΨ′

`
;v2;Ψ));

(X`
;c1;X

′ tΨ`
;(ranΞ)∼;Ψ′ t (X`

;v1;X
′ uΨ`

;v2;Ψ
′))

B.3. Monomorphy of Weak Pullouts 189

Since we want to show inclusion in identity, we need only consider six of the nine terms
resulting from this composition; the three omitted terms are the converses of the three
considered mixed terms.

X′
`
;c1;X;X`

;c1;X
′

= X′
`
;c1;X

′;X′
`
;c1;X

′ semi-injectivity of X

v B X′ univalent on c1

X′
`
;c1;X;Ψ`

;(ranΞ)∼;Ψ′

= X′
`
;c1;X

′;Ψ′
`
;(ranΞ)∼;Ψ′ alternative commutativity

v B X′ univalent on c1 and Ψ′ on (ranΞ)∼

X′
`
;c1;X;(X`

;v1;X
′ uΨ`

;v2;Ψ
′)

v X′
`
;c1;X;X`

;v1;X
′

= X′
`
;c1;X

′;X′
`
;c1;v1;X

′ Lemma B.3.2, semi-injectivity of X

v B X′ univalent on c1

Ψ′
`
;(ranΞ)∼;Ψ;Ψ`

;(ranΞ)∼;Ψ′

= Ψ′
`
;(ranΞ)∼;Ψ′;Ψ′

`
;(ranΞ)∼;Ψ′ semi-injectivity of Ψ

v B Ψ′ univalent on (ranΞ)∼

Ψ′
`
;(ranΞ)∼;Ψ;(X`

;v1;X
′ uΨ`

;v2;Ψ
′)

v Ψ′
`
;(ranΞ)∼;Ψ;Ψ`

;v2;Ψ
′

= Ψ′
`
;(ranΞ)∼;Ψ′;Ψ′

`
;c2;v2;Ψ

′ Lemma B.3.2, semi-injectivity of Ψ

v Ψ′
`
;((ranΞ)∼ t b2);Ψ

′ Ψ′ univalent on (ranΞ)∼

v B Ψ′ univalent on (ranΞ)∼ t b2

(X′
`
;v1;X uΨ′

`
;v2;Ψ);(X`

;v1;X
′ uΨ`

;v2;Ψ
′)

v X′
`
;v1;X;X`

;v1;X
′ uΨ′

`
;v2;Ψ;Ψ`

;v2;Ψ
′

= X′
`
;v1;X;X`

;v1;X
′ u (Ψ′

`
;v2Ψ

′ tΨ′
`
;v2;u2;Ψ;Ψ`

;u2;v2;Ψ
′) Ψ almost-inj. besides u2

= X′
`
;v1;X;X`

;v1;X
′ u (Ψ′

`
;v2Ψ

′ tΨ′
`
;b2;Ψ

′;Ψ′
`
;b2;Ψ

′) semi-injectivity

v (X′
`
;v1;X;X`

;v1;X
′ uΨ′

`
;v2Ψ

′) t B Ψ′ univalent on b2

v B Lemma B.3.3

Up to now, we have shown that Y is a mapping that factorises X′ and Ψ′. Since the same
argument is also valid for Y`, it is already shown that Y is bijective, too.

190 B. Proofs for Relational Rewriting, Chapter 6

Uniqueness: Assume a total relation Y′ : G3 → G4 with Ψ;Y′ = Ψ′ and X;Y′ = X′. Then

Y′

= (ran (c1;X) t ran (w2;Ψ));Y′ result coverage

= X`
;c1;X;Y′ t ran (w2;Ψ);Y′ c1;X univalent

= X`
;c1;X;Y′ t ran (((ranΞ)∼);Ψ);Y′ t ran (v2;Ψ);Y′

= X`
;c1;X;Y′ tΨ`

;((ranΞ)∼);Ψ;Y′ t (B uΨ`
;v2;Ψ);Y′ ((ranΞ)∼);Ψ unival.

= X`
;c1;X;Y′ tΨ`

;((ranΞ)∼);Ψ;Y′ t (X`
;v1;X uΨ`

;v2;Ψ);Y′ ran (v2;Ψ) = v3

v X`
;c1;X;Y′ tΨ`

;((ranΞ)∼);Ψ;Y′ t (X`
;v1;X;Y′ uΨ`

;v2;Ψ;Y′)

= X`
;c1;X

′ tΨ`
;((ranΞ)∼);Ψ′ t (X`

;v1;X
′ uΨ`

;v2;Ψ
′) factorisation via Y′

= Y

Since Y is univalent, totality of Y′ gives us equality.

B.4 Correctness of the Direct Result Construction

This section is dedicated to the proof that the direct result construction of Def. 6.5.7
produces a weak pullout as defined in Def. 6.5.5.

Def. 6.1.2.ii) allow us to provide equivalent, but longer shapes for Q3 and Q4; these
are sometimes useful for technical reasons:

Lemma B.4.1

Q3 = ι`;Φ`
;Ξ;λ = ι`;Φ`

;u0;Ξ;λ

Q4 = ι`;Φ`
;y∼0 ;Ξ;Ξ`

;y∼0 ;Φ;ι = ι`;Φ`
;u0;y

∼
0

;Ξ;Ξ`
;y∼0 ;u0;Φ;ι

First we show commutativity:

Lemma B.4.2 Φ;X = Ξ;Ψ

Proof : We show this equality as conjunction of two inclusions.

Φ;X v Ξ;Ψ ⇔ Φ;X0;θ v Ξ;Ψ0;θ

⇔ Φ;X0 v Ξ;Ψ0;θ;θ` Lemma A.1.2.iii)

⇔ Φ;X0 v Ξ;Ψ0;Θ

⇔ Φ;(ι t Φ`
;Ξ;λ t π`

;κ) v Ξ;Ψ0;Θ

⇔ Φ;ι t Φ;Φ`
;Ξ;λ t Φ;π`

;κ v Ξ;Ψ0;Θ

⇔ u0;Φ;ι t v0;Φ;ι t Φ;Φ`
;Ξ;λ t Φ;π`

;κ v Ξ;Ψ0;Θ

Now we show this last inclusion by showing inclusions for every component of the join
on the left-hand side. We shall frequently rely on u0 v domΞ and on the tabulation
properties of π and ρ, sometimes without mention.

u0;Φ;ι v Ξ;Ξ`
;u0;Φ;ι v Ξ;Ψ0 v Ξ;Ψ0;Θ

v0;Φ;ι = v0;u0;Φ;ι v v0;Ξ;Ξ`
;v0;Φ;ι v Ξ;v2;Ξ

`
;v0;Φ;v1;ι

= Ξ;ρ`
;π;ι = Ξ;ρ`

;κ;κ`
;π;ι v Ξ;Ψ0;Q1

B.4. Correctness of the Direct Result Construction 191

Φ;Φ`
;Ξ;λ = Φ;Φ`

;u0;Ξ;λ t Φ;Φ`
;v0;Ξ;λ

v Φ;u1;Φ
`
;u0;Ξ;λ t v0;Ξ;λ t u0;Φ;Φ`

;u0;v0;Ξ;λ Φ almost-inj. bes. u0

= u0;Φ;u1;Φ
`
;u0;Ξ;λ t v0;Ξ;λ Def. 6.1.2.ii)

v Ξ;Ξ`
;u0;Φ;u1;Φ

`
;u0;Ξ;λ t Ξ;Ψ0 u0 v domΞ

v Ξ;Ξ`
;u0;Φ;ι;ι`;Φ`

;u0;Ξ;λ t Ξ;Ψ0 ran (u0;Φ) v dom ι

v Ξ;Ψ0;Q3 t Ξ;Ψ0 Def. Ψ0, Def. Q3

v Ξ;Ψ0;Θ

For the last term we use u0 t v0 = B again:

u0;Φ;π`
;κ v Ξ;Ξ`

;u0;Φ;π`
;κ u0 v domΞ

= Ξ;Ξ`
;u0;Φ;ι;ι`;π`

;κ ran (u0;Φ) v dom ι

v Ξ;Ψ0;ι
`
;π`

;κ Def. Ψ0

v Ξ;Ψ0;Q1 Def. Q1

v Ξ;Ψ0;Θ

v0;Φ;π`
;κ v v0;Φ;π`

;ρ;ρ`
;κ

= v0;Φ;Φ`
;v0;Ξ;ρ`

;κ tabulation

v u0;Φ;π`
;κ t v0;Ξ;ρ`κ Φ almost-injective besides u0

v Ξ;Ψ0;Θ t v0;Ξ;Ψ0 above, and Def. Ψ0

= Ξ;Ψ0;Θ

For the opposite inclusion, we have:

Ξ;Ψ v Φ;X

⇔ Ξ;Ψ0;θ v Φ;X0;θ

⇔ Ξ;Ψ0 v Φ;X0;θ;θ` Lemma A.1.2.iii)

⇔ Ξ;Ψ0 v Φ;X0;Θ

⇔ Ξ;(Ξ`
;u0;Φ;ι t ρ`

;κ t λ) v Φ;X0;Θ

⇔ Ξ;Ξ`
;u0;Φ;ι t Ξ;ρ`

;κ t Ξ;λ v Φ;X0;Θ

We show this as separate inclusions, again:

Ξ;Ξ`
;u0;Φ;ι

= (y0 t u0;y
∼
0

;Ξ;Ξ`
;y∼0);u0;Φ;ι image preservation of Ξ, Def. y0

v Φ;ι t u0;y
∼
0

;Ξ;Ξ`
;y∼0 ;u0;Φ;ι

v Φ;X0 t u0;y
∼
0

;Ξ;Ξ`
;y∼0 ;u0;Φ;ι

v Φ;X0 t Φ;c1;Φ
`
;u0;y

∼
0

;Ξ;Ξ`
;y∼0 ;u0;Φ;ι u0 v domΦ and ran (u0;Φ) v c1

= Φ;X0 t Φ;ι;ι`;Φ`
;u0;y

∼
0

;Ξ;Ξ`
;y∼0 ;u0;Φ;ι

= Φ;X0 t Φ;ι;Q4 Def. Q4

v Φ;X0;Θ

192 B. Proofs for Relational Rewriting, Chapter 6

Ξ;ρ`
;κ

= u0;Ξ;ρ`
;κ t v0;Ξ;ρ`

;κ

= u0;Ξ;ρ`
;κ t v0;Ξ;f2;ρ

`
;κ t v0;Ξ;(v2 r f2);ρ

`
;κ

v u0;Ξ;ρ`
;κ t Φ;Φ`

;v0;Ξ;f2;λ;λ`
;ρ`

;κ t v0;Ξ;(v2 r f2);ρ
`
;κ

v u0;Ξ;ρ`
;κ t Φ;X0;Q2 t v0;Ξ;(v2 r f2);ρ

`
;κ

v u0;Ξ;ρ`
;κ t Φ;X0;Q2 t v0;Ξ;(v2 r f2);ρ

`
;π;π`κ

= u0;Ξ;ρ`
;κ t Φ;X0;Q2 t v0;Ξ;(v2 r f2);Ξ

`
;v0;Φ;π`

;κ tabulation

v u0;Ξ;ρ`
;κ t Φ;X0;Q2 t v0;y0;Ξ;(v2 r f2);Ξ

`
;y0;v0;Φ;π`

;κ Defs. f2, y0

= u0;Ξ;ρ`
;κ t Φ;X0;Q2 t v0;y0;Φ;π`

;κ Lemma 4.1.7

v u0;Ξ;ρ`
;κ t Φ;X0;Q2 t Φ;X0

v Φ;Φ`
;u0;Ξ;u2;v2;ρ

`
;κ t Φ;X0;Q2 t Φ;X0

v Φ;Φ`
;u0;Ξ;λ;λ`

;u2;v2;ρ
`
;κ t Φ;X0;Q2 t Φ;X0 u2;v2 v domλ

v Φ;X0;Q2 t Φ;X0;Q2 t Φ;X0

v Φ;X0;Θ

u0;Ξ;λ v Φ;c1;Φ
`
;u0;Ξ;λ u0 v domΦ and ran (u0;Φ) v c1

= Φ;ι;ι`;Φ`
;u0;Ξ;λ

= Φ;ι;Q3 v Φ;X0;Θ

v0;Ξ;λ v Φ;Φ`
;v0;Ξ;λ dom (Ξ;k2) v domΦ

= Φ;v1;Φ
`
;v0;Ξ;λ

= Φ;π`
;ρ;λ tabulation

= Φ;π`
;κ;κ`

;ρ;λ

v Φ;X0;Q
`

2 Def. Q2

Lemma B.4.3 X is univalent on u1 t v
∼
1 .

Proof : With Lemma 6.1.3.i) we have u1 t v
∼
1 = c1, and with Lemma A.1.2.iii):

X
`
;c1;X v B ⇔ θ

`
;X

`

0
;c1;X0;θ v B ⇔ X

`

0
;c1;X0 v θ;θ

`
⇔ X

`

0
;c1;X0 v Θ

The left-hand side of the last inclusion expands to the following:

(ι
`
t λ

`
;Ξ

`
;Φ t κ

`
;π);c1;(ι t Φ

`
;Ξ;λ t π

`
;κ)

It therefore gives rise to nine inclusions in Θ. Of these, six can be organised into symmet-
rical pairs, so we may omit one fromn each pair. For showing the rest, the key property
is c1 = ι;ι`. Using this and the definitions of Q1 and Q3, we quickly obtain:

ι`;c1;ι v B

ι`;c1;Φ
`
;Ξ;λ v Q3

ι`;c1;π
`
;κ = Q1

λ`
;Ξ`

;Φ;c1;Φ
`
;Ξ;λ v Q`

3
;Q3

λ`
;Ξ`

;Φ;c1;π
`
;κ v Q`

3
;Q1

κ`
;π;c1;π

`
;κ = Q`

1
;Q1

B.4. Correctness of the Direct Result Construction 193

Lemma B.4.4 Ψ is univalent on (ranΞ)∼.

Proof : As for X, the following needs to be contained in Θ:

Ψ
`

0
;(ranΞ)∼;Ψ0 = (ι

`
;Φ

`
;u0;Ξ t κ

`
;ρ t λ

`
);(ranΞ)∼;(Ξ

`
;u0;Φ;ι t ρ

`
;κ t λ)

We treat the six different constellations in the resulting nine-part join separately. Here,
the key property is (ranΞ)∼ v λ;λ`; its application yields:

ι`;Φ`
;u0;Ξ;(ranΞ)∼;Ξ`

;u0;Φ;ι v Q3;Q
`

3

ι`;Φ`
;u0;Ξ;(ranΞ)∼;ρ`

;κ v Q3;Q
`

2

ι`;Φ`
;u0;Ξ;(ranΞ)∼;λ v Q3

κ`
;ρ;(ranΞ)∼;ρ`

;κ v Q`

2
;Q2

κ`
;ρ;(ranΞ)∼;λ = Q`

2

λ`
;(ranΞ)∼;λ v B

Lemma B.4.5 Result coverage holds: ran (c1;X) t ran (w2;Ψ) = B.

Proof :

ran (c1;X) t ran (w2;Ψ)

= ran (c1;X0;θ) t ran (w2;Ψ0;θ)

= ran (ran (c1;X0);θ) t ran (ran (w2;Ψ0);θ)

= ran ((ran (c1;X0) t ran (w2;Ψ0));θ)

w ran ((ran (c1;ι) t ran ((v2 t (ranΞ)∼);Ψ0));θ)

= ran ((ran ι t ran (v2;Ψ0 t (ranΞ)∼;Ψ0));θ) Def. ι

= ran ((ran ι t ran ((v2 r f2);Ψ0 t v2;f2;Ψ0 t (ranΞ)∼;Ψ0));θ)

= ran ((ran ι t ran ((v2 r f2);Ψ0) t ran (k2;Ψ0));θ)

w ran ((ran ι t ran ((v2 r f2);ρ
`
;κ) t ran (k2;λ));θ)

= ran ((ran ι t ranκ t ranλ);θ) Def. λ

= ran θ

= B

Lemma B.4.6 Parameter tabulation holds: Ψ`
;v2;Ψ uX`

;v1;X = v3.

Proof : Since

v3 = ran (v1;X) = ran (v1;X) u ran (ran (v0;Φ);X)

= ran (v1;X) u ran (v0;Φ;X) = ran (v1;X) u ran (v0;Ξ;Ψ)

= ran (v1;X) u ran (ran (v0;Ξ);Ψ) = ran (v1;X) u ran (v2;Ψ) v Ψ`
;v2;Ψ uX`

;v1;X ,

we only need to show Ψ`
;v2;Ψ uX`

;v1;X v B. We have:

v2;Ψ0 = v2;Ξ
`
;u0;Φ;ι t v2;ρ

`
;κ t v2;λ

= (v2 u u2);Ξ
`
;u0;Φ;ι t (v2 r f2);ρ

`
;κ t v2;f2;λ

= b2;Ξ
`
;u0;Φ;ι t (v2 r f2);ρ

`
;κ t v2;f2;λ

194 B. Proofs for Relational Rewriting, Chapter 6

For Ψ`

0
;v2;Ψ0 we then have the following six components, and the converses of the three

mixed terms:
ι`;Φ`

;u0;Ξ;b2;Ξ
`
;u0;Φ;ι

ι`;Φ`
;u0;Ξ;b2;(v2 r f2);ρ

`
;κ

ι`;Φ`
;u0;Ξ;b2;v2;f2;λ

κ`
;ρ;(v2 r f2);ρ

`
;κ v κ`

;ρ;ρ`
;κ

κ`
;ρ;(v2 r f2);v2;f2;λ v Q`

2

λ`
;v2;f2;λ = ran (v2;λ) v B

Analogous preparation for X0:

v1;X0 = v1;ι t v1;π
`
;κ t v1;Φ

`
;Ξ;λ = b1;ι t π

`
;κ t v1;Φ

`
;Ξ;λ

For X`

0
;v1;X0 we then have the following terms corresponding to those above:

ι`;b1;ι v B

ι`;b1;π
`
;κ v Q1

ι`;b1;v1;Φ
`
;Ξ;λ = ι`;b1;Φ

`
;Ξ;λ v Q3

κ`
;π;π`

;κ

κ`
;π;v1;Φ

`
;Ξ;λ

λ`
;Ξ`

;Φ;v1;Φ
`
;Ξ;λ

Since intersections of terms with different injection on either end are empty, we obtain the
following for the intersection of the two lists:

Ψ`

0
;v2;Ψ0 uX`

0
;v1;X0 v B tQ1 tQ3 t (κ`

;ρ;ρ`
;κ u κ`

;π;π`
;κ) tQ`

2 t B

v Θ t κ`
;(ρ;ρ`u π;π`);κ

v Θ

All this together now allows us to show the desired inclusion:

Ψ`
;v2;Ψ uX`

;v1;X

= θ`
;Ψ`

0
;v2;Ψ0;θ u θ

`
;X`

0
;v1;X0;θ

= θ`
;(Θ;Ψ`

0
;v2;Ψ0;Θ uX`

0
;v1;X0);θ θ univalent

v θ`
;((Ψ`

0
;v2;Ψ0 tΘ;Ψ`

0
;b2;Ψ0;Θ) uX`

0
;v1;X0);θ

= θ`
;((Ψ`

0
;v2;Ψ0 t θ;Ψ`

;b2;Ψ;θ`) uX`

0
;v1;X0);θ

v θ`
;((Ψ`

0
;v2;Ψ0 tΘ) uX`

0
;v1;X0);θ Ψ univalent on b2

v θ`
;((Ψ`

0
;v2;Ψ0 uX`

0
;v1;X0) tΘ);θ

v θ`
;Θ;θ

v θ`
;θ;θ`

;θ Θ = θ;θ`

v B θ univalent

The last four lemmata together imply the combination property.

B.4. Correctness of the Direct Result Construction 195

While interface preservation lets interface components u propagate very freely, the
condition (spurious) for reasonable gluing setups (Def. 6.5.4) lets f0 propagate at least
under certain circumstances:

Lemma B.4.7 [←198, 199] (Φ`
;f0;Ξ);(Ξ

`
;u0;Φ) = (Φ`

;u0;f0;Ξ);(Ξ
`
;u0;f0;Φ)

Proof : As preparation, we first show a more general equation:

(Φ`
;f0;Ξ);Ξ

`
;Φ = Φ`

;f0;Ξ;Ξ`
;f0;Φ t Φ`

;f0;Ξ;Ξ`
;y0;Φ (spurious)

= Φ`
;f0;Ξ;Ξ`

;f0;Φ t Φ`
;f0;Ξ;Ξ`

;f0;y0;Φ Ξ;Ξ`
;y0 v B

= Φ`
;f0;Ξ;Ξ`

;f0;Φ

(Φ`
;f0;Ξ);(Ξ

`
;u0;Φ) = (Φ`

;f0;Ξ);Ξ
`
;Φ;u1

= Φ`
;f0;Ξ;Ξ`

;f0;Φ;u1 above

= Φ`
;f0;Ξ;Ξ`

;f0;u0;Φ

= Φ`
;f0;Ξ;u2;Ξ

`
;u0;f0;Φ

= Φ`
;u0;f0;Ξ;Ξ`

;u0;f0;Φ

Lemma B.4.8 [←196, 198] X0;(QtQ
`) v X0;(BtQ2tQ4) v X0tΦ

`
;f0;Ξ;(u2tf2;(v2rf2));Ψ0

Proof :

X0;Q1 = ι;Q1 = ι;ι`;π`
;κ = c1;π

`
;κ v X0

X0;Q3 = ι;Q3 = ι;ι`;Φ`
;Ξ;λ = c1;Φ

`
;Ξ;λ v X0

X0;Q4 = ι;Q4 = ι;ι`;Φ`
;y∼0 ;Ξ;Ξ`

;y∼0 ;Φ;ι

= c1;Φ
`
;y∼0 ;Ξ;Ξ`

;y∼0 ;Φ;ι v Φ`
;u0;f0;Ξ;u2;Ψ0

X0;Q2 = Φ`
;Ξ;λ;Q2 = Φ`

;Ξ;λ;λ`
;ρ`

;κ

= Φ`
;Ξ;k2;(v2 r f2);ρ

`
;κ

= { k2 u v2 v (v2 u f2) t b2 v f2 }

Φ`
;Ξ;f2;(v2 r f2);Ψ0 = Φ`

;f0;Ξ;f2;(v2 r f2);Ψ0

X0;Q
`

3 = Φ`
;Ξ;λ;Q`

3 = Φ`
;Ξ;λ;λ`

;Ξ`
;Φ;ι

= Φ`
;Ξ;k2;Ξ

`
;Φ;ι = Φ`

;Ξ;k2;Ξ
`
;u0;Φ;ι

= Φ`
;(y0 u u0 u Ξ;k2;Ξ

`);Φ;ι t Φ`
;y∼0 ;ΞΞ`

;y∼0 ;u0;Φ;ι

v Φ`
;dom (upaΦ);Φ;ι t Φ`

;y∼0 ;Ξ;u2Ξ
`
;y∼0 ;u0;Φ;ι

v ι t Φ`
;u0;y

∼
0

;Ξ;u2Ξ
`
;y∼0 ;u0;Φ;ι v X0 t u2;Φ

`
;y∼0 ;ΞΞ`

;y∼0 ;Φ;ι

v X0 t ι;ι
`
;Φ`

;y∼0 ;ΞΞ`
;y∼0 ;Φ;ι v X0 tX0;Q4

X0;Q
`

1 = π`
;κ;Q`

1 = π`
;κ;κ`

;π;ι = π`
;π;ι v ι v X0

X0;Q
`

2 = π`
;κ;Q`

2 = π`
;κ;κ`

;ρ;λ

= π`
;ρ;λ = Φ`

;v0;Ξ;λ v X0

196 B. Proofs for Relational Rewriting, Chapter 6

Lemma B.4.9 [←196, 198] Ψ0;(Q tQ
`) v (v2 t u2;k2);Ψ0 t Ξ`

;u0;Φ;X0;(B tQ4)

Proof: Ψ0;Q1 = Ξ`
;u0;Φ;ι;Q1 = Ξ`

;u0;Φ;ι;ι`;π`
;κ

= Ξ`
;u0;Φ;c1;π

`
;κ = Ξ`

;u0;Φ;c1;v1;π
`
;κ

= Ξ`
;u0;Φ;b1;π

`
;κ = Ξ`

;u0;f0;Φ;b1;π
`
;κ v Ξ`

;u0;f0;Φ;X0

Ψ0;Q3 = Ξ`
;u0;Φ;ι;Q3 = Ξ`

;u0;Φ;ι;ι`;Φ`
;Ξ;λ

= Ξ`
;u0;Φ;c1;Φ

`
;Ξ;λ v Ξ`

;u0;Φ;X0

Ψ0;Q4 = Ξ`
;u0;Φ;ι;Q4 v Ξ`

;u0;Φ;X0;Q4

Ψ0;Q
`

1 = ρ`
;κ;Q`

1 = ρ`
;κ;κ`

;π;ι

= ρ`
;π;ι = Ξ`

;v0;Φ;ι v v2;Ψ0

Ψ0;Q
`

2 = ρ`
;κ;Q`

2 = ρ`
;κ;κ`

;ρ;λ

= ρ`
;ρ;λ v v2;λ v v2;Ψ0

Ψ0;Q2 = λ;Q2 = λ;λ`
;ρ`

;κ = k2;ρ
`
;κ v k2;v2;Ψ0

Ψ0;Q
`

3 = λ;Q`

3 = λ;λ`
;Ξ`

;Φ;ι = k2;Ξ
`
;u0;Φ;ι v k2;u2;Ψ0

Lemma B.4.10 X0;Θ = X0t(Φ
`
;f0;Ξ);Ψ0;Θ and Ψ0;Θ = Ψ0t(Ξ

`
;u0;Φ);X0;Θ.

Proof : Via cyclic inclusion chains, using the definitions of X, Ψ, and Θ, Lemma B.4.8
and Lemma B.4.9, commutativity, and univalence of Φ on f0 and of Ξ on u0:

X0;Θ v X0 t Φ`
;f0;Ξ;Ψ0;Θ = X0 t Φ`

;f0;Ξ;Ψ;θ`

= X0 t Φ`
;f0;Φ;X;θ` v X0 tX;θ` = X0 tX0;Θ = X0;Θ

Ψ0;Θ v Ψ0 t Ξ`
;u0;Φ;X0;Θ = Ψ0 t Ξ`

;u0;Φ;X;θ`

= Ψ0 t Ξ`
;u0;Ξ;Ψ;θ` v Ψ0 tΨ;θ` = Ψ0 tΨ0;Θ = Ψ0;Θ

Let us define partial identities for the used parameter parts:

v′1 := dom (Φ
`
;v0;Ξ) and v′2 := ran (Φ

`
;v0;Ξ) .

In preparation for the alternative commutativity properties we first calculate the respective
compositions of X0 and Ψ0:

Lemma B.4.11 [←198, 199] X0;X
`

0 = c1 t v
′
1 t Φ`

;f0;Ξ;k2;Ξ
`
;f0;Φ

Ψ0;Ψ
`

0 = h2 t v′2 t Ξ`
;u0;Φ;Φ`

;u0;Ξ

X0;Ψ
`

0 = Φ`
;Ξ

Proof : X0;X
`

0 = ι;ι`t π`
;κ;κ`

;π t Φ`
;Ξ;λ;λ`

;Ξ`
;Φ

= c1 t π
`
;π t Φ`

;Ξ;k2;Ξ
`
;Φ

= c1 t dom (Φ`
;v0;Ξ) t Φ`

;f0;Ξ;k2;Ξ
`
;f0;Φ k2 u ranΞ v f2

= c1 t v
′
1 t Φ`

;f0;Ξ;k2;Ξ
`
;f0;Φ

B.4. Correctness of the Direct Result Construction 197

Ψ0;Ψ
`

0 = (Ξ`
;Φ;ι t ρ`

;κ t λ);(ι`;Φ`
;Ξ t κ`

;ρ t λ`)

= Ξ`
;Φ;ι;ι`;Φ`

;Ξ t ρ`
;κ;κ`

;ρ t λ;γ

= Ξ`
;Φ;c1;Φ

`
;Ξ t ρ`

;ρ t k2

= Ξ`
;Φ;c1;Φ

`
;Ξ t ranW t k2

= Ξ`
;Φ;c1;Φ

`
;Ξ t v′2 t h2 t b2

= Ξ`
;Φ;c1;Φ

`
;Ξ t v′2 t h2 b2 v ran (c1;Φ

`
;Ξ)

= h2 t v′2 t Ξ`
;u0;Φ;Φ`

;u0;Ξ

X0;Ψ
`

0 = (ι t π`
;κ t Φ`

;Ξ;λ);(ι`;Φ`
;Ξ t κ`

;ρ t λ`)

= ι;ι`;Φ`
;Ξ t π`

;κ;κ`
;ρ t Φ`

;Ξ;λ;λ`

= c1;Φ
`
;Ξ t π`

;ρ t Φ`
;Ξ;k2

= c1;Φ
`
;Ξ t v1;Φ

`
;v0;Ξ;(v2 r f2) t Φ`

;Ξ;k2 tabulation, k2 u ranΞ v f2

= Φ`
;Ξ

We may now use these equations for deriving relations between X;Ψ` and X;X` and Ψ;Ψ`:

X;Ψ` = X0;Θ;Ψ`

0 = (X0 t Φ`
;f0;Ξ;Ψ0;Θ);Ψ`

0

= X0;Ψ
`

0 t Φ`
;f0;Ξ;Ψ0;Θ;Ψ`

0 = Φ`
;Ξ t Φ`

;f0;Ξ;Ψ;Ψ`

X;X` = X0;Θ;X`

0

= X0;(X
`

0 tΘ;Ψ`

0
;Ξ`

;f0;Φ)

= X0;X
`

0 tX0;Θ;Ψ`

0
;Ξ`

;f0;Φ)

= c1 t v
′
1 t (Φ`

;f0;Ξ);k2;(Ξ
`
;f0;Φ) tX;Ψ`

;(Ξ`
;f0;Φ)

= c1 t v
′
1 t ((Φ`

;f0;Ξ);k2 tX;Ψ`);(Ξ`
;f0;Φ)

= c1 t v
′
1 tX;Ψ`

;(Ξ`
;f0;Φ) Φ`

;f0;Ξ;k2 v X;Ψ`

Ψ;Ψ` = Ψ0;Θ;Ψ`

0

= Ψ0;Ψ
`

0 t Ξ`
;u0;Φ;X0;Θ;Ψ`

0

= Ψ0;Ψ
`

0 t Ξ`
;u0;Φ;X;Ψ`

= h2 t v
′
2 t Ξ`

;u0;Φ;Φ`
;Ξ t Ξ`

;u0;Φ;X;Ψ`

= h2 t v
′
2 t (Ξ`

;u0;Φ);((Φ
`
;u0;Ξ) tX;Ψ`)

= h2 t v′2 t (Ξ`
;u0;Φ);X;Ψ` Φ`

;u0;Ξ v Φ`
;Ξ v X;Ψ`

For alternative commutativity we now may continue:

X;Ψ` = Φ`
;Ξ t (Φ`

;f0;Ξ);Ψ;Ψ`

= Φ`
;Ξ t (Φ`

;f0;Ξ);(h2 t v
′
2 t (Ξ`

;u0;Φ);X;Ψ`)

= Φ`
;Ξ t (Φ`

;f0;Ξ);(h2 t v
′
2) t (Φ`

;f0;Ξ);(Ξ
`
;u0;Φ);X;Ψ`

= Φ`
;Ξ t (Φ`

;f0;Ξ);(Ξ
`
;u0;Φ);X;Ψ`

Altogether we have now shown the following (mutually and directly) recursive equations
for X;Ψ` and X;X` and Ψ;Ψ` (for the directly recursive equation for X;X` we used an
alternative presentation for X;Ψ` that is obtained via resolving Θ;Ψ` first):

198 B. Proofs for Relational Rewriting, Chapter 6

Lemma B.4.12 X;Ψ` = Φ`
;Ξ t Φ`

;f0;Ξ;Ψ;Ψ`

= Φ`
;Ξ t (Φ`

;f0;Ξ);(Ξ
`
;u0;Φ);X;Ψ`

X;X` = c1 t v′1 tX;Ψ`
;(Ξ`

;f0;Φ)

= c1 t v
′
1 t (Φ`

;Ξ tX;X`
;(Φ`

;u0;Ξ));(Ξ
`
;f0;Φ)

Ψ;Ψ` = h2 t v
′
2 t (Ξ`

;u0;Φ);X;Ψ`

= h2 t v
′
2 t (Ξ`

;u0;Φ);((Φ
`
;u0;Ξ) t (Φ`

;u0;f0;Ξ);Ψ;Ψ`)

This shows, by a standard argument for such recursive equations (in fact, onlyw is needed),
one inclusion for the alternative commutativity conditions for weak pullouts (we also use
Lemma B.4.7 to be able to further abbreviate the reflexive transitive closures):

X;Ψ` w (Φ`
;u0;f0;Ξ)

∗B;Φ`
;Ξ

X;X` w c1 t v
′
1 t (Φ`

;u0;f0;Ξ)
∗B;(Φ`

;f0;Ξ);(Ξ
`
;f0;Φ)

Ψ;Ψ` w h2 t v
′
2 t (Ξ`

;u0;Φ);(Φ
`
;u0;f0;Ξ)

∗B;(Φ`
;u0;Ξ)

We are going to show the opposite inclusion only for Ψ;Ψ`; the other equations then follow
via Lemma B.4.12.

For this, we continue the inclusion of Lemma B.4.9 towards a “tail-recursive” shape:

Lemma B.4.13 [←199] Ψ0;(Q tQ
`) v Ψ0 t (Ξ`

;u0;Φ);(Φ
`
;u0;f0;Ξ);Ψ0

Proof : First an auxiliary calculation:

(Ξ`
;u0;Φ);X0

= (Ξ`
;u0;Φ);ι t (Ξ`

;u0;Φ);π
`
;κ t (Ξ`

;u0;Φ);Φ
`
;Ξ;λ

v Ψ0 t (Ξ`
;u0;Φ);π

`
;ρ;ρ`

;κ t (Ξ`
;u0;Φ);(Φ

`
;f0;Ξ);Ψ0 ρ total, Def. λ, Ψ0

v Ψ0 t (Ξ`
;u0;Φ);(Φ

`
;v0;Ξ);ρ

`
;κ t (Ξ`

;u0;Φ);(Φ
`
;f0;Ξ);Ψ0 tabulation

= Ψ0 t (Ξ`
;u0;Φ);(Φ

`
;b0;Ξ);ρ

`
;κ t (Ξ`

;u0;Φ);(Φ
`
;f0;Ξ);Ψ0 interf. pres.

= Ψ0 t (Ξ`
;u0;Φ);(Φ

`
;f0;Ξ);Ψ0 interf. pres.

This allows us to conclude:

Ψ0;(Q tQ
`)

v Ψ0 t Ξ`
;u0;Φ;X0;(B tQ4) Lemma B.4.9

= Ψ0 t Ξ`
;u0;Φ;X0 t Ξ`

;u0;Φ;X0;Q4

v Ψ0 t (Ξ`
;u0;Φ);(Φ

`
;f0;Ξ);Ψ0 t (Ξ`

;u0;Φ);(Φ
`
;u0;f0;Ξ);Ψ0 Lemma B.4.8

= Ψ0 t (Ξ`
;u0;Φ);(Φ

`
;u0;f0;Ξ);Ψ0

Now we are equipped to show the desired inclusion:

Lemma B.4.14 Ψ;Ψ`v v′2 t h2 t (Ξ`
;u0;Φ);(Φ

`
;u0;f0;Ξ)

∗B;(Φ`
;u0;Ξ)

Proof : From Lemma B.4.11 we know that the statement is true when ignoring the Θ-
component of Ψ;Ψ` = Ψ0;Θ;Ψ`

0. Standard arguments over the reflexive transitive closure

B.5. The Straight Host Construction Yields Weak Pullout Complements 199

then allow us to conclude:

Ψ;Ψ` = Ψ0;(Q tQ
`)∗;Ψ`

0

v ((Ξ`
;u0;Φ);(Φ

`
;u0;f0;Ξ))

∗;Ψ0;Ψ
`

0 Lemma B.4.13

v ((Ξ`
;u0;Φ);(Φ

`
;u0;f0;Ξ))

∗;(v′2 t h2 t Ξ`
;u0;Φ;Φ`

;u0;Ξ) Lemma B.4.11

= v′2 t h2 t ((Ξ`
;u0;Φ);(Φ

`
;u0;f0;Ξ))

∗;(Ξ`
;u0;Φ;Φ`

;u0;Ξ)

= v′2 t h2 t (Ξ`
;u0;Φ);((Φ

`
;u0;f0;Ξ);(Ξ

`
;u0;Φ))

∗;(Φ`
;u0;Ξ)

= v′2 t h2 t (Ξ`
;u0;Φ);(Φ

`
;u0;f0;Ξ)

∗B;(Φ`
;u0;Ξ) Lemma B.4.7

With this inclusion, we have shown the equation for Ψ;Ψ` from the weak pullout definition.
With the equations of Lemma B.4.12 we also abtain the equations for X;Ψ` and X;X`, and
this finishes the proof of correctness of the direct result construction.

B.5 The Straight Host Construction Yields Weak Pullout Complements

Proof of Theorem 6.5.9: Since u0;Φ is univalent, we have f0 v u0.

Φ`
;v0;Ξ = Φ`

;v0;Φ;X;Ψ` = v1;X;Ψ`

Φ`
;u0;f0;Ξ = Φ`

;u0;Φ;X;Ψ` = u1;X;Ψ`

Φ`
;u0;f0;Ξ;Ξ`

;u0;f0;Φ = u1;X;Ψ`
;Ψ;X`

;u1 = u1;X;X`
;u1 ran (u1;X) v ranΨ

Ξ`
;u0;f0;Φ;Φ`

;f0;u0;Ξ = Ψ;X`
;u1;X;Ψ` v Ψ;Ψ` = B u1;X univalent

The last two lines of this show the following:

(Φ`
;u0;f0;Ξ)

∗C = B

(Φ`
;u0;f0;Ξ)

∗B = B t Φ`
;u0;f0;Ξ;(Φ`

;u0;f0;Ξ)
∗C;Ξ`

;u0;f0;Φ

= B t Φ`
;u0;f0;Ξ;;Ξ`

;u0;f0;Φ

= B t u1;X;X`
;u1

Then:

(Φ`
;u0;f0;Ξ)

∗B;Φ`
;Ξ = Φ`

;Ξ t u1;X;X`
;u1;Φ

`
;Ξ

= Φ`
;Φ;X;Ψ`t u1;X;X`

;u1;Φ
`
;Φ;X;Ψ`

= ranΦ;X;Ψ`t u1;X;X`
;u1;X;Ψ` u1 v ranΦ

= ranΦ;X;Ψ`t u1;X;Ψ` u1;X univalent

= ranΦ;X;Ψ`

= X;Ψ` Lemma 5.4.7.vi)

This also contains a proof for Φ`
;Ξ = X;Ψ`.

For the parameter component, we additionally have the following:

domΩv = dom (Φ`
;v0;Ξ) = dom (v1;X;Ψ`) = dom (v1;X)

ranΩv = ran (Φ`
;v0;Ξ) = ran (Φ`

;v0;Φ;X;Ψ`) = ran (v1;X;Ψ`) = ran (v3;Ψ
`)

200 B. Proofs for Relational Rewriting, Chapter 6

The partitioning of G2 into parameter part v2 and non-parameter part c2 can be copied
from G3:

v2 := ran (v0;Ξ) = ran (v0;Φ;X;Ψ`) = ran (v3;Ψ
`)

u2 := ran (u0;Ξ) = ran (u0;Φ;X;Ψ`) = ran (u3;Ψ
`)

c2 := ran (c3;Ψ
`)

v3 = ran (v0;Φ;X) = ran (v0;Φ;X;Ψ`
;Ψ) = ran (v0;Ξ;Ψ) = ran (v2;Ψ)

c2 t v2 = ran (c3;Ψ
`) t ran (v3;Ψ

`) = ran ((c3 t v3);Ψ
`) = ran (Ψ`) = B

With this, we can derive the two almost-injectivities:

c1 t domΩv tX;Ψ`
;Ω`

f = c1 t dom (v1;X) tX;Ψ`
;Ξ`

;u0;Φ

= c1 t dom (v1;X) tX;Ψ`
;Ψ;X`

;Φ`
;u0;Φ

= c1 t dom (v1;X) tX;Ψ`
;Ψ;X`

;u1

= c1 t dom (v1;X) tX;X`
;u1

= X;X`

c2 t ranΩv t Ω`

u
;X;Ψ` = c2 t v2 t Ξ`

;u0;Φ;X;Ψ`

= c2 t v2 tΨ;X`
;Φ`

;u0;Φ;X;Ψ`

= c2 t v2 tΨ;X`
;u1;X;Ψ`

= c2 t v2 tΨ;u3;Ψ
`

= B

= Ψ;Ψ`

The combination property:

B = ran (Φ;X) t ran ((ranΦ)∼;X) t (ranX)∼

= ran ((ranΦ)∼;X) t u3 t (ranX)∼ t v3

= { ran (v2;Ψ) v ran (v1;X) }

ran ((ranΦ)∼;X) t u3 t ran ((ranΞ)
∼;Ψ) t (X`

;v1;X u ran (v2;Ψ))

= { c1;X and Ψ univalent }

X`
;c1;X tΨ`

;q2;Ψ t (X`
;v1;X uΨ`

;v2;Ψ)

It remains to be shown that Ξ is a host morphism, which means interface preservation and
univalence of u0;Ξ. Both follow in the same way as in the proof of Theorem 6.3.1, since
that proof does not rely on almost-injectivity of X besides u1.

Index

7→, 32
7→, 32
↔, 31, 67
→, 32, 34, 46, 66, 86, 90
⇒, 86
r, 50, 87
\, 85
/, 85
: , 31, 34, 66, 90
• , 31, 32
∨, 33
∧, 32
⊥, 33
>, 33
≤, 32
4, 37
¿, 44
∨

4,T , 38
∨

¿,T , 44
∧

4,T , 38
∧

¿,T , 44
∨

, 32
∧

, 32
;, 66
D, 68, 85
C, 68, 70
u, 67

u, 69
t, 85

t, 85
v, 67
×, 34, 71, 90
`

, 67
¬
, 46, 86
∼
, 50, 87
+ , 102
∗ , 102
∗¡ , 103
∗B , 103
∗C , 103
, 48

A, 67, 71

abstract algebra, 73
Σ-AlgD, 77
algebra, 37, 73
algebraic lattice, 34
allegory, 25, 67, 77, 84
allegory with sharp products, 72
almost-injective, 87
alphabet graph, 19
alternative commutativity, 147
alternative parameter commutativity, 184
antisymmetric, 68
application graph, 2
arity, 34
arrow, 66
atom, 34, 42
atomic lattice, 34

bijective, 68
Boolean lattice, 48, 58, 92
border, 54
border-discrete, 59

carrier, 37, 44
categorical product, 16, 26
category, 66
choice of direct products, 71
coherent, 117
combination property, 147
commute, 4
complement, 48
complete lattice, 33
completely distributive, 34, 41
completely downwards-distributive, 33
completely upwards-distributive, 33
component-free, 2
composition, 5, 66
conflict-free, 14, 107
congruence, 79
connected, 60, 95
constant symbol, 34
constructed gluing, 105
constructed pullout, 137
constructed tabulation, 101
context, 131
converse, 67

201

202 INDEX

coregular part, 63
cospan, 98
crisp, 84

DA, 96
DL, 59
dangling condition, 12, 107, 142
data refinement, 73
declaration, 31
Dedekind category, 84–86
Dedekind formula, 67
Dedekind rule, 165
diagrammatic order, 5
difunctional, 103, 125
direct derivation, 9
direct gluing, 104
direct interface preservation, 135
direct product, 26, 70–72, 81–83
direct product of relations, 72
direct quotient, 80
direct result construction, 148
direct sum, 94
direct tabulation, 99
discrete, 7, 58, 95
discrete base, 59, 96
discrete part, 60
distributive allegory, 84
distributive lattice, 33, 85
dom , 69
domain of injectivity, 86
domain-discrete, 95
double-pullback approach, 142
double-pullback transition, 129
double-pullout approach, 140–143
double-pushout approach, 3, 7–12, 142
downwards-distributive, 33
duality, 33

edge replacement, 2
element, 65
empty carriers, 37
empty relation, 68
equivalence relation, 68, 80
essential part, 65
extended dangling condition, 142
extended identification condition, 140

F , 34, 90

factorise, 5
family, 32
fibred approach, 130
function, 32
function symbol, 34
fuzzy, 84

glued tabulation, 135
gluing, 7, 104
gluing condition, 8–12, 107
gluing object, 7
gluing setup, 133
graph, 37
graph grammar, 1
graph homomorphism, 4
graph structure, 41, 92
graph transformation, 1
greatest element, 32
greatest lower bound, 32
Σ-GSD, 92

Heyting algebra, 46
homogoneous relation, 68
homset, 66
host morphism, 8, 143
host object, 8
hyperedge replacement, 2

B, 66
ι, 94
ideal, 58
identification condition, 11, 107, 140
implication, 46
induced, 49
initial, 7, 67, 77
injdom, 86
injection, 94
injective, 68
injective part, 86
interface, 7, 22, 131
interface component, 132
interface part, 131
interface preservation, 132, 135

direct, 135
interpretation, 36
ipa, 86
item, 4

INDEX 203

join, 33, 85
join-distributivity, 85
join-irreducible, 34, 41

κ, 94
Kronecker product, 18

L-simulation, 73
labelled structure, 152
lattice, 32–34
lattice, distributive, 85
lazy double-pullback transition, 130
least element, 32
least upper bound, 32
left residual, 85
left-hand side, 2, 8
left-linear, 140
locally co-complete, 69, 85
loop edge, 4
lower bound, 32
lower semi-lattice, 32

Map , 68, 90, 99
mapping, 32, 68, 73, 77
matching, 2
meet, 32, 67
meet-subdistributivity, 67
modal rule, 67, 85, 165
Mor [,], 66
morphism, 66

NLC graph rewriting, 19
node replacement, 2

object, 66
opfibration approach, 130
ordering, 68

π, 70, 71
parallel composition, 72
parameter, 22, 131
parameter component, 132
parameter part, 131
partial function, 68, 120
partial identity, 69, 70
partial morphism, 13, 120
partial unit, 69
Pfn , 68, 114, 120

PId , 69
point axiom, 84
product, 26, 70–72
production, 1
projection, 70
pseudo-complement, 46, 86
pseudo-complemented lattice, 46
PtoU, 45
pullback, 16, 99–102
pullback approach, 15–21
pullback complement, 116–120, 139

maximal, 130
pullout, 134–138

constructed, 137
pullout complement, 138–140
pushout, 4–7, 103–106
pushout complement, 8, 107–113
pushout object, 4

quotient, 79, 80

ρ, 70, 71
ran , 69
range-discrete, 95
reasonable gluing setup, 145
redex, 2
reduced gluing, 126
reflexive, 68
reflexive transitive closure, 102
regular, 49
Rel , 77
relation, 31, 67
relation algebra, 24–26, 92
relational homomorphism, 22, 74, 90
relational morphism closure, 88
relational morphism kernel, 93
relational structures, 74
relative pseudo-complement, 46, 86
relative semi-complement, 50, 87
replication, 15
residual, 85
restricted gluing, 127
restricting derivations, 12, 113
result embedding, 2
result graph, 2
rhs-morphism, 144
right residual, 85

204 INDEX

right-hand side, 2, 8
RMCΣ,D, 88
RMKΣ,D, 93
rule, 1, 2, 56

S, 34, 90
Σ-AlgD, 77
Σ-algebra, 37, 73
Σ-algebra homomorphism, 77
Σ-compatible family of relations, 74
Σ-GSD, 92
SAC, 39
SAK, 43
saturated symmetric quotient, 124
scalar, 84
semi-complement, 50, 87
semi-complemented lattice, 50
semi-injectivity, 147
separable part, 60
Set , 101
set comprehension, 31
sharp product, 70, 72
sharpness, 70
sigB1, 36, 38, 51
sigC1, 36, 39, 89
sigCLat, 35, 36
sigDHG, 35, 142
sigGL, 59
sigGraph, 35, 37, 89
sigGroup, 35, 36
sigL, 59
sigLat, 35
sigLoop, 36, 42
signature, 34
sigTwoSets, 36, 83
single-pushout approach, 3, 13–15
skeletal, 49
sloppy host construction, 111
solid, 60

relation, 97
solid part, 61, 97
sort, 34
source, 66, 69
source tentacle, 4
span, 98
(spurious), 145
src, 34, 90

standard gluing morphism, 134
straight host construction, 111
strict Dedekind category, 87
strict unit, 71
strictly associative, 71
strongly connected component, 89
subalgebra closure, 39
subalgebra kernel, 43
subobject, 13, 78
subobject host construction, 111
surjective, 68
symmetric, 68
symmetric division, 124
symmetric quotient, 123

tabulation, 99–102
target, 66, 69
target tentacle, 4
tentacle, 4, 35
terminal, 16, 67
topological ordering, 89
total, 68
transformation, 2
transitive, 68
transitive closure, 102
trg, 34, 90

unary algebra, 41, 90
unary signature, 34, 90
unit, 69, 77
unit graph, 4, 16
unitary, 69
univalent, 68
univalent part, 86
universal characterisation, 5, 99
universal relation, 68, 70
upa, 86
upper bound, 32
upper semi-lattice, 33
upwards-distributive, 33

variable, 15, 22, 131
vertex replacement, 2, 15, 19

weak pullout, 146

Z, 31
zero law, 85
zero relation, 68

	1 Introduction
	1.1 Graph Grammars and Graph Transformation
	1.2 The Categoric Approaches to Graph Transformation
	1.2.1 Pushouts
	1.2.2 More About Pushouts in Graphs
	1.2.3 The Double-Pushout Approach
	1.2.4 The Gluing Condition
	1.2.5 Restricting Derivations
	1.2.6 The Single-Pushout Approach
	1.2.7 Shortcomings of the Pushout Approaches
	1.2.8 The Pullback Approach

	1.3 Graph Transformation with Relational Matching
	1.4 Relation Algebras and Generalisations
	1.5 Contrasting the Relational and the Categoric Approaches
	1.6 Overview
	1.7 Eddi

	2 Graph Structures and Their Parts
	2.1 Preliminaries: Sets, Lattices
	2.2 Signatures
	2.3 Algebras and Subalgebras
	2.4 Subalgebras in Graph Structures
	2.5 Partial Algebras and Weak Partial Subalgebras
	2.6 Pseudo-Complements
	2.7 Semi-Complements
	2.8 Naïve Graph Rewriting
	2.9 Discreteness in Graph Structures
	2.10 Coregular Parts and Base Elements

	3 Allegories of -Algebras
	3.1 Preliminaries: Categories and Allegories
	3.2 Abstract -Algebras and Relational Homomorphisms
	3.3 Constructions in -AlgD

	4 Dedekind Categories of Graph Structures
	4.1 Preliminaries: Distributive Allegories and Dedekind Categories
	4.2 Joins in General -Algebra Allegories
	4.3 Relational Homomorphisms Between Graph Structures
	4.4 Pseudo- and Semi-Complements in -GSD
	4.5 Constructions in -GSD
	4.6 Discrete Relations

	5 Categoric Rewriting in a Relational Setting
	5.1 Pullbacks
	5.2 Transitive and Difunctional Closures
	5.3 Pushouts
	5.4 Pushout Complements
	5.5 Pullback Complements
	5.6 Pushouts of Partial Functions
	5.7 Summary

	6 Relational Rewriting in Dedekind Categories
	6.1 Gluing Setup
	6.2 Amalgamating Pushouts and Pullbacks to Pullouts
	6.3 Pullout Complements
	6.4 Pullout Rewriting
	6.5 The Weak Pullout Construction

	7 Conclusion and Outlook
	Bibliography
	A Proofs of Auxiliary Properties
	A.1 Allegory Properties
	A.2 Partial Identities
	A.3 Dedekind Category Properties
	A.4 Semi-Complements and Partial Identities in Dedekind Categories
	A.5 Symmetric Quotients

	B Proofs for Relational Rewriting, Chapter 6
	B.1 Correctness of the Glued Tabulation Construction
	B.2 Correctness of the Pullout Complement Construction
	B.3 Monomorphy of Weak Pullouts
	B.4 Correctness of the Direct Result Construction
	B.5 The Straight Host Construction Yields Weak Pullout Complements

	Index

