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Abstract. An n-player, finite, probabilistic game with perfect informa-
tion can be presented as a 2n-partite graph. For Can’t Stop, the graph
is cyclic and the challenge is to determine the game-theoretical values
of the positions in the cycles. We have presented our success on tack-
ling one-player Can’t Stop and two-player Can’t Stop. In this article we
study the computational solution of multi-player Can’t Stop (more than
two players), and present a retrograde approximation algorithm to solve
it by incorporating the multi-dimensional Newton’s method with retro-
grade analysis. Results of experiments on small versions of three- and
four-player Can’t Stop are presented.

1 Introduction

Retrograde analysis has been successfully applied to convergent, deterministic,
finite, and two-player zero-sum games with perfect information [13], such as
checkers [12] and Awari [11]. In contrast, its application to probabilistic games
was generally limited to those with game graph representation being acyclic,
such as Yahtzee [6, 14] and Solitaire Yahtzee [7]; Pig4 is a notable exception [10].
We consider the probabilistic games in graph representation with cycles, and
are particularly interested in Can’t Stop5. Our success of tackling one-player
and two-player Can’t Stop was presented in [8] and [9], respectively. This article

4 See, e.g., http://en.wikipedia.org/wiki/Pig (dice).
5 Can’t Stop was designed by Sid Sackson and marketed first by Parker Brothers and

now by Face 2 Face Games. It has won a Major Fun award from Majorfun.com and
received a Preferred Choice Award from Creative Child Magazine. The rules can be
found at http://en.wikipedia.org/wiki/Can’t Stop.
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presents our study of multi-player Can’t Stop that allows more than two play-
ers. Our method can also be applied to the multi-player versions of some other
probabilistic games, such as Pig, Pig Mania6, and Hog7.

An n-player probabilistic game can be represented as a 2n-partite graph
G = (U1, . . . , Un, V1, . . . , Vn, E), where Ui corresponds to random events and
Vi corresponds to deterministic events for the ith players for i = 1, . . . , n, and
E = (

⋃n
i=1(Ui×Vi))∪(

⋃n
i=1 Vi×

⋃n
i=1 Ui). In some games, such as Can’t Stop, the

graph representation is cyclic, which causes difficulty in designing a bottom-up
retrograde algorithm. In this article we give a retrograde approximation algo-
rithm to solve n-player Can’t Stop, by incorporating the n-dimensional New-
ton’s method into a retrograde algorithm. This indeed is a generalization of the
method for two-player Can’t Stop [9, 5].

The rest of this paper is organized as follows. Section 2 abstracts multi-player
probabilistic games. Section 3 gives a retrograde approximation algorithm to
solve multi-player Can’t Stop. Section 4 presents the indexing scheme. Section 5
summarizes the results of the experimental tests. Our findings are summarized
in Sect. 6.

2 Abstraction of Probabilistic Games

We use a game graph G = (U1, . . . , Un, V1, . . . , Vn, E) to represent an n-player
probabilistic game (n ≥ 2), where roll and move positions of the ith player
are in Ui and Vi, respectively, for i = 1, . . . , n, and E = (

⋃n
i=1 Ui × Vi) ∪

(
⋃n

i=1 Vi×
⋃n

i=1 Ui). Each position u is associated with a vector of scores f(u) =
(f1(u), . . . , fn(u)) ∈ Rn, where fi(u) represents the expected score that the ith
player achieves in optimal play from u for i = 1, . . . , n. This mapping is denoted
by a function f :

⋃n
i=1 Ui∪Vi → Rn, which is also called a database of the game.

For each non-terminal roll position u ∈
⋃n

i=1 Ui, each outgoing edge (u, v)
has a weight 0 < p((u, v)) ≤ 1 indicating the probability that the game in u will
change into move position v. Then

f(u) =
∑

∀v with (u,v)∈E

p((u, v))f(v). (1)

In optimal play, each player maximizes locally his score8. Consider the move
positions in Vi of the ith player. For all non-terminal move positions vi ∈ Vi,

f(vi) = f(argmax{fi(u) : (vi, u) ∈ E}). (2)

In other words, the ith player chooses the move to maximize his score at each
move position vi ∈ Vi. A database f that satisfies both conditions (1) and (2) is
called a solution to G.
6 See, e.g., http://en.wikipedia.org/wiki/Pass the Pigs.
7 See, e.g., http://en.wikipedia.org/wiki/Pig (dice)#Rule Variations.
8 We use ‘he/his’ when both ‘she/her’ and ‘he/his’ are possible, respectively.



A Retrograde Approximation Algorithm for Multi-Player Can’t Stop 3

First, we consider (1). In this paper we let fi(u) ∈ [0, 1] be the probability
that the ith player at position u will win the game in optimal play, although in
general it can be from any scoring method. Note that we have no assumption
of the number of winners at the end of a game. It can be no winner or multiple
winners. If a game always ends with exactly one winner, then

∑n
i=1 fi(w) = 1

for all w ∈
⋃n

i=1 Ui ∪ Vi. If in addition n = 2, this model coincides with the
zero-sum two-player model presented in [9, 5] by setting f2(u) = 1− f1(u).

Then we consider (2). Ambiguity occurs if there is more than one maximizer
of fi(u) that results in a different f(u). In such a case two possible disambiguation
rules are listed as follows.

– Take the average of f(u) of all maximizers of fi(u), which means to choose
randomly a maximizer.

– Choose a maximizer according to additional assumptions (e.g., collusion be-
tween players).

If some ith player’s goal is not to maximize his own score but to attack some
jth player, then (2) is replaced by

f(vi) = f(argmin{fj(u) : (vi, u) ∈ E})

for vi ∈ Vi. Ambiguity, if present, can be handled in a similar way stated above.

Fig. 1. An example of three-player game graph G = (U1, V1, U2, V2, U3, V3, E)
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We illustrate an example in Fig. 1, where u1, ū1 ∈ U1, v1, v̄1 ∈ V1, u2, ū2 ∈ U2,
v2, v̄2 ∈ V2, u3, ū3 ∈ U3, and v3, v̄3 ∈ V3. The three terminal vertices are ū1, ū2

and ū3 with position values f(ū1) = (1, 0, 0), f(ū2) = (0, 1, 0), and f(ū3) =
(0, 0, 1). A cycle is formed by the edges between vertices u1, v1, u2, v2, u3, v3.
This example simulates the last stage of a game of three-player Can’t Stop. At
position u1, the first player has 50% chance of winning the game immediately,
and a 50% chance of being unable to advance and therefore making no progress
at this turn. The second and third players are in the same situation at position
u2 and u3, respectively. Let f(u1) = (x, y, z). By (1) and (2),

f(v2) = f(u3) = (
1
2
x,

1
2
y,

1
2
z +

1
2

),

f(v1) = f(u2) = (
1
4
x,

1
4
y +

1
2
,

1
4
z +

1
4

), (3)

f(v3) = f(u1) = (
1
8
x +

1
2
,

1
8
y +

1
4
,

1
8
z +

1
8

) = (x, y, z).

Solving the last equation in (3), we obtain x = 4
7 , y = 2

7 and z = 1
7 , the

winning probabilities of the three players when it is the first player’s turn to
move9. This example reveals that solving multi-player Can’t Stop is equivalent
to solving a system of piecewise linear equations. We give in Sect. 3 an approx-
imation algorithm to solve it by incorporating the multi-dimensional Newton’s
method with retrograde analysis.

Because of the potential ambiguity of (2), the existence and uniqueness of
the solution of multi-player Can’t Stop may need further assumptions, and hence
are not investigated in this paper.

Note that, however, if the number of players is two (i.e., n = 2) and the
position value f(u) = (f(u1), f(u2)) satisfies f1(u)+f2(u) = 1 for u ∈

⋃2
i=1 Ui∪

Vi (i.e., always exactly one winner at the end), then no ambiguity of (2) would
occur. For two-player Can’t Stop we have proved the existence and uniqueness
of the solution in [5].

3 Retrograde Solution for Multi-Player Can’t Stop

Can’t Stop is a game for up to four players. It can be generalized to allow even
more players. In this section we give a retrograde approximation algorithm for
n-player Can’t Stop, by incorporating the n-dimensional Newton’s method with
retrograde analysis. This is generalized from the result of the two-player version
game in [9]. We begin with acyclic game graphs for simplicity.

3.1 Game Graph is Acyclic

For games with acyclic game graphs, such as multi-player Yahtzee, the bottom-
up propagation procedure is clear. Algorithm 1 gives the pseudocode to construct
the database for an acyclic game graph.
9 Another small example of simplified Parcheesi can be found in [3, Chapter 3].
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Algorithm 1 Construct database f for an acyclic game graph
Require: G = (U1, V1, . . . , Un, Vn, E) is acyclic.
Ensure: Program terminates with (1) and (2) satisfied.
∀u ∈

⋃n
i=1 Ui, f(u)← 0(n). . Initialization Phase

∀v ∈
⋃n

i=1 Vi, f(v)← −∞(n).
S1 ← {terminal positions in

⋃n
i=1 Ui}

S2 ← {terminal positions in
⋃n

i=1 Vi} . (†)
∀w ∈ S1 ∪ S2, set f(w) to be its position value.
repeat . Propagation Phase

for all u ∈ S1 and (v, u) ∈ E do
Determine i such that v ∈ Vi.
f(v)← f(argmax{fi(w) : (v, w) ∈ E})
if all children of v are determined then . (*)

S2 ← S2 ∪ {v}
end if

end for
S1 ← ∅
for all v ∈ S2 and (u, v) ∈ E do

f(u)← f(u) + p((u, v))f(v)
if all children of u are determined then . (**)

S1 ← S1 ∪ {u}
end if

end for
S2 ← ∅

until S1 ∪ S2 = ∅

In Algorithm 1, 0(n) means a zero vector of size n, and −∞(n) follows the
same syntax. Assuming all terminal vertices are in

⋃n
i=1 Ui, the set S2 is initially

empty and (†) is not required. However, it is useful for the reduced graph Ĝ in
Algorithms 2 and 3. We say a vertex is determined if its position value is known.
By (1) and (2), a non-terminal vertex cannot be determined until all its children
are determined. The sets S1 and S2 store all determined but not yet propagated
vertices. A vertex is removed from them after it is propagated. The optimal
playing strategy is clear: given v ∈ Vi, a position with the ith player to move,
always make the move (v, u) that maximizes fi(u).

In an acyclic graph, the level (the longest distance to the terminal vertices)
for each vertex is well-defined. In Algorithm 1, the position values are uniquely
determined level by level. Hence a solution exists. A non-terminal position has
its value determined whenever all its children are determined at (*) and (**) in
Algorithm 1. One can use a boolean array to trace the determined positions in the
implementation. The uniqueness of the solution is subject to the disambiguation
rule for (2). If all terminal positions w satisfy

∑n
i=1 fi(w) = 1, so do all the

positions, by recursively applying (1) and (2).
In Algorithm 1, an edge (u, v) can be visited as many times as the out-

degree of u because of (*) and (**). The efficiency can be improved as follows.
We associate each vertex with a number of undetermined children, and decrease
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the value by one whenever a child is determined. A vertex is determined after
the number is decreased down to zero. As a result, each edge is visited only once
and the algorithm is linear. This is called the children counting strategy. For
games like Yahtzee, the level of each vertex, the longest distance to the terminal
vertices, is known a priori. Therefore, we can compute the position values level
by level. Each edge is visited only once without counting the children. Note that
Algorithm 1, is related to dynamic programming. See, for example, [1] for more
information.

3.2 Game Graph is Cyclic

If we apply Algorithm 1 to a game graph with cycles, then the vertices in the
cycles cannot be determined. A naive algorithm to solve the game is described as
follows. Given a cyclic game graph G = (U1, V1, . . . , Un, Vn, E), we prune some
edges so the resulting Ĝ = (U1, V1, . . . , Un, Vn, Ê) is acyclic, and then solve Ĝ by
Algorithm 1. The solution to Ĝ is treated as the initial estimation for G, denoted
by function f̂ . We approximate the solution to G by recursively updating f̂ using
(1) and (2). If f̂ converges, it converges to a solution to G. The pseudocode is
given in Algorithm 2.

Algorithm 2 A naive algorithm to solve a cyclic game graph
Ensure: If f̂ converges, it converges to a solution to G = (U1, V1, . . . , Un, Vn, E).

Obtain an acyclic graph G = (U1, V1, . . . , Un, Vn, Ê), Ê ⊂ E. . Estimation Phase
Compute the solution f̂ to Ĝ by Algorithm 1. . (†)
Use f̂ as the initial guess for G.
S1 ← {terminal positions of Ĝ in

⋃n
i=1 Ui}.

S2 ← {terminal positions of Ĝ in
⋃n

i=1 Vi}.
repeat . Approximation Phase

for all u ∈ S1 and (v, u) ∈ E do
Determine i such that v ∈ Vi.
f̂(v)← f(argmax{f̂i(w) : (v, w) ∈ E}). . (*)

end for
S1 ← ∅
for all v ∈ S2 and (u, v) ∈ E do

f̂(u)←
∑
∀w with (u,w)∈E

p((u, w))f̂(w) . (**)

S1 ← S1 ∪ {u}
end for
S2 ← ∅

until f̂ converges.

An example is illustrated by solving the game graph in Fig. 1. We remove
(v3, u1) to obtain the acyclic graph Ĝ, and initialize the newly terminal vertex v3

with position value (1, 0, 0). The solution for Ĝ has f̂(u1) = ( 5
8 , 1

4 , 1
8 ). The update

is repeated with f̂(u1) = ( 5
8 , 1

4 , 1
8 ), ( 37

64 , 9
32 , 9

32 ), . . . , ( 4·8k+3
7·8k , 2(8k−1)

7·8k , 8k−1
7·8k ), . . . ,
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which converges to ( 4
7 , 2

7 , 1
7 ), the correct position value of u1. Therefore f̂ con-

verges to the solution to G. Let ei(k) be the magnitude difference between f̂i(u1)
at the kth step and its converged value; then ei(k+1)

ei(k) = 1
8 for i = 1, 2, 3. Hence it

converges linearly. This naive Algorithm 2 is related to value iteration. See, for
example, [2] for more information.

For computational efficiency, we split a given game graph into strongly con-
nected components, and consider the components in bottom-up order. For multi-
player Can’t Stop, each strongly connected component consists of all the posi-
tions with a certain placement of the squares and various placement of the at
most three neutral markers for the player on the move. The roll positions with no
marker are the anchors of the component. When left without a legal move, the
game goes back to one of the anchors, and results in a cycle. The outgoing edges
of each non-terminal component lead to the anchors in the supporting compo-
nents. The terminal components are those in which some player has won three
columns. Each terminal component has only one vertex with position value in the
form (0, . . . , 0, 1, 0, . . . , 0); the ith entry is 1 if the i player wins, and otherwise
it is 0.

Denote by a cyclic game graph G = (U1, V1, . . . , Un, Vn, E) a non-terminal
component of multi-player Can’t Stop and its outgoing edges to the supporting
components. Let Gi be the subgraph of G induced by Ui ∪ Vi for i = 1, . . . , n.
The following two properties hold.

P1 All the graphs Gi for i = 1, . . . , n are acyclic.
P2 There exist wi ∈ Ui, such that the edges from Gi to the other vertices

(i.e., not in Ui ∪ Vi) all end at wi+1 for i = 1, . . . , n, where we have defined
wn+1 ≡ w1 for notational convenience.

Properties (P1) and (P2) also hold in some other probabilistic games in
strongly connected components, such as Pig, Pig Mania, and Hog. Therefore,
the following discussion and our method are applicable to these games.

Let Ĝi = (Ui ∪ {wi+1}, Vi, Ei) be the induced bipartite subgraph of G for
i = 1, . . . , n. By property (P1), Ĝi is acyclic. All the terminal vertices in Ĝi

other than wi+1 are also terminal in G. By property (P2), the union of Ĝi for
i = 1, . . . , n forms G. Let xi+1 be the estimated position value of wi+1. Here
xn+1 ≡ x1 because of notational convenience wn+1 ≡ w1. We can construct a
database for Ĝi with xi+1 by Algorithm 1. Denote by ĝi(xi+1, w) the position
value of w ∈ Ui ∪ Vi that depends on xi+1. Given x2, . . . , xn+1, the values of
ĝi(xi+1, w) for w ∈ Ui ∪ Vi, i = 1, . . . , n constitute a solution to G, if and only if

ĝi(xi+1, wi) = xi, i = 1, . . . , n. (4)

The discussion above suggests to solve the system of equations (4) directly.
An example is illustrated with the game graph in Fig. 1 as follows. We treat
u1, u2, u3 as the three anchors w1, w2, w3, and let x1, x2, x3 be the initial estimate
of the position values of them, respectively. The equations (4) are

x3 = 0.5x1 + (0, 0, 0.5);
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x2 = 0.5x3 + (0, 0.5, 0); (5)
x1 = 0.5x2 + (0.5, 0, 0).

The solution of this linear system is x1 = ( 4
7 , 2

7 , 1
7 ), x2 = (1

7 , 4
7 , 2

7 ) and x3 =
( 2
7 , 1

7 , 4
7 ), which are the exact position values of u1, u2 and u3, respectively.

Solving (4) by propagation in value corresponds to the fixed point iteration
for computing fixed points of functions10, and therefore linear convergence can
be expected. In contrast, solution (3) inspires us to propagate in terms of the
position value x1 of w1. The resulting method corresponds to the n-dimensional
Newton’s method (see, e.g., [4, Chapter 5]). The pseudocode is given in Algo-
rithm 3.

Algorithm 3 An efficient algorithm to solve a cyclic game graph
Require: G = (U1, V1, . . . , Un, Vn, E) satisfies properties (P1) and (P2).
Ensure: If f̂ converges, it converges to a solution to G in the rate of Newton’s method.
{Estimation Phase:}
Denote the induced subgraphs Ĝi = (Ui∪{wi+1}, Vi, Ei) for i = 1, . . . , n; wn+1 ≡ w1.
{Note that all Ĝi are acyclic and

⋃n
i=1 Ei = E}.

Estimate the position values of anchors wi ∈ Ui, denoted by xi for i = 1, . . . , n.
{Approximation Phase:}
Estimate the position value of wn+1 (i.e., w1); denote it by x1.
repeat

for all i = n, n−1 . . . , 1 do
Solve Ĝi based on xi+1 in terms of x1 by Algorithm 1.
{Propagation by (1) and (2) is done in terms of x1.}

end for
{We have the position value of w1 in Ĝ1 in terms of x1, denoted by h(x1).}
Solve h(x1) = x1 for new estimate x1.

until it converges (i.e., x1 is unchanged in value).

Note that Newton’s method needs only one iteration to solve a linear system.
Indeed, solution (3) is an illustration of applying Algorithm 3 to solve the small
example (5), where (x, y, z) in (3) plays the role of x1 in Algorithm 3. In this case
we obtain the solution by one iteration, since the system (5) is linear. In practice,
however, the equations (4) are piecewise linear. Hence, multiple iterations are
expected to reach the solution. In the experiments on simplified versions of three-
and four-player Can’t Stop, it always converged, although Newton’s method does
not guarantee convergence in general.

Consider Algorithm 3. In the estimation phase, the better the initial esti-
mated position value x1 of the anchors w1(≡ wn+1), the fewer iterations are
needed to reach the solution. Assuming the game always has exactly one winner
at the end, we may reduce one dimension by setting fn(u) = 1−

∑n−1
i=1 fi(u) for

all positions u ∈
⋃n

i=1 Ui ∪ Vi. This change of Algorithm 3 results in a method
corresponding to the (n−1)-dimensional Newton’s method.
10 See, for example, http://en.wikipedia.org/wiki/Fixed point iteration.
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In Algorithm 3, the graphs Ĝ1, . . . , Ĝn are disjoint except for the anchors
w1, . . . , wn. Therefore, in the estimation phase, we may initialize the position
values x1, . . . , xn ∈ Rn of w1, . . . , wn. In the approximation phase, we propagate
for Ĝ1, . . . , Ĝn in terms of x2, . . . , xn+1 ∈ Rn (xn+1 ≡ x1), respectively and
separately. The resulting algorithm corresponds to the n2-dimensional Newton’s
method and is natively parallel on n processors. We illustrate an example by
solving the game graph in Fig. 1. The first Newton’s step results in the linear
system (5) of 9 variables, which leads to the solution of the game graph in one
iteration. (Note that here x1, x2, x3 ∈ R3.) In general, the equations (4) are
piecewise linear and require multiple Newton’s iterations to reach the solution.

A more general model is that an n-player game graph G has m anchors
w1, . . . , wm (i.e., removing the outgoing edges of w1, . . . , wm results in an acyclic
graph), but does not satisfy properties (P1) and (P2). In this model the incor-
poration of mn-dimensional Newton’s method is still possible, but it may not be
natively parallel.

4 Indexing Scheme

We use two different indexing schemes for positions in n-player Can’t Stop: one
for anchors and another for non-anchors. Because we can discard the position
values of non-anchors once we have computed the position value of their anchors,
speed is more important than space when computing the indices of non-anchors.
Therefore, we use a mixed radix scheme like the one used for one-player Can’t
Stop [8] and two-player Can’t Stop [9] for non-anchor positions.

In this scheme, anchors are described by (x1
2, . . . , x

1
12, x

2
2, . . . , x

n
12, t) where

xp
c represents the position of player p’s square in column c, and t is whose

turn it is. Components and positions within components are described in the
same way, except that since a component includes n anchors that differ only in
whose turn it is, t may be omitted when describing a component, and within
a component we record the positions of neutral markers as if they are player
t’s squares (given the tuple describing a component and a tuple describing a
position with that component, we can easily determine where the neutral mark-
ers are). Therefore, a position within a component (x1

2, . . . , x
1
12, x

2
2, . . . , x

n
12, t) is

(y1
2 , . . . , y1

12, y
2
2 , . . . , yn

12, t) where, for all c and p, yp
c = xp

c , except that in at most
three locations we may have yt

c > xt
c (player t may have advanced the neutral

markers in three columns). The yp
c and t are used as the digits in the mixed

radix system. The place value of the t digit is 1. The place value of the y1
2 digit

is v1
2 = 2, and in general vp

c = vp
c−1 · (1 + lc−1) if c > 2 and vp

c = vp−1
12 · (1 + l12)

if c = 2 and p > 1, where lc denotes the length of column c. The index of a
position is then (t− 1) +

∑n
p=1

∑12
c=2(yp

c · vp
c ).

Because the probability database for the anchors is kept, space is an im-
portant consideration when indexing anchors. In the variant used in our experi-
ments, an anchor (x1

2, . . . , x
n
12, t) is illegal if xp

c = xp′

c > 0 for some p 6= p′ (players’
squares cannot occupy the same location with a column). Because some positions
are not valid anchors, the mixed radix system described above does not define
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a bijection between anchors and any prefix of N. The indexing scheme therefore
maps some indices to nonexistent anchors.

Furthermore, once a column is closed, the locations of the markers in that
column are irrelevant; only which player won matters. For example, an anchor
u with x1

5 = 9 and x2
5 = x3

5 = 0 also represents the positions with x2
5, x

3
5 ∈

{1, . . . , 8} and all other markers in the same places as u. If the probability
database is stored in an array indexed using the mixed radix system as for non-
anchors, then the array would be sparse: for the official 3-player game, over
99.9% of the entries would be wasted on illegal and equivalent indices.

In order to avoid wasting space in the array and to avoid the structural
overhead needed for more advanced data structures, a different indexing scheme
is used that results in fewer indices mapping to illegal, unreachable, or equivalent
positions.

We write each position as ((x1
2, . . . , x

n
2 ), . . . , (x1

12, . . . , x
n
12), t). Associate with

each n-tuple (x1
c , . . . , x

n
c ) an index zc corresponding to its position on a list of

the legal n-tuples of locations in column c (i.e., on a list of n-tuples (y1
c , . . . , yn

c )
such that yi

c 6= yj
c unless yi

c = yj
c = 0 or i = j, and if yi

c = lc then yj
c = 0 for

j 6= i). For the three-player games and a column with lc = 2 this list would be
(0, 0, 0), (0, 0, 1), (0, 1, 0), (1, 0, 0), (0, 0, 2), (0, 2, 0), (2, 0, 0). Therefore, the anchor
((0, 0, 1), (2, 0, 0), (1, 0, 0), (0, 0, 0), . . . , (0, 0, 0), 1) (that is, the position in which
player 3 has a square in the first space of column 2, player 1 has squares two
spaces into column 3 and one space into column 4, and it is player one’s turn)
would be encoded as (1, 6, 3, 0, . . . , 0, 1). Those zc and t are then used as digits
in a mixed radix system to obtain the index

(t− 1) +
12∑

c=2

zc · 2
c−1∏
d=2

T (d),

where the T (d) term in the product is the number of legal, distinct tuples of
locations in column d; T (d) = n +

∑n
z=0

(
n
z

)
P (ld − 1, z). The list of n-tuples

used to define the zi’s can be constructed so that if component u is a supporting
component of v then the indices of u’s anchors are greater than the indices of
v’s and therefore we may iterate through the components in order of decreasing
index to avoid counting children while computing the solution.

There is still redundancy in this scheme: when columns are closed, what
is important is which columns have been closed and the total number won by
each player, but not which columns were won by each player. Before executing
Algorithm 3 on a component, we check whether an equivalent component has
already been solved. We deal with symmetric positions in the same way.

5 Experiments

The official version of three- and four-player Can’t Stop has over 1025 and 1032

components – too many to solve with currently available technology. As proof
of concept, we alternatively have solved simplified versions of multi-player Can’t
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Stop. The simplified games use dice with fewer than six sides, may have shorter
columns than the official version, and may award a game to a player for complet-
ing fewer than 3 columns. Let (p, n, k, c) Can’t Stop denote the p-player game
played with n-sided dice and columns of length k, k+2, . . . , k+2(n−1), . . . , k that
is won when a player completes c columns.

We have implemented Algorithm 3 in Java and solved (p, n, k, c) Can’t Stop
for six combinations of small values of p, n, k, and c. Note that, in all cases, if
n = 2 then c = 1 and if n = 3 then c = 2 because if we allow larger values of c
then the game may end with no player winning the required number of columns.
We used an initial estimate of ( 1

p , . . . , 1
p ) for the position values of the anchors

within a component. We assume that, when a player has a choice of two or more
moves that would maximize his expected score but would have different effects
on the other players, he makes the same choice each time; exactly which choice
is made is determined arbitrarily by the internal ordering of the moves.

Table 1 shows, for the six examined versions of the game, the size of the
game graph, the time it took the algorithm to run, and the probability that the
each player wins, assuming that each player plays optimally. The listed totals for
components and positions within those components do not include the compo-
nents that were not examined because of equivalence to other components (for
(3,3,2,2) Can’t Stop there were 4,539,783 such components).

Table 1. Results of solving simple versions of Multi-player Can’t Stop

(p, n, k, c) Components Positions Time
P (win)

P1 P2 P3 P4

(3, 2, 1, 1) 13 207 0.375s 1.000 0.000 0.000
(3, 2, 2, 1) 340 7,410 1.72s 0.804 0.163 0.0332
(3, 2, 3, 1) 6,643 176,064 14.7s 0.717 0.217 0.0657
(3, 3, 1, 2) 74,302 7,580,604 34m45s 0.694 0.230 0.0760
(3, 3, 2, 2) 3,782,833 687,700,305 2d10h 0.592 0.277 0.130
(4, 3, 1, 1) 48,279 2,168,760 19m30s 0.920 0.0737 0.00591 0.000474

In the five most simplified versions listed in Table 1, the probability of win-
ning the game in a single turn is so high that the optimal strategy never chooses
to end a turn early. Colluding players also have the same strategy: in order to
prevent one player from winning it is best in these small versions to try to win
straightforwardly on the current turn. Because no player ever ends a turn with
partial progress in a column, there is never a question of whether or not to avoid
an otherwise desirable column to benefit an ally. For (3,3,2,2) Can’t Stop there
are a few circumstances in which players should end their turns early; this al-
lows a modest gain from collusion: players two and three can reduce player one’s
chance of winning by about 0.03%.
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6 Our Findings

We used a 2n-partite graph to abstract an n-player probabilistic game. Given
a position u, its position value is a vector f(u) = (f1(u), . . . , fn(u)) ∈ [0, 1]n,
with fi(u) indicating the winning rate of the ith player for i = 1, . . . , n. We
investigated the game of multi-player Can’t Stop. To obtain the optimal solution,
we generalized an approximation algorithm from [8, 9, 5] by incorporating the n-
dimensional Newton’s method with retrograde analysis. The technique was then
used to solve simplified versions of three- and four-player Can’t Stop. The official
versions of three- and four-player Can’t Stop have too many components to solve
with currently available technology. It may be possible to find patterns in the
solutions to the simplified games and use those patterns to approximate optimal
solutions to the official game.
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